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Unitary Space-Time Modulation
via Cayley Transform

Yindi Jing and Babak Hassibi

Abstract—A recently proposed method for communicating with  tained via training: Known signals are periodically transmitted
multiple antennas over block fading channels is unitary space- for the receiver to learn the channel, and the channel param-
time modulation (USTM). In this method, the signals transmitted = gterg gre tracked in between the transmission of the training

from the antennas, viewed as a matrix with spatial and temporal _. s :
dimensions, form a unitary matrix, i.e., one with orthonormal signals. However, it is not always feasible or advantageous to

columns. Since channel knowledge is not required at the receiver, USe training-based schemes, especially when many antennas are
USTM schemes are suitable for use on wireless links where used or either end of the link is moving so fast that the channel
channel tracking is undesirable or infeasible, either because of is changing very rapidly [6], [7].
rapid changes in the channel characteristics or because of limited  Hence, there is much interest in space-time transmission
system resources. Recent results have shown that if suitably sopemes that do not require either the transmitter or receiver
designed, USTM schemes can achieve full channel capacity at . . . :
high SNR and, moreover, that all this can be done over a single to know the channel. Informatlon-theeret|c calculatlens with a
coherence interval, provided the coherence interval and number Multiantenna channel that changes in a block-fading manner
of transmit antennas are sufficiently large, which is a phenomenon first appeared in [8]. Based on these calculations, a new
referred to as autocoding. _ _ _ transmission scheme, which is referred taiaggary space-time
While all this is well recognized, what is not clear is how to modulation(USTM), in which the transmitted signals, viewed

generate good performing constellations of (honsquare) unitary : . - . .
matrices that lend themselves to efficient encoding/decoding. as matrices with spatial and temporal dimensions, form a

The schemes proposed so far either exhibit poor performance, Unitary matrix, was proposed in [9]. Further information-the-
especially at high rates, or have no efficient decoding algorithms. oretic calculations in [10] and [11] show that at high SNR,
In this paper, we propose to use the Cayley transform to design USTM schemes are capable of achieving full channel capacity.
USTM constellations. This work can be viewed as a generalization, Fyrthermore, in [12], it is shown that all this can be done over a
to the nonsquare case, of the Cayley codes that have been proposedjnge coherence interval, provided the coherence interval and

for differential USTM. The codes are designed based on an infor- b ft it ant ficientlv | hich |
mation-theoretic criterion and lend themselves to polynomial-time number or ransmit antennas are suiiciently large, which s a

(often cubic) near-maximum-likelihood decoding using a sphere phenemenon_referred to asto_codir_]g_ _
decoding algorithm. Simulations suggest that the resulting codes ~ While all this is well recognized, it is not clear how to design

allow for effective high-rate data transmission in multiantenna a constellation of nonsquare USTM matrices that deliver on the
commulmc_anon SyStﬁmj WltV;OT}t knowmg :het_ckl\arénel.tHowever, above information-theoretic results and lend themselves to effi-
?rggnﬁ)ﬁz.'ﬁnéggéysfﬁgmse; not show a substantial advantage over .iant encoding/decoding. The first technique to design USTM
_ constellations was proposed in [13], which, while it allows for
_Index Terms—Cauchy random matrices, Cayley transform, efficient decoding, was later shown in [14] to have poor perfor-
diversity product, fading channels, isotropic distribution, unitary —ance - especially at high rates. The constellation proposed in
space-time codes, unitary space-time modulation, wireless com-[14] on the other hand. while it theoreticallv has qood berfor-
munications. d d - Yy .g p
mance, has, to date, no tractable decoding algorithm. Recently,

a USTM design method based on the exponential map was pro-
[. INTRODUCTION AND MODEL posed in [15].

T is well known that multiple transmit and/or receive an- !N this paper, we propose to use the Cayley transform to de-
tennas promise high data rates on scattering-rich wireleign USTM constellations. Th|_s can beregarded as an extensmn,
channels [1], [2]. Most of the proposed schemes that achid@dhe nonsquare case, of earlier work on Cayley codetiffer-
these high rates require the propagation environment or charffdial USTM [16]. As will be shown in this paper, this extension
to be known to the receiver (see, e.g., [1], [3]-[5], and the refdg.nontrivial. Nonetheless, the codee designed here !nherlt many
ences therein). In practice, knowledge of the channel is often & the properties of Cayley differential codes. In particular, they
1) are very simple to encode (the data is broken into sub-
streams used to parameterize the unitary matrix);
Manuscript received September 5, 2002; revised June 2, 2003. This work was2) €an be used for any number of transmit and receive an-
supported by the Air Force Office for Scientific Research for Mathematical In- tennas;

frastructure for Robust Virtual Engineering (MURI), Protecting Infrastructures ; ; ; ; ;
from Themselves (URI), and Caltech’s Lee Center for Advanced Networking. 3) can be decoded in a variety of ways mCIUdmg S|mple

The associate editor coordinating the review of this paper and approving it for po'Vnomial"Fime Iinear-alge_braic techniques such as suc-
publication was Prof. Brian Hughes. cessive nulling and cancelling (V-BLAST [17], [18]) or
The authors are with the Department of Electrical Engineering, California sphere decoding [19] [20]-

Institute of Technology, Pasadena, CA 91125 USA (e-mail: yindi@systems. . e - N L.
caltech edu: hassibié’;ystems_caltech_edu)_ ( yindi@sy 4) satisfy a probabilistic criterion (they maximize an ex-

Digital Object Identifier 10.1109/TSP.2003.818202 pected distance between matrix pairs).

1053-587X/03$17.00 © 2003 IEEE



2892 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 11, NOVEMBER 2003

The paper is organized as follows. Unitary space-time modwhereS* means the conjugate transpose of mastiand/r is
lation and training-based schemes are introduced briefly in tthee7” x 1" identity matrix. (Without causing confusion, we omit
following two subsections. In Section Il, we first tersely preserthe subscript sometime later.) The received signal thus has the
the Cayley transform and its advantages in parameterizing folowing conditional probability density:
space of unitary matrices and then illuminate in detail the en- 1 i}
coding, decoding, and design of our Cayley space-time codes. p(X|9) = exp (—tr{A g(X }) ©)
Simulation results, including the comparison of our Cayley TN det™ A
codes with training-based schemes, are shown in Section (\'jUhere “tr" denotes the trace function.

The main result of our investigation is that the Cayley codes OThe conditional density (3) has considerable symmetry

not qﬁ‘er a sub;tantlal advantag'e over trammg-b.ased SChe”kﬁ‘%ing from the statistical equivalence of each time-sample
Segtlon IV provides t.he concluspn, and Appen@ces AB, anthd of each transmit antenna. Its special properties, combined
Cgivethe _mathemancal calculations for optimizing our CayIER)Oith the concavity of the mutual information function, lead to
codes basis set. the following theorem summarized in [8]-[10].

Theorem 1 (Structure of Capacity-Achieving SigndB] A
capacity-achieving random signal matrix for (1) may be con-

Consider a wireless communication system wifhtransmit  structed as a produst= V' D, whereV is aT x T isotropically
antennas andV receive antennas. We use a block-fadingistributed unitary matrix, anfd is an independenit x M real,
channel with coherence interval(for more on this model, see non-negative, diagonal matrix. Furthermore, for eithes M

A. Unitary Space-Time Modulation

[8] and [9]): or high SNRwithT > M, dy; = das = -+ = dpyrar = 1
achieves capacity, where;; is theith diagonal entry oD.
X = ESH +V. (1) An isotropically distributed” x T" unitary matrix has a prob-

ability density that is unchanged when the matrix is multiplied

Here,S : T x M denotes the transmitted signal, wheyg, is by any deterministic unitary matrix. In a natural way, an isotrop-
the signal sent by thexth transmit antenna at time The tth ically distributed unitary matrix is th& x T counterpart of a
row of S indicates the row vector of the transmitted values frofemplex scalar having unit magnitude and uniformly distributed
all the transmit antennas at timeand themth column indicates Phase. For more on the isotropic distribution, see [8].
the transmitted values of theth transmit antenna across the co- Motivated by this theorem, [9] proposed to use the transmitted
herence intervalld : M x N is the complex-valued propagationSignal matrixs ass = ®[Ins, 0r—as,n]*, where® isal’ x T'
matrix that remains constant during the coherent pefipand  Unitary matrix. The superscript™indicates the transpose, and
h.mn is the propagation coefficient between théh transmitan- 07,0 is the (T — M) x M matrix of all zeros. (Without
tenna and theth receive antenna. The,,,,s have a zero-mean causing confusion, we omit the subscript later.) This is called
unit-variance circularly-symmetric complex Gaussian distribitnitary space-time modulation (USTM), and suctban called
tion CA/(0,1) and are independent of each other. We assurid X M unitary matrix since its\/ columns are orthonormal.
that the channel information is unknown to both the transmitt&t the USTM scheme, the transmitted signals are chosen from
and the receivelV : T x N is the noise withy,,, which is the @ constellation? = {S1, ..., Sy} of L = 257 (whereR is the
noise at the:th receive antenna at tinte Thew,,,s are iid with  fransmission rate}’ x M unitary matrices. The ML decoder is
CN(0,1) distribution. X : 7' x N is the received signal ma- 9iven by
trix, wherez,,, is the received value by theth receive antenna .. .o 12 ) .ol 112
at timet. Thetth row of X indicates the row vector of the re- ¢ =18 P 1X7Sel[F = arg, Ix=sellz @
ceived values at all the receivers at timend thenth column
indicates the received values of thth transmit antenna acrosswhere S+ is theT x (T — M) unitary complement matrix of
the coherence interval. We impose an extra power constrainttbe?’ x M unitary matrix3, thatis,[S, S*] isaT x T unitary
the transmitted signal matrix. || - || » indicates the Frobenius norm.
In [9], it is also shown that the pairwise block probability of

1 X 5 1 error (of transmittingS, and erroneously decodirfy.) has the

M E;E'Stm' =g t=L2...T @ chernoff upper bound

which means that the average expected power oveviiens-

M
mitted antennas is kept constant for each channel use. Therefore, Pe < 1 H 1
p represents the expected SNR at each receive antenna. 200 14 (57)7(-az,)
Conditioned onS, from (1), we can see that the received 4(1+57)

signal X has independent and identically distributed columnsh L>d > S du >0 the sinaul | f1h
(across theV antennas). At a particular antenna, theeceived wherel = di 2 ... 2 dy = U are the singuiar values ot the

symbols are zero-mean complex Gaussian, with the foIIowir%.T.tM r]r)atnxS g Sr‘;' Theformzjlgfgowitnat_lt_r;e pe;wmse protb—
T « T covariance matrix: ability of error behaves alsdet(S},S¢)|~*". Therefore, mos

design schemes have focused on finding a constellation that
maximizesmin,., | det(S} S¢)|. SinceL can be quite large,
this calls into question the feasibility of computing and using

T
A=TIp+ (%) 55*
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this performance criterion. The large number of signals alSetting7, = M is optimal for anyp andT'. Third, the optimal
rules out the possibility of decoding via an exhaustive seargiower distribution satisfies the following:
To design constellations that are huge, effective, and yet still

simple so that they can be decoded in real-time, we need to in- pd < p<pr, ?f T>2M
troduce some structure. We will show how the Cayley transform Pd =P = Pr, _If T=2M
can be used later. pa>p > pr, IET <2M.

In simulations, we do the training in this optimal way by let-
) i i ting 7 = M andS,; = v M1I,,. For simplicity, equal training
When the channel information of a multiple-antenna commus,q gata powep; = p = p, is used, which is optimal when
nication system is unknown, training-based schemes are gener— 9. By combining the training phase equations and the

ally used, by which known signals are periodically transmittegh5 transmission phase equations, the system equations can be
for the receiver to learn the channel. It is meaningful to conyitten as

pare the performance of our Cayley unitary space-time codes

with that of the training-based schemes. We first introduce the X In I V: 5

training-based schemes here. X4l Ve Sy + Val ©)
Training-based schemes dedicate part of the transmitted ma-

trix S to be a known training signal from whicH can be Further assume that tié@" — M) x M information matrixSy

learned. In particular, training-based schemes are composedbdfnitary. Then, we have

two phases: the training phase and the data transmission phase.

B. Training-Based Schemes

The system equations for the training phase can be written as g_ L {IM} andst — [ =53 } ©)
V2 [ Sd V2 Ur—m
Pr *
Xr = \/ MSTH + Ve, W(S:57) = MT; where S+ is theT' x (7' — M) unitary complement matrix of

the T x M unitary matrixS. If S; is not unitary, therS- is
wheresS. is theT’. x M complex matrix of training symbols sentonly the orthogonal complemesst-*S = 0 since the unitary
overT, time samples and known to the receiver,is the SNR complement may not exist.
during the training phaseX. is theT, x N complex received
matrix, andV’. is the noise matrix. [l. CAYLEY UNITARY SPACE-TIME CODES
Similarly, the system equations for the data transmissi%n

phase can be written as Parameterization of the Unitary Matrix Space by the Cayley

Transform
pr . In USTM, the firstM columns of theI' x T unitary ma-
Xa= MSJH +Va, Et(SaS3) = MT, trices are chosen to be the transmitted signal. Therefore, let us

first look at the space of th& x T unitary matrices, which is
where Sy is theT,; x M complex matrix of data symbols sentreferred as th&tiefelmanifold. It is well-known that this man-
overT, =T — T, time samplesy, is the SNR during the data ifold is highly nonlinear and nonconvex. Note that an arbitrary
transmission phasg&, is theT,; x N complex received matrix, complexT x T matrix has27? real parameters, but for a uni-
and V; is the noise matrix. The normalization formula aboveary one, there ar& constraints to force each column to have
has an expectation becauSg is random and unknown. Note unit norm and another x ((T'(T — 1))/2) constraints to make
thatpT = pgTy + p.Tr. theT’ columns pairwise orthogonal. Therefore, the Stiefel man-
There are two general methods to estimate the channel infidold has dimensior7? — 7' — 2 x ((I'(T" — 1))/2) = T2.

mation: the maximum likelihood (ML) and the linear minimunSimilarly, the space o’ x M unitary matrices has dimension
mean square error (LMMSE) estimation, whose channel estiFM — M — 2 x ((M(M —1))/2) = 2TM — M?.

mations are given as To design codes of unitary matrices, we need first a pa-
rameterization of the space. There are some parameterization

; M _ methods in existence, but all of them suffer from disadvantages

H= . (S787)" SrX; for use in unitary space-time code design. We now briefly

discuss these.
The first parameterization method is with Givens rotations. A

. M (M -
H=y/>- <_TM + STST) S X unitary matrix® can be written as the product

pr \ pr

respectively. In our simulations, the LMMSE estimation is used. ¢ =Gi1Gy - Grry DGrain -+ Grir-)

In [7], the optimal training to maximize the lower bound of ’ ’
the capacity for MMSE estimation is given. There are threghereD is a diagonal unitary matrix, and tli& s are the Givens
parameters that are to be optimized. The first one is the trainifay planar) rotations: one for each of th(g'(7'—1))/2) two-di-
data.S,. It is proved that the optimal solution is to chooseénensional (2-D) hyperplanes [21]. Itis conceivable that one can
the training signal as a multiple of a matrix with orthonormag¢ncode the data onto the angles of rotations and also the diag-
columns. The second one is the length of the training intervahal phases ab, but it is not a practical method since neither is
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the parameterization one-to-one (for example, one can reord@atrices with eigenvalues atl have no inverse images. Recall
the Givens rotations), nor does systematic decoding appeathat the space of Hermitian or skew-Hermitian matrices has di-

be possible. mensionZ'?, which matches that of the Stiefel manifold.
Another method is to parameterize with Householder reflec-We have shown that a matrix with no eigenvalues-atis
tions. A unitary matrix® can be written as the produdt = unitary if and only if its Cayley transform is skew-Hermitian.

DH,H, --- Hr,whereD is a diagonal matrix, and thi;s are Compared with other parameterizations of unitary matrices, the

Householder matrices. This method is also not encouragingp@arameterization with Cayley transform is one-to-one and easily

us because we do not know how to encode and decode the datartible. The Cayley transform maps the complicated Stiefel

onto the Householder matrices in any efficient manner. manifold of unitary matrices to the space of skew-Hermitian
In addition, unitary matrices can be parameterized with ti{elermitian) matrices, and skew-Hermitian (Hermitian) matrices

matrix exponentialb = ¢*4. WhenA is T x T Hermitian,® are easy to characterize since they form a linear vector space

is unitary. The exponential map also has the difficulty of naiver the reals. Therefore, easy encoding and decoding can be

being one-to-one. This can be overcome by imposing the cabtained by this handy feature.

straintd) < A < 2x 1, butthe constraints are notlinear although In addition, it is proved in [16] that a set of unitary ma-

convex. We do not know how to sample the spacé ¢ obtain trices is fully diverse if and only if the set of their skew-

a constellation ofb. Moreover, the map is not easy to be conHermitian Cayley transforms is fully diverse. This suggests

verted at the receiver féf > 1. Nonetheless, a method basedhat a promising performance set of unitary matrices can be

on the exponential map has been proposed in [15]. obtained from a well-designed set of Hermitian matrices by
1) Cayley Transform and its Propertiesthe Cayley trans- Cayley transform.

form was proposed in [16] and used to design codes for differ-

ential unitary space-time modulation, whereby both good pds- Cayley Unitary Space-Time Codes

formance and simple encoding and decoding are obtained.  gecause the Cayley transform maps the nonlinear Stiefel
The Cayley transform of a compléi«< 17" matrixY'is defined - manifold to the linear space (over the reals) of Hermitian (or

to be skew-Hermitian) matrices (and vice-versa), it is convenient and

b= (I+Y)(I-Y) m_o_st straightforward to encode data linearly onto a skew-Her-
mitian matrix and then apply the Cayley transform to get a

whereY is assumed to have no eigenvalue-dt so that the unitary matrix. _ _ _
inverse exists. Letl be al’ x T' Hermitian matrix, and consider e call a Cayley unitary space-time code one for which each
the Cayley transform of the skew-Hermitian matrix= i4: 7' x M unitary matrix is

= (I+iA)"Y(I—iA). ) S = (Ir+iA)" (Ir — i4) [Iﬂ ®)

First, note that sincéd is skew-Hermitian, it has no eigenvalue N S
at —1 because all its eigenvalues are strictly imaginary. Thefth the Hermitian matrix4 given by
means that/ + iA)~! always exists. The Cayley transform is

L Q
the generalization of the scalar transform A= Z g Aq 9)
1—1a q=1
v = -
1 +ia whereas, as, . .., ag are real scalars (chosen from adawith
that maps the real line to the unit circle. Notice that no finite possible values) and;, A,, ..., A are fixedI’ x 1" complex
point on the real line can be mapped to the point on the unit Hermitian matrices.
circle. The code is completely determined by the set of matrices
In addition {A1, Ao, ..., Ag}, which can be thought of as Hermitian basis
. - . L 7 matrices. Each individual codeword, on the other hand, is deter-
POT = (I+id)” (I —iA) [<I +id) (T - ZA>] mined by our choice of the scalars, as, . . . , &g whose values
= (I +iA)~ (I —iA)(I +iA) (I —iA)~! are in the se#4,. (The subscript#” represents the cardinality of
=1. the set). Since each of tiigreal coefficients may take anpos-

o ' _ o sible values and the code occupieshannel uses, the transmis-
The second equation is true becalisei A, I +i4, (I —i4)™, ~sjon rate isk = (Q/T)log, r. We defer the discussion of how
and(7 +iA)~" all commute. Similarly®*® = I can also be to design thed,’s and how to choosé and the set4, later in

proved. Therefore, similar to the matrix eXponential, the CalebﬂS section and concentrate on how to deca@&)‘z7 CaQ
transform maps Hermitian matrices to unitary matrices. In ags the receiver first.

dition, from (7), it can be proven easily that

. 1 C. Decoding of Cayley Codes
tA=(T+®) (I - ) o ] ] )

Similar to the differential Cayley codes, our Cayley unitary
provided that7+®)~! exists. This shows that the Cayley transspace-time codes also have the good property of linear de-
form and its inverse transform coincide. Thus, the Cayley transading, which means that the receiver can be made to form a

form is one-to-one. It is not an onto map because those unitaystem of linear equations in the real scalaisas, .. ., ag.
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First, it is useful to see what our codes and their ML decodirghould have a more handy structure. Fortunately, observe that

look like. the degrees of freedom infax 7" Hermitian matrix isI"2, but
We partition thel’ x 7 matrix A as ill ,212 ,whered,; the degrees of freedom in7ax M unitary matrixS are only
21 £122 2TM — M? = T? — (T — M)?. There argT — M)? more

is anM x M matrix, andA,» is a(T' — M) x (T'— M) malrix.  jeqrees of freedom id than we need. Therefore, let us exploit

For A being Hermitian,A;; and A;> must both be Hermitian, .o |ndeed. if we let
and Ay = A%, ' '
Observe that (I +iAy) PA, =B (12)
_ AN —
©=(I+14)" (I —i4) for somefixed M x (T — M) matrix B by which2M (T — M)
=T +iA)~ (2] — (I +iA)) degrees of freedom are lgstye will therefore have
=2(I+iA)™' —1.
Ajg = (I +iAy1)B (13)

Using the above, some algebra shows the equation shown
at bottom of the page, wherd, = I + idsy + A},(I + and

iA11)~t A1, which is the Schur complement éf+ iA;; in
I+ A. Ay =1+ B*B —iB*A11B +iAss. (14)

Therefore, our transmitted signal has the following structure: .
Some algebra shows that the above decoding formula (11) re-

g — [2 [I—(I4iA11) Y AAy T AL (I +i410) 7L — ]} duces to
- _ZiAz_lATz(I + ’L'Au)_1
—2i(I +iA11) " A AL
2N - T }

uin = arg }mfi X5 — X;B"B

1 _
andS+ = [ (10) —2iX;B+iX3B*A1 B — iX; Ag| % (19)

In fact, it can be algebraically verified that bashand S+ are Which is now quadratic in the entries of. Fast decoding
unitary. methods such as sphere decoding and nulling and cancelling
By partitioning the received signal matri into anM x N can be used in polynomial time as in BLAST [1].
block X; and a(T — M) x N block X, asX = [X!, X{]*, the We call (15) the “linearized” decoder because the system of
second form of the ML decoder in (4) reduces to equations obtained in solving for the unconstraingslis linear.
For a wide range of rates and SNR, (15) can be solved exactly in
arg min || [_QiXT(IJr iAn) YA+ X352 - Ag)] A2—1H; roughlyO(Q?) gompqtations using sphere decoding [19], [ZQ].
{aq} Furthermore, simulation results show that the penalty for using
] (15) is small, especially when weighed against the complexity of
The reason for choosing the second form of the ML, as opposggh ot ML. To facilitate the presentation of these decoding algo-
to the first one, is that we prefer to minimize, rather than ma¥nms, we write down the equivalent channel model in matrices
imize, the Frobe_mus.norm. In fact, we will pre'_sentlly see th% the following section.
a simple apprOX|mat|on leads us to a qanratlc m|n|m|zat!on 1) Equivalent Model: From (12),41, = A%, is fully deter-
problem, w_h|ch can be solved c_onvenlently via sphere decc_)dn?,gined byAi.. Therefore, the degrees of freedomsdirare all
As mentioned, the decoder is not quadratic in the entries gf matricesd; andA,». The encoding formula (9) of can

A, which indicates that it is not quadratic in thgs since the ;5 he modified to the following encoding formulas4f, and
matrix A is linear in then,s. Therefore, the system equation aph :

the receiver is not linear. The formula looks intractable because

there are matrix inverses as well as the Schur compledent Q Q
If we adopt the approach of [16] by ignoring the covariance of A1 = Z agA11,q and Asp = Z agA22 4 (16)
the additive noise term\; *, we obtain q=1 q=1

o . . P . 1 2 where @ is the number of possibled;; ,s and Ay, ¢S,
arg ?;1;]{ ||2X2 — X530; = 20X7(I +iAp) A12||F (11) a1,as,...aq are real scalars chosen from the sdf,
All,l: A11,2, - 7A11,Q1 andAQQ,l, A22’27 - 7A22’Q are fixed
which, however, is still not quadratic in the entrieshofThere- g .

f to si lifv the f | traints should be i With these conditions, the number of degrees of freedom iz 772 —
ore, to simplify the formula, more constraints should be iMyry 4 o372 which is greater tha@T M — A2, the number of degrees of

posed on the Hermitian matrix. This means that out matrix freedom in an arbitrarf x M unitary matrix, wheril” > 3.

P — 2 [I — (I—|— ’L.A11>_1A12A271Ax{2] (I+ iAll)_l -1 —2L(I—|— iAll)_lAlgAgl
T 2iA A (T +iA) ! 2A — T
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M x M and(T — M) x (T — M) complex Hermitian matrices. wherelV is the noise matrixx appears to pass through an equiv-
The matrixA is constructed as the following: alent channek that is known to the receiver because itis a func-
tion of A11,1,A11,2,...,411,0, A1, A22.2,..., A2 ¢, X1,

A= An I+ 'iAn)B} and X, and is corrupted by additive noigeThe receiver can
| B*(I —iAn) Az simply get the equivalent channel from (20).
[ Q Q Therefore, we have a simple linear system of equations that
> aghig <I+’i > anqu) B may be decoded using known techniques such as successive
= o=t =t nulling and cancelling, its efficient square-root implementation,
B* <I i f: agA1r q) f: g Az g or sphere decoding. Efficient implementations of nulling and
a=1 ’ a=1 ’ cancelling generally requir®(Q?*) computations. Sphere de-
Q ) coding can be regarded as a generalization of nulling and can-
= ZO“I [ .Ailﬂ "AquB} + [ 0* B} ] celling, where at each step, rather than making a hard deci-
a=1 —iBT A1, Ang BT 0 sion on the corresponding,s, one considers all the,s that

_ _ _ lie within a sphere of certain radius. Sphere decoding has the
Therefore, the linearized ML decoder (15) can be written as important advantage over nulling and cancelling in that it com-
putes theexactsolution. Its worst-case behavior is exponential

arg ?glfi | X3 — X3B"B —2iX{B in @, but its average behavior is comparable to nulling and can-
! 9 celling. When the number of transmit antennas and the rate are
. @ . . @ . small, ML decoding is possible. However, exact ML decoding
+e Z aqXy B A1, gB —i Z aq Xy Azg (17) generally requires a search over all possibje. . ., ag, which
=1 =1 F may be impractical for largé’ and R. Fortunately, the perfor-
By defining mance penalty for the linearized maximum likelihood (15) is
small, especially weighed against the complexity of exact ML.
C=X}—-X;B*B—2iX'B ﬁ) Numt:gr Iof Indgpen(:]ent thuatioantuIIfing anq caE-
I . celling explicitly requires that the number of equations be at
Jo= —iX3 BT A, B +iX5 40, (18) eastas large as the number of unknowns. Sphere decoding does
for g = 1,2,....0 and decomposing the complex matricgs not have this hard constraint, but it benefits from more equations

[%ecause the computational complexity grows exponentially
in the difference between the number of unknowns and the
number of independent equations. To keep the complexity of

andJ, into their real and imaginary parts, the decoding formu
(17) can be further rewritten as

A 2 the sphere decoding algorithm polynomial, it is important that
] Cr hr - Jor o the number of linear equations resulting from (15) be at least as
dEsller | Tl o Jour ' large as the number of unknowns. Equation (21) suggests that

aglr—wm ||| g there are2N(T' — M) real equations and) real unknowns.

) ) Hence, we may impose the constraint
whereCg, Ct are the real and imaginary parts of the matrix

andJ; r, J; ; are the real and imaginary parts of the matrices Q < 2N(T — M).
J;. Denoting byCr ;, Cr ;, Ji r,j, andJ; r ; thejth columns of
Cr,Cr, Jig,and/; rforj =1,2,....(T—M)andwritingthe This argument assumes that the mafiihas full column rank.
matrices in the above formula column by column, the formulghere is, at first glance, no reason to assume otherwise, but it
can be further simplified to turns out to be false. Due to the Hermitian constraints, not all
] ) the2M (T — M) equations are independent. A careful analysis
arg ?;ﬂ IR — Hallr (19) yields the following result.
Theorem 2 (Rank dff): The matrix given in (20) generally
where R is the 2N(T' — M)-dimensional column has rank
vector [Ck 1,0t 1, Crao_a:Crr_yl)', and H is the _ ,
2N(T — M) x Q) matrix ' rankH) — {HHH (2N(T-M)—N?,Q), ifT-M2>N
min ((T—M)Q,Q)7 if T—M < N.
J1,r1 Jo.r1 e Jo.r1 (22)

Jira Jora Jora Proof: First,assumethgt—M > N.TherankofH isthe
i (20) dimension of the range spaceoin the equationt = Ha asa
: . . varies. Equivalently, the rank @{ is the dimension of the range
Jirr-m JorT-M -0 JQRT-M space of theV x (7' — M) complex matrixC' in the equation
Jipr-m Jorr-m o Jour-m C = iX}(Ay — B*A1,B) whenAy; and A, vary. Because
A1, and A,s are not arbitrary matrices, the range spacé&'of

f— .. t i
anda = o, - -, ag]" is the vector of unknowns. We can get.o ¢ have all the(T — M) N dimensions as it appears. Now
the equivalent channel model

2In general, the covariance of the noise is dependent on the transmitted signal.
R=Ha+W (21) However, inignoringA; " in (11), we have ignored this signal dependence.
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let us study the number of constraints added on the range sp@ce Cayley unitary space-time code and its unitary complement
of C asA;; andAs, can only be Hermitian matrices. Since can be written as

[C(iX2)]" = — iX}(Ass — B* A1y B)(—i) X g=|T —iB T\, and
o ] . 0 I ||-2ia,'B
:'LX2 (A22 — B AllB)('LXQ) 2LBA 1
. 1 _ -
:C(ZXQ) S |:2A _ IT—]\[:| (24)

which shows that th&/ x N matrix C(iX>) is Hermitian. This where

enforcesN? linear constraints on the entries 6f Therefore, Q o

only at mos(T — M)N — N? entries of all the(T — M)N — *B_ * i

entries are free. Sinc¥ is 2(T' — M)N x @, the rank ofH is Bo= I B0~ Z B A Bt LZ gz (29)
at mostmin(2(T — M)N — N2,Q).

Now, assume thaf' — M < N. We know that theV x N andU; = (I +iA;;)~' (I —iAq;) isanM x M unitary matrix
matrix C(iX,) is Hermitian, but it has rank’ — M < N now Since itis the Cayley transform of the Hermitian matfix .
instead of full rank. Therefore, the entries of the lower right The code is completely determined by the matrices
(N — (T — M)) x (N — (T — M)) Hermitian sub-matrix of A11,1,A11,2,...,A11,¢ and Ass 1, Azz,..., Az g, Which
C(ZXQ) are unique|y determined by its other entries. Thereforéan be thOUght of as Hermitian basis matrices. Each individual
the number of constraints yielded by the equati6lfsX,) = codeword, on the other hand, is determined by our choice of
(C(iX3))*iSN2—(N—(T'—M))? = 2N(T'—=M)—(T'—M)2. the scalarsyi, as, . .., ag chosen from the sed,. Since there
Thus, there are at mo8iV (T — M) — (2N(T — M) — (T — areQ basis matrices ford,; and As», and the code occupids
M)?) = (T — M)? degrees of freedom i6¥. The rank ofH is  channel uses, the transmission rate is
at mostmin((7' — M)?, Q). 0

We have essentially proved an upper bound on the rank. Our R = T log, 7. (26)
argument so far has not relied on any specific setsAfgrand
Aszs. When A;; = 0, we are reduced to studying{; Ass,
which is the same setting as that of differential USTM [16]. |
[16, Th. 1], it is argued that for a generic choice of the bas
matrices Aaz 1, - - -, Azz, @, the rank of K attains the upper U, H. If we left multiply X, S, andV by [IM —iB } =

q=1 q=1

Since the channel matriéf is unknown and, if left multiplied
rl:l)y anM x M unitary matrix its distribution remains unchanged,
jie can combind/; with the channel matrix{ to getH’' =

bound. Therefore the same holds here, Anattains the upper ) Ir-m
bound. O v B, get X', 8’ and V', the system (1) can be
Theorem 2 shows that even though there BNT — M) 0  Ir—m
equations in (21), not all of them are independent. To have a¥vr|tten as
least as many equations as unknowns, the following constraint , T Iy , ,
is needed: A= VM [ 2A; 1B*}H +V.
Q< {QN(T - M)-N? ifT-M>N We can see that this is very similar to the equations of the
= (T — M)?, ifT—M<N training-based schemes (6). The only difference is in the noises.
In (6), entries of the noise are independent white Gaussian
or equivalently noise with zero mean and unit variance. Here, the entries of

V' are no longer independent with unit variance, although they
still have zero mean. The dependence of the noises is beneficial
to the performance since more information can be obtained.
The following theorem about the structure $t is needed
later in the optimization of the basis matrices.
With the choice (12) or, equivalently, (13), the first block of Theorem 3 (Difference of Unitary Complements of the Trans-
the transmitted matri>S in (10) can be simplified as the fol- mitted Signal): The difference of the unitary complemerst$

Q <min(T — M,N)max (2(T — M) — N, T — M). (23)

D. Geometric Property of the Cayley Space-Time Codes

lowing: and S+ of the transmitted signals and.S can be written as
. -1 —1 4% . -1 ~ — ~ ~
2[I=(I+iAn) ™ Ay M AR ] (T4idn) ™ 1 St gt = 2[ ﬂA;l(AQ - M)Ay (@7)
= [21-2BA;'B*(I—iAy;)—(I+iA1)] (T+iAs1) "
= [(I-iAp) 2BA;1B*(I—iA11)] (I+iA;)~! whereA, andA, are the corresponding Schur complements.
= [[=2BA;'B*| (I—iAy)(I+iAn) " Proof: See Appendix A. .
Another way to look at Theorem 3 is to note that

The second block of5 equals—2iA; ' B*(I — iA;)(I + 0 iB
. . . . 1 _
iA11)7L. Since(I —iAq;) and(I +iA;;)~ commute S+ = LI} + 2{ }A (28)

Without the unitary constraint, this is an affine space since all

g [I- 2BA;'B*
- the data is encoded i&gl. Therefore, in general, the space of

I —iAp)(I+iAgp)™!
2in; B> }( tAn)(I +iAn)
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S+ is the intersection of the linear affine space in (28) and thie a scalar, it is obvious th@ = 1. Without loss of generality,
Stiefel manifoldS+*S+ = I. We can see from (27) or (28) thatsetting4; = 1, we get

the dimension of the range space®f — S’+ (equivalently,

the dimension of the affine space)fis— M. It is interesting to v
contrast this with the training case, which, from (6), gives

1—120q and 11—
= s x1 — —1 .
1+ iaq ! 1+v

. To have a code with ratB = (Q/T) log, r with T = M =1,
oL _gL_ L [7 (52 - 532) (29) A should have = 2% points. Standard DPSK puts these points
V2 0 ) uniformly around the unit circle at angular intervals 2f /r

. . ) . with the first point atr/r. For a point of anglé on the unit
Note now that the dimension of the affine spaceiia (M, T — circle, the corresponding value for is
M), which is no more thafi” — M whenT" > 2M. Therefore, '
the affine space o~ for the Cayley codes has a higher dimen- l-v tan <6

—> . (31)

sion than that of the training-based schemes when 2M . ar=T +v 2
E. Design of Unitary Space-Time Codes For example, forr = 2, we have the set of points
on unit circle V. = {e"/2,e7"/2}, From (31), the set

Although we have introduced the Cayley unitary space-tinbg values foray is Ay

= {-1,1}. F = 4 =
code structure in (24), we have not yet specifigdnor have eé_ {=1,1}. Forr  As
i

2.4142,-0.4142,0.4142,2.4142}. It can be seen that the
nts rapidly spread themselves out :asncreases, which
reflects the heavy tail of the Cauchy distribution.
We denoteA,. to be the image of (31) applied to the set
{7 /r,3w[r,5n[r,...,(2r — )7 /r}. Whenr — oo, the frac-
Sion of points in the set less than some vatuis given by the
umulative Cauchy distribution. Therefore, the gkt can be
e'&arded as antpoint discretization of a scalar Cauchy random
variable.
Q = min(T — M, N)max (2(T — M) — N,T — M). (30) For the systems with mpltiple transm.it antennas and higher
coherence intervals, no direct method is shown about how to
We are left with how to design the discrete se¢hooseA. In that case, we also choose our séto be the
A, and how to choose{A;;,A119,... 4110} and set given above. Thus, the;s are chosen as discretized scalar
{Aga1, Asna,... Ass g} Cauchy random variables for afiyand M, but to get rateR,
2) Design ofA4,: As mentioned in the introduction, at highfrom (26), we need to have
SNR, to achieve capacity in the sense of maximizing mutual O _ oRT 5
information betweeX andsS, ® = (I +iA4) (I —iA) should =27 (32)
assemble samples from an i;otropic random distri_bution. Since]-O complete the code construction, it is crucial that
our data quulate thﬁ.mafmx (A11 anq Aos), equwale.ntly, {A111,A112,... Al1o} and {Ass1, Asss,... Asa g} be
we n_eed to find the distribution af that yields an isotropically chosen appropriately, and we present a criterion in the next
distributed®. section.
ol 1 0 e ey L e s opaly A3 Desgn of s Ao Ano, A s
... Ay o: If the rates being considered are reasonably

Cauchy distribution small, the diversity product criterior&aﬁ<|det(q>l — @) is

we explained how to design the Hermitian basis matrix s
{A111, 4112, .., A1} and {Ag 1, As02,...,A2a o} OF
choose the discrete set, from which thea,s are drawn. We
now discuss these issues.

sible, we should make the number of degrees of freefoas
large as possible. Therefore, as a general practice, we fin
useful to take?) as its upper limit in (23). That is

QTQ—T(T 1)1 1 tractable. At high rates, however, it is not practical to pursue
p(4) = T(T+1) det(I + A%)T the full diversity criterion. There are two reasons for this:
T First, the criterion becomes intractable because of the number
which is the matrix generalization of the familiar scalar Cauchyf matrices involved, and second, the performance of the

distribution constellation may not be governed so much by its worst-case
1 pairwise| det(®; — ®;/)| but, rather, by how well the matrices
p(a) = m- are distributed throughout the space of unitary matrices.

Similar to the differential Cayley code design in
For the 1-D case, an isotropic-distributed scalean be written [16], for given A, and the sets of basis matrices
asv = ¢, wheref is uniform over [02r). Thereforea =  {Ay1 1, A11o,... A1} and  {Ag1, Aso,... Ao},
—i((1 —¢"?)/(1 + ¢"?)) = —tan(f/2) is Cauchy. When there we define a distance criterion for the resulting constellation of
is only one transmit antenn@d/ = 1) and the coherence in- matricesV to be
terval is one channel use onl§’ = 1), the transmitted signals
are scalars. There is no need to partition the matrix here- V)
fore, (9) is used instead of (16). We want our code constellation
A= Equl a4, to resemble samples from a Cauchy randomvheres is given by (24) and (25), anfl’ is given by the same
matrix distribution. Since there is only one degree of freedofarmulas, except that the,s in (25) are replaced by;s. The

Elogdet(S+ — §'1)*(s+ - 5'+)  (33)

TT_-M
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expectation is over all possible;s anda;s chosen uniformly and~, are given in Appendix C, and gradient-ascent method is

from A, such that(a, ..., aq) # (af,...,ay). Remember used. Since the optimization &fis too complicated to be done
that S+ denotes thd” x (7' — M) unitary complement matrix by the gradient-ascent method, and simulation shows that the
of theT x M matrix S. Frobenius norm of3, and B itself, do not have significant ef-

Let us first look at the difference between this criterion witlfiects on the performance as long/ass full rank, we choosés
that in [16]. Here, we us&+ and S+ instead ofS and S’  to bevys[Ins, 0psx(r—21r)] With 3 close to 1. This has shown
themselves because the unitary complement instead of the traagperform well.
mitted signal itself is used in the linearized ML decoding. This 4) Design SummaryWe now summarize the design method
criterion cannot be directly related to the diversity product der a Cayley unitary space-time code wit transmit antennas
in the case of [16], but still, from the structure, it is a meaand N receive antennas and target rate
sure of the expected “distance” between the matrig&ésand 1) Choos&) < min(7' — M, N)max(2(1' — M) - N, T —

S+, Thus, maximizingé(V) should be connected with low- M). Although this inequality is a soft limit for sphere
ering average pairwise error probability. Hopefully, optimizing decoding, we choose oW that obeys the inequality to
the expected “distance” between the unitary complemgrts keep the decoding complexity polynomial.
and S’+ instead of that between the unitary signélsand S’ 2) Chooser that satisfies'® = 287, We always choose
themselves will obtain a better performance. In addition, since  to be a power of 2 to simplify the bit allocation and use a
our constraints (12) are imposed to simplify, which turns out standard Gray-code assignment of bits to the symbols of
to simplify S+ as well, the calculation of our criterion is much the setA,..
easier than the calculation of the one used in [16], which max- 3) Let .4, be the r-point discretization of the scalar
imizes the expected “distance” between the unitary matdces Cauchy distribution obtained as the image of
and®’. We therefore propose the optimization problem to be the function « = —tan(f/2) applied to the set
{m/r,3n[r,5n/r,...,(2r — V)7t /r}.
arg{Au.glj_f;qLB §V). (34) 4) Choose{A;;,} and {As ,} that solves the optimiza-
tion problem (35). A gradient-ascent method can be used.
By (27), we can rewrite the optimization as a function/f, The computation of the gradients of the criterion in (35)
A and get the simplified formula is presented in Appendix B. At the end of each itera-
. , tion, gradient-ascent is used to optimize the Frobenius
fan in{aio ) BE logdet [B* (A1; — A}y) B norms of the basis matrice$i1 1, A11.2,- -+, A11,¢ and
ande Sl 9 A22,17 A22,27 - 7A22,Q. The Computation of the gradi-
— (Agy — A5,)]" — E logdet A — E logdet A7 (35) ents is given in Appendix C. Note first that the solution

to (35) is highly nonunique. Another solution can be ob-

where tained by simply reordering thé,; ,s andA,» ,s. In ad-
Ay =T+ B*B —iB*A; 1B + iAo dition, since the criterion function is neither linear nor
{ AL =1+ B*B —iB*A,,B +iA), and convex in the design variables1 , and As» 4, there is
0 0 no guarantee of obtaining a global maximum. However,
A =Y @A g, Ao = Y agAaay since the code design is performed off-line and only once,
qzl flgl we can use more sophisticated optimization techniques
to get a better solution. Simulation results show that the
Al = ol Aq g, Ay = ol A ) X
" qz::l g 22 qzz:l a2 codes obtained by this method have good performance.

_ _ _ , The number of receive antennasdoes not appear ex-
Whenr is large, the discrete sets from whielys, a;s are plicitly in the criterion (35), but it depends oW through
chosen from(.A,) can be replaced with independent scalar  the choice of). Hence, the optimal codes, for a givah,
Cauchy distributions, and by noticing that the sum of two  5re different for differentV.

independent Cauchy random variables is scaled-Cauchy, our

criterion can be simplified to
[ll. SIMULATION RESULTS

. * 2 2
{Anﬁfi,q},BE log det(B"A11B — A)” — 2E logdet A;. In this section, we give examples of Cayley unitary space-

(36) time codes and the simulated performance of the codes for var-
Choosing the Frobenius Norm of the Basis Matric8he ious number of antennas and rates. The fading coefficient from
entries of thed; ;s andA,, 4s in (35) are unconstrained othereach transmit antenna to each receive antenna is modeled in-
than that they must be Hermitian matrices. However, we founiépendently as a complex Gaussian variable with zero mean
that it is beneficial to constrain the Frobenius norm of all thend unit variance and is kept constant forchannel uses. At
matrices in{ A1 ,} to be the same, which we denotefyyand each time, a zero-mean, unit-variance complex Gaussian noise
similarly for the matriceq A, .}, whose Frobenius norm weis added to each receive antenna. Two error events of interest are
denote byy,. In fact, in our experience, it is very importantdemonstrated including block errors, which correspond to er-
for both the criterion function (35) and the ultimate constellaors in decoding th&' x M matricesSy, .. ., Sr,, and bit errors,

tion performance, that the correct Frobenius norms of the basiSich correspond to errors in decoding, ..., «g. The bits

’

matrices be chosen. The gradients for the Frobenius ngrmsare allocated to eacly, by a Gray code, and therefore, a block
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o T=4M=2N=1R=15 ] , tems is to obtain the channel information via training. It is
important and meaningful to compare our code with that of
the training codes. Training-based schemes and the optimal
way to do training are discussed in Section I-B. In most of
the following simulations, different space-time codes are used
in the data transmission phase for different system settings.
Sphere decoding is used in decoding all the Cayley codes, and
the decoding of the training-based codes is always ML, but
the algorithm varies according to the codes used. The details
of the codes used (the basis matrices, etc.) can be obtained by
contacting the authors.

Example ofl’ = 4, M = 2, and N = 2: The first example
is for the case of two transmit and two receive antennas with
coherence interval' = 4. For the training-based schemes, half
of the coherence interval is used for training. For the data trans-
e 5 5 % &  m = = o Missionphase, we consider two different space-time codes. The
SNR first one is the well-known orthogonal design in which the trans-

mitted data matrix has the following structure:

10 T T T

ber/bler

- for ber using ML decoding

107 E . == for bler using:-ML.decading

=0 for ber-using linearized ML
=+ for bler using linearized ML

Fig.1. T=4,M =2,N =1,andR = 1.5: ber and bler of the linearized
ML given by (15), compared with the true ML. a b
Sd N |: _E a :|

a
error may correspond to only a few bit errors. We first give an e%.-y choosinga andb from the signal set of 16-QAM equally

ample to compare the performance of the linearized ML, whi . . i
is given by (15), with that of the true ML, and then, perfor_|ker, the rate of the training-based code is 2 bits per channel

mance comparisons of our codes with training-based metho %e - The same as the Cayley codes, b!ts are allocated to each
are given entry by the Gray code. The second one is the LD code proposed

in [5]:
A. Linearized ML versus ML 4

. 1 1
In communications and code designs, the decoding com- ¢ = > (@aAq + By By), aq,fy € {_ﬁ’ ﬁ}
plexity is an important issue. In our problem, when the =1
transmission rate is high, for exampl®, = 3 and7 = 6, where

M = 3, for one coherence interval, the true ML decoding 171 0 1 To 1

involves a search ov@®” = 218 = 262144 6 x 3 matrices, A; =B; = — [0 1} ., Ay =DBy=— [1 0]

which is not practical. This is why we linearize the ML V2 V2

decoding to use the sphere decoding algorithm. A3 = B3 = 1 [1 0 ] . Ay=B,= 1 { 0 1} )
However, we need to know the penalty for using (15) instead V210 1 V2 [-1 0

of the true ML. Here, an example is given for the case of & tWerearly, the rate of the training-based LD code is also 2. For the
transmit, one-receive antenna system with coherence mtervatqwey code, from (30), we choog = 4. To attain rate 2,
four channel uses operating at rdte= 1.5 with Q@ = 3 and ;. _ 'from (32). The Cayley code was obtained by finding a
r = 2. The number of signal matrices 26" = 64 for which local maximum to (36).
the true ML is feasible. The resulting bit error rate and block The performance curves are shown in Fig. 2. The dashed
error_rate curves for.thellinearized ML are thelline with circlegne/dashed line with plus signs indicates the ber/bler of the
and line with stars in Fig. 1. The resulting bit error rate an@ayjey code at rate 2. The solid line/solid line indicates the
block error rate curves for the the true ML are the solid linge/bler of the training-based orthogonal design at rate 2, and
and the dashed line in the figure. We can see from Fig. 1 thgk gash-dotted line/dash-dotted line with plus signs shows the
the performance loss for the linearized ML decoding is almogg/pler of the training-based LD code at rate 2. We can see
neglectable, but the computational complexity is saved greajfym the figure that the Cayley code underperforms the optimal
by using the linearized ML decoding, which is implemented bﬁfaining—based codes by 3—-4 dB. However, our results are pre-
sphere decoder. liminary, and it is conceivable that better performance may be
) , . obtained by further optimization of (35) or (36).
B. Cayley Unitary Space-Time Codes versus Training-Based Example of = 5, M = 2, andN = 1: For the training-
Codes based scheme of this setting, two channel uses of each coher-
Inthis section, a few examples of the Cayley codes for varioeace interval are allocated to training. Therefore, in the data
multiple antenna communication systems are given, and th&ansmission phase, bits are encoded intoa 3 data matrix
performance compared with that of the training-based codesSig Since we are not aware of anyx32 space-time code, we
also showed. employ an uncoded transmission scheme, where each element
As discussed in the introduction, a commonly used schemksS, is chosen independently from a BPSK constellation, re-
for unknown channel multiple antenna communication sysulting in rate 6/5. This allows us to compare the Cayley codes
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T=4 M=2 N=2 R=2 T=7 M=3 N=1

3 5
s s
3 3
.~ for bler of trammg based orthogonal de5|gn . NG 102 . ; v N\
- for ber of Cayle code
y ! : —— for-ber of trainmg ‘with LD code at R=8/7 : '
——+for bler of- training-with LD code at R=8/7 >
= for ber of Cayley code at R=1"
=+ for bler of Cayley code at'R=1
L s s 8 i 12 14 T s 20 107 : ; ! : : ‘ : : :
0 2 4 6 8 10 12 14 16 18 20
SNR SNR

Fig.2. T =4,M =2,N =2,andR = 2: ber and bler of the Cayley code Fig. 4. T = 5, M = 2,andN = 1: ber and bler of the Cayley codes
compared with the training-based orthogonal design and the training-basedddinpared with the uncoded training-based scheme.
code.

T=5 M=2 N=1 with plus signs shows the ber/bler of the Cayley code at rate
R e ! i R 2, and the dashed line/dashed line with plus signs shows the
: ber/bler of the training-based scheme, which has a rate of
6/5. Exhaustive search is used in decoding the training-based
1 scheme, and sphere decoding is applied to decode the Cayley

Trel el codes,

; e ";.," ' We can see that our Cayley code at rate 1 has lower ber and

10 S i“*,g :_ bler than the training-based scheme at rate 6/5 at any SNR. In
G .\" addition, even at a rate which is 4/5 higher (2 compared with

ber/bler

< ‘v 1 6/5), the performance of the Cayley code is comparable with

o “s=1x4  that of the training-based scheme when the SNR is as high as
~- for ber.of training With R=6/5 35.
==+ for bler of training with R=6/5 Example off’ =7, M = 3,andN = 1: For this system set-
10k ...~ for.ber of Cayley codes with. R=1 B . .
o blas ot Cov chdob wih FLA ting, t_hree channel uses of eaf:h _coherence interval are allocated
~. for ber of Cayley. codes with R=2 to training. In the data transmission phase of the training-based
| —+forblerof Cayley codes with R=2 scheme, we use the optimized LD code given in [5], where we
40 s 20 3 2 s have the equation shown at bottom of the page. By setting
SNR ; in BPSK, we obtain an LD code at rate 8/7. For the Cayley
Fig. 3. T = 5, M = 2,andN = 1: ber and bler of the Cayley codes COde, we choos@ = 7 andr = 2, and the rate of the code is 1.
compared with the uncoded training-based scheme. The performance curves are shown in Fig. 4. The solid

line/solid line with plus signs indicates the ber/bler of the
with the the uncoded training-based scheme. Two Cayley codgasyley code at rate 1, and the dashed line/dashed line with plus
are analyzed here: the Cayley code at rate 1 @it 5, = 2 signs shows the ber/bler of the training-based LD code, which
and the Cayley code at rate 2 with= 5, r = 4. has a rate of 8/7. Sphere decoding is applied in the decoding of
The performance curves are shown in Fig. 3. The sollbth codes. From Fig. 4, we can see that the performance of the
line/solid line with plus signs indicates the ber/bler of th€ayley code is close to the performance of the training-based
Cayley code at rate 1, the dash-dotted line/dash-dotted lin® code. Therefore, at a rate 1/7 lower, the Cayley code is

a1ty i [ B gy eages [ By o] 0
5 - %—z[%Jr% an — i —extas 4 %—/32;”3}
0 M’T;‘“—E—L[% 32_33] al—ag—i—z[ﬂz\'}%ﬁS—[M}
a2=04 g [ﬂ—2 + ﬂ?;ﬂﬂ —az +ifs ates 4 [[’—2 — ﬂ;[’ﬂ
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comparable with the training-based LD code. Again, our resulitierefore
are preliminary, and further optimization of (35) or (36) may

yield improved performance. st_gt
C[ATY 0 ] [[RiAa(T+iAs) T A
IV. CONCLUSION 1o A 21— Ay 2
Cayley unitary space-time codes are developed in this paper. _ {A1 0 } { —2B D Al
The codes require channel knowledge at neither the transmitter 0 Az |2[-A; 2

nor the receiver, are simple to encode and decode, and apply [A7' 0 } |:—2iA12(I+iA22)1A2 + 21‘A13}A1
= 1 A A A 2

to any combination of transmit and receive antennas. They are — L0 A, 205 — Ao Ao —2A5+As Ay
designed with a probabilistic criterion: They maximize the ex- (AL 0

pected log-determinant of the difference between matrix pairs. = 6 Azl}

The Cayley transform is used to construct the codes because it - _ . ) _ ) ) Y

maps the nonlinear Stiefel manifold of unitary matrices to the ~ x [2'“412([‘1‘“122) FAg=2i A1z (T +iAss) 1A2} AF?
linear space of skew-Hermitian matrices. The transmitted datais 2(R2—As) .

broken into substreams , .. . , oo and then linearly encodedin ~ _ [-2iAT Aia(I+idss) ™t 0 } [42_A2} At

the Cayley transform domain. We showed that by constraining | 0 2071 |As—Ag] 72

Ajz = (I+iA11)B andignoring the data dependence of thead-  [-2iBA;* Ay AVASL

ditive noise,a, . .., a appear linearly at the receiver. There-  — | 2A7? }( 2=A2)A,

fore, linear decoding algorithms such as sphere decoding and _iB R )

nulling and cancelling can be used in polynomial time. Our code = 2 [ 7 ] AT (A —A)AF O

has a similar structure as training-based schemes after transfor-
mations.

The recipe for designing Cayley unitary space-time codes
for any combination of transmit/receive antennas and coher-
ence intervals is given, and in addition, simulation examples are
shown to compare our Cayley codes with optimized training- In the simulation presented in this paper, the maximization of
based space-time codes and uncoded training-based schemd8¢oflesign criterion function (35) is performed using a simple
different system settings. Our simulation results are prelimina@jadient-ascent method. Inthis section, we compute the gradient
but indicate that the Cayley codes generated with this recipe(35) that this method requires.
slightly underperform optimized training-based schemes usingwe are interested in the gradient with respect to the matrices
orthogonal designs and/or LD codes. However, they are cleaflyL.1:---» A11,¢ @ndAss 1, ..., Ag ¢ of the design function
superior to uncoded training-based space-time schemes. Furf@&). Which is equivalent to
optimization of the Cayley code basis matrices [in (35) or (36)] i ,
is necessary for a complete comparison of the performance wjth X E logdet [B* (A1 — A1) B
training-based schemes. ’ ’

APPENDIX B
GRADIENT OF CRITERION (35)

— (Agy — Ahy)]? — 2E logdet A2 (B.1)

APPENDIX A

PROOF OFTHEOREM 3 To compute the gradient of a real functigfi4,) with respect

) _ to the entries of the Hermitian matrix,, we use the formulas
Theorem 3 (Difference of Unitary Complements of the Trans-

mitted Signal): The difference of the unitary complemerst$ [Of(A,)] 1
andS+ of the transmitted signal$ and.S can be written as ] o T o [f (Ag+6 (ejer +erel)) = F(Ag)]
_BReAq_]_k §—0 6
. —i . . j#£k (B2
Sl—stz{ ;B}Agl(AQ—AQ)A; (OF(A)] 1 izk (B2
A 2| in s [F (Ag+is (eseh—enel)) —F(4,)]
whereA, andA, are the corresponding Schur complements. ~ 113k ik (B.3)
Proof: First, by simple algebra\;* Ao (1 +idy)~"' = O F(A) ) J '
(I + z’Au)—lAlgA;l can be proved, which is equivalent to F(4q) = min = [f (Aq-|-§eje§.)—f(Aq)] (B.4)
BAZY = AT A1o(I +iAg2) L. From (24) L 94q 1;; o008
gl _ —2iBAG" [ 2B A-l wheree; is the unit column vector of the same dimension of
Cleayt -1 [20-A 2 columns of4,, which has a one in thgth entry and zeros else-
where. That is, when we calculate the gradient with respect to
and Aq1,4, €; should has dimensiof/, and for the gradient with
gl _ —Zz‘Al‘lAlz(ll +iAgy)7t respect tody, 4, it is 7' — M instead.c; means the transpose
2A; -1 of €.

B [A_l 0 :| |:—2iA12(I+iA22)1:| First, note thatAn — Alll = Zqul Au,qaq, Whereaq =

1
0 Ayt 2I — Ay oy —ag, and similarly, Ay — A5, = Zqul Az 4a,. Therefore,
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to apply (B.2) to the first term of (B.1) with respectfa; 4, let

H = B*(A11 — A}1)B — (Aas — A,), and we compute

log det{ B*(A11 — A} 1)B —(Agz— A%,)
+B*(ejez+eke§)36aq]2
=log det{H”+[H B*(e;e}, +erel)B
+B*(eje), +ereh)BH] Saq+0(5%)1}
=logdet H?
+log det{I+ H ~*[H B*(e;e}, +ere’)B
+B*(ejef€+eke§)BH]5aq+o(62)I}
=log det H>+t{H *[HB*(¢ e}, +epc})B
+B*(eje), +erel)BHlbag}+0(6%)
=logdet H*+t{H ' B*(¢;e}, +exe’)B+ Hx
—ZB*(ejez+eke§)BH}6 ag}+o(6?)
=logdet H>+t{BH ' B*(e;je},+exc’)
+BH ' B*(eje), +erel)} dag}+0o(6%)
=logdet H*+@2{BH "B}, j+2{BH ™' B}; 1Jaq+0(5%)
=logdet H*+4Re{BH ' B*}; ra,+0(8?).

We use tlB = trBA, and the last equality follows because

BH~!B* is Hermitian. We may now apply (B.2) to obtain

dlog det [B* (A1y — Aly) B — (Ags — Aby)]?
8R6A11,q

3,k

=4E Re{BH 'B*}; a4, j# k.

The gradient with respect to the imaginary components of

Ai11,4 can be obtained in a similar way as the following:

dlogdet [B* (Ay; — A}y) B — (Agy — Aby)]°
BImAH,q

ik
=4AEIM{BH™'B*},ray, j#k

and the gradient with respect to the diagonal elements is

dlog det [B* (A1y — Aly) B — (Ags — Aby)]?
91,

7,3

=2E {BH™'B*}; ja,.

Similarly, we get the gradient with respecto, ,

[9log det [B* (A1 — A1) B — (Agy — Aby))? |
OReda , .
L 47,k
= —4EReH; jaq, j#k
dlogdet [B* (Ayy — AL,) B — (Agy — Aby)]?
_ dlmAgs , [P
= —4EImH; jag, j#k
dlogdet [B* (A1 — Ajy) B — (Ag — A/22)]2
dAss., )
L Y
=2E H; }a,.
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For the second term, by using the same method, the following
results are obtained:

[0 log det AZ]

| OReAq1,4 | ok =2E Re(D+ D"+ E+E")jreq, j#k
:%iﬁf%: y =2E (D+E)jj0q
:%jzig: ” =2EIm(F+F"+G+G")jroy, j#k
%;’%;ZA%_ N =2E (F+G); ja,

where

D =iBA;*(I +iAs)B*

E =iBA;*B*(I — iA;,)BB*
F =A7%As

G =iB*(I +iA11)BA;?

and all the expectations are over all possile. . ., «ag.

APPENDIX C
GRADIENT OF FROBENIUSNORMS OF THEBASIS SETS

Let~; be a multiplicative factor that we use to multiple every
A11,4, and lety, be a multiplicative factor that we use to mul-
tiple every Ay, ;. Thus,~7 and~; are the Frobenius norms of
matrices in{ A1 ,} and{As ,}. We solve for the optimai,
~v2 > 0 by maximizing the criterion function in (35)

&(71,72) = E logdet [y1 B* (A1 — A},) B
—Y2 (A22 — A/22>]2 — 2K log det A%

where
Q Q1
Ao =1+ B*B — Z’le* Z Oéqul,qB + Z’}/Q Z Oéqug,q.
q=1 q=1

As in the optimization ofd;; 4, A2 4, the gradient-ascent
method is used. To compute the gradient of a real function
f(z1,22) with respect tas; andz2, we use the formulas

Of (w1, 22)

o1
G = lm S [f 4 82) = flr, )]

= ling] % [f(z1,22 + 6) — f(z1,22)]
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and the results are

9(71,72)
om
= —2Btr{f " [2v1B*A;1BB*A;; B
+iB*(BB*A;; — A11BB*)B
—72(A22B* A1 B + A1 BAy»B*)]}
+Etr g7 (272B* (A1 — A},) BB* (A1 — A7) B
— 72 (A2 — A3y) B* (A1 — A}y) B
+ (A1 — AYy) B (Ag — Ayy) BY))]
9(71,72)
2

(12]

(23]

[14]

(15]
[16]

(17]

(18]

= —2Etr [f~' (27143, — i(B*BAy + Ay BB*)
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—71(A22B*A11B + A11BA2B"))]
+Etr[g7! (292435 — 71 (A2 — AYy) B*
X (An — Ay) B+ (A — Ay) B
X (A2 — Ajy) BY))]
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[21]

whereyg is the first term of(~1, 72), andf is the second term.

Simulation shows that good performance is obtained when
and-~» are not too far away from unity.
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