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Unitary Space-Time Modulation
via Cayley Transform

Yindi Jing and Babak Hassibi

Abstract—A recently proposed method for communicating with
multiple antennas over block fading channels is unitary space-
time modulation (USTM). In this method, the signals transmitted
from the antennas, viewed as a matrix with spatial and temporal
dimensions, form a unitary matrix, i.e., one with orthonormal
columns. Since channel knowledge is not required at the receiver,
USTM schemes are suitable for use on wireless links where
channel tracking is undesirable or infeasible, either because of
rapid changes in the channel characteristics or because of limited
system resources. Recent results have shown that if suitably
designed, USTM schemes can achieve full channel capacity at
high SNR and, moreover, that all this can be done over a single
coherence interval, provided the coherence interval and number
of transmit antennas are sufficiently large, which is a phenomenon
referred to as autocoding.

While all this is well recognized, what is not clear is how to
generate good performing constellations of (nonsquare) unitary
matrices that lend themselves to efficient encoding/decoding.
The schemes proposed so far either exhibit poor performance,
especially at high rates, or have no efficient decoding algorithms.
In this paper, we propose to use the Cayley transform to design
USTM constellations. This work can be viewed as a generalization,
to the nonsquare case, of the Cayley codes that have been proposed
for differential USTM. The codes are designed based on an infor-
mation-theoretic criterion and lend themselves to polynomial-time
(often cubic) near-maximum-likelihood decoding using a sphere
decoding algorithm. Simulations suggest that the resulting codes
allow for effective high-rate data transmission in multiantenna
communication systems without knowing the channel. However,
our preliminary results do not show a substantial advantage over
training-based schemes.

Index Terms—Cauchy random matrices, Cayley transform,
diversity product, fading channels, isotropic distribution, unitary
space-time codes, unitary space-time modulation, wireless com-
munications.

I. INTRODUCTION AND MODEL

I T is well known that multiple transmit and/or receive an-
tennas promise high data rates on scattering-rich wireless

channels [1], [2]. Most of the proposed schemes that achieve
these high rates require the propagation environment or channel
to be known to the receiver (see, e.g., [1], [3]–[5], and the refer-
ences therein). In practice, knowledge of the channel is often ob-
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tained via training: Known signals are periodically transmitted
for the receiver to learn the channel, and the channel param-
eters are tracked in between the transmission of the training
signals. However, it is not always feasible or advantageous to
use training-based schemes, especially when many antennas are
used or either end of the link is moving so fast that the channel
is changing very rapidly [6], [7].

Hence, there is much interest in space-time transmission
schemes that do not require either the transmitter or receiver
to know the channel. Information-theoretic calculations with a
multiantenna channel that changes in a block-fading manner
first appeared in [8]. Based on these calculations, a new
transmission scheme, which is referred to asunitary space-time
modulation(USTM), in which the transmitted signals, viewed
as matrices with spatial and temporal dimensions, form a
unitary matrix, was proposed in [9]. Further information-the-
oretic calculations in [10] and [11] show that at high SNR,
USTM schemes are capable of achieving full channel capacity.
Furthermore, in [12], it is shown that all this can be done over a
single coherence interval, provided the coherence interval and
number of transmit antennas are sufficiently large, which is a
phenomenon referred to asautocoding.

While all this is well recognized, it is not clear how to design
a constellation of nonsquare USTM matrices that deliver on the
above information-theoretic results and lend themselves to effi-
cient encoding/decoding. The first technique to design USTM
constellations was proposed in [13], which, while it allows for
efficient decoding, was later shown in [14] to have poor perfor-
mance, especially at high rates. The constellation proposed in
[14], on the other hand, while it theoretically has good perfor-
mance, has, to date, no tractable decoding algorithm. Recently,
a USTM design method based on the exponential map was pro-
posed in [15].

In this paper, we propose to use the Cayley transform to de-
sign USTM constellations. This can be regarded as an extension,
to the nonsquare case, of earlier work on Cayley codes fordiffer-
entialUSTM [16]. As will be shown in this paper, this extension
is nontrivial. Nonetheless, the codes designed here inherit many
of the properties of Cayley differential codes. In particular, they

1) are very simple to encode (the data is broken into sub-
streams used to parameterize the unitary matrix);

2) can be used for any number of transmit and receive an-
tennas;

3) can be decoded in a variety of ways including simple
polynomial-time linear-algebraic techniques such as suc-
cessive nulling and cancelling (V-BLAST [17], [18]) or
sphere decoding [19], [20];

4) satisfy a probabilistic criterion (they maximize an ex-
pected distance between matrix pairs).
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The paper is organized as follows. Unitary space-time modu-
lation and training-based schemes are introduced briefly in the
following two subsections. In Section II, we first tersely present
the Cayley transform and its advantages in parameterizing the
space of unitary matrices and then illuminate in detail the en-
coding, decoding, and design of our Cayley space-time codes.
Simulation results, including the comparison of our Cayley
codes with training-based schemes, are shown in Section III.
The main result of our investigation is that the Cayley codes do
not offer a substantial advantage over training-based schemes.
Section IV provides the conclusion, and Appendices A, B, and
C give the mathematical calculations for optimizing our Cayley
codes basis set.

A. Unitary Space-Time Modulation

Consider a wireless communication system withtransmit
antennas and receive antennas. We use a block-fading
channel with coherence interval(for more on this model, see
[8] and [9]):

(1)

Here, denotes the transmitted signal, where is
the signal sent by the th transmit antenna at time. The th
row of indicates the row vector of the transmitted values from
all the transmit antennas at time, and the th column indicates
the transmitted values of theth transmit antenna across the co-
herence interval. is the complex-valued propagation
matrix that remains constant during the coherent period, and

is the propagation coefficient between theth transmit an-
tenna and the th receive antenna. The s have a zero-mean
unit-variance circularly-symmetric complex Gaussian distribu-
tion and are independent of each other. We assume
that the channel information is unknown to both the transmitter
and the receiver. is the noise with , which is the
noise at the th receive antenna at time. The s are iid with

distribution. is the received signal ma-
trix, where is the received value by theth receive antenna
at time . The th row of indicates the row vector of the re-
ceived values at all the receivers at time, and the th column
indicates the received values of theth transmit antenna across
the coherence interval. We impose an extra power constraint on
the transmitted signal

(2)

which means that the average expected power over thetrans-
mitted antennas is kept constant for each channel use. Therefore,

represents the expected SNR at each receive antenna.
Conditioned on , from (1), we can see that the received

signal has independent and identically distributed columns
(across the antennas). At a particular antenna, thereceived
symbols are zero-mean complex Gaussian, with the following

covariance matrix:

where means the conjugate transpose of matrix, and is
the identity matrix. (Without causing confusion, we omit
the subscript sometime later.) The received signal thus has the
following conditional probability density:

tr
(3)

where “tr” denotes the trace function.
The conditional density (3) has considerable symmetry

arising from the statistical equivalence of each time-sample
and of each transmit antenna. Its special properties, combined
with the concavity of the mutual information function, lead to
the following theorem summarized in [8]–[10].

Theorem 1 (Structure of Capacity-Achieving Signal):[8] A
capacity-achieving random signal matrix for (1) may be con-
structed as a product , where is a isotropically
distributed unitary matrix, and is an independent real,
non-negative, diagonal matrix. Furthermore, for either
or high SNR with ,
achieves capacity, where is the th diagonal entry of .

An isotropically distributed unitary matrix has a prob-
ability density that is unchanged when the matrix is multiplied
by any deterministic unitary matrix. In a natural way, an isotrop-
ically distributed unitary matrix is the counterpart of a
complex scalar having unit magnitude and uniformly distributed
phase. For more on the isotropic distribution, see [8].

Motivated by this theorem, [9] proposed to use the transmitted
signal matrix as , where is a
unitary matrix. The superscript “” indicates the transpose, and

is the matrix of all zeros. (Without
causing confusion, we omit the subscript later.) This is called
unitary space-time modulation (USTM), and such anis called
a unitary matrix since its columns are orthonormal.
In the USTM scheme, the transmitted signals are chosen from
a constellation of (where is the
transmission rate) unitary matrices. The ML decoder is
given by

(4)

where is the unitary complement matrix of
the unitary matrix , that is, is a unitary
matrix. indicates the Frobenius norm.

In [9], it is also shown that the pairwise block probability of
error (of transmitting and erroneously decoding ) has the
Chernoff upper bound

where are the singular values of the
matrix . The formula shows that the pairwise prob-

ability of error behaves as . Therefore, most
design schemes have focused on finding a constellation that
maximizes . Since can be quite large,
this calls into question the feasibility of computing and using
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this performance criterion. The large number of signals also
rules out the possibility of decoding via an exhaustive search.
To design constellations that are huge, effective, and yet still
simple so that they can be decoded in real-time, we need to in-
troduce some structure. We will show how the Cayley transform
can be used later.

B. Training-Based Schemes

When the channel information of a multiple-antenna commu-
nication system is unknown, training-based schemes are gener-
ally used, by which known signals are periodically transmitted
for the receiver to learn the channel. It is meaningful to com-
pare the performance of our Cayley unitary space-time codes
with that of the training-based schemes. We first introduce the
training-based schemes here.

Training-based schemes dedicate part of the transmitted ma-
trix to be a known training signal from which can be
learned. In particular, training-based schemes are composed of
two phases: the training phase and the data transmission phase.

The system equations for the training phase can be written as

tr

where is the complex matrix of training symbols sent
over time samples and known to the receiver,is the SNR
during the training phase, is the complex received
matrix, and is the noise matrix.

Similarly, the system equations for the data transmission
phase can be written as

tr

where is the complex matrix of data symbols sent
over time samples, is the SNR during the data
transmission phase, is the complex received matrix,
and is the noise matrix. The normalization formula above
has an expectation because is random and unknown. Note
that .

There are two general methods to estimate the channel infor-
mation: the maximum likelihood (ML) and the linear minimum
mean square error (LMMSE) estimation, whose channel esti-
mations are given as

respectively. In our simulations, the LMMSE estimation is used.
In [7], the optimal training to maximize the lower bound of

the capacity for MMSE estimation is given. There are three
parameters that are to be optimized. The first one is the training
data . It is proved that the optimal solution is to choose
the training signal as a multiple of a matrix with orthonormal
columns. The second one is the length of the training interval.

Setting is optimal for any and . Third, the optimal
power distribution satisfies the following:

if
if
if

In simulations, we do the training in this optimal way by let-
ting and . For simplicity, equal training
and data power is used, which is optimal when

. By combining the training phase equations and the
data transmission phase equations, the system equations can be
written as

(5)

Further assume that the information matrix
is unitary. Then, we have

and (6)

where is the unitary complement matrix of
the unitary matrix . If is not unitary, then is
only the orthogonal complement since the unitary
complement may not exist.

II. CAYLEY UNITARY SPACE-TIME CODES

A. Parameterization of the Unitary Matrix Space by the Cayley
Transform

In USTM, the first columns of the unitary ma-
trices are chosen to be the transmitted signal. Therefore, let us
first look at the space of the unitary matrices, which is
referred as theStiefelmanifold. It is well-known that this man-
ifold is highly nonlinear and nonconvex. Note that an arbitrary
complex matrix has real parameters, but for a uni-
tary one, there are constraints to force each column to have
unit norm and another constraints to make
the columns pairwise orthogonal. Therefore, the Stiefel man-
ifold has dimension .
Similarly, the space of unitary matrices has dimension

.
To design codes of unitary matrices, we need first a pa-

rameterization of the space. There are some parameterization
methods in existence, but all of them suffer from disadvantages
for use in unitary space-time code design. We now briefly
discuss these.

The first parameterization method is with Givens rotations. A
unitary matrix can be written as the product

where is a diagonal unitary matrix, and thes are the Givens
(or planar) rotations: one for each of the two-di-
mensional (2-D) hyperplanes [21]. It is conceivable that one can
encode the data onto the angles of rotations and also the diag-
onal phases of , but it is not a practical method since neither is
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the parameterization one-to-one (for example, one can reorder
the Givens rotations), nor does systematic decoding appear to
be possible.

Another method is to parameterize with Householder reflec-
tions. A unitary matrix can be written as the product

, where is a diagonal matrix, and the s are
Householder matrices. This method is also not encouraging to
us because we do not know how to encode and decode the data
onto the Householder matrices in any efficient manner.

In addition, unitary matrices can be parameterized with the
matrix exponential . When is Hermitian,
is unitary. The exponential map also has the difficulty of not
being one-to-one. This can be overcome by imposing the con-
straints , but the constraints are not linear although
convex. We do not know how to sample the space ofto obtain
a constellation of . Moreover, the map is not easy to be con-
verted at the receiver for . Nonetheless, a method based
on the exponential map has been proposed in [15].

1) Cayley Transform and its Properties:The Cayley trans-
form was proposed in [16] and used to design codes for differ-
ential unitary space-time modulation, whereby both good per-
formance and simple encoding and decoding are obtained.

The Cayley transform of a complex matrix is defined
to be

where is assumed to have no eigenvalue at1 so that the
inverse exists. Let be a Hermitian matrix, and consider
the Cayley transform of the skew-Hermitian matrix :

(7)

First, note that since is skew-Hermitian, it has no eigenvalue
at 1 because all its eigenvalues are strictly imaginary. That
means that always exists. The Cayley transform is
the generalization of the scalar transform

that maps the real line to the unit circle. Notice that no finite
point on the real line can be mapped to the1 point on the unit
circle.

In addition

The second equation is true because , , ,
and all commute. Similarly, can also be
proved. Therefore, similar to the matrix exponential, the Cayley
transform maps Hermitian matrices to unitary matrices. In ad-
dition, from (7), it can be proven easily that

provided that exists. This shows that the Cayley trans-
form and its inverse transform coincide. Thus, the Cayley trans-
form is one-to-one. It is not an onto map because those unitary

matrices with eigenvalues at1 have no inverse images. Recall
that the space of Hermitian or skew-Hermitian matrices has di-
mension , which matches that of the Stiefel manifold.

We have shown that a matrix with no eigenvalues at1 is
unitary if and only if its Cayley transform is skew-Hermitian.
Compared with other parameterizations of unitary matrices, the
parameterization with Cayley transform is one-to-one and easily
invertible. The Cayley transform maps the complicated Stiefel
manifold of unitary matrices to the space of skew-Hermitian
(Hermitian) matrices, and skew-Hermitian (Hermitian) matrices
are easy to characterize since they form a linear vector space
over the reals. Therefore, easy encoding and decoding can be
obtained by this handy feature.

In addition, it is proved in [16] that a set of unitary ma-
trices is fully diverse if and only if the set of their skew-
Hermitian Cayley transforms is fully diverse. This suggests
that a promising performance set of unitary matrices can be
obtained from a well-designed set of Hermitian matrices by
Cayley transform.

B. Cayley Unitary Space-Time Codes

Because the Cayley transform maps the nonlinear Stiefel
manifold to the linear space (over the reals) of Hermitian (or
skew-Hermitian) matrices (and vice-versa), it is convenient and
most straightforward to encode data linearly onto a skew-Her-
mitian matrix and then apply the Cayley transform to get a
unitary matrix.

We call a Cayley unitary space-time code one for which each
unitary matrix is

(8)

with the Hermitian matrix given by

(9)

where are real scalars (chosen from a setwith
possible values) and are fixed complex

Hermitian matrices.
The code is completely determined by the set of matrices

, which can be thought of as Hermitian basis
matrices. Each individual codeword, on the other hand, is deter-
mined by our choice of the scalars whose values
are in the set (The subscript “” represents the cardinality of
the set). Since each of thereal coefficients may take onpos-
sible values and the code occupieschannel uses, the transmis-
sion rate is . We defer the discussion of how
to design the ’s and how to choose and the set later in
this section and concentrate on how to decode
at the receiver first.

C. Decoding of Cayley Codes

Similar to the differential Cayley codes, our Cayley unitary
space-time codes also have the good property of linear de-
coding, which means that the receiver can be made to form a
system of linear equations in the real scalars .
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First, it is useful to see what our codes and their ML decoding
look like.

We partition the matrix as , where

is an matrix, and is a matrix.
For being Hermitian, and must both be Hermitian,
and .

Observe that

Using the above, some algebra shows the equation shown
at bottom of the page, where

, which is the Schur complement of in
.

Therefore, our transmitted signal has the following structure:

and (10)

In fact, it can be algebraically verified that bothand are
unitary.

By partitioning the received signal matrix into an
block and a block as , the
second form of the ML decoder in (4) reduces to

The reason for choosing the second form of the ML, as opposed
to the first one, is that we prefer to minimize, rather than max-
imize, the Frobenius norm. In fact, we will presently see that
a simple approximation leads us to a quadratic minimization
problem, which can be solved conveniently via sphere decoding.

As mentioned, the decoder is not quadratic in the entries of
, which indicates that it is not quadratic in thes since the

matrix is linear in the s. Therefore, the system equation at
the receiver is not linear. The formula looks intractable because
there are matrix inverses as well as the Schur complement.
If we adopt the approach of [16] by ignoring the covariance of
the additive noise term , we obtain

(11)

which, however, is still not quadratic in the entries of. There-
fore, to simplify the formula, more constraints should be im-
posed on the Hermitian matrix. This means that our matrix

should have a more handy structure. Fortunately, observe that
the degrees of freedom in a Hermitian matrix is , but
the degrees of freedom in a unitary matrix are only

. There are more
degrees of freedom in than we need. Therefore, let us exploit
this. Indeed, if we let

(12)

for somefixed matrix by which
degrees of freedom are lost,1 we will therefore have

(13)

and

(14)

Some algebra shows that the above decoding formula (11) re-
duces to

(15)

which is now quadratic in the entries of. Fast decoding
methods such as sphere decoding and nulling and cancelling
can be used in polynomial time as in BLAST [1].

We call (15) the “linearized” decoder because the system of
equations obtained in solving for the unconstraineds is linear.
For a wide range of rates and SNR, (15) can be solved exactly in
roughly computations using sphere decoding [19], [20].
Furthermore, simulation results show that the penalty for using
(15) is small, especially when weighed against the complexity of
exact ML. To facilitate the presentation of these decoding algo-
rithms, we write down the equivalent channel model in matrices
in the following section.

1) Equivalent Model:From (12), is fully deter-
mined by . Therefore, the degrees of freedoms inare all
from matrices and . The encoding formula (9) of can
thus be modified to the following encoding formulas of and

:

and (16)

where is the number of possible s and s,
are real scalars chosen from the set ,

, and are fixed

1With these conditions, the number of degrees of freedom inA is T �

2TM + 2M , which is greater than2TM �M , the number of degrees of
freedom in an arbitraryT �M unitary matrix, whenT � 3M .



2896 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 11, NOVEMBER 2003

and complex Hermitian matrices.
The matrix is constructed as the following:

Therefore, the linearized ML decoder (15) can be written as

(17)

By defining

(18)

for and decomposing the complex matrices
and into their real and imaginary parts, the decoding formula
(17) can be further rewritten as

...

where , are the real and imaginary parts of the matrix,
and , are the real and imaginary parts of the matrices

. Denoting by , , , and the th columns of
, , , and for and writing the

matrices in the above formula column by column, the formula
can be further simplified to

(19)

where is the -dimensional column
vector , and is the

matrix

...
...

. . .
... (20)

and is the vector of unknowns. We can get
the equivalent channel model

(21)

where is the noise matrix. appears to pass through an equiv-
alent channel that is known to the receiver because it is a func-
tion of , , ,
and and is corrupted by additive noise.2 The receiver can
simply get the equivalent channel from (20).

Therefore, we have a simple linear system of equations that
may be decoded using known techniques such as successive
nulling and cancelling, its efficient square-root implementation,
or sphere decoding. Efficient implementations of nulling and
cancelling generally require computations. Sphere de-
coding can be regarded as a generalization of nulling and can-
celling, where at each step, rather than making a hard deci-
sion on the corresponding s, one considers all the s that
lie within a sphere of certain radius. Sphere decoding has the
important advantage over nulling and cancelling in that it com-
putes theexactsolution. Its worst-case behavior is exponential
in , but its average behavior is comparable to nulling and can-
celling. When the number of transmit antennas and the rate are
small, ML decoding is possible. However, exact ML decoding
generally requires a search over all possible , which
may be impractical for large and . Fortunately, the perfor-
mance penalty for the linearized maximum likelihood (15) is
small, especially weighed against the complexity of exact ML.

2) Number of Independent Equations:Nulling and can-
celling explicitly requires that the number of equations be at
least as large as the number of unknowns. Sphere decoding does
not have this hard constraint, but it benefits from more equations
because the computational complexity grows exponentially
in the difference between the number of unknowns and the
number of independent equations. To keep the complexity of
the sphere decoding algorithm polynomial, it is important that
the number of linear equations resulting from (15) be at least as
large as the number of unknowns. Equation (21) suggests that
there are real equations and real unknowns.
Hence, we may impose the constraint

This argument assumes that the matrixhas full column rank.
There is, at first glance, no reason to assume otherwise, but it
turns out to be false. Due to the Hermitian constraints, not all
the equations are independent. A careful analysis
yields the following result.

Theorem 2 (Rank of ): The matrix given in (20) generally
has rank

rank
if
if

(22)
Proof: First, assume that . The rank of is the

dimension of the range space ofin the equation as
varies. Equivalently, the rank of is the dimension of the range
space of the complex matrix in the equation

when and vary. Because
and are not arbitrary matrices, the range space of

cannot have all the dimensions as it appears. Now

2In general, the covariance of the noise is dependent on the transmitted signal.
However, in ignoring� in (11), we have ignored this signal dependence.
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let us study the number of constraints added on the range space
of as and can only be Hermitian matrices. Since

which shows that the matrix is Hermitian. This
enforces linear constraints on the entries of. Therefore,
only at most entries of all the
entries are free. Since is , the rank of is
at most .

Now, assume that . We know that the
matrix is Hermitian, but it has rank now
instead of full rank. Therefore, the entries of the lower right

Hermitian sub-matrix of
are uniquely determined by its other entries. Therefore,

the number of constraints yielded by the equations
is .

Thus, there are at most
degrees of freedom in . The rank of is

at most .
We have essentially proved an upper bound on the rank. Our

argument so far has not relied on any specific sets forand
. When , we are reduced to studying ,

which is the same setting as that of differential USTM [16]. In
[16, Th. 1], it is argued that for a generic choice of the basis
matrices , the rank of attains the upper
bound. Therefore, the same holds here, andattains the upper
bound.

Theorem 2 shows that even though there are
equations in (21), not all of them are independent. To have at
least as many equations as unknowns, the following constraint
is needed:

if
if

or equivalently

(23)

D. Geometric Property of the Cayley Space-Time Codes

With the choice (12) or, equivalently, (13), the first block of
the transmitted matrix in (10) can be simplified as the fol-
lowing:

The second block of equals
. Since and commute

Our Cayley unitary space-time code and its unitary complement
can be written as

and

(24)

where

(25)

and is an unitary matrix
since it is the Cayley transform of the Hermitian matrix .

The code is completely determined by the matrices
and , which

can be thought of as Hermitian basis matrices. Each individual
codeword, on the other hand, is determined by our choice of
the scalars chosen from the set . Since there
are basis matrices for and , and the code occupies
channel uses, the transmission rate is

(26)

Since the channel matrix is unknown and, if left multiplied
by an unitary matrix its distribution remains unchanged,
we can combine with the channel matrix to get

. If we left multiply , , and by

to get , and , the system (1) can be

rewritten as

We can see that this is very similar to the equations of the
training-based schemes (6). The only difference is in the noises.
In (6), entries of the noise are independent white Gaussian
noise with zero mean and unit variance. Here, the entries of

are no longer independent with unit variance, although they
still have zero mean. The dependence of the noises is beneficial
to the performance since more information can be obtained.

The following theorem about the structure of is needed
later in the optimization of the basis matrices.

Theorem 3 (Difference of Unitary Complements of the Trans-
mitted Signal): The difference of the unitary complements
and of the transmitted signals and can be written as

(27)

where and are the corresponding Schur complements.
Proof: See Appendix A.

Another way to look at Theorem 3 is to note that

(28)

Without the unitary constraint, this is an affine space since all
the data is encoded in . Therefore, in general, the space of
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is the intersection of the linear affine space in (28) and the
Stiefel manifold . We can see from (27) or (28) that
the dimension of the range space of (equivalently,
the dimension of the affine space) is . It is interesting to
contrast this with the training case, which, from (6), gives

(29)

Note now that the dimension of the affine space is
, which is no more than when . Therefore,

the affine space of for the Cayley codes has a higher dimen-
sion than that of the training-based schemes when .

E. Design of Unitary Space-Time Codes

Although we have introduced the Cayley unitary space-time
code structure in (24), we have not yet specified, nor have
we explained how to design the Hermitian basis matrix sets

and or
choose the discrete set from which the s are drawn. We
now discuss these issues.

1) Design of : To make the constellation as rich as pos-
sible, we should make the number of degrees of freedomas
large as possible. Therefore, as a general practice, we find it
useful to take as its upper limit in (23). That is

(30)

We are left with how to design the discrete set
and how to choose and

.
2) Design of : As mentioned in the introduction, at high

SNR, to achieve capacity in the sense of maximizing mutual
information between and , should
assemble samples from an isotropic random distribution. Since
our data modulate the matrix ( and ), equivalently,
we need to find the distribution on that yields an isotropically
distributed .

As proved in [16], the unitary matrix is isotropically dis-
tributed if and only if the Hermitian matrix has the matrix
Cauchy distribution

which is the matrix generalization of the familiar scalar Cauchy
distribution

For the 1-D case, an isotropic-distributed scalarcan be written
as , where is uniform over [0, ). Therefore,

is Cauchy. When there
is only one transmit antenna and the coherence in-
terval is one channel use only , the transmitted signals
are scalars. There is no need to partition the matrix. There-
fore, (9) is used instead of (16). We want our code constellation

to resemble samples from a Cauchy random
matrix distribution. Since there is only one degree of freedom

in a scalar, it is obvious that . Without loss of generality,
setting , we get

and

To have a code with rate with ,
should have points. Standard DPSK puts these points

uniformly around the unit circle at angular intervals of
with the first point at . For a point of angle on the unit
circle, the corresponding value for is

(31)

For example, for , we have the set of points
on unit circle . From (31), the set
of values for is . For ,

. It can be seen that the
points rapidly spread themselves out asincreases, which
reflects the heavy tail of the Cauchy distribution.

We denote to be the image of (31) applied to the set
. When , the frac-

tion of points in the set less than some valueis given by the
cumulative Cauchy distribution. Therefore, the set can be
regarded as an-point discretization of a scalar Cauchy random
variable.

For the systems with multiple transmit antennas and higher
coherence intervals, no direct method is shown about how to
choose . In that case, we also choose our setto be the
set given above. Thus, the s are chosen as discretized scalar
Cauchy random variables for anyand , but to get rate ,
from (26), we need to have

(32)

To complete the code construction, it is crucial that
and be

chosen appropriately, and we present a criterion in the next
section.

3) Design of ,
: If the rates being considered are reasonably

small, the diversity product criterion is

tractable. At high rates, however, it is not practical to pursue
the full diversity criterion. There are two reasons for this:
First, the criterion becomes intractable because of the number
of matrices involved, and second, the performance of the
constellation may not be governed so much by its worst-case
pairwise but, rather, by how well the matrices
are distributed throughout the space of unitary matrices.

Similar to the differential Cayley code design in
[16], for given and the sets of basis matrices

and ,
we define a distance criterion for the resulting constellation of
matrices to be

(33)

where is given by (24) and (25), and is given by the same
formulas, except that the s in (25) are replaced by s. The
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expectation is over all possible and s chosen uniformly
from such that . Remember
that denotes the unitary complement matrix
of the matrix .

Let us first look at the difference between this criterion with
that in [16]. Here, we use and instead of and
themselves because the unitary complement instead of the trans-
mitted signal itself is used in the linearized ML decoding. This
criterion cannot be directly related to the diversity product as
in the case of [16], but still, from the structure, it is a mea-
sure of the expected “distance” between the matricesand

. Thus, maximizing should be connected with low-
ering average pairwise error probability. Hopefully, optimizing
the expected “distance” between the unitary complements
and instead of that between the unitary signalsand
themselves will obtain a better performance. In addition, since
our constraints (12) are imposed to simplify, which turns out
to simplify as well, the calculation of our criterion is much
easier than the calculation of the one used in [16], which max-
imizes the expected “distance” between the unitary matrices
and . We therefore propose the optimization problem to be

(34)

By (27), we can rewrite the optimization as a function of ,
and get the simplified formula

(35)

where

and

When is large, the discrete sets from whichs, s are
chosen from can be replaced with independent scalar
Cauchy distributions, and by noticing that the sum of two
independent Cauchy random variables is scaled-Cauchy, our
criterion can be simplified to

(36)
Choosing the Frobenius Norm of the Basis Matrices:The

entries of the s and s in (35) are unconstrained other
than that they must be Hermitian matrices. However, we found
that it is beneficial to constrain the Frobenius norm of all the
matrices in to be the same, which we denote byand
similarly for the matrices , whose Frobenius norm we
denote by . In fact, in our experience, it is very important,
for both the criterion function (35) and the ultimate constella-
tion performance, that the correct Frobenius norms of the basis
matrices be chosen. The gradients for the Frobenius norms

and are given in Appendix C, and gradient-ascent method is
used. Since the optimization of is too complicated to be done
by the gradient-ascent method, and simulation shows that the
Frobenius norm of , and itself, do not have significant ef-
fects on the performance as long asis full rank, we choose
to be with close to 1. This has shown
to perform well.

4) Design Summary:We now summarize the design method
for a Cayley unitary space-time code with transmit antennas
and receive antennas and target rate.

1) Choose
. Although this inequality is a soft limit for sphere

decoding, we choose our that obeys the inequality to
keep the decoding complexity polynomial.

2) Choose that satisfies . We always choose
to be a power of 2 to simplify the bit allocation and use a
standard Gray-code assignment of bits to the symbols of
the set .

3) Let be the -point discretization of the scalar
Cauchy distribution obtained as the image of
the function applied to the set

.
4) Choose and that solves the optimiza-

tion problem (35). A gradient-ascent method can be used.
The computation of the gradients of the criterion in (35)
is presented in Appendix B. At the end of each itera-
tion, gradient-ascent is used to optimize the Frobenius
norms of the basis matrices and

. The computation of the gradi-
ents is given in Appendix C. Note first that the solution
to (35) is highly nonunique. Another solution can be ob-
tained by simply reordering the s and s. In ad-
dition, since the criterion function is neither linear nor
convex in the design variables and , there is
no guarantee of obtaining a global maximum. However,
since the code design is performed off-line and only once,
we can use more sophisticated optimization techniques
to get a better solution. Simulation results show that the
codes obtained by this method have good performance.
The number of receive antennasdoes not appear ex-
plicitly in the criterion (35), but it depends on through
the choice of . Hence, the optimal codes, for a given,
are different for different .

III. SIMULATION RESULTS

In this section, we give examples of Cayley unitary space-
time codes and the simulated performance of the codes for var-
ious number of antennas and rates. The fading coefficient from
each transmit antenna to each receive antenna is modeled in-
dependently as a complex Gaussian variable with zero mean
and unit variance and is kept constant forchannel uses. At
each time, a zero-mean, unit-variance complex Gaussian noise
is added to each receive antenna. Two error events of interest are
demonstrated including block errors, which correspond to er-
rors in decoding the matrices , and bit errors,
which correspond to errors in decoding . The bits
are allocated to each by a Gray code, and therefore, a block
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Fig. 1. T = 4,M = 2,N = 1, andR = 1:5: ber and bler of the linearized
ML given by (15), compared with the true ML.

error may correspond to only a few bit errors. We first give an ex-
ample to compare the performance of the linearized ML, which
is given by (15), with that of the true ML, and then, perfor-
mance comparisons of our codes with training-based methods
are given.

A. Linearized ML versus ML

In communications and code designs, the decoding com-
plexity is an important issue. In our problem, when the
transmission rate is high, for example, and ,

, for one coherence interval, the true ML decoding
involves a search over matrices,
which is not practical. This is why we linearize the ML
decoding to use the sphere decoding algorithm.

However, we need to know the penalty for using (15) instead
of the true ML. Here, an example is given for the case of a two-
transmit, one-receive antenna system with coherence interval of
four channel uses operating at rate with and

. The number of signal matrices is for which
the true ML is feasible. The resulting bit error rate and block
error rate curves for the linearized ML are the line with circles
and line with stars in Fig. 1. The resulting bit error rate and
block error rate curves for the the true ML are the solid line
and the dashed line in the figure. We can see from Fig. 1 that
the performance loss for the linearized ML decoding is almost
neglectable, but the computational complexity is saved greatly
by using the linearized ML decoding, which is implemented by
sphere decoder.

B. Cayley Unitary Space-Time Codes versus Training-Based
Codes

In this section, a few examples of the Cayley codes for various
multiple antenna communication systems are given, and their
performance compared with that of the training-based codes is
also showed.

As discussed in the introduction, a commonly used scheme
for unknown channel multiple antenna communication sys-

tems is to obtain the channel information via training. It is
important and meaningful to compare our code with that of
the training codes. Training-based schemes and the optimal
way to do training are discussed in Section I-B. In most of
the following simulations, different space-time codes are used
in the data transmission phase for different system settings.
Sphere decoding is used in decoding all the Cayley codes, and
the decoding of the training-based codes is always ML, but
the algorithm varies according to the codes used. The details
of the codes used (the basis matrices, etc.) can be obtained by
contacting the authors.

Example of , , and : The first example
is for the case of two transmit and two receive antennas with
coherence interval . For the training-based schemes, half
of the coherence interval is used for training. For the data trans-
mission phase, we consider two different space-time codes. The
first one is the well-known orthogonal design in which the trans-
mitted data matrix has the following structure:

By choosing and from the signal set of 16-QAM equally
likely, the rate of the training-based code is 2 bits per channel
use. The same as the Cayley codes, bits are allocated to each
entry by the Gray code. The second one is the LD code proposed
in [5]:

where

Clearly, the rate of the training-based LD code is also 2. For the
Cayley code, from (30), we choose . To attain rate 2,

from (32). The Cayley code was obtained by finding a
local maximum to (36).

The performance curves are shown in Fig. 2. The dashed
line/dashed line with plus signs indicates the ber/bler of the
Cayley code at rate 2. The solid line/solid line indicates the
ber/bler of the training-based orthogonal design at rate 2, and
the dash-dotted line/dash-dotted line with plus signs shows the
ber/bler of the training-based LD code at rate 2. We can see
from the figure that the Cayley code underperforms the optimal
training-based codes by 3–4 dB. However, our results are pre-
liminary, and it is conceivable that better performance may be
obtained by further optimization of (35) or (36).

Example of , , and : For the training-
based scheme of this setting, two channel uses of each coher-
ence interval are allocated to training. Therefore, in the data
transmission phase, bits are encoded into a 32 data matrix

. Since we are not aware of any 32 space-time code, we
employ an uncoded transmission scheme, where each element
of is chosen independently from a BPSK constellation, re-
sulting in rate 6/5. This allows us to compare the Cayley codes
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Fig. 2. T = 4,M = 2,N = 2, andR = 2: ber and bler of the Cayley code
compared with the training-based orthogonal design and the training-based LD
code.

Fig. 3. T = 5, M = 2, andN = 1: ber and bler of the Cayley codes
compared with the uncoded training-based scheme.

with the the uncoded training-based scheme. Two Cayley codes
are analyzed here: the Cayley code at rate 1 with ,
and the Cayley code at rate 2 with , .

The performance curves are shown in Fig. 3. The solid
line/solid line with plus signs indicates the ber/bler of the
Cayley code at rate 1, the dash-dotted line/dash-dotted line

Fig. 4. T = 5, M = 2, andN = 1: ber and bler of the Cayley codes
compared with the uncoded training-based scheme.

with plus signs shows the ber/bler of the Cayley code at rate
2, and the dashed line/dashed line with plus signs shows the
ber/bler of the training-based scheme, which has a rate of
6/5. Exhaustive search is used in decoding the training-based
scheme, and sphere decoding is applied to decode the Cayley
codes.

We can see that our Cayley code at rate 1 has lower ber and
bler than the training-based scheme at rate 6/5 at any SNR. In
addition, even at a rate which is 4/5 higher (2 compared with
6/5), the performance of the Cayley code is comparable with
that of the training-based scheme when the SNR is as high as
35.

Example of , , and : For this system set-
ting, three channel uses of each coherence interval are allocated
to training. In the data transmission phase of the training-based
scheme, we use the optimized LD code given in [5], where we
have the equation shown at bottom of the page. By setting,

in BPSK, we obtain an LD code at rate 8/7. For the Cayley
code, we choose and , and the rate of the code is 1.

The performance curves are shown in Fig. 4. The solid
line/solid line with plus signs indicates the ber/bler of the
Cayley code at rate 1, and the dashed line/dashed line with plus
signs shows the ber/bler of the training-based LD code, which
has a rate of 8/7. Sphere decoding is applied in the decoding of
both codes. From Fig. 4, we can see that the performance of the
Cayley code is close to the performance of the training-based
LD code. Therefore, at a rate 1/7 lower, the Cayley code is
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comparable with the training-based LD code. Again, our results
are preliminary, and further optimization of (35) or (36) may
yield improved performance.

IV. CONCLUSION

Cayley unitary space-time codes are developed in this paper.
The codes require channel knowledge at neither the transmitter
nor the receiver, are simple to encode and decode, and apply
to any combination of transmit and receive antennas. They are
designed with a probabilistic criterion: They maximize the ex-
pected log-determinant of the difference between matrix pairs.
The Cayley transform is used to construct the codes because it
maps the nonlinear Stiefel manifold of unitary matrices to the
linear space of skew-Hermitian matrices. The transmitted data is
broken into substreams and then linearly encoded in
the Cayley transform domain. We showed that by constraining

and ignoring the data dependence of the ad-
ditive noise, appear linearly at the receiver. There-
fore, linear decoding algorithms such as sphere decoding and
nulling and cancelling can be used in polynomial time. Our code
has a similar structure as training-based schemes after transfor-
mations.

The recipe for designing Cayley unitary space-time codes
for any combination of transmit/receive antennas and coher-
ence intervals is given, and in addition, simulation examples are
shown to compare our Cayley codes with optimized training-
based space-time codes and uncoded training-based schemes for
different system settings. Our simulation results are preliminary
but indicate that the Cayley codes generated with this recipe
slightly underperform optimized training-based schemes using
orthogonal designs and/or LD codes. However, they are clearly
superior to uncoded training-based space-time schemes. Further
optimization of the Cayley code basis matrices [in (35) or (36)]
is necessary for a complete comparison of the performance with
training-based schemes.

APPENDIX A
PROOF OFTHEOREM 3

Theorem 3 (Difference of Unitary Complements of the Trans-
mitted Signal): The difference of the unitary complements
and of the transmitted signals and can be written as

where and are the corresponding Schur complements.
Proof: First, by simple algebra,

can be proved, which is equivalent to
. From (24)

and

Therefore

APPENDIX B
GRADIENT OF CRITERION (35)

In the simulation presented in this paper, the maximization of
the design criterion function (35) is performed using a simple
gradient-ascent method. In this section, we compute the gradient
of (35) that this method requires.

We are interested in the gradient with respect to the matrices
and of the design function

(35), which is equivalent to

(B.1)

To compute the gradient of a real function with respect
to the entries of the Hermitian matrix , we use the formulas

(B.2)

(B.3)

(B.4)

where is the unit column vector of the same dimension of
columns of , which has a one in theth entry and zeros else-
where. That is, when we calculate the gradient with respect to

, should has dimension , and for the gradient with
respect to , it is instead. means the transpose
of .

First, note that , where

, and similarly, . Therefore,
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to apply (B.2) to the first term of (B.1) with respect to , let
, and we compute

tr

tr

tr

We use tr tr , and the last equality follows because
is Hermitian. We may now apply (B.2) to obtain

The gradient with respect to the imaginary components of
can be obtained in a similar way as the following:

Im

Im

and the gradient with respect to the diagonal elements is

Similarly, we get the gradient with respect to

Re

Re

Im

Im

For the second term, by using the same method, the following
results are obtained:

where

and all the expectations are over all possible .

APPENDIX C
GRADIENT OF FROBENIUSNORMS OF THEBASIS SETS

Let be a multiplicative factor that we use to multiple every
, and let be a multiplicative factor that we use to mul-

tiple every . Thus, and are the Frobenius norms of
matrices in and . We solve for the optimal ,

by maximizing the criterion function in (35)

where

As in the optimization of , , the gradient-ascent
method is used. To compute the gradient of a real function

with respect to and , we use the formulas
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and the results are

tr

tr

tr

tr

where is the first term of , and is the second term.
Simulation shows that good performance is obtained when

and are not too far away from unity.
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