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Why current-carrying magnetic flux tubes gobble up plasma
and become thin as a result @
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Suppose an electric currehflows along a magnetic flux tube that has poloidal flixand radius
a=a(z), wherezis the axial position along the flux tube. This current creates a toroidal magnetic
field B, . It is shown that, in such a case, nonlinear, nonconservatie forces accelerate plasma
axially from regions of smalk to regions of largea and that this acceleration is proportional to
dl?/9z. Thus, if a current-carrying flux tube is bulged at, say;0 and constricted at, say,

= +h, then plasma will be accelerated fra + h towardsz=0 resulting in a situation similar to

two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal
magnetic flux fromz= *=h to z=0. The counterdirected flows collide and stagnate=a and in

so doing(i) convert their translational kinetic energy into hedt) increase the plasma density at
z~0, and(iii) increase the embedded toroidal flux densitg=at0. The increase in toroidal flux
density az~0 increase8 , and hence increases the magnetic pinch foree=d and so causes a
reduction ofa(0). Thus, the flux tube develops an axially uniform cross section, a decreased
volume, an increased density, and an increased temperature. This model is proposed as a likely
hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially
uniform, hot, and bright. It is furthermore argued that a small number of tail particles bouncing
between the approaching counterstreaming plasma jets should be Fermi accelerated to extreme
energies. Finally, analytic solution of the Grad—Shafranov equation predicts that a flux tube
becomes axially uniform when the ingested plasma becomes hot and dense enough to have
ZMOnKT/Bgolz(,uola(O)lw)Z/Z; observed coronal loop parameters are in reasonable agreement
with this relationship which is analogous to havifj,=1 in a tokamak. ©2003 American
Institute of Physics.[DOI: 10.1063/1.1558275

I. INTRODUCTION take into account possible variability in the length of the

A long standing mystery in solar physics is why solar archeq loop. Thg Fig.(®) ggometry will be characterized by
coronal loops typically have an axially uniform cross a straight cyl'lndrllcal coordinate syste[m ¢_' Z, Wherez re-
section® i.e., a filamentary shape. This issue has been madférs to the direction along the loop axig, is the azimuthal
especia”y pressing by recent Transition Region and Coronajirection about the axis, andis the distance from the axis.
Explorer(TRACE) spacecraft soft x-ray images which show The ¢ direction is called the toroidal direction and the
a multitude of highly-defined axially uniform loopspr ex-  directions are called poloidal. Flux coordinates will also be
ample, see Fig. 1. Axial uniformity of flux tubes is also com- used when appropriate. This poloidal/toroidal nomenclature
monly observed in laboratory experiments, for example, inis formally the same as that used for tokamaks, but the con-
recent simulations of solar prominences. figuration should not be confused with a tokamak as there

This paper argues that axial uniformity is the result of agre no closed poloidal field lines. The currénwill be as-
rather complex sequence of events which occur whenever afy,meq to be relatively small so that the poloidal field mag-
electrlg currentl is made to flow along an mma!ly axially nitude ~ B, is always much larger tha,, in which case the
nonuniform, current—freg, amsymmgtrlc magnetic -flux tl.Jpequx tube is only slightly twisted. We note that this straight
(a process corresponding to injection of magnetic helicity

into the flux tubg. The sequence of events occurs even whencylmdncaI approximation of flux tube geometry has been

| is modest, i.e., even when the flux tube is only slightlyu,Sed N Mmany previous §tud|es of flux tbe equilibria, espe-
twisted. cially force-free equilibria(for example, see Refs. 49

The typical arched shape of coronal loops is shown scheoWwever, the analysis presented here differs substantively
matically in Fig. Za); to make the analysis tractable we will from these previous studies because our analysis does not
assume that the loop is straight as sketched in Fib). 2 begin by assuming existence of an equilibrium. Instead, our
However, in order to retain an important aspect of the arche@nalysis characterizes the dynamics that lead to an equilib-
shape, we will allow the length of the straight loop to vary torium and shows how the resulting equilibrium is intimately

related to these dynamics. Furthermore, our analysis takes

paper BI2 3, Bull Am. Phys. Sod7, 21 (2002. |r_1to a_ccpunt the non—for.ce-free aspects of the eq_whbnum
Pnvited speaker. (i.e., finite pressure gradientand shows that these finiie
1070-664X/2003/10(5)/1999/10/$20.00 1999 © 2003 American Institute of Physics
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FIG. 1. TRACE soft x-ray photo showing axial uniformity of coronal loops
(image courtesy Lockheed Martin Solar and Astrophysics)Lals dis-
cussed in the text, the slight wrapping of flux tube #1 around flux tube #2
indicates that net currents flow along the flux tubes.

aspects are of vital importance to the axial uniformity of the
equilibrium.

Because of the assumed axisymmetry in Fifp) 2the
magnetic field can be expressed as

1
B=5—(VyxV+uol V), M
whereV ¢= ¢/r and
zp(r,z,t):frBz(r’,z,t)Zwr’dr’ (2
0

is the poloidal flux. Axial nonuniformity corresponds to hav-
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9%yl 9z2>0. The current is similarly given as

r
I(r,z,t)zf J,(r",z,t)27r'dr’
0

and is related to the toroidal field by Anes law, i.e.,
ol =2mrB,. The current risetime is assumed to be suf-
ficiently slow that Alfven wave propagation effects are un-
important, i.e., it is assumed thap>h, where 21 is the
length of the flux tube. The current thus flows as in an elec
tric circuit so that there are no retarded time or radiation
effects. Taking the curl of Eq(l) shows that the current
density associated with the magnetic field is

r2v
=
2 o

r

1V 1VIV
SV |+ 5-VIXV .

Controversy exists regarding the properties (@fz) ex-
ternal to the current-carrying flux tube. Some aut
gue thatl must vanish outside the flux tube while othérs®
argue thatl should be finite outside. If one insists thiat

with corresponding subsurface field and source currents. The cross section
of the loop is largest at the top of the loop where the magnetic field is
weakest; (b) straight cylindrical representation of coronal loop used in
model.

vanishes outside the flux tube so that there is no net current
in a flux tube, the flux tube acts like a coaxial cakile., a
center conductor sheathed by a coaxial outer conductor car-
rying equal and opposite currénfThis neutralized current
configuration hasB,=0 external to the flux tube and so
cannot produce magnetic forces on external currents. Adja-
cent neutralized flux tubes thus cannot exert forces on each
other and so will not mutually interact, just like adjacent
coaxial cables will not mutually interact. Furthermore, sec-
tions at different axial positions along the length of a neu-
tralized flux tube cannot interact via magnetic forces. The
lack of interaction between sections at different axial posi-
tions along the length of a neutralized flux tube means that
such a flux tube cannot undergo a kink instability since a
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kink instability involves relaxing to the state of lowest mu- thus initially potential (i.e., VXB=0 initially) and the
tual interaction energy between loop segmestmilarly, a  source currents generating this potential field are external to
coaxial cable will not undergo a kink instability since there isthe flux loop and, as sketched in Figa are assumed to be
no force between axially separated segments below the solar surface. Thus the initially potential coronal

In contrast, having a net curreni.e., being non- |oop sketched in Fig. (@) will have a magnetic field that is
neutralized implies existence of an external potential mag-stronger at the footpoints than at the arch top because the
netic fieldB,~1/r outside of the flux tube just like the mag- arch top is further from the source currents. This means that
netic field external to an ordinary current-carrying wire. Anthe initial current-free flux tube will be bulged at the top
individual flux tube with net current can kink since, if its axis pecause the magnetic field is weaker there. In the straight
bends, there will be forces between sections at different axiajeometry representation given by FigbR the bulging at
positions. Two flux tubes, each carrying net current, will ex-the arch top corresponds to having the initially potential po-
perience mutual interaction forces due to Bygof one flux  |oidal field stronger az= + h than atz=0 and the flux tube
tube interacting with the current of the other flux tube. Thus diameter larger az=0 than atz= + h.
two adjacent flux tubes each with net current will tend to The sequence of events that occurs when the current is
wrap around each other as shown in Figa)2of Ref. 16  ramped up to a steady-state will be shown to consist of the
since the axis of each flux tube will be affected by Bigof  following three stages:
its neighbor. Since we are assuming here BgtB, this (1) The first stage consists of a twisting of the magnetic
wrapping will be very slight. Examination of the loop struc- field about thez axis in Fig. 2b) together with an associated
tures #1 and #2 denoted by arrows in Fig. 1 show that thesgansient toroidal plasma velocity , . This stage is incom-
two structures do indeed wrap around each other sligbtly  pressible and maintains the flux tube poloidal profile, i.e.,
the left, loop #1 is to the rear of loop #2; on the right, the two y(r,z) is unchanged and the flux tube remains bulged. The
loops appear to be in the plane of the photo velocity U, is proportional tozdl/t and the toroidal accel-

Based on the observations that kinks do occur in solagration is proportional t@d?l/dt?.
structures and that coronal loops do show evidence of wrap-  (2) The second stage involves generation of axial plasma
ping we will assume in this paper that net current does flowflows. These flows go frorz==h where the flux tube di-
in a flux tube, i.e., that the current is non-neutralized. Thisameter is small tz=0 where the diameter is large. The
assumption is additionally supported by recent work byflows are driven by a-directed force which is proportional
Feldman’ and by Wheatland who, after careful analysis of to —g12/5z. This axial force is a nonlinear function ofin
a variety of observational evidence, have concluded that nefontrast to the first stage toroidal acceleration which is a
currents do flow. linear function ofl.

The assumption of net current means that we are allow-  (3) The third stage involves stagnation of the converging
ing flux tubes to interact with each other via magnetic forcesflows atz=0 resulting in plasma heating as the flow kinetic
However, since the effect of this interaction is to alter theenergy is converted into heéhermalized. There is also an
three dimensional locus of a flux tube axis, and since we argccumulation of convectemroidal flux atz=0 which leads
invoking the straight axis approximati¢ne., using Fig. )  to an enhancement of the pinch forcezat0. The enhanced
to represent Fig. )], we are removing from consideration pinch force squeezes the flux tube diameter-adD so that
the evolution of the three dimensional locus of the flux tubethe flux tube approaches axial uniformity, i.@/dz—0.
axis. The straight axis approximation is thus analogous to @itimately, an axially uniform flux tube loaded with hot
kinematics problem where one works in the center of masglasma results.
frame of a body and so removes from consideration external
body forces that change the location of the center of mass.

The dynamics of the configuration are governed by thd!- LACK OF EQUILIBRIUM FOR ARBITRARILY
combination of the magnetohydrodynanilddHD) equation SPECIFIED MAGNETIC FIELDS

of motion, Arbitrarily specified magnetic fields do not, in general,
U have associated MHD equilibria, i.e., in general, no pressure
pa:\]x B—VP (5) P(r) exists which satisfies
JXB=VP 8

and the induction equation o . ) .
for arbitrarily specifiedB(r). The essential physics underly-

ing this assertion is th& X VP is identically zero whereas
VX (JIXB) is not necessarily zero, i.&V,P is always a con-
servative force whereakx B is in general nonconservative.
where the latter is obtained from the curl of the ideal MHD A nonconservative force has an associated torque and since a
Ohm's law pressure gradient cannot balance a torque, no equilibrium is
E+UXB=0. @) possible WherV”x (IXB) is finite. - .
As a specific example that equilibria do not exist for
The flux tube ends are a=+h and the flux tube arbitrarily specified magnetic field configurations, consider
middle is atz=0. The flux tube is assumed to be initially the simple situation sketched in Fig. 3. We assert that no
current-free so that initially=0. The field in the flux tube is MHD equilibrium is possible for this configuration, i.e., this

B
E—VX(UXB), (6)
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poloidal which is smaller than the on-axis pressurezatz, sinceb
Flux >a. Thus, the pressure i®t uniform along the on-axis field
i sur\{-‘aces\\ - ' r line and so the requiremem-VP=0 is violated on the
20 —— oxls 2 ‘-(};z z-axis. Equation8) is therefore not satisfied and so equilib-
;{ rium does not exist. Because there is radial pressure balance
T Z, but not axial pressure balance, we might expect flows to be

Z, . . O .
driven fromz; to z,. The situation is analogous to squeezing

FIG. 3. Poloidal flux surfaces of a magnetic field configuration for which nothe end of a toothpaste tube and having toothpaste squirt out
finite pressure gradient MHD equilibrium is possible. the mouth of the tube.

configuration cannot satisfy E¢8). This assertion is estab- !ll. GENERAL CASE USING FLUX COORDINATES

lished by calculating radial pressure balance at axial loca- | ot us now return to the problem of a coronal loop
tionsz, andz, where the respective flux tube radii @@and \ hich is initially current-free and bulging a=0, but then
b with b>a. If satisfied, Eq.(8) imposes the requirement o« 4n externally driven curremtslowly ramped up to a

B-VP=0 which means that the pressure must be the samgynsiant value. We define a right-handed orthogonal coordi-

everywhere on a field line. o nate system based on the poloidal flux coordinates. The unit
The poloidal component of the magnetic field is assumeq,qciors of this system are

to be straight, uniform, and in thedirection at bothz; and

Z,. Because the field lines are more densely packed at o — Vi e,=
than atz,, the magnetic field is such thBt(z,)>B,(z,). In Vvl (RS
addition, since the poloidal magnetic field is uniformzat (15)

and z,, the toroidal current vanishes at bath and z, [in 00— VyxVé
fact, uniformity of poloidal field is more than is needed for P VXV o)
the toroidal current to vanish as the most general requireme
for the toroidal current to vanish is to have- (r ~2V )
=0].

UsingJ,,=0 the radial component of E) is therefore

0 thatewHF and eBpOﬁ% if the field lines are straight and
axial. The form ofe, shows thaB,=B-¢, is zero by defi-
nition; i.e., the magnetic field can never have a component in
the direction ofV .

IP/J IB ol 0l . The current density can be decomposed into the compo-
=" - o nents
O (2mr)2or
However, the toroidal component of E@®) gives JW:Z—VI XV _|V4/1| , (16)
aw
(VIXV )X (VipxXVp)=0 (10)
which implies thatl=1(¢). Since the poloidal magnetic Jy=— in//), 17)
field is straight and uniform at botky andz,, the poloidal 27 o r?

flux function must have the forn= yyr?/a? at z, and ¢ 1 VI.Vy
= or?/b? at z,, where i is the flux on the surface for Jspo=5— o
which P vanishes and,b are the respective radii of these 2mr |Vl

flux surfaces ar; andz,. The simplest nontrivial possibility We now argue thad,,J,, andJg,, each have distinctive
for I=1(y) is to assume thdtis a linear function of so physics.

(18

ol = . (11) The component,, flows normal to flux surfaces and
_ 0 provides the torque that causes the plasma to rotate toroi-
Radial pressure balance &t z, thus becomes dally. This current can only be transient and is identified as

2y o azwé . the polarization currerlf Polarization current can be thought

oPlof=— ——— T — _ — (12  of as being an essentially dependent quantity; that is, one
(27r)2po 9" 2mpg at first determines the amount of toroidal acceleration using an

which can be integrated to give the on-axis pressum & analysis t_hat does_ not involve_ th(_a equation of_motion, a_nd
be then one inserts this acceleration into the equation of motion
to calculate the required polarization current. The reason for

P r a?ys this inferior status of the toroidal component of the equation

0 a
P(0,z zf draP/&rzf dr —= . ion i i ;
(0,29) . 0 2m%ugat  Antalug of motion is that the toroidal symmetry of the system pro

(13) vides a strong constraint on the dynamics. From a MHD
o _ _ point of view, the toroidal symmetry means that no toroidal
However, a similar evaluation of the on-axis pressure at pressure gradient can exist and also no toroidal electrostatic

=Z; gives electric field can exist. From a particle Hamiltonian point of
a2 l//é yiew, this symmetry means that the maximum excursion par-
P(0z)=——5—, (14)  ticles can make from a flux surface is no more than a poloi-
4D o dal Larmor radiug® a microscopic length. The localization
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Initially untwisted potential flux loop Iy
—t +Upor Vo=0. (21

We will show thatU,, results from a weak nonlinear force
and so is negligible at timets-0 because there has not been
enough time for a significart,,, to develop. In contrast) ,
is proportional todl/dt and soU, is large att~0 when
dllat is at its maximum. HoweveU , goes to zero at large
times whendl/dt— 0. Thus, the time wheb 4 is finite pre-
cedes the time whel,, is finite. The first stage character-
izes the timet~0 whenU,, is negligible, ¢ is unchanged
from its initial potential state,, is negligible, andU , is
transiently finite.

Letting s denote the distance along the poloidal field
FIG. 4. First stage dynamics: Top shows flux tube wher0. Bottom from the z=0 plane and taking into account thﬁboFO,

shows flux tube when is finite, but (r,z) is not yet changed from its .
initial potential value. The evolution from the top to the bottom situation Eq. (20) may therefore be approxmatedta%o as

involves toroidal rotation by a finite amount, but no poloidal flows.

Axial current twists flux loop

B oU
¢ ¢
ot = DBpol s (22)
of particles to the vicinity of a flux surface means that thereWhICh may be integrated with respectsdo give
cannot be any sustained net current density in the direction s B, oS ol
normal to a flux surface and sk, is highly constrained. All Uy= % T 217Tpo|r gt (23

that is allowed is a short-lived transieh having zero time-

average; i.e.J, can only be an ac current. The slight bob- The finite toroidal displacementA¢=[U ,dt is propor-
bing back and forth of particles off of a flux surface consti-tional to s and so gives a twisting up of the flux tube as
tutes the polarization current. Thus the plasma acts like &hown in the bottom sketch of Fig. 4. In fact this twisting
capacitor in the direction normal to the flux surfaces, but likemotion is such that

a wire in the direction along the flux surfaces. As is well (Ad s

known?! the dielectric constant of the plasma “capacitor” is - = (24)
given by uopc?/B?=c?/vi>1. Polarization currents have By Bl

an associated pOIarization electric field normal to the ﬂUXShowing that the p|asma twist is just what is required to keep
surface resulting from the particles making their small excurthe plasma frozen to the twisting magnetic field.

sions from their nominal flux surface. Equation(23) and Eq.(7) together imply the existence of
The current is assumed to be generated by some suban electric field in theV i direction,

surface dynamo and so its time-dependence is a prescribed

quantity. This time dependence is assumed to be sucH that

increases smoothly from zero to some finite value in a char-

acteristic timer>h/v . This smooth increase can be repre-

sented by the characteristic time profile

/.Los ol .

27r at’ (25

E,=—UBpo=—
this is the polarization electric field. The toroidal component
of the equation of motion is

(tankt/7)+1) JU
()= ———F—1o (19 P ==3yBp (26)

so thatl =0 fort<—randl =1, for t> 7. It should be noted sinceB,=0. Thus, the current normal to a flux surface is
that 91/ 9t~ 1/cosK(t/7) which has its maximum &t=0 and

that %1/ 9t~ —tanh¢/7)/cosH(t/7) which is positive fort _ P Ny p B, p pes 27
slightly beforet=0 and negative fot slightly aftert=0 and v Bpol dt B;ZJOI at BSm 2mr g2’

then otherwise zero.

. Equation(27) clearly shows thal , is indeed the polarization
A. First stage (ramp-up ) current and thafl,, is essentially a dependent quantity since

At the beginning of the first stageis zero and the flux it is proportional tos?l/gt2. The polarization current is tran-
tube is untwisted as shown in the top sketch of Fig. 4. Thésient and, for positives, is first negative and then positive

toroidal component of the induction equation is (andvice versdor negatives). BothU 4 and the polarization
currentJ,, vanish whenl is in steady state. The chain of

By Uy By dependence is such that the induction equation first deter-

at =IBpor’ V(T) ~Upor V(T) —ByV-Up (20 minesU , which then determine3,, via the equation of mo-
tion. For a long, thin flux tubes=z, B,,=B,, and they

and the toroidal component of Ohm’s law can be expressedirection is approximately the direction. Fort>r, the po-

as loidal currentl is in steady state and g4,=0 for t>r7.
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B. Second stage (steady /, development of finite U ) so that

both zero. Equatiori16) shows that),=0 implies|=1(y) 573 (33
a

in which case surfaces of constapfr,z) are also surfaces
of constant (r,z). At the beginning of the second stagé,,,  is the axial force due to the axial nonuniformity of the
has not yet developed and gdr,z) is assumed to be un- pressure.

changed from its initial potentialvacuum state, i.e., the Using |(r,z):|0r2/a2 to estimate the axial component
poloidal profile of the flux surfaces is not yet deformed. of the magnetic force gives
Thus,Jy=—r(2mwe) V- (r 2V¢)=0 at the beginning of
the second stage.

Sincel is constant in the second stagé,, andJ, are IP ol ( 1 rz) Ja

0z 77233 E

Mo (9'2 ,(Lolg r2 Ja

We now consider the dynamics. The magnetic force can (JXB).=~ 8m2r2 02  2p2 b 0z’ (34
be decomposed into toroidal and poloidal components as ) o ) .
follows: The total force in the direction for this case is thus
IXB=J,6X Boot JpoX Biort JiorX Bpol - 28 aP F r2\ sa
pol pol T Ypol tor T Ytor pol ) (28) F,=(JXB),— a_ _ MOZ 03 _ _2> a_ (35)
However,J X Bpo=J,X Bpo=0 andJi,=J,¢=0 so that Z 2ma a®) oz

the magnetic force at the beginning of the second stage rerhjs total force is peaked on the axis and has magnitude
duces to 5
By

Mo

d

1 |
J><B=Jp0,tho,=E(V|><V¢)><’2L—STV¢ >

) : (36)

This force will result in axial flows fronz= +h to z=0 with

__ Mo V|2 (29 velocities that are of the order &,(r=a,z=*h)/\uep.
8n2rz Becausel ,=0, the behavior is essentially identical to the

) ) . ) . situation whereyy=0 and so the flow acceleration mecha-
Since the curl of the magnetic force given in HG9) is gy s similar to that discussed in Refs. 22—25 which con-

nonzero, it is impossible for a pressure gradient to balancgider MHD arc-jets for the situation of purely toroidal mag-
the magnetic force at this stage. Thecomponent of the netic fields.

magnetic force is

po 017
87r2 oz

(IXB),=— (30)

C. Third stage (convection of toroidal flux, fluid

stagnation, heating, compression )
which is independent of the sign bfnonlinear inl, and such

as to accelerate plasma from regions where the diameter of 'n€ force given by Eq(29) has a finite curl and so
the current channel is small to regions where the diameter ig""_”mt be balgnced .by a pressure gradlgnt so long as the
large. In the case of a flux tube which is bulged in theoriginal potential profile ofy(r,z) is maintained. Thus, the

middle, the force given in Eq(30) will accelerate plasma only way for an equilibrium to develop is for the profile of
axially from z= = h towardsz=0. ¥(r,z) to change. This is clearly evident from the discussion

The force given in Eq(30) vanishes at=0 sincel in Sec. Il B. Equation(35) shows that axial equilibrium can

~r2 for smallr. However, axially localized radial force bal- ©Nly occur if 9a/dz—0.

ances will quickly develop between the magnetic force and Attainment of equilibrium involves several inter-related
the radial pressure gradient as discussed in Sec. Il. The rdydrodynamic, magnetic, and thermodynamic phenomena

sulting radial force balance will produce an axially nonuni- Which are shown schematically in Fig. 5. The solid lines in

form pressure and so there will also be an axial force due t§9- © Show a constany surface at an early time and the
the axial pressure gradient. dashed lines show this constaspitsurface at a later time.

Specifically, radial pressure balance means that Typical fluiql elements are shown as _hatched parallelograms
(cross sections of toroiglend the motion of these elements
JaP wo dl? is seen to consist of both axial and radial motion such that
or = IBe=— 822 or (31 each fluid element stays on its own constgnsurface. The
nonconservative nature of tt¥< B force is shown in Fig. 5
This radial pressure balance equation is not integrable fopy the longer length at largée| of the arrows representing
arbitrary I (r,z), but to get an idea for the general behavior JxB. The axial motion corresponds to plasma flows which
we make the assumption that-r? which is integrable. ingest plasma at= =+ h, travel towardsz=0, and then con-
Thus, assumingd (r,z)=(r/a(z))?l, wherel, is the total  verge and stagnate a0 like two water jets pointed at each
current flowing in the flux tube of radius(z), Eq.(31) can  other. The stagnation converts the flow kinetic energy into

be integrated to give heat and simultaneously increases the plasma density at
|2 2 =0 as plasma accumulates there. Thus pressure increases at
_ _Modlo - z=0. Furthermore, toroidal flux embedded in the plasma is
P(r,2) " > (32 : .
A7a a convected by the axial flows and so there will also be an
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FIG. 5. Evolution of flux tube due to effect dfx B force whenl is constant. Solid line shows initial constapgr,z) flux surface, dashed line shows same
flux surface at a later time. Fluid elemerighown hatchedare pushed axially towards=0 while staying on the same constansurface. The resulting fluid
flows collide at thez=0 plane where they thermalize their directed kinetic energy. Toroidal flux and mass accumulate=ad lager also. The accumulation
of toroidal flux atz=0 increase®, there and so pinches down the flux tube diameter causing the flux tube to become axially uniform.

accumulation of toroidal flux az=0. This means that the
density of the toroidal flux will also increasezat 0, i.e.,B,
will increase in the vicinity oz=0.

The increase irB, can be established more rigorously
by considering Eq(20) in the vicinity of z=0 and taking
into account thati) U ,= 0 sincel is constant(ii) U,,— 0 at
z=0 since the flow stagnates a0, and(iii) V-Up,<0
nearz=0 since the flows are convergingzt0. Thus, Eq.
(20) in the vicinity of z=0, reduces to

B,

T (37

- B¢V ‘ Up0|

which shows thatB, must increase sinc& -U,,<0 (we

note that amplification of a magnetic field by a converging
flow has previously been discussed in Ref. 26 but has not

otherwise received much attentjorin the vicinity of the
stagnation layer at=0, the continuity equation reduces to
1dp

pﬂt_

V-Upa (39

D. Changes in length

Making the flux tube axially uniform increas,, be-
cause squeezing the poloidal flux surfaces together results in
a larger field. SinceBp,~B, is much larger tharB,, it
would seem that too much energy would have to be invested
into squeezing the poloidal flux surfaces together. However,
if we recall that the loop is really arched and allow the loop
length to change in such a way thaB,- dl remains con-
stant where the line integral is over the length of the loop,
then the loop length 2 will become shorter as3,, in-
creases. If By, - dl=const, the stored energy in the poloidal
field is

1 1
_ 2 _
Woo=7 - f Bodl-ds= 5~ f Byor f Byor- ds

=2—t0J Bpor- dl=const. (40

It is reasonable to assume thgB,-dl remains constant,
because, is produced by currents external to the flux tube

which can be combined with the induction equation to give[e g., by the subsurface currents sketched in Rig]2These

7By _Byp

ot p ot (39

source currents may be assumed to stay constant on the time
scale during which the flux tube undergoes stages 1-3. If one
follows the poloidal field along its entire length both above

showing thatB, increases in proportion to the increase inand below the solar surface, then it must satisfy Arejse

mass density at the stagnation layer. Sihdég constant and
2mrB 4= uol the current channel radius in the vicinity of the
stagnation layer must decreaseBagincreases to keefB

constant. Thus, the bulge of the current channel must dimin-

ish as sketched in Fig. 5 and, becalisd (), the bulge of

law,

Mol ex= %Bpol'dlzf Bpol'dH'f Bpol'dly (41)
loop subsfc

the constanty surfaces must also diminish. The result is thatwhere the contour consists of the loop above the surface and,
the flux tube tends to become axially uniform, hot, andin addition, the subsurface portion; the contour links links

dense.

the subsurface source current system denoted.gs It
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seems reasonable to assume that the subsurface field remains ;5 /1 o\ Fu . 2B

invariant during stages 1-3 and $@qByo- dl must also r—| - —|+—+ad%y=2— =, (46)
. ar\r or (?22 a2 a2

remain constant. 0 Qo

Thus, as the poloidal field lines squeeze together to mak@herea, is the flux tube radius at=0 andg is defined in
the flux tube axially uniform, the flux tube becomes shortefierms of the mean axial field atz=0, ie., B

in such a way as to keep the energy stored in the poloidak 2, p./(y,/7a2)2. The general solution to E¢46) is
field constant. In this manner, no work needs to be done to

squeeze the poloidal flux surfaces together. One can imagine _2r2 N 4
that the “field line tension” of the poloidal field shortens the Yr.z)= 22 o2a2 vx(r.2), (47)
. . . 0 0
length of the loop as the poloidal field is made stronger when _ _ _
the poloidal flux surfaces are squeezed together. wherex(r,z) is any solution to the homogeneous equation,
J(Lox\ #x
rE(Fﬁ_I’)_l—E—Fa X—O (48)

E. Ultimate beta o
and vy is a constant to be determined. The conditif(r,z)

The zdi fi i E i . ;
e z-directed force given by Eq30) can be written as =1 whenz=0 andr = a, fixes y so that the general solution

d B(ZZS to the Grad—Shafranov equation is thus
== (42
‘Ko _opr? 28 | x(r.2)
The quantityBi/,uo can be considered as an effective poten- ¥(r,z)= azag Tl 1= azaé ¥(a,0)° (49

tial energy and so the fact thBﬁ,/,uo is large atz=*+h and
small atz=0 means that there is an effective potential well If B=a?aj/2 then theonly solution to Eq(46) satisfying the
which the plasma falls down as it moves frams=h to z  prescribed boundary condition thRtvanishes whens= i
=0. The order of magnitude of the resulting flow velocity is is the particular solutiogy= y;r?/a3. However, this solution
given by the reduction in potential energy due to the plasmas axially uniform and so we no longer need to spedafyas
falling down the slopes of the well and so the resulting flowbeing the radius az=0; it is in fact the radius at alk.
velocity will be U2=B%/uop, whereB? is evaluated az ~ Equation(49) provides the important result that having a
—+h WhereBi is largest. Thus, the flow velocity is of the finite but extremely smalB will cause the poloidal flux sur-
order of the Alfva velocity calculated using the toroidal faces to differ substantially from the force-free situation
field (this is much smaller than the Alfmevelocity calculated whereg is exactly zero and in particular will cause the sys-
using the poloidal field on the assumption that the flux tubgem to become axially uniform whep=ce?aj/2. From a
is only slightly twisted.. At the stagnation layer the converg- mathematical point of view this is because the right-hand
ing flow velocity is thermalized and so the plasma pressurgide of Eq.(46) is an inhomogeneous ter(source term of
at the stagnation layer will be of the order Bi=nm2, ~ the partial differential equation. The source term results in
+ nmev$e:pU§:[B?ﬁ/MO]z=ih- Assuming thatB ;<B,, there being a particular solution which would not exist if Eq.
the plasma3 resulting from flow stagnation is therefore ~ (46) were homogeneous, i.e., if were exactly zero.
The axial uniformity condition8=a?a??2 is just Eq.
_ 2pmoP B_i;_ (M_o' (44) and so we conclude that th& produced by flow stag-
B2 B2 W

2 nation is precisely theB required to force the Grad—
. . - 2 . . L. . .
whereais the radius of the flux tube an=Bpqma“. Using  fyrther conclude that, given sufficient time and assuming

2a2

?1

(43

| . . . . .
P Shafranov equation to give an axially uniform solution. We

the definitiona = ol /¢ then there are no losses, current-carrying flux tubes will always
B=a%a?2 (44)  tend to become axially uniform and will always tend to have

) ) ) the B given by Eq.(44). This result is similar to the well-

is the value ofg resulting from flow stagnation. known propert§® of tokamaks havingB,y of order unity

~ The diminishing of the bulge squeezes together the popecayse diamagnetism exactly balances paramagnetism so
loidal field so that there will be a finitd,,, but if the flux 4t the resulting field is a potenti@lacuum field. The roles
tube is squeezed to the point of being axially uniform, thenst hojoidal and toroidal directions are interchanged in the
J, vanishes again. Thuk, starts out by being zero, becomes 4ronal loop compared to a tokamak and so in the coronal
finite, and then becomes zero again if and when the flux tubﬁ)Op it is 84 which is of order unity,
becomes straight. _ _ The predictedd can be compared with actual observed
It an equilibrium is established theixB=VP which \4yes ofg in solar coronal loops. To make a prediction, a
implies B-VP=0 andP=P(¢). We define; as the flux  nominal observed flux loop radius=1.6x 10° m (Ref. 2
surface on whictP vanishes andi(r,z) = (r,z)/ ¢y as the  and a nominal measured active regior2x10°8 m™* are
normalized flux so that used?® These parameters predict a nomingyedicted
. = =a?a%/2=5x10"%. The observed valu@,pseneqis calcu-

P(y)=(1=¢)Po. 49 |ated using a nominal density=10" m~2, and a nominal
where P, is the on-axis pressure. The equilibrium equationtemperature 10K.? In addition, a nominal axial magnetic
JXB=VP can then be written in Grad—Shafraibform as  field B,=1.5x10 2 T is assumed based on the argument
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that since the flux tube is axially uniform, its axial field must Finally, it should be emphasized that symmetries in both
also be axially uniform and so will have the same value asp and inz play a critical role in the behavior described here.
the nominalB,=1.5x10 2 at the surface of an active re- Symmetry in¢ (i.e., toroidal symmetryprevents the exis-
gion. These parameters gV pserved 2,u0nKT/B§=4 tence of any toroidal electrostatic field so that the only al-
X 10~ * which is similar to the predicted value. lowed toroidal electric field is the toroidal electric field as-
This model also has implications regarding the brightensociated with changing poloidal flux, i.e.,E,
ing typically observed when the axis of a coronal loop starts= — (27r) 19yl ot. Particles are therefore constrained to
to writhe and the loop develops a kink instabilisigmoid.  stay within a poloidal Larmor radius of a flux surface so that
Since kink instability occurs wherh~27 (Refs. 30—-34  there can only be ac currents in the direction normal to a flux
and for a long thin flux tub@<h, this model predicts that surface in which case the plasma acts like a capacitor in the
B=a?a?/2< «h?/2 will still be small even ifa is increased direction normal to the flux surfaces. Because toroidal accel-
to the point whereah~27 and kink instability occurs. eration is driven only by the current normal to a flux surface
However, 8 will increase asa increases. Since the bright- and because no toroidal pressure gradient is allowed, the
ness of a loop is proportional 1 for a given temperature, toroidal motion is constrained to be transient, finite, and de-
this model predicts that the loop should brighten in proporpendent on the temporal behaviorlofThus whenl is con-
tion to the writhing of its axigi.e., in proportion toe asah  stant, poloidal current flows along poloidal flux surfaces and
approaches unijy there is no toroidal motion. Symmetry about the 0 plane
The model thus provides a heating mechanistagna- causes this plane to be a stagnation layer where opposing
tion of MHD-driven flows which is consistent with ob- plasma jets collide resulting in accumulation of mass and of
served coronal temperatures and densities; however, the prigezen-in toroidal magnetic flux and also a thermalization of
diction is for nkT rather than for temperature or density the flow kinetic energy.
separately; a more detailed analysis would be required to
isolate the individual dependence of temperature and densi CKNOWLEDGMENT
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