Elastic and thermal properties of mesotaxial CoSi$_2$ layers on Si

California Institute of Technology, Pasadena, California 91125

(Received 21 November 1990; accepted for publication 30 January 1991)

Single crystalline 110 nm thick CoSi$_2$ layers formed on both (100)- and (111)-oriented Si wafers by high dose 59Co implantation and thermal annealing were analyzed by x-ray double crystal diffractometry. The lateral mismatch of both (100)- and (111)-oriented samples are similar ($\sim -0.7\%$) at room temperature, meaning that the average spacing between misfit dislocations is roughly the same (~ 30 nm). But the perpendicular mismatch differs for the two substrate orientations, reflecting the elastic anisotropy of the single-crystalline CoSi$_2$ layers. The three elastic constants of cubic CoSi$_2$ ($C_{11} = 277$, $C_{12} = 222$, $C_{44} = 100$ GPa) were extracted from these lattice mismatches and the sample curvature measurements. X-ray rocking curves were also recorded up to $\sim 500^\circ$C. The average spacing between the misfit dislocations remains unchanged, meaning that the misfit dislocations do not shear up to 500 $^\circ$C. The linear thermal expansion coefficient of CoSi$_2$ (9.5 \times 10^{-6}/$^\circ$C) was obtained under the assumption that the elastic constants do not change with temperature.

I. INTRODUCTION

Following the successful growth of single crystalline CoSi$_2$ layers on Si(111) substrates by molecular beam epitaxy (MBE), A. E. White and her colleagues demonstrated that such layers can also be formed by implantation of 59Co into Si substrates and subsequent thermal annealing. This “mesotaxy” technique has several advantages over the conventional vacuum deposition. The best mesotaxial layers have residual resistivity of $\sim 1 \mu \Omega$ cm, half of the value of the best MBE-grown films. The layers grown on Si(111) by MBE deposition are B-type, while the mesotaxial layers formed on Si(111) are mostly A type. The A-type mesotaxial layers enable one to make a high-precision determination of both lateral and perpendicular lattice mismatch by x-ray rocking curves. With B-type layers, the Bragg peaks from asymmetrical diffraction of the layers are widely separated from those of the substrates, precluding high-precision measurements of the lateral lattice mismatch.

Recognizing the opportunity that the mesotaxial A-type CoSi$_2$ layers on Si(111) offer, we measured both the perpendicular and parallel lattice mismatch in such layers, as well as those of mesotaxial layers formed on Si(100). These two measurements enable us to extract two ratios of the three independent elastic constants of cubic single crystal CoSi$_2$. We also measured the curvature of one sample to estimate the biaxial stress in the layer. These three measurements yield the absolute values of the three elastic constants of CoSi$_2$. We repeated similar measurements up to $\sim 500^\circ$C. Assuming that the elastic constants do not change between 20 $^\circ$C and 500 $^\circ$C, we are able to extract the linear thermal expansion coefficient for single crystal CoSi$_2$.

II. EXPERIMENTAL RESULTS AND DISCUSSION

A. Sample preparation

Single-crystalline buried CoSi$_2$ layers about 110 nm thick were formed by 200 keV 3 \times 10^{17}/cm2 59Co implantation at $\sim 400^\circ$C into Si substrates of both (100) and (111) orientation, followed by vacuum annealing at 600 $^\circ$C for 60 min and 1000 $^\circ$C for 30 min. The top Si layers were then removed by reactive ion etching. Cross-sectional transmission electron microscopy shows that the interfaces between the layers and substrates are flat and atomically sharp. MeV He backscattering and channeling spectrometry indicates that the layers are stoichiometric and highly oriented, with a minimum yield of $\sim 3\%$.

B. Lattice mismatch and misfit dislocations

Bulk CoSi$_2$ has a cubic CaF$_2$ structure, and a lattice mismatch with Si, $\varepsilon = -1.22\%$, at room temperature. We used x-ray double crystal diffractometry to measure both the perpendicular and lateral lattice mismatch, ε^p and ε^l, between the CoSi$_2$ layer and the Si substrate. Figure 1 shows the Fe $K_{\alpha1}$ (wavelength $\lambda = 0.1936$ nm) x-ray rocking curves from the symmetrical (400) and asymmetrical (311) diffraction planes of the CoSi$_2$/Si(100) sample. The two curves diffracted from the same (311) planes (A and B in Fig. 1) correspond to the x-ray incidence of opposite directions. The mismatch ε^p and ε^l were extracted from the angular separations of the Bragg peaks between the layer and the substrate shown in Fig. 1. The results are listed in the first column of Table I. They are very close to those measured for buried CoSi$_2$ mesotaxial layers in the second column of Table I. This agreement means that the Si capping layer has little effect on the strain state of the buried CoSi$_2$ layer. Unequal ε^p and ε^l means that the CoSi$_2$ layer is distorted tetragonally under the tensile stress imposed by the Si substrate. The relative volume expansion, $\Delta V/V$, is $\sim 0.2\%$, more than three times less than the average linear dilatation, $\Delta L/L$, ($\sim 0.7\%$, see Table I).

The nonzero lateral mismatch means that there exist misfit dislocations at the interface to relax strain. The Burger’s vector of the dislocations for epitaxial CoSi$_2$ layers on Si(100) substrates is $b = 1/4(111)$. The average
FIG. 1. Fe Kα x-ray (λ = 0.1932 nm) rocking curves of symmetrical (400) and asymmetrical (311) diffractions from CoSi₂/Si(100) sample. The diffraction geometry and direction of x-ray incidence are shown in the inset, marking the corresponded Bragg peaks from the CoSi₂ layer.

spacings, p, between the misfit dislocations is therefore

\[
p = \frac{b_m}{|\varepsilon|} = \frac{0.19 \text{ nm}}{0.62\%} = 31 \text{ nm},
\]

where \(b_m\) is the edge component of Burger's vector projected onto the interface plane. This is roughly the same as that of MBE-grown thick (> 10 nm) B-type CoSi₂/Si(111) samples (~30 nm). Single crystalline CoSi₂ has three independent elastic constants, \(C_{11}, C_{12}, C_{44}\). Measurements of the lattice distortion of CoSi₂ layers on Si substrates of two different orientations enable one to extract two ratios, \(C_{12}/C_{11}\) and \(C_{44}/C_{11}\). From the definition of the lattice mismatch and the elastic strain, \(\varepsilon^d\) and \(\varepsilon^i\), one has the following relationship,

\[
\frac{\varepsilon^d}{\varepsilon^i} = 1 - \frac{C_{12}}{C_{11}}.
\]

Assuming that the layer is under biaxial stress in the (100) plane, the relation

\[
\frac{\varepsilon^d}{\varepsilon^i} = -\frac{2C_{12}}{C_{11}},
\]

holds in the linear elasticity theory. From the measured lattice mismatch (Table I) and Eqs. (2) and (3), the ratio \(C_{12}/C_{11}\) is obtained (Table II). This value (0.80) is about twice that of silicon (0.39). For later convenience, we define the Poisson ratio, \(\nu\), for thin films under biaxial stress, according to

\[
\nu = \frac{\varepsilon^d - 2\nu}{\varepsilon^d - \varepsilon^i}.
\]

This yields \(\nu_{(100)} = 0.44\) for the CoSi₂ layer on Si(100) substrate (Table II).

Similarly, both symmetrical (111) and asymmetrical (311) x-ray rocking curves were also recorded for the CoSi₂/Si(111) sample. The perpendicular and parallel lattice mismatch were extracted from the Bragg peak separations. The results are given in Table I, which again agree well with those for buried CoSi₂ layers (\(\varepsilon^d = -1.74\%\) and \(\varepsilon^i = -0.66\%\)). Furthermore, they are also about the same as those for MBE-deposited B-type CoSi₂ layers on Si(111) substrates (\(\varepsilon^d = -1.61\%\) and \(\varepsilon^i = -0.80\%\)). This shows that the strain state of thick (> 10 nm) epitaxial CoSi₂ layers on Si(111) substrates is independent of the process by which the silicide layers are formed, and whether the layers are type A or type B. The Burger's vector of the misfit dislocations is \(b = 1/6(112)\) for both type A CoSi₂ formed by ⁵⁹Co implantation⁵ and type-B layer by MBE⁶ on Si(111) substrates. The average misfit dislocation spacing is therefore \(p = 31 \text{ nm}\), obtained from Eq. (1) and Table I. This is the same as that on Si(100), implying that the dislocation spacing is independent of substrate orientation.

The areal density, \(\rho\), of imperfections such as threading dislocations in epitaxial CoSi₂ layers can be estimated from the measured x-ray peak broadening, \((\delta\theta)\), using the equation

\[
\rho = \frac{(\delta\theta)^2 - (\delta\theta)^2_s}{9\lambda^2}.
\]

The size broadening, \((\delta\theta)_s\), is obtained from the Scherrer equation,

\[
(\delta\theta)_s = \frac{0.94\lambda}{2t_1\cos\theta_B}
\]

where \(t_1\) is the layer thickness and \(\theta_B\) the Bragg angle. The imperfection density estimated from Eq. (5) varies from \(~2 \times 10^9/\text{cm}^2\) for the (100) and (111) CoSi₂ layers formed by Co implantation (see the peak broadening in Fig. 1) to < \(10^7/\text{cm}^2\) for the best MBE-grown B-type CoSi₂ layer on Si(111) that we have measured. However, the average misfit dislocation spacing is about the same (~30 nm) for all samples. This means that the strain relaxation and the imperfections in the layer are unrelated.

Table I. Lattice distortion of CoSi₂ layers on (100) and (111) oriented Si substrates. Data for Si/CoSi₂/Si samples are from Ref. 5 and that for B-type sample is from Ref. 8.

<table>
<thead>
<tr>
<th>CoSi₂/Si(100)</th>
<th>CoSi₂/Si(111)</th>
<th>CoSi₂/Si(111)</th>
<th>CoSi₂/Si(111)</th>
<th>B-CoSi₂/Si(111)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f = -1.22%</td>
<td>(\varepsilon^d) (%)</td>
<td>(\varepsilon^i) (%)</td>
<td>(\Delta L/L) (%)</td>
<td>(\Delta V/V) (%)</td>
</tr>
<tr>
<td>-2.18</td>
<td>-1.69</td>
<td>-1.74</td>
<td>-1.61</td>
<td>-0.62</td>
</tr>
</tbody>
</table>

Table II. Ratios and elastic constants (in units of GPa) of cubic CoSi₂ from strain and curvature measurements. Data for Si is from Ref. 7 and listed for comparison.

<table>
<thead>
<tr>
<th>CoSi₂</th>
<th>Si</th>
<th>(C_{12}/C_{11})</th>
<th>(C_{44}/C_{11})</th>
<th>(C_{11})</th>
<th>(C_{12})</th>
<th>(C_{44})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>0.32</td>
<td>0.80</td>
<td>0.36</td>
<td>277</td>
<td>222</td>
<td>100</td>
</tr>
<tr>
<td>0.28</td>
<td>0.18</td>
<td>0.39</td>
<td>0.48</td>
<td>166</td>
<td>64</td>
<td>80</td>
</tr>
</tbody>
</table>

Bai, Nicolet, and Vreeland, Jr. 6452 J. Appl. Phys., Vol. 69, No. 9, 1 May 1991

6452
suggesting that the misfit dislocations nucleate at interfacial defects such as atomic steps rather than on the surface. We therefore speculate that specular Si surfaces free of any surface defects such as atomic steps are needed to grow metastable pseudomorphic CoSi₂ layers (> 10 nm). The inference then is that high-dose ⁵⁹Co implantation will not produce metastable pseudomorphic CoSi₂ layers because defects like atomic steps are always present at the silicide/silicon interface in this case. This is unlike the relaxation of epitaxial GeSi layers on Si, where the strain relaxation necessarily yields to threading dislocations in the layer because misfit dislocations nucleate at the surface and glide down to the interface.⁹

In summary, all these observations suggest that the strain relaxation of thick (> 10 nm) epitaxial CoSi₂ layers is intrinsic to the silicide, and insensitive to the type of the layer (A or B), the silicide formation process (high dose implantation or vacuum deposition), the orientation of the substrate, the imperfections in the layer, and the thickness of the layers. This is in contrast with epitaxial GeSi layers grown on Si substrates, where the misfit dislocation spacing is very sensitive to the growth temperature and layer thickness for a fixed lattice mismatch.¹¹

The perpendicular mismatch of the CoSi₂ layer is distinctly smaller on Si(111) than on Si(100) (Table I), showing that single-crystalline CoSi₂ layers are elastically anisotropic. This means that the bond strength between (111) planes is stronger than that between (100) planes. This result is similar to that of silicon where the covalent bond along the (111) direction gives rise to the strongest bond between the (111) planes. On Si(111), the relative volume expansion of the CoSi₂ layer is ~0.5%, the same as the average linear dilatation (~0.5%), Table I.

To extract the second ratio C₁₁/C₁₁ from the measurements on the (111) sample, the procedure outlined for the (100) case was repeated with Eq. (2) and a suitably modified Eq. (3),

\[\frac{C_{44}}{C_{44}} = \frac{C_{11} + 2C_{12}}{C_{44} + (C_{11} + 2C_{12})/4} \]

The result is given in Table II. This ratio (0.36) is less than that of silicon (0.48). The Possion ratio is \(v_{(111)} = 0.32 \), obtained from Eqs. (2) and (4) and Table I. It is the same as that for MBE-grown B-type CoSi₂ layers on Si(111) substrates (~1/3).⁸

C. Stress and sample bending

To obtain the absolute values of the elastic constants, the biaxial tensile stress in the CoSi₂ layer, \(\sigma_\parallel \), was estimated by measuring the bending of the CoSi₂/Si(100) sample. The stress is related to the tensile strain in the plane according to Hooke's law in the linear elasticity,

\[\sigma_\parallel = B_\parallel (\varepsilon_\parallel - f) \]

where \(B_\parallel \) is the biaxial elastic constant of the layer. The stress causes the sample to bend with a concave radius of curvature, \(R \). In the case where the thickness of the substrate, \(t_p \), is much larger than that of the layer \(t_l \) and is smaller than the lateral dimension of the sample, the following relationship holds,¹²

\[\sigma_\parallel = \frac{B_\parallel^2}{6Rt_l} \]

where \(B_\parallel \) is the biaxial elastic constant of the substrate. Combining Eqs. (8) and (9), one has

\[\frac{B_\parallel}{Rt_l} = \frac{1}{6\sigma_\parallel f} \]

The radius \(R \) was obtained by measuring the angular difference of the (400) Bragg peaks diffracted from the substrate at two different spots of the sample separated by 4 mm, using a double crystal diffractometer equipped with a translational stage. Substituting appropriate parameters for the aforementioned CoSi₂/Si(100) sample, we obtain the ratio \(R/B_\parallel = 0.8 \) from Eq. (10). Knowing \(B_\parallel = 180 \text{ GPa for Si(100)}, \) we obtain \(B_\parallel = 144 \text{ GPa for CoSi}_2 \). This value agrees well with that extracted from thermal stress measurement by van Ommen et al. (140 GPa). It is slightly larger than the measured biaxial elastic constants of several transition-metal disilicide films (Ti, Ta, Mo, W) on Si(100) substrates (~110 GPa). The biaxial elastic constant of (100) oriented films equals

\[B - C_{11} \left[1 + \frac{C_{12}}{C_{11}} - 2 \left(\frac{C_{12}}{C_{11}} \right)^2 \right] \]

D. Dislocation locking and thermal stress

To extract the linear thermal expansion coefficient of CoSi₂ and study the thermal stress, we measured the lateral and perpendicular mismatch between CoSi₂ layers and Si substrates up to 500 °C. The lattice mismatch \(f \) between stress-free CoSi₂ and Si equals

\[f = \left(\frac{1 - \nu}{1 + \nu} \right) \varepsilon_\parallel + \left(\frac{2\nu}{1 + \nu} \right) \varepsilon_\perp \]

from Eqs. (2) and (4). Assuming that the Possion ratio \(\nu \) does not change with temperature, \(f \) can then be extracted from the \(\varepsilon_\parallel \) obtained at room temperature (Table II) and the measured \(\varepsilon_\parallel \) and \(\varepsilon_\perp \) at various temperatures (Fig. 2). \(f \) decreases linearly with rising temperature up to 500 °C (open and filled circles in Fig. 2). The slope yields the difference between the linear thermal expansion coefficients of CoSi₂ and Si. The slope has the same value, within the experimental error, for both the (100) and (111) samples [Figs. 2(a) and 2(b)], which averages (6.5 ± 0.6) \times 10⁻⁶/°C. This result shows that the thermal expansion
coefficient of CoSi$_2$ is isotropic, in accord with the fact that the unit cell of stress-free CoSi$_2$ is cubic. The linear thermal expansion coefficient of bulk Si is known to be $3 \times 10^{-6}^\circ C$ between 23 and 500 $^\circ C$. The coefficient for CoSi$_2$ layers is therefore $9.5 \times 10^{-6}^\circ C$, in good agreement with that reported for bulk CoSi$_2$ polycrystalline samples ($9.4 \times 10^{-6}^\circ C$). It is smaller than the linear thermal expansion coefficients of several transition-metal disilicides (Ti, Ta, Mo, W) ($-15 \times 10^{-6}^\circ C$).

The lateral mismatch ε_{\perp} of CoSi$_2$ layers on both Si(100) and Si(111) substrates does not change up to 500 $^\circ C$ [open and filled triangles in Figs. 2(a) and 2(b)]. This means that the misfit dislocations do not shear up to 500 $^\circ C$. By extrapolating ε_{\parallel} and ε_{\perp} to higher temperatures, we found that they meet at 825 $^\circ C$, for both (100) and (111) samples [Figs. 2(a) and 2(b)]. This indicates that the CoSi$_2$ layer is fully relaxed at $\sim 800^\circ C$.

E. Synthesis and model

Based on the above results, we propose the following model: (1) the strain in epitaxial CoSi$_2$ layers on Si substrates reaches the equilibrium value at a relaxation temperature T_R; (2) the misfit dislocations do not shear below T_R. According to Matthews and Blakeslee’s strain relaxation model, the equilibrium critical thickness, t_{cr} for a pseudomorphic layer is

$$t_{cr} = \frac{b}{\sigma(1 + \nu)} \left[\ln \left(\frac{t_{cr}}{b} + 1 \right) \right]. \quad (13)$$

For a layer of thickness t_l larger than t_{cr}, the equilibrium lateral mismatch $\varepsilon_{eq}^\parallel$ equals

$$\varepsilon_{eq}^\parallel = f \left(1 - \frac{t_{cr}}{t_l} \ln \frac{t_{cr}}{b} + 1 \right). \quad (14)$$

We apply these predictions to a 110 nm thick CoSi$_2$ layer on a Si(111) substrate. Assuming $T_R = 700^\circ C$, the lattice mismatch equals $f = -0.78\%$ at this relaxation temperature (Fig. 3). The equilibrium critical thickness is 3 nm from Eq. (13) ($b = 1/6(112)$ and $\nu = 1/3$). This value agrees well with the measured critical thickness of B-type CoSi$_2$ grown on Si(111) by MBE at $\sim 650^\circ C$ ($\sim 3 \text{ nm}$). For that same 110 nm thick CoSi$_2$ at $T_R = 700^\circ C$, the equilibrium lateral mismatch equals $\varepsilon_{eq}^\parallel = 0.95f = -0.74\%$ from Eq. (14), and the perpendicular one equals $\varepsilon_{eq}^\perp = -0.82\%$ from Eq. (12) (Fig. 3). Above T_R, misfit dislocations are generated by either nucleation or multiplication, or both, to minimize the strain energy so that the equilibrium state maintains (Fig. 3). Below T_R, the misfit dislocations are locked in and the lateral lattice mismatch ε_{\parallel} remains constant (Fig. 3). Thermal strain and stress are generated by the different thermal expansions between the layer and the substrate. At room temperature, the lateral mismatch ε_{\parallel} remains the same (-0.74%) and the perpendicular one ε_{\perp} decreases to -1.70% according to Eq. (12) (Fig. 3). These estimates agree well with experimental observations (Table I). The exact value of ε_{\parallel} at room temperature depends on the relaxation temperature T_R. An increase of T_R from 600 to 800 $^\circ C$ causes a corresponding increase of f from -0.84% to -0.71%. This change raises ε_{\parallel} from -0.80% to -0.67% according to Eq. (14). This shows that the lateral lattice mismatch is not
sensitive to the change in T_R and explains the observed apparent universal lateral mismatch at room temperature (Table I).

The relaxation temperature, T_R, depends on many factors such as the formation process of the silicides. It varies from $\sim 600 \, ^\circ C$ for MBE-grown CoSi$_2$ on Si at $\sim 600 \, ^\circ C$ to $\sim 800 \, ^\circ C$ for the sample formed by high dose 10Co implantation followed by 1000 $^\circ C$ vacuum annealing for 30 min. Figure 2(a) also shows that the thermal strain in the layer relaxes slightly after heating in ambient air at $\sim 500 \, ^\circ C$ for ~ 2 h, even if the sample had been annealed in vacuum at $1000 \, ^\circ C$ for 30 min. This suggests that thermal annealing in ambient air lowers the relaxation temperature T_R. This phenomenon is similar to what we observed for MBE-grown B-type CoSi$_2$ layers on Si(111) substrates. There the thermal stress also relaxes slightly after thermal annealing in ambient air at $\sim 600 \, ^\circ C$ for ~ 2 h, but remains unchanged after vacuum annealing at $\sim 800 \, ^\circ C$ for 1 h. Auger electron spectroscopy of the ambient-air annealed MBE-grown sample shows that a thin oxide of $\sim 10 \, nm$ is present on the surface of the silicide that is absent in the vacuum annealed sample. An oxidation of the CoSi$_2$ at its surface induces atomic rearrangements at the silicide/silicon interface. These observations indicate that atomic transport at the silicide/silicon interface lowers the relaxation temperature T_R (see also discussions in Ref. 8).

III. CONCLUSION

We obtained three elastic constants of cubic CoSi$_2$ by measuring the strain and stress in CoSi$_2$ layers on Si substrates at room temperature using double crystal x-ray diffractometry. X-ray rocking curves were also used to measure the lattice mismatch between the layer and substrate at elevated temperatures up to $500 \, ^\circ C$. A linear thermal expansion coefficient of $9.5 \times 10^{-6} / ^\circ C$ was derived for CoSi$_2$. The lateral mismatch at room temperature is about the same ($\sim - 0.7\%$) for all the samples, regardless of the silicide formation process and the substrate orientation. It does not change with temperature up to $500 \, ^\circ C$. The universal lateral mismatch was explained by the model that CoSi$_2$ layers reach an equilibrium strain state at a relaxation temperature T_R (~ 600–$800 \, ^\circ C$) by generation of misfit dislocations and the dislocations are locked-in below T_R. We proposed that atomic flux across the silicide/silicon interface lowers T_R. We also speculate that perfectly flat Si surfaces free of defects such as atomic steps are needed for the growth of metastable pseudomorphic CoSi$_2$ layers ($>10 \, nm$).

ACKNOWLEDGMENTS

The authors thankfully acknowledge the collaboration of A. E. White in this project and the technical assistance of K. T. Short, at AT&T Bell Laboratories, where the samples originated, A. Venezia, at Rafael, for Auger measurements, and R. Gorris, at Caltech, for technical support. This paper is based upon work supported in part by the Semiconductor Research Corporation under contract No. 100-SI-90 and by the National Science Foundation under grant No. DMR-8811795. The authors gratefully acknowledge this support.
