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Abstract - We investigate the problem of using
several storage nodes to store a data object, subject
to an aggregate storage budget or redundancy con­
straint. It is challenging to find the optimal allocation
that maximizes the probability of successful recovery
by the data collector because of the large space of pos­
sible symmetric and nonsymmetric allocations, and
the nonconvexity of the problem. For the special case
of probability-l recovery, we show that the optimal
allocation that minimizes the required budget is sym­
metric. We further explore several storage allocation
and access models, and determine the optimal sym­
metric allocation in the high-probability regime for a
case of interest. Based on our experimental investi­
gation, we make a general conjecture about a phase
transition on the optimal allocation.

I. INTRODUCTION

We consider the problem of using n storage nodes
and choosing the most reliable way of allocating storage
among them, subject to an aggregate storage budget or
redundancy constraint. A source has a dat a object of unit
size and is allowed to use any coding scheme to store Xl
amount of data in the first storage node, X2 in the second,
and so on, as illustrated in Fig. 1. The only constraint is
that the total amount of dat a stored over all the storage
nodes does not exceed some given storage budget T :

n2:: Xi ~ T .
i = l

At some time after the creat ion of this encoded storage,
a data collector accesses the data stored in a subset r of
the storage nodes and tries to recover the original data
object. The problem of finding a good storage allocation
(i.e. determining {Xi}?=l) and that of creat ing an actual
code that realizes this allocation decouple: if a good cod­
ing scheme is used, successful recovery is possible when
the amount of data accessed by the data collector is at
least the data object size:

lP'[successful recovery] = IP' [2:: Xi ~ 1] .
t Er
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Fig . 1: Example of a distributed storage allocat ion problem. The
source s has a data objec t of unit size which is to be st ored in a
distributed manner over n storage nodes, each storing Xi amount of
data . The data collecto r is a llowed to access only r st orage nodes;
t a and t b are two such realizations of the data collector.

This can be seen by formulating the distributed storage
problem as a network flow problem in which the source
wishes to multicast to the data collectors [1 ,2]; network
coding allows us to achieve a multicast rate equal to the
smallest max-flow among all the data collectors. The
storage of random linear combinations of data packets
over a sufficiently large field, for example, would allow
such recovery with high probability [3,4].

We are interested in determining the allocation de­
scribed by {Xi}?=l that maximizes the probability of suc­
cessful recovery subject to the storage budget constraint.
Note that in our setup, the communication links between
the nodes are able to support the amount of data on the
respective storage nodes; in other scenarios, the link ca­
pacities rather than the storage capacit ies might limit the
storage budget T .

The intended application dictates a fa ilure model
which indu ces a probability measure on the subsets of
storage nodes that can be accessed by a data collec­
tor. Prior work on distributed storage for sensor net­
works [5-8] assumes that a random subset of fixed cardi­
nality is selected and that all Xi are equal. In this paper,
we address only the allocation problem; it will be inter­
esting to const ruct sparse codes and efficient decoding
algorithms, such as those introduced in [5-8], that work
well under various allocations.

A related natural model is to assume that each stor­
age node is accessed by the data collector independently
with some constant probability p, which means that [r]
is a binomial random variable. This deterministic alloca­
tion with probabilistic access problem is an open problem
discussed by several people at DC Berkeley [9], and it
is known that the optimal allocation that maximizes the
probability of successful recovery can be quite compli-
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cated in general - for instance, the following counterex­
ample (originally from [9]) shows that symmetric alloca­
tions (Le. all nonzero Xi are equal) can be suboptimal:
given n = 5, P = 0.9, and T = 152, the nonsymmetric
allocation (~, ~, ~, ~, ~) yields a success probability of
0.99711, which is strictly greater than the corresponding
probabilities for the five symmetric allocations, of which
(~, ~, ~, ~,O) achieves the highest success probability of
0.9963. The problem appears nontrivial even if we restrict
our optimization over symmetric allocations.

Another variation of the model allows the data collec­
tor to access a random r-subset of storage nodes selected
uniformly from the collection of all possible r-subsets,
where r = [r] is a constant. For this case of deterministic
allocation with deterministic access, we have not found
any nonsymmetric allocation that outperforms the op­
timal symmetric allocation; we conjecture that for any
budget T, there always exists a symmetric allocation
that produces the optimal success probability. For ex­
ample, given n = 5, r = 2, and T = 152, the maximum
success probability of 0.7 can be attained by both the
nonsymmetric allocation (~, ~, ~, ~, ~) and the symmet­
ric allocation (~, ~, 0, 0, 0) . Again, the optimal alloca­
tion is not obvious even if we consider only symmetric
allocations: we observe numerically that for most choices
of (n, r, T), the optimal symmetric allocation either con­
centrates the budget over a minimal number of nodes,
or spreads it maximally; an example of an exception is
(n, r, T) = (15,3,4.6) for which the optimal number of
nodes to use, 9, is neither of the extremes. As discussed
later, we observe that this complication does not occur
for probabilistic allocations which seem to have a direct
phase transition from minimal to maximal spread.

Our Contribution: Our first result is that if the data
collector accesses a random r-subset of storage nodes, and
recovery must be successful with probability 1, i.e. all r­
subsets must allow successful recovery, then the symmet­
ric allocation over all n storage nodes:

1
Xi =-,

r
i = 1,2, ... , n,
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II. ALLOCATIONS FOR PROBABILITY-1 RECOVERY

Suppose the data collector accesses each r-subset r
with probability Pr, where r belongs to the collection R of
all (~) r-subsets of storage nodes. We seek the allocation
{Xi}i=l that minimizes the budget T, among all alloca­
tions that achieve a probability of successful recovery of
at least P:

n

minimize T = LXi

i=l

subject to

'""" Pr I{", . x· >1} ? P~ LJ1..Er 1.._

rER

Xi ? 0, i = 1, 2, ... , n

In the special case of probability-1 recovery (Le. P = 1),
the problem reduces to a simple linear program with (~)

r-subset constraints of the form LiEr Xi ? 1, assuming
Pr > 0 for all r E R. We proceed to find a (sorted)
allocation

o<Xl < X2 <... <Xn

that minimizes the total storage budget T = L~=l Xi, so
that the amount of data stored on any r-subset of storage
nodes, r < n, is at least the data object size:

\I r-subset r C {1, 2, ... ,n}.

It is not hard to solve this optimization problem and show
that the symmetric allocation over all n storage nodes is
optimal:

Theorem 1. Choosing Xi = ~, i = 1, 2, ... ,n, muu­
mizes T = L~=l Xi, subject to LiEr Xi ? 1 \I r-subset r C

{1,2, ... ,n}, Xi?' 0, i = 1,2, ... ,n.

Intuitively, this result is not surprising - a symmet­
ric optimal allocation makes sense because all r-subsets
are equally weighted; to minimize the budget, each node
would need to store only ~ amount of data to ensure suc­
cessful recovery.

minimizes the required budget T.

Our second result involves symmetric probabilistic
storage allocations: we flip a coin for each storage node
and with probability p decide to use it to store a fixed
amount of data. For probabilistic allocations, the total
storage used L~=l Xi is a random variable which we re­
quire to be no greater than the budget T in expecta­
tion. Suppose that each nonempty storage node stores
i amount of data, and the data collector is allowed to
access any r-subset of storage nodes. We show that if the
budget T is large enough to allow a probability of suc­
cessful recovery above a given threshold, then the choice
of f = r maximizes the success probability for that given
budget.

Proof We first use a simple argument to show that an
optimal allocation {Xi} i=1 must be symmetric (i.e. all
nonzero Xi are equal). We subsequently optimize over all
symmetric allocations and show that the one that uses all
the nodes minimizes the budget.

Lemma 1. For any feasible nonsymmetric allocation
{xi}i=l' we can construct a feasible symmetric allocation
{X~}i=l such that L~=l x~ < L~=l Xi'

Proof of Lemma 1. Since Xl, X2, ... ,Xr are the r small­
est elements in the allocation, we have 1 :s; L~=l Xi :s;
LiEr Xi \I r-subset r C {1, 2, ... ,n}. We construct a
symmetric allocation {X~}i=l whose nonzero elements are
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equal to the mean taken over only the nonzero elements
in {Xi}i=l:

Note that there are less than r zero elements in {xi}i=l'
otherwise there is at least one r-subset of elements whose
sum is zero which would mean that the allocation is infea­
sible. It follows that the denominator E~=l I{xi>o} 2:: 1.
The constructed allocation {X~}i=l is indeed feasible since

X~ = {o
~ -x

if Xi = 0,

otherwise,
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collector. Determining the conditions under which sym­
metric allocations are optimal remains an open problem
in general. We introduce probabilistic allocations where
each storage node is used with probability ~. This sim­
plifies the analysis by keeping the probability of accessing
a used storage node constant, and has the same effect as
accessing storage nodes with replacement. As such, the
probabilistic allocation serves as an approximation for the
deterministic allocation that uses s storage nodes when
the number of nodes accessed r « s. We adopt the fol­
lowing notation:

°::; x~ ::; x~ ::; . . . ::; x~, and

r r

1::; LXi = LX~::; LX~ Vr-subset r C {1,2, ... ,n},
i=l i=l iEr

observing again that xi, x~, ... ,x~ are the r smallest el­
ements in the allocation. Furthermore, E~=r+lx~ <
,""n • I - < < W • d .L....,i=r+l Xi, SInce Xi = X _ Xr _ Xi v 't > r, an eI-
ther (i) x; = x in which case all nonzero elements Xi,
i ::; r, are equal to x ~ there exists an Xi, i > r, such
that Xi > x = x~ because the allocation is nonsymmetric,
or (ii) x; > x in which case x~ = x < Xr ::; Xi Vi > r.
Therefore

n total number of storage nodes, used and unused
S total number of storage nodes used
i amount of data in each of the S storage nodes used,

where f E Z+
T expected total storage budget, i.e. T = IE[S]i
R number of storage nodes, used and unused, accessed

by the data collector
Z number of used storage nodes accessed by the

data collector
P probability of successful recovery P[Z 2: f]

Let Bin(n, p) denote the binomial probability distribution
with n trials and success probability p. For brevity, we
denote sums of the binomial tail as

< LXi + L Xi = LXi. •
i=l i=r+l i=l

All feasible nonsymmetric allocations are therefore
strictly suboptimal; it suffices to find the optimal sym­
metric allocation. Consider a feasible symmetric alloca­
tion {xi}i=l containing (j zero elements, where (j < r
(otherwise there is at least one r-subset of elements whose
sum is zero). Let

n r n r n

L x~ = L x~ + L x~ = LXi + L x~
i=l i=l i=r+l i=l i=r+l

r n n

n

IP'[Bin(n,p) 2: k] = L (~) pi(l - p)n-i.
i=k

In general, we are interested in the optimal symmetric
allocation specified by design parameters S, f, T, and R
that maximizes the success probability P, subject to some
given constraint (e.g. choosing an optimal f for a given
constant number of storage nodes accessed R and total
storage budget T). This problem can be posed under de­
terministic or probabilistic allocation and access models,
as presented in Table 1.

A. Probabilistic Allocation with Deterministic Access

Xe+l = ... = Xn = X > 0.

Since the allocation is feasible, the sum of the r smallest
elements must be at least 1, i.e. E~=l Xi = (r - (j)x 2::
1 ~ X 2:: r~e. It follows that E~=l Xi = (n - (j)x is
minimized for a given (j when X = r~e. Writing the
corresponding sum in terms of (j gives

~ n-(j n-r
T(O) = 6 Xi = r _ 0' with T'(O) = (r _ 0)2 > O.

Therefore T((j) is minimized when (j = 0, which gives
X = ~ and E~=l Xi = ~. •

III. SYMMETRIC ALLOCATIONS

We turn our attention to symmetric allocations under
a more general framework that allows for deterministic
vs probabilistic storage allocation and access by the data

We will now study a specific model of allocation and
access, namely case II in Table 1, which leads to a sim­
ple derivation of the optimal symmetric allocation in the
high-probability regime. Storage nodes are used proba­
bilistically, but the number of storage nodes accessed by
the data collector is fixed:

S f'V Bin (n, ;) , and R = r,

where s E jR+ and r E Z+ are constants. Clearly, the
number of accessed nodes that have data, Z, is a binomial
random variable and the probability of successful recovery
is

P(r,s,e) = IP'[Z 2: e] = IP' [Bin (r,;) 2: e] .
Reparameterizing in terms of a fixed expected total stor­
age budget T = IE [S] 1= i gives us

P(r,T,e) = IP' [Bin (r, ~e) 2: e] .
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Table 1: Symmetric Allocations - Deterministic vs Probabilistic Storage Allocation and Access Models.

Allocation Access
Probability of Successful Recovery

P(r,s,f) = P[Z 2: f]

deterministic deterministic
i)p [Z = i] = t U) ~~=:)8=s R=r

constant s E Z+ constant r E Z+ i=£ i=£ (r)
probabilistic deterministic

II 8 rv Bin (n, -;) R=r IP [Bin (r,;) 2: e]
constant s E IR+ constant r E Z+

deterministic probabilistic
III 8=s R rv Bin (n,.;) IP [Bin (s,~) 2: e]

constant s E Z+ constant r E IR+
probabilistic probabilistic

IP [Bin (n, ; . ~) 2: e]IV 8 rv Bin (n, -;) R rv Bin (n,.;)
constant s E IR+ constant r E IR+

Proof of Lemma 3. At T = ~, we have

P(r,T= ~,£) = liD [Bin(r,~) 2:£].

n 1 el~r f!;
P(r,T= -,f) <-+- --.

r 2 J21r r-I

•

(2)

(1)

the choice of f = r is optimal.

Lemma 3. For any r 2 2, and any f E {I, 2, ... , r -I},
we have the following upper bound on the success proba­
bility at T = ~:

Thus, whenever

el~r ~

< J21rV £(r - £)
1

< max e
12r
~

- l:::;f:::;r-l J21rV f(r - f)

el~r vr 1
= maxJ21r l:::;f:::;r-l y'f(r - f)

- el~r f!;~
- -- --- -Cr·J21r r-I

Inequality (1) follows from the application of the following
analytically convenient bound:

Since the mean of the binomial distribution Bin (r, f)
is f which is an integer, its median coincides with the
mean [10]. For any r 2 2, and any f E {I, 2, ... , r - I},
the pmf evaluated at the median f is

We define P(r,T,f) = 1 for ~f > 1 {:} T > 7' f =
1,2, ... , r, which corresponds to the case of excess storage
budget, i.e. all storage nodes are used. For a given number
of accessed nodes r and expected budget T, we seek the
optimal choice of f (which together with T specifies the
allocation) that maximizes P(r, T, f). We now show that
f = r is optimal in the high-probability regime:

Theorem 2. For any r 2 2, and for any budget T large
enough to support some symmetric allocation with success
probability P(r,T,f) > 0.9, the choice off = r is optimal
among symmetric allocations, i. e. it maximizes P( r, T, f)
over all f.

Proof We need only consider f E {I, 2, ... ,r} since f > r
corresponds to the case where accessing r used storage
nodes would yield only 7< 1 amount of data which is in­
sufficient for recovery. Observe that at T = ~, the choice
of f = r gives success probability P (r, T = ~,f = r) = 1;
if we can upper-bound the success probabilities of the
other choices of f at T = ~, then we have f = r optimal
whenever its success probability is at least that bound.
We now proceed to find such a bound.

Lemma 2. For any r 2 2, if at T = ~, the success
probability

P (r,T = ~,£) ~ a,

for all f E {I,2, ... ,r -I}, where a is some threshold,
then the choice of f = r maximizes P(r, T, f) over all f
for any

Proof of Lemma 2. For T 2 ~, the choice of f = r is op­
timal because P(r, T, f = r) = 1 is maximal. For other
choices f E {I, 2, ... , r - I}, if we have P (r, T = ~,f) ~

a, where a is some threshold, then it follows that
P(r, T, f) < a for any T < ~, since P(r, T, f) is non­
decreasing in T because

n 1
T> -ar.

- r

dP r f (Tf)f ( Tf)r-f
dT = C) T -:;;: 1- -:;;: 2: 0,

Tf
0< - < 1.n - 1 < k < n,
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which is obtained by applying the upper and lower
Stirling-based bounds (attributed to Feller , see e.g. [11]):

(n)n (n)n 1V 21rn e < n ! < V 21rn e eT2n ,

Equality (2) follows from the observation that t he term in
the square root f( £) ~ £(r - £) is concave in £. Therefore

min f( £) = min{j(I) , f( r -I)} = min{ r - 1, r -I}
1:::;e:::; r-1

1 1= r -I:::} max --- = ---.
1:::;e:::; r-1 J f( £) vr=1

0.9

0.8

~
,.f 0.7
0.,

~ 0.6
:0

'"e0.5
Co

ill 0.4
1l
g 0.3
en

0.2

-- ~~ - ~~------------------

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
BUdget per node Tin

By definition, the median m of a discrete random variabl e
X satisfies

a""""'''''''''-'---_ '-_ ''---_ ''---_ -'--_ -'--_ .L-_ -'--_ -'------J
a

Fig. 2: Success probability P (r,T ,e) against storage budget per
nod e ~ , for r = 5. The five curves correspond to different choices
of e= 1, 2, 3,4 , 5; t he dashed curve represents e= 1, and the bold
curve represents e = r . The horizontal dash ed line is P (r,T,e) =

Pr ~ 0.95, and the vertical dashed lines are ~ = ~ (Pr ) ~ ~ 0.198

and ~ = ~ = 0.2.

.- <>- .. Tln = 0.100
- "", - Tl n = 0.170
---B--- Tin = 0.183
... .)( .. , Ti n = 0.200

.... ..'

., ...... , ... , .. , ... ~ .. ... , .. , . . . . . . . , ·x· -

--'- - - - - - -..... - - - - - - ...- - - - - - - 01< - - - - - - -
)... . ,
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--0, . ,

"
"

"
"

~ . - . , . -
' -. - ' 0- - - - - '-

IP'[X :::; m] = IP'[X < m] + IP'[X = m] ~ 1/2.

Using this inequality and IP'[X = m] :::; c; gives

Lemma 4. For any r ~ 2, the choice of £ = r maximizes
P(r , T , £) over all £ fo r any

n (1 e I~r f!;) ~T >- -+- --
- r 2 V21r r - l

Sin ce P(r ,T ,£) is nondecreasing in T , we can also restate
this as foll ows: For any r ~ 2, at each T that f or some £
supports a success probabilit y

If!;1 e I 2r r '"
P(r,T ,£) > 2 + V21r r _ 1 = v-,

0.9

0.8

~ 0.7
,.f
c..
~ 0.6
:6
il 0.5s
ill 0.4
§
cil 0.3

0.2

0.1

3
l

4 5

the choice of £ = r is optimal, i.e . it maximizes P(r ,T ,£)
over all e.

Proof of Lemma 4. The lemma is a direct consequence of
Lemmas 2 and 3. •

Fig. 3: Success probability P(T, T ,e) agai nst e, for T = 5. The
four curves correspond to different sto rage budgets per nod e ~ .
The solid curve corresponds to the critical budget where the phase
transitio n occurs , i.e, P (T,T ,e= 1) = P (T,T ,e= T).

Observe that Pr is decreasing in r because

Substituting r = 221 into Lemma 4 gives Pr = 0.89999,
which means that for all r ~ 221, the choice of £ = r is
optimal at each T that for some esupports P(r ,T ,£) >
0.9. After numerically verifying that the same is true for
2 :::; r < 221, we arr ive at Theorem 2. •

In particular , we note that

1 1
Pr --+ 2+ V21r ~ 0.8989, as r --+ 00.

We have also observed numerically that the claim holds
even if we exp and the range of budgets to include any T
large enough to support some symmetric allocation with
success prob ability P(r ,T ,£) > 0.75.

IV . EXPERIMENTAL RESULTS

We numerically investigated the performance of the
bounds derived in the preceding section for symmetric
probabili stic allocat ion with deterministic access . Fig. 2
shows a typ ical plot of success probability P(r ,T ,£)
against the storage budget per node *,for r = 5. We ob­
serve that the choice of £ = 1 is opt imal when *< 0.183;
otherwise £ = r is optimal. Fig. 3 shows the corres pond­
ing success probabilities P(r , T , £) at each E, given differ­
ent storage budgets per node *.Increasing £ has differ-
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ent effects on the success probability P, depending on the
budget. At high budgets, it monotonically increases P;
at low budgets, it monotonically decreases P; at interme­
diate budgets, P becomes convex in I!.

Evidently, we can do much better than the derived
bound in terms of the success probability (see Lemma 4):
even for values of P(r, T, I!) as low as 0.64 for r = 5, the
choice of I! = r is already optimal. Fortunately, because
of the steep slope of P(r,T, I! = r) = (*"r) r, we do much
better in terms of the bound on the expected total budget,
i.e. choosing I! = r for any T ~ ~ (Pr )~ .

Our experiments motivate the following conjecture: for
any rand T, the optimal choice of I! that maximizes suc­
cess probability P(r, T, I!) is either I! = 1 or I! = r, and
the switch from the optimality of I! = 1 to that of I! = r
occurs at the root of the equation (~)r = 1- (1- *")r,
o< T < ~.

v. DISCUSSION AND CONCLUSION

This paper introduces more questions than it answers.
We presented several distributed storage allocation prob­
lems and showed that despite the initial simplicity of
the setup, there can be significant complexity. For the
probability-1 recovery requirement, we established that
the intuitive idea of spreading the budget maximally
among all storage nodes is indeed optimal.

For the case of symmetric probabilistic allocations, we
showed that it is optimal in the high-probability regime
to maximally spread the given budget, by choosing I! = r
which maximizes the probability of using each storage
node while minimizing the amount of data stored in each
nonempty node. As we vary the budget, we observe a
sharp change in the optimal allocation - for small bud­
gets and therefore low success probabilities, it is optimal
to store the data object in its entirety (Le. I! = 1) and
hope that the data collector accesses at least one of the
nonempty storage nodes; for large budgets and therefore
high success probabilities, it is optimal to store only ~

amount of data in each used node and hope that the data
collector accesses r of them. Our numerical investigation
suggests that spreading minimally (Le. I! = 1) is optimal
up to some budget Tcrit and then spreading maximally
(Le. I! = r) immediately becomes optimal without going
through the intermediate choices of I!. This contrasts with
deterministic allocations which, as discussed in the in­
troduction, can have optimal symmetric allocations that
involve an intermediate spreading of the budget.

It would be interesting to investigate the conditions
under which nonsymmetric allocations are suboptimal ­
we conjecture that this is the case in the high-probability
regime, which is also the regime of practical interest.

Another set of interesting problems involves the appli­
cation of richer access models; for example, we can in­
troduce a topology on the network of storage nodes and
assume that the data collector accesses r nodes that are
close to it.
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