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We calculate the zero-temperature resistivity of model three-dimensional disordered metals described by
tight-binding Hamiltonians. Two different mechanisms of disorder are considered: diagonal disorder(random
on-site potentials) and off-diagonal disorder(random hopping integrals). The nonequilibrium Green function
formalism provides a Landauer-type formula for the conductance of arbitrary mesoscopic systems. We use this
formula to calculate the resistance of finite-size disordered samples of different lengths. The resistance aver-
aged over disorder configurations is linear in sample length and resistivity is found from the coefficient of
proportionality. Two structures are considered:(1) a simple cubic lattice with ones-orbital per site, and(2) a
simple cubic lattice with twod-orbitals. For small values of the disorder strength, our results agree with those
obtained from the Boltzmann equation. Large off-diagonal disorder causes the resistivity to saturate, whereas
increasing diagonal disorder causes the resistivity to increase faster than the Boltzmann result. The crossover
toward localization starts when the Boltzmann mean free pathl relative to the lattice constanta has a value
between 0.5 and 2.0 and is strongly model dependent.
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Saturation of resistivity in metallic compounds1 as well as
its absence2 is an interesting phenomenon which is far from
fully understood. Some compounds saturate at the levels pre-
dicted by the Ioffe-Regel condition(l =a, wherea is lattice
constant andl is the mean free path), others saturate at much
larger levels(i.e., higher resistivity), and there are some that
do not saturate at all. This diversity in behavior received
substantial attention from theorists. For example, Milliset
al.3 applied dynamical mean-field theory to calculate resis-
tivity of electrons coupled to phonons and static disorder.
Gunnarssonet al.4 studied several rather realistic models
with different forms of electron-phonon coupling using a
quantum Monte Carlo method. They observed saturation of
resistivity in the case of phonons coupled to hopping matrix
elements. In an attempt to understand the mechanism of satu-
ration we chose to study transport properties of simple mod-
els of metals with static disorder(as opposed to models
closely reproducing reality).

The resistivity was calculated using the Landauer-type
formula for the zero-temperature linear response of mesos-
copic systems, which can be derived in the framework of
nonequilibrium Green function formalism.5

G =
2e2

h
Tr fGLGretGRGadvg,

whereGret andGadv are retarded and advanced Green’s func-
tions of the system of interest,GL and GR are matrices de-
scribing the effect of contacts on the system.

The formula above is suitable only for finite samples,
whereas our aim is to calculate the resistivity of bulk disor-
dered material as a function of strength of disorder. The so-

lution is to calculate resistance of several samples of differ-
ent lengths and then extract bulk resistivityr from the data
using the formulaR=Lr /A (L is length,A is cross section).

Let us describe the setup of calculation for an individual
sample. We consider a sample consisting ofNx3Ny3Nz unit
cells (for our simple cubic examples, each unit cell contains
one atom). The sample is placed between two semi-infinite
contacts of the same cross sectionNy3Nz. Both contacts and
sample have the same crystal structure and are described by
a tight-binding Hamiltonian with the same parameters. Then
tight-binding parameters for atoms inside the sample are ran-
domly changed from their initial values according to rules
given later and the resistance of the disordered sample is
calculated.

Our sample is not periodic in the direction of current flow
X, but, in order to decrease the effect of boundaries on the
results, periodic boundary conditions(with periodNy andNz)
are used in the perpendicular directionsY andZ. Then stan-
dardk-vector formalism applies in these two directions. For
a given k-vector, Hamiltonians of the sample and contacts
are constructed and the conductance is calculated. Then the
conductance is averaged with equal weights overk-points on
a uniform grid (a 636 grid was used, with a new random
Hamiltonian at eachk-vector).

In the limit of small disorder strength, three-dimensional
transport should be accurately described by the linearized
Boltzmann equation. Therefore it is useful to compare our
numerical results with resistivity obtained from the Boltz-
mann equation. We did not solve this equation exactly, but
used instead the standard procedure of a displaced Fermi-
Dirac distribution6 Fskd, fFDsk+eEt /hd, where the dis-
placementeEt /h to variational accuracy is given by
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2svk − vk8d
2dsek − eFddsek8 − eFd

2ok
vk

2dsek − eFd
,

where "vk=¹kek, Vkk8 is the matrix element of scattering
potential calculated in Born approximation and the bar indi-
cates the ensemble average.

The first case is a simple cubic crystal, with one atom per
unit cell and ones-orbital per atom. There are two tight-
binding parameters, the energy levele0 (diagonal element of
Hamiltonian) which is taken to be zero and the hopping in-
tegralt=1 between first nearest neighbors(all other hopping
integrals are neglected). We consider a half-filled band. Two
types of disorder are possible in this model, diagonal and
off-diagonal.

In the case of the diagonal disorder, the hopping param-
eter t is kept constant throughout the sample but the energy
level e is changed randomly according to the formula:e=0
+j, wherej is a random variable distributed uniformly in
f−W/2 ,W/2g. W serves as the measure of disorder strength.
The scattering potentialuVkk8u

2 is thenW2/12.
In this calculation as well as in all others, the cross section

of samples is 939, and the lengths used are 5, 6, 7, and 8.
For each length, 36 configurations of disorder are created,
the resistance of the sample for each configuration is calcu-
lated and then averaged over configurations. This procedure
is repeated for differentL and W. In order to find the bulk
resistivity, resistance vsL is plotted for eachW and resistiv-
ity is found from the slope of the resulting line.

Final results are shown in Fig. 1. The resistivityrB calcu-
lated using a linearized Boltzmann equation is plotted on the
same graph for comparison. The resistivity depends linearly
on W2 in a quite large range ofW (up to W=8). At largerW
it deviates upwards from the Boltzmann resistivityrB. The
dotted curve shows the mean free pathl =kv2l1/2t calculated
from Boltzmann resistivity vsW2. It can be seen that devia-
tion of resistivity from linear starts approximately when
l /a,0.5. This result reproduces the earlier work done by
Nicolic and Allen7 (with a different computer code).

In the case of off-diagonal disorder, the energy levele is
kept constant whereas hopping elementst inside the sample
are changed randomly according tot=1+j, wherej is again
a random variable distributed uniformly inf−W/2 ,W/2g.

The calculational procedure is otherwise the same. Results
for off-diagonal disorder are shown in Fig. 2. It can be seen
that resistivity depends linearly onW2 up to W=2. At larger
W, when l /a,1, the resistivity deviates from linear, and at
W=4 it starts to saturate at some level. Therefore in the case
of off-diagonal disorder there is no metal-insulator transition
(in agreement with the statement of Antoniou and
Economou8). It should also be noted that our result is similar
to the results of Calandra and Gunnarsson9 obtained for a
more realistic model of disorder induced by electron-phonon
interaction.

We also studied the combination of diagonal and off-
diagonal disorders in order to see how interplay between
them would affect resistivity. Diagonal disorder was kept
constant and off-diagonal disorder was gradually increased.
Some results are shown in Fig. 3. It is clear that the presence
of diagonal disorder can change the resistivity vs off-
diagonal disorder dependence. At the diagonal disorder
Wdiag=11 resistivity decreases with increasing off-diagonal
disorder. AtWdiag=6 resistivity displays nonmonotonic be-
havior. In all cases resistivity saturates eventually at approxi-
mately the same level as in the absence of static diagonal
disorder(see Fig 2).

Next we consider a simple cubic structure with one atom
per unit cell, but twod-orbitals per atom, namelyux2−y2l
and u3z2−r2l (Eg orbitals). As in the previous model, only
first nearest neighbor hopping is considered. In this case, all
hopping elements can be expressed in terms of two coupling

FIG. 1. Resistivity for a singles-band model with diagonal dis-
order. The solid line is the Boltzmann resistivity for the same
model. The dashed line shows the Boltzmann mean free path vsW2.

FIG. 2. Resistivity for a singles-band model with off-diagonal
disorder. The solid line is the Boltzmann resistivity for the same
model. The dashed line shows the mean free path vsW2.

FIG. 3. Resistivity for a singles-band model with a combination
of disorders. Diagonal disorder is kept constant, off-diagonal disor-
der varies.
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parameterssddsd andsdddd which are taken to be 0.051 and
0.003 eV, respectively. Both orbitals have energy levels set
to zero.

First, diagonal disorder with a uniform distribution was
considered. The twoEg orbitals are given independent ran-
dom diagonal energies. Disorder strengthW is measured in
terms of the full bandwidth, which for the present choice of
parameters equals 0.3 eV. The resulting graph of resistivity
vs W2 is shown in Fig. 4 along with the Boltzmann resistiv-
ity. As in the case of a single orbital model, the resistivity is
initially linear in W2 and then begins to deviate upwards
when l /a,1, indicating the presence of a metal-insulator
transition at largerW.

Off-diagonal disorder in the case of twod-orbital models
can be created in numerous ways since there are several dif-
ferent hopping elements in the Hamiltonian. We chose disor-
der strength to be proportional to the hopping element itself,
or more specifically:t− t0= t0pj, wherej is defined above.
Results are shown in Fig. 5 and are similar to those of the

single s-orbital model. The resistivity starts to deviate from
Boltzmann-like whenl /a,2, and to saturate whenl comes
close to the lattice constant, in agreement with Ioffe-Regel
condition.

The main conclusion to be drawn is that the key factor to
resistivity saturation in metals is strong off-diagonal disorder.
The combination of diagonal and off-diagonal disorder can
produce various types of the resistivity behavior: decreasing,
increasing, or nonmonotonic. Saturation is found even in the
case of a single band, which is in disagreement with the
statement of Allen and Chakraborty10 that multiband struc-
ture is essential for saturation. The value ofl /a at which
Boltzmann theory starts to break down varies surprisingly
strongly, from 0.5 to 2.0, for the four models considered
here.
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FIG. 4. Resistivity for theEg model with diagonal disorder. The
solid line is the Boltzmann resistivity for the same model. The
dashed line shows the mean free path vsW2. It can be seen that
resistivity deviates from the Boltzmann expression whenl becomes
close to lattice constanta.

FIG. 5. Resistivity for theEg model with off-diagonal disorder.
The solid line is the Boltzmann resistivity for the same model. The
dashed line shows the mean free path vsW2. It can be seen that
resistivity deviates from Boltzmann expression whenl becomes
close to lattice constanta.
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