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Take-Off from Satellite Orbit 
H. S. TSIENI 

Daniel and Florence Guggenheim Jet Propulsion Center, California Institute of Technology, Pasadena, Calif. 

The mass ratio or the characteristic velocity for the tal,e­
off of a space ship from the satellite orbit is computed for 
two cases: the radial thrust, and the circumferential 
thrust. The circumferential thrust is much more ef­
ficient in that the required mass ratio is much Jess than for 
the radial thrust. Both cases show, however, an increase 
of the required mass ratio and the characteristic velocity 
with a reduction in acceleration. With circumferential 
thrust, the characteristic velocity increases by a factor of 
two, when the acceleration is reduced from 1/2 g to 1/'000 g. 

FOR take-off of a rocket from the earth surface, it is con­
venient to have the initial trajectory in the vertical direc­

tion, and then the thrust should be considerably larger than 
the initial weight of the rocket to overcome the gravity and 
to give an appropriate acceleration. Depending upon the rela­
tive magnitudes of the aerodynamic drag and the weight, 
the initial ratio of the thrust and the weight should be between 
2 and 3 for minimum expenditure of the propellant. The 
situation is quite different for a space ship taking off from the 
satellite orbit: In a satellite orbit, the gravitational attraction 
is completely balanced by the centrifugal force, and the ve­
hicle is effectively in a weightless state. This fact has led 
many fanciers of interplanetary travel to conclude that take­
off from satellite orbit requires only a very minute thrust. 
For instance, L. Spitzer (1)2 proposed a nuclear power plant 
for a space ship to be accelerated at only 1/3000 g. Another 
example is the extensive discussion of interorbital transport 
techniques by H. Preston-Thomas (2), based upon the as­
sumption of equally small acceleration. On the other hand, 
W. von Braun (3) seems to prefer a very much larger accelera­
tion of approximately 1/2 g for take-off from the satellite orbit. 

The magnitude of the acceleration has a strong bearing on 
the optimum type of power plant to be used: The ion-beam 
rocket is only feasible for very small acceleration, while for 
moderate acceleration, chemical rocket is required. There­
fore the question of the magnitude of acceleration is an im­
portant one for interplanetary flight. The purpose of this 
note is to compute the relation between the acceleration and 
the mass ratio required for escape from the earth's gravita­
tional field, starting from the satellite orbit. It is hoped that 
the present investigation will give the future generation of as­
tronautical engineers a rational basis for designing space ships. 
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Basic Equations 

The problem considered is the motion of a space ship under 
the influence of the rocket thrust and the gravitational attrac­
tion of a single massive body, say the earth. Then if the 
rocket thrust is in the plane of trajectory, the trajectory of 
the space ship will remain in a plane. Let the position of the 
ship at any time instant t be given by the polar co-ordinates r 
and 0 (r is the distance from the center of attraction, and 0 
the angular position). If the components of the rocket thrust 
per unit mass of the vehicle are R in the radial direction and 
e in the circumferential direction, and if g is the magnitude of 
gravitational attraction at the starting satellite orbit r = ro 
(Fig. 1), then the equations of motion of the space ship are 

and 

~ = R + r (~r - g (~r··········· [1] 

~(2r!!)_ [] dt r dt - r e .................. 2 

R 

"" TRAJ£CTORV 

SA T£LLlT£. ORBIT 
FIG. 1 TAKE-OF~' FROM THE SATELLITE ORBIT WITH THRUST IN 

THE PLANE OF SA'l'ELLITE ORBIT 
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By using the subscript ° to indicate quantities at the start­
ing instant I = 0, the equilibrium condition of the satellite 
orbit is given by 

ro (~): = g ....... .......... [3] 

Initially, the radial velocity is zero, i.e., 

(~)o = O .................... [4] 

These are the initial conditions. 
For the space ship to have sufficient energy to escape the 

earth gravitational field at the end of the powered flight, the 
sum of the kinetic energy and potential energy must vanish at 
the end of the accelerating period. Let that instant be de­
noted by the subscript 1. Thus, at t = II 

K(~): + (r~):J - gT;: = 0 .......... [5] 

With any specified variation of the thrust forces Rand 8 
as functions of time, the above system of equations determine 
completely the take-off traiectory of the space ship. In the 
following sections, two special cases of practical significance 
will be discussed in detail: the case R = const, 8 = 0, purely 
radial thrust; and the ca.~e R = 0, 8 = const, purely circum­
ferential thrust. 

Radial Thrust 

If the thrust is always radial and is proportional to the in­
stantaneous mass of the vehicle, a nondimensional thrust fac­
tor}.l can be introduced as 

Furthermore, let 

R = }.Ig ......... . .. [6] 

r 
P = -

ro' 
" = ~fi t. .............. [7] 

To 

P is thus the nondimensional radial distance, and" is the non­
dimensional time. Then Equations [1] and [2] can be writ­
ten in the nondimensional form as 

...... [8] 

and 

i ( 2 d!) - 0 d" P d" - ..... ........... [9] 

Equation [9] can be immediately integrated and by using the 
initial condition of Equation [3], the result of integration is 

dO 
d" P 

2' .. . ... [1 OJ 

By substituting this equation into Equation [8], the final 
equation for P is 

d2p 1 1 
d,,2 = ,.. + ;. - ;2 ................ [11] 

The nondimensional radial velocity is dpld". This IS re­
lated to the physical radial velocity dr I dt as follows 

dr . /- dp lit = v gro dr ... .... [12] 

Equation [11] can be rewritten as 

! ~ (i!P) l = ,.. + l _ l 
2 dp d" . pS p' 

Since dpld" = 0, when" = ° and p = 1 according to Equation 
[4], the result of integrating the above equation is 
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(;~r = 2,..(p - 1) + (1 - ;2) - 2 (1 - ~) .... [13] 

Therefore the nondimem;ional time T can be calculated as a 
function of the radius p as follows 

f
p pdp 

,,= 1 V(p - 1)(2,..p2 - P + 1)"········· [14] 

With Equations [10] and [13], the end condition of Equa­
tion [5] can be written as 

l [~2,..(PI - 1) + (1 - .l) - 2 (1 - !.) ( + ~J 
2 I pl2 PI \ pl2 

Or simply 

1 = 0 
PI 

1 
PI = 1 + 2,.. ........ . ...... [15] 

Then the velocities at the end of acceleration period are 

(
dr) V- VI + (I/,..) 
at I = gro I + (1/2,..) 

and .... [16] 

(r~) = V;,- 1 
dt I ~ro 1 + (1/2,..) 

The time TI for the powered flight can be obtained from Equa­
tion [14] by setting the upper limit of integration to PI. The 
result of this integration is3 

Tl = . I~ [V2(,.. + 1) + p (~=, cos -I 2,.. - 1) + 
''1,.. 2,.. + 1 V8,.. 2,.. + 1 

E ()~, cos -I ;: ~ DJ .. ..... [17] 

where F and E are the elliptical integrals of first kind and 
second kind, respectively. 

If M(t) is the instantaneous mass of the space ship, and c 
the effective exhaust velocity of the rocket, then 

R}oI[ = ,..gM· = -c dM = -c • IjdM 
dt'l rOdT 

Therefore the mass ratio MolMI can be calculated as follows: 

By using the result of Equation [17] 

_c_ l ( U) 2V,..(,.. + 1) ,-Vg:;:; og, Mo/m = 2,.. + 1 + V 2,.. 

~ (1 _12,.. - i) (1 _ 2,.. - 1) I IF vS;: cos 2,.. + 1 + E V8~' cos ' 2,..+1 I ... [18] 

When the acceleration is very large, }.I» 1, the integrand in 
Equation [14] can be expanded in terms of this parameter. 
Then the mass ratio is calculated as 

... [19] 

The relation of Equations [18] and [19] is plotted in Fig. 2. 
For }.I = 1/8, the mass ratio becomes infinite. The reason is 
that at this value of acceleration, there is a radial position 
where the thrust force is equal to the gravitational attraction 
and no further increase in the energy of the vehicle can occur. 
Therefore the radial thrust per unit mass, if maintained con­
stant throughout the powered flight, should be larger than 
1/8 g. vVith increasing thrust, the requirerlmuss ratio for es-

3 The author is indeb1"d to Dr. Y. T. \Yu who kindly supplied 
the relation of Equation [17]. 
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ACCELERATION FACTOR /J. FOR RADIAL 'l'HRU'ST. C, EFFECTIVE 
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cape from the earth's gravitational field decreases. This 
strong dependence of the mass ratio upon the acceleration 
factor is contrary to opinion that for take-off from satellite 
orbit only very small thrust is required. The asymptotic 
value of log, (JloI111,) is vlg;.~/c. However, there is no ap­
preciable impro\'ement in going to higher thrust than 1 g. 

Equation [16] shows that at very large values of the accele­
ration factor /J., the acceleration is accomplished in so short an 
interval that the circumferential velocity at the end of the 
acceleration remains at the initial value of~. The radial 
velocity increases from nothing at the initial instant to the 
final value of yg;.~. The total kinetic energy is thus gro at the 
end of acceleration and this is equal to the negative of poten­
tial energy at that instant, since the radial position r must be 
practically the initial value ro under very large thrust. The 
work of the rocket is to produce the radial velocity vi gro. 
Thus it is evident that the value of c loge (MoIM,) must be 
yg;;, as the calculation shows. 

CirCUIllferential Thrust 

If the thrust is always circumferential and proportional to 
the mass of the vehicle, then a new thrust factor v can be in­
troduced such that 

8 = vg ..... ". [20J 

By using the same nondimensional variables as defined in 
Equation [6], the equations of motion are 

....... [21] 

ci(2~)_ dT P dT - vp ... .... [22J 

The initial conditions of Equation [3] and [4] are 

(~) = 1, 
dT 0 ( d

p
) = 0 

dT 0 
at P = 1, T = O ... [23J 
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Therefore, Equation [21] gives another initial condition that 

(dI2~) = 0 .................... [24J 
(,T 0 

By eliminating I} from Equations [21] and [22] 

d (d2p ) I/, 
(J; p3 dT' + p = vp ............. [25J 

This is a third-order differential equation with three initia 
conditions specified by Equations [23] and [24]. Xo simple 
general solution can, however, be obtained. The following 
discussion will be concerned with the approximations that are 
valid for large values of v or for small values of v. 

For very large values of v, the acceleration period is ex­
pected to be short and the change of the radial position to be 
small. Then the value of p must be very close to the initial 
value of unity. By taking p to be unity. Equation [25] be­
comes 

!£ (d'p + 1) I/, = V 

dT dT' 

Then 

where C is the integration constant. C, however, must be 1 
because of the initial condition of Equation [24]. The ap­
propriate approximate solution for p for very large v is thus 

~1 ! 3+Jc'4 p = + 3 VT 12 v T .••. .. [26J 

To obtain higher terms in this power series, the usual series 
substitution method may be used. The calculation is some­
what lengthy and therefore will not be reproduced there. The 
result is 

1 1 V 23v' 
p = 1 + 3 PT' + 12 V'T' - 60 T' - 360 T' + ... [27J 

By using the result of Equation [27], the radial velocity is 
obtained by differentiation. Then Equation [21] gives the 
circumferential velocity. The end condition of Equation [5] 
can be modified into the following more convenient form by 
mulitiplying it by 2r2 

By substituting the solution of Equation [27] into this concli­
tion, an equation for determining T, is obtained 

0=-1 
2 + 2VTl + V

2T" - 3 VTI 3 + V'TI' + 

10 (1 
p' + 26v')TI' - 90 (4 - 13v2)T,6 + .... ..... [28J 

The mass ratio MoIM, can be calculated in the same way 
as in the previous section and can be determined through the 
new parameter x defined as follows 

_ / log, (ill[o/l\;[,) =; VT, = x. . . . .. . ... [29J 
v gro 

Equation [28] then can be written as 

o = 
2 x 3 X4 x' 13 x' 2 x6 

-1 + 2x + X2 - 3 -;;2 + ;. + 30v' + 15 ;2 - 45 '0 + 
13 x6 

90;;2 + ...... . [30J 

Since the calculation is designed for large values of v, the 
appropriate expansion of x should be a series in inverse 
powers v. Equation [30] suggests spec:ifically 

x(l) XC') 
x(v) = x(O) + -;2 + -;;< + ...... [31J 

where x(O), xu!, and X(2) are constants independent of v. By 

235 



substituting Equation [31] into Equation [30] and equating 
equal powers of P, the following set of equations results. 

x(O)' + 2x(O) - 1 = o ............... [32] 

x(l) ~ ___ 1 - [~ x(O)' - x(O)' - !.'! x(0)5 - !.'! X(O)'] ••• [33 
- 2(1 +x(O») 3 15 90 

X(2) = 1 [_X(1)2 + 2x(O)'x(1) _ 4x(O)'x(1) _ 
2(1 + x(O») 

Jc X(O)6 _ !:3 x(O)'x(1) + 1. X(O)6 - !? X(O)5X (l)] •.•••.• [34] 
30 3 45 15 

The explicit numerical solutions are then 

x(O) = v2 - 1 = 0.41421 
x(l) = 0.002349 
X(2) = -0.00004791 ................... [35] 

This completes the calculation of mass ratio for large values 
of the acceleration factor 1'. 

For the other extreme case of very small values of 1', it is to 
be expected that the acceleration will be very small, and in 
Equation [25] the term p 3d2p/dT2 will be very much smaller 
than p. Therefore a good approximation of Equation [25] at 
small vis 

d 1/ dT p 2 = I'P or 1 dp = I'dT 
2 p';' 

The solution of this equation with the initial condition of 
p = 1 at T = 0 is 

Therefore 

dp 

dT 

p 
(1 ) 

.................. [36] 
- I'T 2 

21' d2 p 

(1 - I'T)a' dT' 

At T = 0, the radial velocity and the radial acceleration are 
thus not zero, as required by the initial conditions of Equa­
tions [23] and [24]. They are, however, very small, because 
v is very small. Therefore the solution of Equation [36] is a 
good approximation to the exact solution. 

To the same approximation, Equation [20] becomes 

dO 1 
p (iT = pi;' = (1 - VT) ... •.......... [38] 

This means that at every instant, because of the extremely 
small acceleration, the centrifugal force per unit mass r (dO / dt) 2 

practically balances the gravitational attraction. The end 
condition of Equation [5] can then be written as 

41" 
( 
--) - (1 - x)' = o ............. [39] 1 - x 6 

where x is again VTI. The appropriate solution for x is then 

x = 1 - (21')1/, ................. [40] 

Since the mass ratio, Mo/M" is related to x by Equation [29], 
Equation [40] actually gives the mass ratio for escaping the 
gravitational field with very small acceleration. 

The parameter x is plotted against v in Fig. 3, using Equa­
tion [31] with both Equations [35] and [40]. When v ap­
proaches zero, x approaches 1. vVhen v is very large, x ap­
proaches V2 -1. As v increases, x and hence the mass ratio, 
Mo/MI, decrease monotonically. Therefore, same as the re­
sult for purely radial thrust, there is a strong influence of the 
magnitude of acceleration on the required mass ratio. How­
ever, as far as decreasing the mass ratio is concerned, there is 
no appreciable advantage in using v greater than 1/2. 

When the acceleration factor v is very large, the thrust 
force acts like an impulse. Since the thrust is in the circum-
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ferential direction, the rocket action only produces an increase 
in the circumferential velocity with practically no change in 
the radial position. The initial circumferential velocity is 
V gro· the required circumferential velocity for escape is 
V 2gro. Thus the increase of velocity produced by the rocket 
action is (VZ - 1) VWo. This explains the asymptotic 
value of x for very large v. 

Discussion 

By comparing Fig. 2 with Fig. 3, it is apparent that the 
radial thrust is much less efficient than the circumferential 
thrust for take-off from the satellite orbit. For large thrusts, 
the value of log (Mo/MI) for radial thrust is more than twice 
that for circumferential thrust. Furthermore, in case of 
radial thrust, the ratio of thrust to the instantaneous mass, if 
maintained constant, must be larger than g/8. In case of 
circumferential thrust, no such limit exists. Therefore, cir­
cumferential thrust is definitely preferred. 

The quantity clog, (Mo/MI) is a measure of the perform­
ance or the capability of the vehicle. It has the dimension 
of a velocity and is actually the increase of velocity which the 
vehicle is capable of in a space without gravitation. This 
quantity is conveniently called the characteristic velocity of the 
vehicle. Let this be denoted by V Then for the case of cir­
cumferential thrust, Equation [29] gives 

S 
V = clog, (Mo/MI) = VYTo X = _ /_ z .. ..... [41] 

V2A 

where S is the "escape velocity" from the surface of the earth, 
and A is the ratio of the radii of the satellite orbit and the 
earth. S is equal to 11.2 km/sec. Fig. 3 then shows that by 
decreasing the acceleration from 1/2 to 1/3000 g, x, hence the re­
quired characteristic velocity V, will increase by a factor of 
two. This is a very important point for the designers of 
space ships. 
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