SUPPORTING INFORMATION

Photoreductive Dissolution of Iron Oxides Trapped in Ice and Its Environmental Implications

Kitae Kim†, Wonyong Choi†*, Michael R. Hoffmann‡, Ho-Il Yoon§, Byong-Kwon Park§

†School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea
‡W. M. Keck Laboratories, California Institute of Technology, Pasadena, CA, USA
§Korea Polar Research Institute, Incheon, Korea

FIGURE S1. Characterization of synthesized hematite. (a) XRD pattern of commercial hematite (Aldrich) and synthesized hematite. (b) UV-visible absorption spectrum of synthesized hematite colloid (16 mg/L) and the transmittance of pyrex filter.
FIGURE S2. Comparison of the UV light absorbed by the ice and aqueous solution containing ferrioxalate. The photogeneration rates of Fe$^{2+}$, which indicate the absorbed light intensity, are compared between ice and water.