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We calculate the zero-temperature resistivity of model three-dimensional disordered metals described by
tight-binding Hamiltonians. Two different mechanisms of disorder are considered: diagonal disaratm
on-site potentialsand off-diagonal disordefrandom hopping integralsThe nonequilibrium Green function
formalism provides a Landauer-type formula for the conductance of arbitrary mesoscopic systems. We use this
formula to calculate the resistance of finite-size disordered samples of different lengths. The resistance aver-
aged over disorder configurations is linear in sample length and resistivity is found from the coefficient of
proportionality. Two structures are consideré€t) a simple cubic lattice with ons-orbital per site, and2) a
simple cubic lattice with twal-orbitals. For small values of the disorder strength, our results agree with those
obtained from the Boltzmann equation. Large off-diagonal disorder causes the resistivity to saturate, whereas
increasing diagonal disorder causes the resistivity to increase faster than the Boltzmann result. The crossover
toward localization starts when the Boltzmann mean free patfative to the lattice constaat has a value
between 0.5 and 2.0 and is strongly model dependent.
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Saturation of resistivity in metallic compouridss well as  lution is to calculate resistance of several samples of differ-
its absenceis an interesting phenomenon which is far from ent lengths and then extract bulk resistivityfrom the data
fully understood. Some compounds saturate at the levels presing the formuleR=Lp/A (L is length,A is cross section
dicted by the loffe-Regel conditioi=a, wherea is lattice Let us describe the setup of calculation for an individual
constant andl is the mean free pathothers saturate at much sample. We consider a sample consistinglpk N, X N, unit
larger levels(i.e., higher resistivity, and there are some that cells (for our simple cubic examples, each unit cell contains
do not saturate at all. This diversity in behavior receivedone aton. The sample is placed between two semi-infinite
substantial attention from theorists. For example, Miis ~ contacts of the same cross secthdyX N,. Both contacts and
al.3 applied dynamical mean-field theory to calculate resissample have the same crystal structure and are described by
tivity of electrons coupled to phonons and static disordera tight-binding Hamiltonian with the same parameters. Then
Gunnarssoret al? studied several rather realistic models tight-binding parameters for atoms inside the sample are ran-
with different forms of electron-phonon coupling using a domly changed from their initial values according to rules
quantum Monte Carlo method. They observed saturation oiven later and the resistance of the disordered sample is
resistivity in the case of phonons coupled to hopping matrixcalculated.
elements. In an attempt to understand the mechanism of satu- Our sample is not periodic in the direction of current flow
ration we chose to study transport properties of simple modX, but, in order to decrease the effect of boundaries on the
els of metals with static disordeias opposed to models results, periodic boundary conditioasith periodN, andN,)
closely reproducing realijy are used in the perpendicular directionsindZ. Then stan-

The resistivity was calculated using the Landauer-typedardk-vector formalism applies in these two directions. For
formula for the zero-temperature linear response of meso$ givenk-vector, Hamiltonians of the sample and contacts
copic systems, which can be derived in the framework ofare constructed and the conductance is calculated. Then the
nonequilibrium Green function formalist. conductance is averaged with equal weights dwpoints on
a uniform grid(a 6X 6 grid was used, with a new random
Hamiltonian at eaclk-vecton.

In the limit of small disorder strength, three-dimensional
transport should be accurately described by the linearized
whereG"tandG2% are retarded and advanced Green’s func-Boltzmann equation. Therefore it is useful to compare our
tions of the system of interesk,;, andI'r are matrices de- numerical results with resistivity obtained from the Boltz-
scribing the effect of contacts on the system. mann equation. We did not solve this equation exactly, but

The formula above is suitable only for finite samples,used instead the standard procedure of a displaced Fermi-
whereas our aim is to calculate the resistivity of bulk disor-Dirac distributio® F(k) ~ fep(k+€Er/h), where the dis-
dered material as a function of strength of disorder. The soplacemeniEz/h to variational accuracy is given by

2¢?
G=-- Tr[I' G*®TrG*],
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FIG. 1. Resistivity for a single-band model with diagonal dis- FIG. 2. Resistivity for a singls-band model with off-diagonal

order. The solid line is the Boltzmann resistivity for the samedisorder. The solid line is the Boltzmann resistivity for the same
model. The dashed line shows the Boltzmann mean free paffyvs model. The dashed line shows the mean free patiWArs

_ The calculational procedure is otherwise the same. Results
h 2 Vi Pv = vi) 28~ €r) 8 = €r) for off-diagonal disorder are shown in Fig. 2. It can be seen
- =2m 2> v25(e - ' that resistivity depends linearly on? up toW=2. At larger
k Uk (€~ €) W, whenl/a~1, the resistivity deviates from linear, and at
where i, =V, Vige Is the matrix element of scattering w=4 it_starts to saturate at some level. Therefore in the_(_:ase
potential l::alcliilgte(;kin Born approimation and the bar indi-o.f off-diagonal disorder there is no metal-insulator transition
cates the ensemble average (in agreement with the statement of Antonlrou_ end
) Economod). It should also be noted that our result is similar
fo the results of Calandra and Gunnardsohtained for a
more realistic model of disorder induced by electron-phonon
interaction.
We also studied the combination of diagonal and off-
agonal disorders in order to see how interplay between
types of disorder are possible in this model, diagonal an hem would affect. resistivity. Diagonal disorder was kept
' onstant and off-diagonal disorder was gradually increased.

off-diagonal. R .
In the case of the diagonal disorder, the hopping param_Some results are shown in Fig. 3. It is clear that the presence

. of diagonal disorder can change the resistivity vs off-
etert is kept constant throughout the sample but the energi{jiagonal disorder dependence. At the diagonal disorder
level € is changed randomly according to the formuta0 )

: ; 2 ) . Wyiag=11 resistivity decreases with increasing off-diagonal
et o veriale diul o) I JSOker. Ay=6 resisuiy cspleys nonmanconic be.
' > . 5 o 9% avior. In all cases resistivity saturates eventually at approxi-
The scattering potentiaVy,|? is thenW?/12.

. . : ._mately the same level as in the absence of static diagonal
In this calculation as well as in all others, the cross SeCt'orBisorder(see Fig 2

of samp:]e? IS 9;]9' and thf_e lengths usfegl_ ared5, 6,7, and 8. "\t we consider a simple cubic structure with one atom
For each length, 36 configurations of disorder are create er unit cell, but twod-orbitals per atom, namelp—y?)

the resistance of the sample for each configuration is calc ind [322-12) (E, orbitals. As in the previous model, only
. . . g - L
lated and then averaged over configurations. This procedurferst nearest neighbor hopping is considered. In this case, all

s r_epeeted for differenlr_.and W. In order to find the.bglk hopping elements can be expressed in terms of two coupling
resistivity, resistance Vis is plotted for eactW and resistiv-

ity is found from the slope of the resulting line.

unit cell and ones-orbital per atom. There are two tight-
binding parameters, the energy le¥gl(diagonal element of

Hamiltoniar) which is taken to be zero and the hopping in-
tegralt=1 between first nearest neighbdadl other hopping di
integrals are neglectg¢dWe consider a half-filled band. Two

Waog =3 ——
Final results are shown in Fig. 1. The resistiviy calcu- 1 wwﬂgj? ——
lated using a linearized Boltzmann equation is plotted on the diag = 11 T

same graph for comparison. The resistivity depends linearly
onW? in a quite large range oV (up to W=8). At largerW
it deviates upwards from the Boltzmann resistivity. The
dotted curve shows the mean free pktiv?)Y/2r calculated
from Boltzmann resistivity v&\?. It can be seen that devia-
tion of resistivity from linear starts approximately when
[/a~0.5. This result reproduces the earlier work done by
Nicolic and Aller! (with a different computer code

In the case of off-diagonal disorder, the energy lewvé&
kept constant whereas hopping elemenitsside the sample FIG. 3. Resistivity for a single-band model with a combination

are changed randomly accordingttel +&, whereé is again  of disorders. Diagonal disorder is kept constant, off-diagonal disor-
a random variable distributed uniformly ir-W/2,W/2]. der varies.

Resistivity p, ha/2e?
O = N W Hr OO N OO
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FIG. 4. Resistivity for theeg model with diagonal disorder. The FIG. 5. Resistivity for theeg model with off-diagonal disorder.
solid line is the Boltzmann resistivity for the same model. The The solid line is the Boltzmann resistivity for the same model. The
dashed line shows the mean free pathW’ It can be seen that dashed line shows the mean free pathW’ It can be seen that

resistivity deviates from the Boltzmann expression wheacomes  resistivity deviates from Boltzmann expression whHebecomes
close to lattice constara. close to lattice constara.

. single s-orbital model. The resistivity starts to deviate from
parametergddo) and(dds) which are taken to be 0.051 and Bolgt]zmann like wherl/a~ 2, and to );aturate whdncomes

0.003 eV, respectively. Both orbitals have energy levels s€f|oqq 15 the Iattice constant, in agreement with loffe-Regel
to zero. . . . N condition.

First, diagonal disorder with a uniform distribution Was 16 main conclusion to be drawn is that the key factor to
conS|d_ered. The tWE.g orbl_tals are given |_ndependent ran- resistivity saturation in metals is strong off-diagonal disorder.
dom diagonal energies. Disorder strengjthis measured in The combination of diagonal and off-diagonal disorder can
terms of the full bandwidth, which for the present ch0|ce Ofproduce various types of the resistivity behavior: decreasing,
Yncreasmg or nonmonotonic. Saturation is found even in the
case of a single band, which is in disagreement with the
statement of Allen and Chakrabotythat multiband struc-
ture is essential for saturation. The valueld& at which

vs W2 is shown in Fig. 4 along with the Boltzmann resistiv-
ity. As in the case of a single orbital model, the resistivity is
initially linear in W2 and then begins to deviate upwards

when |/a~1, indicating the presence of a metak-insulator g ;mann theory starts to break down varies surprisingly
transition at largekV.

Off-diagonal disorder in the case of tvasorbital models strongly, from 0.5 to 2.0, for the four models considered
can be created in numerous ways since there are several dt}

ferent hopping elements in the Hamiltonian. We chose disor- Financial support for Y.G. and P.B.A. was provided by
der strength to be proportional to the hopping element itselfNSF (DMR-0089492. Financial support for J.T.K. and

or more specificallyt—ty=ty* £, whereé is defined above. W.A.G. was provided by MARCO-FENA and by NSF
Results are shown in Fig. 5 and are similar to those of thgDMR-0120967.
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