Supporting Information

Reversibility and Improved Hydrogen Release of Magnesium Borohydride

Rebecca J. Newhouse¹,², Vitalie Stavila²*, Son-Jong Hwang³ and Jin Z. Zhang¹

¹ Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064 USA
² Sandia National Laboratories, Livermore, CA 94551 USA
³ Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125 USA
Figure S1. pXRD patterns (a and b), 11B MAS NMR spectra (c and d) of α-Mg(BH$_4$)$_2$ ball-milled for 30 minutes and α-Mg(BH$_4$)$_2$ ball-milled for 30 minutes with 5 mol % TiF$_3$ and ScCl$_3$ added, and 45Sc MAS NMR spectrum (e) for the sample with additives. For pXRD, as-made α-Mg(BH$_4$)$_2$ (), as-made β-Mg(BH$_4$)$_2$ () and TiF$_3$ peaks () are shown for comparison. For NMR, the spectrum of as-synthesized pure Mg(BH$_4$)$_2$ sample is included. The spectral range between -30 and 30 ppm was scaled up by 15 times to show the presence of boron oxide contaminants (peaks between -5 to 20 ppm) and boron species formed after the ball milling in the presence of additives (c). The position shift of the major Mg(BH$_4$)$_2$ peak from the α-phase to the β-phase is presented in the extended view (d). Spinning sidebands are marked with an asterisk (*).

* To whom correspondence should be addressed. E-mail: vnstavi@sandia.gov; Phone: 925-294-3059
Figure S2. Raman spectra for hydrated MgB₁₂H₁₂·6H₂O (—) and desolvated α-Mg(BH₄)₂ (—).
Figure S3. NMR spectra measured for samples with and without additives after desorption reactions. a) 1H MAS NMR spectra after desorption at low temperature (300 °C). b) 11B CPMAS NMR and MAS (Bloch decay) NMR spectra of sample with additives after desorption at low temperature (300 °C). Broad peak at 40-80 ppm range is a spinning sideband from the major peak in the upfield. c) 11B CPMAS NMR spectra of both samples after desorption reaction at 600 °C. d) 19F MAS NMR spectra before and after desorption reactions showing the formation of MgF$_2$.
Figure S4. MgB$_2$ with and without additives before the high pressure experiment (a) and (c), respectively, and after exposure to 900 bar H$_2$ at 390 °C for 72 hours ((b) and (d), respectively).