An algorithm for UWB radar-based human detection

SangHyun Chang¹, Naoki Mitsumoto², Joel W. Burdick¹ Member, IEEE
¹Engineering & Applied Science, California Institute of Technology, MC 104-44, Pasadena, CA 91125, USA
²Research laboratories, DENSO Corporation, Aichi, Japan
sanghyun@caltech.edu, naoki.mitsumoto@denso.co.jp, jwb@robotics.caltech.edu

Abstract—This paper presents an algorithm for human presence detection in urban environments using an ultra-wide-band (UWB) impulse-based monostatic radar. A specular multi-path model (SMPM) is used to characterize human body scattered UWB waveforms. The SMPM parameters are used within a classical likelihood ratio detector framework to detect the presence of humans via gait, with the aid of a multi-target tracking technique (MTT). Experimental results on a simple human gait detection problem in an outdoor urban environment are presented to illustrate and validate the approach.

Index Terms—UWB radar, impulse radar, human detection, multi-target tracking

I. INTRODUCTION

This paper introduces an algorithm for detecting the presence of walking humans in an urban environment populated by other moving objects such as cars and trucks. Our particular motivation is the problem of providing pedestrian safety in the presence of moving vehicles. More generally, the problem of detecting and localizing human presence has been a widely studied problem due to its potential military, safety, security, and entertainment applications. A number of technologies can be used to detect human signatures. Computer vision has limited ability to detect humans in poor visibility conditions (e.g., at night, haze, fog, rain, and smoke, etc.). Similarly, the performance of infrared detectors varies with the ambient temperature conditions. Human LADAR signatures are often not highly discriminable from other moving clutter, and LADAR performance is degraded in dusty and foggy conditions. UWB radar can provide a complementary human detection technology whose performance is less degraded in the poor visibility conditions that plague other sensing technologies.

Human detection using RF, microwave, and mm-wave radar has been previously studied in controlled environments [1], [2], [3], [4], [5], [6]. However, the problem of human detection in real complex environments has been less well addressed. In this paper, we use UWB human scattering properties and human biometric information to develop a UWB monostatic radar-based human detection algorithm. Compared with narrowband radar, UWB radar has many potential advantages for detecting human presence. The target’s frequency response over the radar signal’s wide bandwidth may provide useful detection and discrimination information. The fine time resolution enabled by wide bandwidth signals not only enables high-resolution ranging and localization [7], [8], but also allows for highly resolved decomposition of the complex multi-path scattering from the human body. As an example of UWB radar’s sensitivity to human body posture, consider Figure 1 which shows video images and returned UWB waveforms of a walking human in an open field, as recorded by synchronized and collocated video camera and monostatic UWB radar. While it is difficult to notice much change in the human’s posture across the 0.0326 seconds between frames, note the corresponding scattered UWB waveforms are noticeably different. We use UWB radar’s high sensitivity to dynamic posture evolution as the basis for the proposed detection algorithm.

Section II describes a simple UWB signal model, and reviews the CLEAN algorithm for multipath deconvolution. Section III briefly reviews a moving target indication (MTI) approach that complements the signal model of Section II. Section IV models the target-returned UWB radar signal, while Section V describes the basic detection for detecting human bodies undergoing typical gait motions, as well as a multi-target tracking technique (MTT). Experimental results obtained in an urban environment are presented in Section VI.

II. SPECULAR MULTIPATH MODEL FOR UWB SIGNAL

An effective detection strategy requires a model of UWB radar waveform propagation and interaction with the human body. A perfectly reflecting target, e.g. a metal plate with an infinite area, returns the impinging UWB electromagnetic wave along a single-path. However, for targets characterized by complex shapes in the scale of the spatial extent of the transmitted UWB signal pulse width, e.g. the human body, the returned UWB radar signal consists of multipath components [9], as the impinging UWB electromagnetic wave scatters independently from different human body parts at different times with various amplitudes (depending on the distance to...
the body part and the size, shape, and composition of the scattering part). Each of these different scattering pathways can be considered as multipath components of the returned UWB radar signal. In addition, time variation of the scattered UWB waveform can be introduced by the movement of scatterers or the movement of the transmitter or receiver [10].

In the domain of UWB radio communication channel modeling, Tsao, et al., proposed the time-evolving UWB multipath channel model [11]:

\[h(t, \tau) = \sum_{j=1}^{L} a_j(t)p_j(\tau - n_j(t)), \]

where \(\tau \) is the delay, and \(t \) is the elapsed time. The channel model \(h(t, \tau) \) is considered to be the superposition of the \(L \) strongest scattering paths, where each path represents the response at time \(t \) to an impulse transmitted at time \(t - \tau \). Path \(j \) is specified by the path time-of-arrival (TOA) \(n_j(t) \), the path amplitude \(a_j(t) \), and the path waveform \(p_j(\cdot) \). It is impractical to apply the model in Equation (1) to mono-static radar sensing in the presence of a real time processing constraints. To make the channel model tractable, Equation (1) can be approximated by the specular multipath channel model [12]:

\[h(t, \tau) \approx \sum_{j=1}^{L} a_j(t) \delta(\tau - n_j(t)), \]

where \(\delta(\cdot) \) is the Dirac delta function. This simplification allows for real-time processing without compromising UWB radar’s high time-resolution capability\(^1\).

Hence, the radar signal returned by a mono-static UWB radar, \(w(t) \), can be represented by a specular multipath model:

\[w(t) \approx \sum_{j=1}^{L} a_j(t)p(t - n_j(t)), \]

where \(w(t) = \int_{-\infty}^{\infty} h(t, \tau)p(\tau - t)d\tau \) as in [14], and \(p(\cdot) \) is an elementary waveform shape (e.g., the received waveform in free space). Note that the path amplitude \(a_j(t) \) represents the product of attenuation factors due to the transmitter and receiver antenna patterns, as well as the scatterer configuration. The path TOA \(n_j(t) \) represents propagation delay at time \(t \) from the transmitter to the receiver on path \(j \). Assuming that multiple scattering events do not occur on the path, we can convert between (round-trip) propagation delay and scatterer range, as the range \(R_j(t) \) of the scatterer on path \(j \) is \(R_j(t) = |n_j(t) - c|/2 \), where \(c \) is the speed of light\(^2\). For example, when a transmitted UWB signal sounds the channel every \(T_s \) seconds, the \(m^{th} \) scan can be represented as the waveform \(w(t) \) recorded over a sweeping interval \(t \in [t_0 + (m - 1)T_s, t_{\text{max}} + (m - 1)T_s] \), which corresponds to a range of \(r \in [r_0, r_{\text{max}}] = [c(t_0/2, cT_{\text{max}}/2)]^3 \).

To estimate the channel parameters (the amplitude and TOA of each multipath component) in Equation (2) for a radar scan \(w(t) \) over a recording interval, a given path waveform shape template, \(v(t) \), is used to deconvolve the path components from \(w(t) \) using a variant of the CLEAN algorithm. The CLEAN algorithm, firstly introduced in [15] and well established in the radio astronomy and microwave communities, has been applied to impulsive UWB measurements in [13], [16]. The algorithm searches the received waveform iteratively with the template to find the maximum correlations, which correspond to the various channel components. The iteration stopping criterion is based on a minimum threshold on the peak correlation. However, the channel parameters estimated by the conventional CLEAN algorithm may provide an unsuitable representation for our radar application, since for a fixed stopping threshold, the number of detected reflection paths from a target is a function of target range (due to free space loss, the path amplitude decreases inversely proportional to the square of target range). Therefore, we propose a range-adaptive threshold, which is inversely proportional to the square of each detected path’s range, to provide a consistent target representation in target range variation\(^4\).

CLEAN Algorithm Summary

1. **Input**: Waveform shape template \(v(t) \); and detection threshold \(T_{\text{clean}} \) normalized at 1 meter.
2. **Initialize**: Form initial residual waveform \(d_0(t) = w(t) \) for a scan. Set iteration counter \(i = 0 \).
3. **Signal Detection**: Compute cross-correlation \(r_{\text{rd}}(\tau) \) between \(v(t) \) and \(d_i(t) \); the time-index associated to the maximum magnitude of \(r_{\text{rd}}(\tau) \) is the \(i^{th} \) estimated TOA: \(\hat{\tau}_i = \arg \max_{\tau} |r_{\text{rd}}(\tau)| \).

The cross-correlation at \(\hat{\tau}_i \) is the \(i^{th} \) estimated amplitude:

\[\hat{a}_i(t) = \frac{d_i(t)}{r_{\text{rd}}(\hat{\tau}_i)}. \]

If the path magnitude is below the threshold at the TOA, STOP.
4. **Increment the iteration counter**: \(i \leftarrow i + 1 \).
5. **Residual waveform update**: \(d_i(t) = d_{i-1}(t) - \hat{a}_i(t)v(t - \hat{\tau}_i) \).
6. **Iterate**: Go to step 3.

III. MOVING TARGET INDICATION AND SEGMENTATION

Since UWB radar can sense both stationary and moving objects, all scatters obtained from a complex test environment must be analyzed for potential human target candidates. To reduce the high computational cost associated to such analysis, a moving target indication (MTI) system [17] rejects highly human-unlike stationary clutter. Let the monostatic radar’s range \([r_0, r_{\text{max}}]\) be divided in \(N_{\text{bins}} \) bins of length \(D_{\text{m}} \) m.

\(^1\)The specular multipath model is a quite simplified model, since wave reflection from and wave penetration through target material are in reality frequency sensitive. Therefore the waveform is filtered in some way. Thus, the returned waveform may vary over each of the path components [13].

\(^2\)We refer to propagation delay and range interchangeably in the paper.

\(^3\)The channel coherence time is assumed to be much larger than the recording time length, \(t_{\text{max}} - t_0 \), so that the path amplitude \(a_j(t) \) and the path TOA \(n_j(t) \) are constant during the sweeping time interval.

\(^4\)To avoid high false alarm rate on path detection, especially at far range, the effective noise level should be below the range-adaptive threshold level.
The UWB radar scans are repeated every T_s seconds. The degree of the environment’s stationarity in the k^{th} range bin is measured by the scattered waveform variance in that range bin over t_m seconds (where t_m is some integer multiple of T_s). If the variance is below a threshold T_m, then the signal in the k^{th} range bin is considered stationary, and the mean of the signal over t_m seconds is canceled in subsequent scans as a stationary clutter component. Note that the MTI system also typically rejects the direct coupling component between transmitting and receiving antennas.

When multiple moving objects exist within the radar’s range, the return signal must be segmented in time to isolate the scatters associated with individual moving objects, and subsequently analyzed by the human detector of Section V. Compared with Doppler radar, UWB radar can effectively resolve multiple targets by range gating, even without employing an array antenna, since a UWB signal has much wider RF Gabor (RMS) bandwidth than a Doppler radar signal [8]. To exploit UWB radar’s high range-resolution capability, the segmentation process is applied on the CLEAN algorithm output. Thus, for example, resolved path components within D_{sg} m apart (or $D_{sg}/2c$ seconds of TOA apart) can be regarded as scattered from the same object, so that the multipath components are clustered to be associated with the same objects. See [18] for a more sophisticated probabilistic segmentation algorithm.

IV. MODEL OF TARGET-RETURNED UWB RADAR SIGNAL

The specular multipath model Equation (3) is a computationally useful signal representation that reduces UWB waveform representation to 2 dimensions (path amplitude and TOA). To differentiate human scatter from non-human scatter, discriminatory target features are required. Three features are proposed for discriminating human and non-human scatter under the specular multipath model: (1) the path’s maximum magnitude, which is relevant to target composition and cross-section size; (2) the RMS delay spread of multipath delay profile (or the RMS range spread), which is relevant to target size over the range dimension; and (3) the velocity of target.

To establish a model for the features of human scatters, we constructed a database of UWB radar scans obtained while a human randomly walked in an open field within the vicinity of a stationary monostatic UWB radar as in Figure 1. An analogous database was constructed from UWB radar scans obtained from a car moving in spacious empty parking lot as in Figure 2, since automobiles are apt to be the most abundant moving objects other than humans in urban outdoor environment. On each of databases, the MTI system response of UWB radar scans (Section III) are applied to the CLEAN algorithm (Section II) in order to extract the discriminatory target features based on the specular multipath model. Figure 3 shows the template waveform shape measured in approximate free space.

The empirical distributions of the maximum magnitude feature are shown in Figure 4(a) as histograms. Also included are a Gaussian curve-fit to the human distribution, and a mixture of two Gaussian distributions for car scatters. Since both human and automobile usually generate multiple scatter components, the maximum amplitude of any path associated with the target is used to construct the histograms. Moreover, since the scattered path amplitude is inversely proportional to the square of the scatterer’s range, we normalize the path amplitudes to a common 1 meter range reference. From Equation (3), the path’s maximum magnitude can be represented as

$$a_{max} = \max_{j \in \Omega} |a_j R_j^2|,$$

where Ω is the set of path indices associated with the target, and $R_j^2 = (cn_j/2)^2$ is normalization factor. The maximum return signal magnitude (\sim135 dB in Figure 4(a)) occurs when the radar faces either of the car’s sides, which happens when the car’s moving direction is perpendicular to wave incident/returning direction.

Based on the human and car scattering databases, empirical distribution histograms of the human and car RMS range spreads are shown in Figure 4(b) with their Gaussian curve-fits. From Equation (3), the first moment of the power range profile is defined as a function of normalized path amplitude by

$$R = \frac{\sum_{j \in \Omega} R_j (a_j R_j^2)^2}{\sum_{j \in \Omega} (a_j R_j^2)^2}.$$

Then, the RMS range spread R_{rms} can be calculated as

$$R_{rms} = \left[\frac{\sum_{j \in \Omega} (R_j - \bar{R})^2 (a_j R_j^2)^2}{\sum_{j \in \Omega} (a_j R_j^2)^2} \right]^\frac{1}{2}.$$

Figure 4(c) shows constructive distributions of the human and car velocities, where presumed human velocity has a cutoff at 10 m/s. The extraction of velocity feature v in

3Measurements were conducted using a Time Domain PulsOn 210 monostatic radar (TDR) with a waveform sampling period of \sim41.33 ps. For the human and car databases, the number of scans acquired was 1161 and 1788 with scanning frequency of 30.7 scans/sec and 9.7 scans/sec, respectively. For car database, a black Toyota Corolla rotated circularly aside by TDR to measure radar responses for whole azimuth angles, where the rotating axis was about 9 m far from TDR with the rotating radius around 5 m.

4The template waveform was measured by using the TDR on a styrofoam supporting structure in an RF anechoic chamber. The receiving antenna was 1 m far from the transmitting antenna, separated by using an extra SMA cable.
Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12,2010 at 23:14:31 UTC from IEEE Xplore. Restrictions apply.
where the six conditional probability distributions\(^8\) are plotted in Figure 4, and the detection threshold \(T_D\) determines the performance of the detection process.

The basic detector combines the results of the LRT only for maximum amplitude \(a_{max}\) and RMS range spread \(R_{rms}\) features over each segment to evaluate the probability of human presence in each radar scan. While this basic detector can be processed quickly with low latency, it does not utilize mutual information or dynamics across successive scans. To integrate information over time, we use a voting method that calculates the number of times that human presence is declared. The MHCT detector combines the results of the LRT in Equation (4), adding the velocity \(v\) feature to the basic detector. Also, the voting method can be applied to the MHCT detector output, which may improve the accuracy of track confirmation and deletion process. Experimental receiver operating characteristics (ROCs) obtained by applying the basic and MHCT detectors to a UWB monostatic radar operating in an outdoor urban environment are presented next.

VI. EXPERIMENTAL RESULTS

A sequence of UWB radar scans (test parameters are summarized in Table I) were measured using a Time Domain PulsOn 210 monostatic UWB radar placed at 0.5 meter height above the curbside of California Blvd. on the California Institute of Technology campus. Figure 6(a) shows 3000 unprocessed scans (each column represents the magnitude of a single scanned waveform over the sensing range, where the waveform magnitude is scaled from 0 in black to 3000 in white. Magnitudes over 3000 are clipped to 3000). During the ~10 minute recording time, several humans and cars moved in and out of radar range. The radar’s range also included fixed objects (e.g. metal poles, a wall, and several trees). Some moving object trajectories can be seen in Figure 6(a), while the horizontal patterns represent stationary scatterers, as well as direct antenna coupling effects in the near range. Figure 6(b) shows MTI responses\(^9\) of walking human scatters, the output of the CLEAN algorithm and segmentation steps for the 92\(^{nd}\) scan, and the synchronized video image.

The UWB radar-based human detector of Figure 5 was tested on a subset of 2486 scans of the 3000 scans during which the number of humans in the test environment is controlled to be always 0 or 1. Figure 6(c) shows that 1778 scans without human presence and 708 scans including human presence are tested by the basic and MHCT detectors of Equation (4). We evaluated the basic detector with threshold values \(T_D = 1, 1.5, 2, \ldots, 5.5\) and voting intervals including \(N_v = 1, 2, 4, \ldots, 14\) scans. Also the MHCT detector was evaluated with threshold values \(T_D = 2, 2.5, 3, 3.5, 4\) and voting intervals of \(N_v = 1, 2, 4, 6\) scans. The basic detector’s receiver operating characteristic (ROC) under these different conditions is shown in Figure 7(a). Clearly, the basic detector with the voting method performs better than the basic detector without the voting method \((N_v = 1)\), and the detection performance improves with increasing \(N_v\), where the performance saturates at \(N_v = 12\). The basic detector with \(N_v = 14\) and \(T_D = 4\) provides an 80.7% probability of human presence detection for 5.46% false alarm rate. The voting method results in the basic detector show that integration of radar information over time significantly improves performance. However, the latency of the basic detector with \(N_v = 12\) is 2.46 seconds, which demonstrates the trade-off between detection performance and latency.

The MHCT detector results show that the additive velocity feature via the MHCT approach significantly improves performance in Figure 7(b), compared to the basic detector for the same voting intervals. Also, the MHCT detector performance with the voting method is improved except when \(N_v = 2\) due to different target confirmation and deletion logics from other voting intervals. The MHCT detector with \(N_v = 6\) and \(T_D = 3\) provides an 82.74% probability of human presence detection for 1.58% false alarm rate. Figure 7(c) shows detection errors of false alarm (Type-I error) and missed detection (Type-II error) types with the corresponding scan index. In analyzing the failed detections, we observed that the majority of the

\(^8\)The distributions are represented as follows:

\[
\begin{align*}
\mathbf{p}(a_{max}|H_1) &= f_X(x; 104.6, 3.70^2), \\
\mathbf{p}(a_{max}|H_0) &= 0.97f_X(x; 114.6, 5.04^2) + 0.03f_X(x; 136.11.57^2), \\
\mathbf{p}(R_{rms}|H_1) &= f_X(x; 0.098, 0.0448^2), \\
\mathbf{p}(R_{rms}|H_0) &= f_X(x; 0.640, 0.2822^2), \\
\mathbf{p}(v|H_1) &= 2f_X(x; 0, 2^2), v \in [0, 10], \\
\mathbf{p}(v|H_0) &= 1.023f_X(x; 12, 6^2), v \in [0, 30].
\end{align*}
\]

where normal distribution with the mean \(m\) and the variance \(\sigma^2\) is denoted by \(f_X(x; m, \sigma^2)\) on the domain \(x \in (-\infty, \infty)\).

\(^9\)Direct antenna coupling effects over the range 0.3014 m to 2.155 m were also removed in this step.
errors occurred during transitions of hypothesis—i.e., a human was entering or leaving the radar range.

VII. CONCLUSION

Even with only three features, the UWB radar-based human detector has better than 80% detection probability with 1.58% false alarm rate in a realistic outdoor environment. While we only tested the detector in conditions containing fixed objects, moving humans, and moving cars, it is likely that the maximum magnitude, RMS range spread, and velocity features may be useful for discriminating humans from common clutter, such as small animals and bicycles, which might arise in a surveillance application. To improve detection performance, better segmentation techniques or feature aided tracking can be employed. The superior performance with the voting method also suggests that the use of a more dynamic signal model that integrates information across scans, such as a hidden Markov model, should result in improved performance. These ideas are the subject of ongoing work.

TABLE I

HUMAN DETECTOR TEST PARAMETERS.

<table>
<thead>
<tr>
<th>Radar measurement setup</th>
<th>Algorithm parameters</th>
<th>Kalman filter parameters</th>
<th>MHC parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1TX and 1RX antennas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height: 1 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radar range: 0.3 ~12.2 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of scans recorded: 3000 scans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scanning period: (T_s = 0.2050) sec</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range sampling resolution: (\Delta R = 0.0062) m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware & software average: 2 & 512</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
T_m = 4.0 \text{ m} \]
\[
N_{\text{bin}} = 30 \text{ bins} \]
\[
t_m = 0.82 \text{ sec} \]
\[
T_m = 7 \times 10^4 \]
\[
D_m = 0.4 \text{ m} \]
\[
D_{\text{sw}} = 0.5 \text{ m} \]
\[
T_{\text{clean}} = 5 \times 10^4 \]
\[
A = \begin{bmatrix}
1 & T_s \\
0 & 1
\end{bmatrix} \]
\[
H = \begin{bmatrix}
1 & 0 \\
1 & 0
\end{bmatrix} \]
\[
q = \frac{2T_mN_{\text{bin}}}{\Delta R} \]
\[
R_k = \left(\frac{2T_mN_{\text{bin}}}{\Delta R} \right)^2 \]
\[
P_{d,\text{max}} = 0.98, P_{a,\text{min}} = 0.3 \]
\[
K_m = 4 \]
\[
N_D = 5 \]

Fig. 7. Results of the basic and MHCT detectors.

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 12, 2010 at 23:14:31 UTC from IEEE Xplore. Restrictions apply.