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Why current-carrying magnetic flux tubes gobble up plasma
and become thin as a result a…
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Suppose an electric currentI flows along a magnetic flux tube that has poloidal fluxc and radius
a5a(z), wherez is the axial position along the flux tube. This current creates a toroidal magnetic
field Bf . It is shown that, in such a case, nonlinear, nonconservativeJ3B forces accelerate plasma
axially from regions of smalla to regions of largea and that this acceleration is proportional to
]I 2/]z. Thus, if a current-carrying flux tube is bulged at, say,z50 and constricted at, say,z
56h, then plasma will be accelerated fromz56h towardsz50 resulting in a situation similar to
two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal
magnetic flux fromz56h to z50. The counterdirected flows collide and stagnate atz50 and in
so doing~i! convert their translational kinetic energy into heat,~ii ! increase the plasma density at
z'0, and~iii ! increase the embedded toroidal flux density atz'0. The increase in toroidal flux
density atz'0 increasesBf and hence increases the magnetic pinch force atz'0 and so causes a
reduction ofa(0). Thus, the flux tube develops an axially uniform cross section, a decreased
volume, an increased density, and an increased temperature. This model is proposed as a likely
hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially
uniform, hot, and bright. It is furthermore argued that a small number of tail particles bouncing
between the approaching counterstreaming plasma jets should be Fermi accelerated to extreme
energies. Finally, analytic solution of the Grad–Shafranov equation predicts that a flux tube
becomes axially uniform when the ingested plasma becomes hot and dense enough to have
2m0nkT/Bpol

2 5(m0Ia(0)/c)2/2; observed coronal loop parameters are in reasonable agreement
with this relationship which is analogous to havingbpol51 in a tokamak. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1558275#
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I. INTRODUCTION

A long standing mystery in solar physics is why so
coronal loops typically have an axially uniform cro
section;1 i.e., a filamentary shape. This issue has been m
especially pressing by recent Transition Region and Coro
Explorer~TRACE! spacecraft soft x-ray images which sho
a multitude of highly-defined axially uniform loops;2 for ex-
ample, see Fig. 1. Axial uniformity of flux tubes is also com
monly observed in laboratory experiments, for example
recent simulations of solar prominences.3

This paper argues that axial uniformity is the result o
rather complex sequence of events which occur wheneve
electric currentI is made to flow along an initially axially
nonuniform, current-free, axisymmetric magnetic flux tu
~a process corresponding to injection of magnetic helic
into the flux tube!. The sequence of events occurs even wh
I is modest, i.e., even when the flux tube is only sligh
twisted.

The typical arched shape of coronal loops is shown sc
matically in Fig. 2~a!; to make the analysis tractable we w
assume that the loop is straight as sketched in Fig. 2~b!.
However, in order to retain an important aspect of the arc
shape, we will allow the length of the straight loop to vary

a!Paper BI2 3, Bull Am. Phys. Soc.47, 21 ~2002!.
b!Invited speaker.
1991070-664X/2003/10(5)/1999/10/$20.00
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take into account possible variability in the length of t
arched loop. The Fig. 2~b! geometry will be characterized b
a straight cylindrical coordinate system$r ,f,z%, wherez re-
fers to the direction along the loop axis,f is the azimuthal
direction about the axis, andr is the distance from the axis
The f direction is called the toroidal direction and ther ,z
directions are called poloidal. Flux coordinates will also
used when appropriate. This poloidal/toroidal nomenclat
is formally the same as that used for tokamaks, but the c
figuration should not be confused with a tokamak as th
are no closed poloidal field lines. The currentI will be as-
sumed to be relatively small so that the poloidal field ma
nitude;Bz is always much larger thanBf in which case the
flux tube is only slightly twisted. We note that this straig
cylindrical approximation of flux tube geometry has be
used in many previous studies of flux tube equilibria, es
cially force-free equilibria~for example, see Refs. 4–9!.
However, the analysis presented here differs substanti
from these previous studies because our analysis does
begin by assuming existence of an equilibrium. Instead,
analysis characterizes the dynamics that lead to an equ
rium and shows how the resulting equilibrium is intimate
related to these dynamics. Furthermore, our analysis ta
into account the non-force-free aspects of the equilibri
~i.e., finite pressure gradients! and shows that these finiteb
9 © 2003 American Institute of Physics
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aspects are of vital importance to the axial uniformity of t
equilibrium.

Because of the assumed axisymmetry in Fig. 2~b!, the
magnetic field can be expressed as

B5
1

2p
~¹c3¹f1m0I¹f!, ~1!

where¹f5f̂/r and

c~r ,z,t !5E
0

r

Bz~r 8,z,t !2pr 8dr8 ~2!

is the poloidal flux. Axial nonuniformity corresponds to ha
ing ]c/]zÞ0 and axial bulging corresponds to havin
c21]2c/]z2.0. The currentI is similarly given as

I ~r ,z,t !5E
0

r

Jz~r 8,z,t !2pr 8dr8 ~3!

and is related to the toroidal field by Ampe`re’s law, i.e.,
m0I 52prBf . The current risetimet is assumed to be suf
ficiently slow that Alfvén wave propagation effects are u
important, i.e., it is assumed thatvAt@h, where 2h is the
length of the flux tube. The current thus flows as in an el
tric circuit so that there are no retarded time or radiat
effects. Taking the curl of Eq.~1! shows that the curren
density associated with the magnetic field is

J52
r 2¹f

2pm0
¹•S 1

r 2
¹c D 1

1

2p
¹I 3¹f. ~4!

Controversy exists regarding the properties ofI (r ,z) ex-
ternal to the current-carrying flux tube. Some authors10,11 ar-
gue thatI must vanish outside the flux tube while others12–15

argue thatI should be finite outside. If one insists thatI

FIG. 1. TRACE soft x-ray photo showing axial uniformity of coronal loo
~image courtesy Lockheed Martin Solar and Astrophysics Lab!. As dis-
cussed in the text, the slight wrapping of flux tube #1 around flux tube
indicates that net currents flow along the flux tubes.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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vanishes outside the flux tube so that there is no net cur
in a flux tube, the flux tube acts like a coaxial cable~i.e., a
center conductor sheathed by a coaxial outer conductor
rying equal and opposite current!. This neutralized curren
configuration hasBf50 external to the flux tube and s
cannot produce magnetic forces on external currents. A
cent neutralized flux tubes thus cannot exert forces on e
other and so will not mutually interact, just like adjace
coaxial cables will not mutually interact. Furthermore, se
tions at different axial positions along the length of a ne
tralized flux tube cannot interact via magnetic forces. T
lack of interaction between sections at different axial po
tions along the length of a neutralized flux tube means t
such a flux tube cannot undergo a kink instability since

2

FIG. 2. ~a! Potential ~i.e., current-free! coronal loop above solar surfac
with corresponding subsurface field and source currents. The cross se
of the loop is largest at the top of the loop where the magnetic field
weakest;~b! straight cylindrical representation of coronal loop used
model.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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2001Phys. Plasmas, Vol. 10, No. 5, May 2003 Why current-carrying magnetic flux tubes gobble up . . .
kink instability involves relaxing to the state of lowest m
tual interaction energy between loop segments~similarly, a
coaxial cable will not undergo a kink instability since there
no force between axially separated segments!.

In contrast, having a net current~i.e., being non-
neutralized! implies existence of an external potential ma
netic fieldBf;I /r outside of the flux tube just like the mag
netic field external to an ordinary current-carrying wire. A
individual flux tube with net current can kink since, if its ax
bends, there will be forces between sections at different a
positions. Two flux tubes, each carrying net current, will e
perience mutual interaction forces due to theBf of one flux
tube interacting with the current of the other flux tube. Th
two adjacent flux tubes each with net current will tend
wrap around each other as shown in Fig. 2~a! of Ref. 16
since the axis of each flux tube will be affected by theBf of
its neighbor. Since we are assuming here thatBf!Bz this
wrapping will be very slight. Examination of the loop stru
tures #1 and #2 denoted by arrows in Fig. 1 show that th
two structures do indeed wrap around each other slightly~on
the left, loop #1 is to the rear of loop #2; on the right, the tw
loops appear to be in the plane of the photo!.

Based on the observations that kinks do occur in so
structures and that coronal loops do show evidence of w
ping we will assume in this paper that net current does fl
in a flux tube, i.e., that the current is non-neutralized. T
assumption is additionally supported by recent work
Feldman17 and by Wheatland18 who, after careful analysis o
a variety of observational evidence, have concluded that
currents do flow.

The assumption of net current means that we are all
ing flux tubes to interact with each other via magnetic forc
However, since the effect of this interaction is to alter t
three dimensional locus of a flux tube axis, and since we
invoking the straight axis approximation@i.e., using Fig. 2~b!
to represent Fig. 2~a!#, we are removing from consideratio
the evolution of the three dimensional locus of the flux tu
axis. The straight axis approximation is thus analogous
kinematics problem where one works in the center of m
frame of a body and so removes from consideration exte
body forces that change the location of the center of ma

The dynamics of the configuration are governed by
combination of the magnetohydrodynamic~MHD! equation
of motion,

r
dU

dt
5J3B2¹P ~5!

and the induction equation

]B

]t
5¹3~U3B!, ~6!

where the latter is obtained from the curl of the ideal MH
Ohm’s law

E1U3B50. ~7!

The flux tube ends are atz56h and the flux tube
middle is atz50. The flux tube is assumed to be initial
current-free so that initiallyI 50. The field in the flux tube is
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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thus initially potential ~i.e., ¹3B50 initially! and the
source currents generating this potential field are externa
the flux loop and, as sketched in Fig. 2~a!, are assumed to be
below the solar surface. Thus the initially potential coron
loop sketched in Fig. 2~a! will have a magnetic field that is
stronger at the footpoints than at the arch top because
arch top is further from the source currents. This means
the initial current-free flux tube will be bulged at the to
because the magnetic field is weaker there. In the stra
geometry representation given by Fig. 2~b!, the bulging at
the arch top corresponds to having the initially potential p
loidal field stronger atz56h than atz50 and the flux tube
diameter larger atz50 than atz56h.

The sequence of events that occurs when the curren
ramped up to a steady-state will be shown to consist of
following three stages:

~1! The first stage consists of a twisting of the magne
field about thez axis in Fig. 2~b! together with an associate
transient toroidal plasma velocityUf . This stage is incom-
pressible and maintains the flux tube poloidal profile, i.
c(r ,z) is unchanged and the flux tube remains bulged. T
velocity Uf is proportional toz]I /]t and the toroidal accel-
eration is proportional toz]2I /]t2.

~2! The second stage involves generation of axial plas
flows. These flows go fromz56h where the flux tube di-
ameter is small toz50 where the diameter is large. Th
flows are driven by az-directed force which is proportiona
to 2]I 2/]z. This axial force is a nonlinear function ofI in
contrast to the first stage toroidal acceleration which is
linear function ofI.

~3! The third stage involves stagnation of the converg
flows atz50 resulting in plasma heating as the flow kine
energy is converted into heat~thermalized!. There is also an
accumulation of convectedtoroidal flux at z50 which leads
to an enhancement of the pinch force atz50. The enhanced
pinch force squeezes the flux tube diameter atz50 so that
the flux tube approaches axial uniformity, i.e.,]c/]z→0.
Ultimately, an axially uniform flux tube loaded with ho
plasma results.

II. LACK OF EQUILIBRIUM FOR ARBITRARILY
SPECIFIED MAGNETIC FIELDS

Arbitrarily specified magnetic fields do not, in genera
have associated MHD equilibria, i.e., in general, no press
P(r … exists which satisfies

J3B5¹P ~8!

for arbitrarily specifiedB(r ). The essential physics underly
ing this assertion is that¹3¹P is identically zero whereas
¹3(J3B) is not necessarily zero, i.e.,¹P is always a con-
servative force whereasJ3B is in general nonconservative
A nonconservative force has an associated torque and sin
pressure gradient cannot balance a torque, no equilibrium
possible when¹3(J3B) is finite.

As a specific example that equilibria do not exist f
arbitrarily specified magnetic field configurations, consid
the simple situation sketched in Fig. 3. We assert that
MHD equilibrium is possible for this configuration, i.e., th
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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configuration cannot satisfy Eq.~8!. This assertion is estab
lished by calculating radial pressure balance at axial lo
tionsz1 andz2 where the respective flux tube radii area and
b with b.a. If satisfied, Eq.~8! imposes the requiremen
B•¹P50 which means that the pressure must be the s
everywhere on a field line.

The poloidal component of the magnetic field is assum
to be straight, uniform, and in thez direction at bothz1 and
z2. Because the field lines are more densely packed az1

than atz2, the magnetic field is such thatBz(z1).Bz(z2). In
addition, since the poloidal magnetic field is uniform atz1

and z2, the toroidal current vanishes at bothz1 and z2 @in
fact, uniformity of poloidal field is more than is needed f
the toroidal current to vanish as the most general requirem
for the toroidal current to vanish is to have¹•(r 22¹c)
50].

UsingJf50 the radial component of Eq.~8! is therefore

]P/]r 52JzBf52
m0I

~2pr !2

]I

]r
. ~9!

However, the toroidal component of Eq.~8! gives

~¹I 3¹f!3~¹c3¹f!50 ~10!

which implies that I 5I (c). Since the poloidal magneti
field is straight and uniform at bothz1 andz2, the poloidal
flux function must have the formc5c0r 2/a2 at z1 and c
5c0r 2/b2 at z2, where c0 is the flux on the surface fo
which P vanishes anda,b are the respective radii of thes
flux surfaces atz1 andz2. The simplest nontrivial possibility
for I 5I (c) is to assume thatI is a linear function ofc so

m0I 5ac. ~11!

Radial pressure balance atz5z1 thus becomes

]P/]r 52
a2c

~2pr !2m0

]c

]r
52

a2c0
2

2p2m0

r

a4
~12!

which can be integrated to give the on-axis pressure atz1 to
be

P~0,z1!5E
a

0

dr]P/]r 5E
0

a

dr
a2c0

2

2p2m0

r

a4
5

a2c0
2

4p2a2m0

.

~13!

However, a similar evaluation of the on-axis pressure az
5z2 gives

P~0,z2!5
a2c0

2

4p2b2m0

, ~14!

FIG. 3. Poloidal flux surfaces of a magnetic field configuration for which
finite pressure gradient MHD equilibrium is possible.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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which is smaller than the on-axis pressure atz5z1 sinceb
.a. Thus, the pressure isnot uniform along the on-axis field
line and so the requirementB•¹P50 is violated on the
z-axis. Equation~8! is therefore not satisfied and so equili
rium does not exist. Because there is radial pressure bal
but not axial pressure balance, we might expect flows to
driven fromz1 to z2. The situation is analogous to squeezi
the end of a toothpaste tube and having toothpaste squir
the mouth of the tube.

III. GENERAL CASE USING FLUX COORDINATES

Let us now return to the problem of a coronal loo
which is initially current-free and bulging atz50, but then
has an externally driven currentI slowly ramped up to a
constant value. We define a right-handed orthogonal coo
nate system based on the poloidal flux coordinates. The
vectors of this system are

ec5
¹c

u¹cu
, ef5f̂,

~15!

eBpol5
¹c3¹f

u¹c3¹fu
,

so thatec→ r̂ andeBpol→ ẑ if the field lines are straight and
axial. The form ofec shows thatBc5B•ec is zero by defi-
nition; i.e., the magnetic field can never have a componen
the direction of¹c.

The current density can be decomposed into the com
nents

Jc5
1

2p
¹I 3¹f•

¹c

u¹cu
, ~16!

Jf52
r

2pm0
¹•S 1

r 2
¹c D , ~17!

JBpol5
1

2pr

¹I •¹c

u¹cu
. ~18!

We now argue thatJc ,Jf , and JBpol each have distinctive
physics.

The componentJc flows normal to flux surfaces an
provides the torque that causes the plasma to rotate to
dally. This current can only be transient and is identified
the polarization current.19 Polarization current can be though
of as being an essentially dependent quantity; that is,
first determines the amount of toroidal acceleration using
analysis that does not involve the equation of motion, a
then one inserts this acceleration into the equation of mo
to calculate the required polarization current. The reason
this inferior status of the toroidal component of the equat
of motion is that the toroidal symmetry of the system pr
vides a strong constraint on the dynamics. From a MH
point of view, the toroidal symmetry means that no toroid
pressure gradient can exist and also no toroidal electros
electric field can exist. From a particle Hamiltonian point
view, this symmetry means that the maximum excursion p
ticles can make from a flux surface is no more than a po
dal Larmor radius,20 a microscopic length. The localizatio
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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of particles to the vicinity of a flux surface means that the
cannot be any sustained net current density in the direc
normal to a flux surface and soJc is highly constrained. All
that is allowed is a short-lived transientJc having zero time-
average; i.e.,Jc can only be an ac current. The slight bo
bing back and forth of particles off of a flux surface cons
tutes the polarization current. Thus the plasma acts lik
capacitor in the direction normal to the flux surfaces, but l
a wire in the direction along the flux surfaces. As is w
known,21 the dielectric constant of the plasma ‘‘capacitor’’
given by m0rc2/B25c2/vA

2@1. Polarization currents hav
an associated polarization electric field normal to the fl
surface resulting from the particles making their small exc
sions from their nominal flux surface.

The currentI is assumed to be generated by some s
surface dynamo and so its time-dependence is a presc
quantity. This time dependence is assumed to be such tI
increases smoothly from zero to some finite value in a ch
acteristic timet@h/vA . This smooth increase can be repr
sented by the characteristic time profile

I ~ t !5
~ tanh~ t/t!11!

2
I 0 ~19!

so thatI 50 for t!2t andI 5I 0 for t@t. It should be noted
that ]I /]t;1/cosh2(t/t) which has its maximum att50 and
that ]2I /]t2;2tanh(t/t)/cosh2(t/t) which is positive for t
slightly beforet50 and negative fort slightly aftert50 and
then otherwise zero.

A. First stage „ramp-up …

At the beginning of the first stageI is zero and the flux
tube is untwisted as shown in the top sketch of Fig. 4. T
toroidal component of the induction equation is

]Bf

]t
5rBpol•¹S Uf

r D2rUpol•¹S Bf

r D2Bf¹•Upol ~20!

and the toroidal component of Ohm’s law can be expres
as

FIG. 4. First stage dynamics: Top shows flux tube whenI 50. Bottom
shows flux tube whenI is finite, but c(r ,z) is not yet changed from its
initial potential value. The evolution from the top to the bottom situati
involves toroidal rotation by a finite amount, but no poloidal flows.
Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
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]c

]t
1Upol•¹c50. ~21!

We will show thatUpol results from a weak nonlinear forc
and so is negligible at timest;0 because there has not be
enough time for a significantUpol to develop. In contrast,Uf

is proportional to]I /]t and soUf is large att;0 when
]I /]t is at its maximum. HoweverUf goes to zero at large
times when]I /]t→0. Thus, the time whenUf is finite pre-
cedes the time whenUpol is finite. The first stage characte
izes the timet;0 whenUpol is negligible,c is unchanged
from its initial potential state,Jf is negligible, andUf is
transiently finite.

Letting s denote the distance along the poloidal fie
from the z50 plane and taking into account thatUpol.0,
Eq. ~20! may therefore be approximated att;0 as

]Bf

]t
.Bpol

]Uf

]s
~22!

which may be integrated with respect tos to give

Uf.
s

Bpol

]Bf

]t
5

m0s

2pBpolr

]I

]t
. ~23!

The finite toroidal displacementrDf5*Ufdt is propor-
tional to s and so gives a twisting up of the flux tube a
shown in the bottom sketch of Fig. 4. In fact this twistin
motion is such that

rDf

Bf
5

s

Bpol
~24!

showing that the plasma twist is just what is required to ke
the plasma frozen to the twisting magnetic field.

Equation~23! and Eq.~7! together imply the existence o
an electric field in the¹c direction,

Ec52UfBpol52
m0s

2pr

]I

]t
; ~25!

this is the polarization electric field. The toroidal compone
of the equation of motion is

r
]Uf

]t
.2JcBpol ~26!

sinceBc50. Thus, the current normal to a flux surface is

Jc52
r

Bpol

]Uf

]t
5

r

Bpol
2

]Ec

]t
52

r

Bpol
2

m0s

2pr

]2I

]t2
. ~27!

Equation~27! clearly shows thatJc is indeed the polarization
current and thatJc is essentially a dependent quantity sin
it is proportional to]2I /]t2. The polarization current is tran
sient and, for positives, is first negative and then positiv
~andvice versafor negatives). BothUf and the polarization
current Jc vanish whenI is in steady state. The chain o
dependence is such that the induction equation first de
minesUf which then determinesJc via the equation of mo-
tion. For a long, thin flux tube,s.z, Bpol.Bz , and thec
direction is approximately ther direction. Fort@t, the po-
loidal currentI is in steady state and soUf50 for t@t.
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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B. Second stage „steady I, development of finite U pol …

Since I is constant in the second stage,Uf and Jc are
both zero. Equation~16! shows thatJc50 implies I 5I (c)
in which case surfaces of constantc(r ,z) are also surfaces
of constantI (r ,z). At the beginning of the second stage,Upol

has not yet developed and soc(r ,z) is assumed to be un
changed from its initial potential~vacuum! state, i.e., the
poloidal profile of the flux surfaces is not yet deforme
Thus,Jf52r (2pm0)21¹•(r 22¹c)50 at the beginning of
the second stage.

We now consider the dynamics. The magnetic force
be decomposed into toroidal and poloidal components
follows:

J3B5Jpol3Bpol1Jpol3Btor1Jtor3Bpol . ~28!

However,Jpol3Bpol5Jc3Bpol50 andJtor5Jff̂50 so that
the magnetic force at the beginning of the second stage
duces to

J3B5Jpol3Btor5
1

2p
~¹I 3¹f!3

m0I

2p
¹f

52
m0

8p2r 2
¹I 2. ~29!

Since the curl of the magnetic force given in Eq.~29! is
nonzero, it is impossible for a pressure gradient to bala
the magnetic force at this stage. Thez component of the
magnetic force is

~J3B!z52
m0

8p2r 2

]I 2

]z
~30!

which is independent of the sign ofI, nonlinear inI, and such
as to accelerate plasma from regions where the diamete
the current channel is small to regions where the diamete
large. In the case of a flux tube which is bulged in t
middle, the force given in Eq.~30! will accelerate plasma
axially from z56h towardsz50.

The force given in Eq.~30! vanishes atr 50 since I
;r 2 for small r. However, axially localized radial force ba
ances will quickly develop between the magnetic force a
the radial pressure gradient as discussed in Sec. II. The
sulting radial force balance will produce an axially nonu
form pressure and so there will also be an axial force du
the axial pressure gradient.

Specifically, radial pressure balance means that

]P

]r
52JzBf52

m0

8p2r 2

]I 2

]r
. ~31!

This radial pressure balance equation is not integrable
arbitrary I (r ,z), but to get an idea for the general behav
we make the assumption thatI;r 2 which is integrable.
Thus, assumingI (r ,z)5„r /a(z)…2I 0 where I 0 is the total
current flowing in the flux tube of radiusa(z), Eq. ~31! can
be integrated to give

P~r ,z!5
m0I 0

2

4p2a2 S 12
r 2

a2D ~32!
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2
]P

]z
5

m0I 0
2

p2a3 S 1

2
2

r 2

a2D ]a

]z
~33!

is the axial force due to the axial nonuniformity of th
pressure.

Using I (r ,z)5I 0r 2/a2 to estimate the axial componen
of the magnetic force gives

~J3B!z52
m0

8p2r 2

]I 2

]z
5

m0I 0
2

2p2

r 2

a5

]a

]z
. ~34!

The total force in thez direction for this case is thus

Fz5~J3B!z2
]P

]z
5

m0I 0
2

2p2a3 S 12
r 2

a2D ]a

]z
. ~35!

This total force is peaked on the axis and has magnitude

Fz;2
]

]z S FBf
2

m0
G

r 5a
D . ~36!

This force will result in axial flows fromz56h to z50 with
velocities that are of the order ofBf(r 5a,z56h)/Am0r.
BecauseJf50, the behavior is essentially identical to th
situation wherec50 and so the flow acceleration mech
nism is similar to that discussed in Refs. 22–25 which co
sider MHD arc-jets for the situation of purely toroidal ma
netic fields.

C. Third stage „convection of toroidal flux, fluid
stagnation, heating, compression …

The force given by Eq.~29! has a finite curl and so
cannot be balanced by a pressure gradient so long as
original potential profile ofc(r ,z) is maintained. Thus, the
only way for an equilibrium to develop is for the profile o
c(r ,z) to change. This is clearly evident from the discussi
in Sec. III B. Equation~35! shows that axial equilibrium can
only occur if ]a/]z→0.

Attainment of equilibrium involves several inter-relate
hydrodynamic, magnetic, and thermodynamic phenom
which are shown schematically in Fig. 5. The solid lines
Fig. 5 show a constantc surface at an early time and th
dashed lines show this constantc surface at a later time
Typical fluid elements are shown as hatched parallelogra
~cross sections of toroids! and the motion of these elemen
is seen to consist of both axial and radial motion such t
each fluid element stays on its own constantc surface. The
nonconservative nature of theJ3B force is shown in Fig. 5
by the longer length at largeruzu of the arrows representing
J3B. The axial motion corresponds to plasma flows whi
ingest plasma atz56h, travel towardsz50, and then con-
verge and stagnate atz50 like two water jets pointed at eac
other. The stagnation converts the flow kinetic energy i
heat and simultaneously increases the plasma densityz
50 as plasma accumulates there. Thus pressure increas
z50. Furthermore, toroidal flux embedded in the plasma
convected by the axial flows and so there will also be
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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FIG. 5. Evolution of flux tube due to effect ofJ3B force whenI is constant. Solid line shows initial constantc(r ,z) flux surface, dashed line shows sam
flux surface at a later time. Fluid elements~shown hatched! are pushed axially towardsz50 while staying on the same constantc surface. The resulting fluid
flows collide at thez50 plane where they thermalize their directed kinetic energy. Toroidal flux and mass accumulate at thez50 layer also. The accumulation
of toroidal flux atz50 increasesBf there and so pinches down the flux tube diameter causing the flux tube to become axially uniform.
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accumulation of toroidal flux atz50. This means that the
density of the toroidal flux will also increase atz50, i.e.,Bf

will increase in the vicinity ofz50.
The increase inBf can be established more rigorous

by considering Eq.~20! in the vicinity of z50 and taking
into account that~i! Uf50 sinceI is constant,~ii ! Upol→0 at
z50 since the flow stagnates atz50, and~iii ! ¹•Upol,0
nearz50 since the flows are converging atz50. Thus, Eq.
~20! in the vicinity of z50, reduces to

]Bf

]t
.2Bf¹•Upol ~37!

which shows thatBf must increase since¹•Upol,0 ~we
note that amplification of a magnetic field by a convergi
flow has previously been discussed in Ref. 26 but has
otherwise received much attention!. In the vicinity of the
stagnation layer atz50, the continuity equation reduces t

1

r

]r

]t
52¹•Upol ~38!

which can be combined with the induction equation to gi

]Bf

]t
.

Bf

r

]r

]t
~39!

showing thatBf increases in proportion to the increase
mass density at the stagnation layer. SinceI is constant and
2prBf5m0I the current channel radius in the vicinity of th
stagnation layer must decrease asBf increases to keeprBf

constant. Thus, the bulge of the current channel must dim
ish as sketched in Fig. 5 and, becauseI 5I (c), the bulge of
the constantc surfaces must also diminish. The result is th
the flux tube tends to become axially uniform, hot, a
dense.
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D. Changes in length

Making the flux tube axially uniform increasesBpol be-
cause squeezing the poloidal flux surfaces together resul
a larger field. SinceBpol;Bz is much larger thanBf , it
would seem that too much energy would have to be inves
into squeezing the poloidal flux surfaces together. Howe
if we recall that the loop is really arched and allow the lo
length to change in such a way that*Bpol•dl remains con-
stant where the line integral is over the length of the loo
then the loop length 2h will become shorter asBpol in-
creases. If*Bpol•dl5const, the stored energy in the poloid
field is

Wpol5
1

2m0
E Bpol

2 dl•ds5
1

2m0
E Bpol•dlE Bpol•ds

5
c

2m0
E Bpol•dl5const. ~40!

It is reasonable to assume that*Bpol•dl remains constant
becauseBpol is produced by currents external to the flux tu
@e.g., by the subsurface currents sketched in Fig. 2~a!#. These
source currents may be assumed to stay constant on the
scale during which the flux tube undergoes stages 1–3. If
follows the poloidal field along its entire length both abo
and below the solar surface, then it must satisfy Ampe`re’s
law,

m0I ext5 R Bpol•dl5E
loop

Bpol•dl1E
subsfc

Bpol•dl, ~41!

where the contour consists of the loop above the surface
in addition, the subsurface portion; the contour links lin
the subsurface source current system denoted asI ext. It
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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seems reasonable to assume that the subsurface field re
invariant during stages 1–3 and so* loopBpol•dl must also
remain constant.

Thus, as the poloidal field lines squeeze together to m
the flux tube axially uniform, the flux tube becomes shor
in such a way as to keep the energy stored in the polo
field constant. In this manner, no work needs to be done
squeeze the poloidal flux surfaces together. One can ima
that the ‘‘field line tension’’ of the poloidal field shortens th
length of the loop as the poloidal field is made stronger wh
the poloidal flux surfaces are squeezed together.

E. Ultimate beta

The z-directed force given by Eq.~30! can be written as

Fz52
]

]z S Bf
2

m0
D . ~42!

The quantityBf
2 /m0 can be considered as an effective pote

tial energy and so the fact thatBf
2 /m0 is large atz56h and

small atz50 means that there is an effective potential w
which the plasma falls down as it moves fromz56h to z
50. The order of magnitude of the resulting flow velocity
given by the reduction in potential energy due to the plas
falling down the slopes of the well and so the resulting flo
velocity will be Uz

2.Bf
2 /m0r, whereBf

2 is evaluated atz
56h whereBf

2 is largest. Thus, the flow velocity is of th
order of the Alfvén velocity calculated using the toroida
field ~this is much smaller than the Alfve´n velocity calculated
using the poloidal field on the assumption that the flux tu
is only slightly twisted!. At the stagnation layer the converg
ing flow velocity is thermalized and so the plasma press
at the stagnation layer will be of the order ofP5nmivTi

2

1nmevTe
2 .rUz

25@Bf
2 /m0#z56h . Assuming thatBf!Bpol ,

the plasmab resulting from flow stagnation is therefore

b.
2m0P

Bpol
2

52
Bf

2

Bpol
2

5S m0I

c D 2 a2

2
, ~43!

wherea is the radius of the flux tube andc5Bpolpa2. Using
the definitiona5m0I /c then

b5a2a2/2 ~44!

is the value ofb resulting from flow stagnation.
The diminishing of the bulge squeezes together the

loidal field so that there will be a finiteJf , but if the flux
tube is squeezed to the point of being axially uniform, th
Jf vanishes again. ThusJf starts out by being zero, become
finite, and then becomes zero again if and when the flux t
becomes straight.

If an equilibrium is established thenJ3B5¹P which
implies B•¹P50 andP5P(c). We definec0 as the flux
surface on whichP vanishes andc̄(r ,z)5c(r ,z)/c0 as the
normalized flux so that

P~c!5~12c̄ !P0 , ~45!

whereP0 is the on-axis pressure. The equilibrium equati
J3B5¹P can then be written in Grad–Shafranov27 form as
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]r
S 1

r

]c̄

]r
D 1

]2c̄

]z2
1a2c̄52

r 2

a0
2

b

a0
2

, ~46!

wherea0 is the flux tube radius atz50 andb is defined in
terms of the mean axial field atz50, i.e., b
52m0P0 /(c0 /pa0

2)2. The general solution to Eq.~46! is

c̄~r ,z!52
r 2

a0
2

b

a2a0
2

1gx~r ,z!, ~47!

wherex(r ,z) is any solution to the homogeneous equatio

r
]

]r S 1

r

]x

]r D1
]2x

]z2
1a2x50 ~48!

andg is a constant to be determined. The conditionc̄(r ,z)
51 whenz50 andr 5a0 fixesg so that the general solutio
to the Grad–Shafranov equation is thus

c̄~r ,z!5
2br 2

a2a0
4

1S 12
2b

a2a0
2D x~r ,z!

x~a0,0!
. ~49!

If b5a2a0
2/2 then theonly solution to Eq.~46! satisfying the

prescribed boundary condition thatP vanishes whenc5c0

is the particular solutionc5c0r 2/a0
2. However, this solution

is axially uniform and so we no longer need to specifya0 as
being the radius atz50; it is in fact the radius at allz.
Equation ~49! provides the important result that having
finite but extremely smallb will cause the poloidal flux sur-
faces to differ substantially from the force-free situati
whereb is exactly zero and in particular will cause the sy
tem to become axially uniform whenb5a2a0

2/2. From a
mathematical point of view this is because the right-ha
side of Eq.~46! is an inhomogeneous term~source term! of
the partial differential equation. The source term results
there being a particular solution which would not exist if E
~46! were homogeneous, i.e., ifb were exactly zero.

The axial uniformity conditionb5a2a2/2 is just Eq.
~44! and so we conclude that theb produced by flow stag-
nation is precisely theb required to force the Grad–
Shafranov equation to give an axially uniform solution. W
further conclude that, given sufficient time and assum
there are no losses, current-carrying flux tubes will alwa
tend to become axially uniform and will always tend to ha
the b given by Eq.~44!. This result is similar to the well-
known property28 of tokamaks havingbpol of order unity
because diamagnetism exactly balances paramagnetis
that the resulting field is a potential~vacuum! field. The roles
of poloidal and toroidal directions are interchanged in t
coronal loop compared to a tokamak and so in the coro
loop it is bf which is of order unity.

The predictedb can be compared with actual observ
values ofb in solar coronal loops. To make a prediction,
nominal observed flux loop radiusa51.63106 m ~Ref. 2!
and a nominal measured active regiona5231028 m21 are
used.29 These parameters predict a nominalbpredicted

5a2a2/25531024. The observed valuebobservedis calcu-
lated using a nominal densityn51015 m23, and a nominal
temperature 106 K.2 In addition, a nominal axial magneti
field Bz51.531022 T is assumed based on the argume
 license or copyright, see http://pop.aip.org/pop/copyright.jsp
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that since the flux tube is axially uniform, its axial field mu
also be axially uniform and so will have the same value
the nominalBz51.531022 at the surface of an active re
gion. These parameters givebobserved52m0nkT/Bz

254
31024 which is similar to the predicted value.

This model also has implications regarding the bright
ing typically observed when the axis of a coronal loop sta
to writhe and the loop develops a kink instability~sigmoid!.
Since kink instability occurs whenah;2p ~Refs. 30–34!
and for a long thin flux tubea!h, this model predicts tha
b5a2a2/2!a2h2/2 will still be small even ifa is increased
to the point whereah;2p and kink instability occurs.
However,b will increase asa increases. Since the brigh
ness of a loop is proportional ton2 for a given temperature
this model predicts that the loop should brighten in prop
tion to the writhing of its axis~i.e., in proportion toa asah
approaches unity!.

The model thus provides a heating mechanism~stagna-
tion of MHD-driven flows! which is consistent with ob-
served coronal temperatures and densities; however, the
diction is for nkT rather than for temperature or densi
separately; a more detailed analysis would be required
isolate the individual dependence of temperature and den
on the stagnation process.

F. Energetic tail

As the flows converge, there will be a few particl
which have collision mean free paths and trajectories s
that they bounce back and forth between converging fl
elements. Because these particles gain energy on
bounce between the converging flows, these particles
gain energy without bound until desynchronized or lost, i
they will undergo Fermi acceleration.35 The number of par-
ticles having the appropriate mean free path will be small
one will expect a small high energy tail located aroundz
50. The concentration of high energy particles aroundz
50, i.e., at the top of a loop, is in fact what is observed.17

IV. SUMMARY AND CONCLUSIONS

We have shown that the apparently simple problem
driving an electric current along a pre-existing potent
magnetic flux tube is actually quite complicated and cons
of three stages. In real situations these stages would ove
and not be as distinct as outlined here.

The first stage involves a twisting of the magnetic fie
and an associatedz-dependent toroidal rotation~i.e., twist-
ing! of the plasma; this motion is incompressible. The seco
stage involves convergent axial flows driven by the non
ear, nonconservative force associated with the axial grad
of Bf

2 /m0. The third stage involves accumulation of bo
mass and toroidal flux atz50 and a simultaneous conversio
of directed flow energy into thermal energy, i.e., stagnati
The concomitant increase in toroidal magnetic field at
stagnation layer ultimately leads to an equilibrium and
cause the flow stagnation givesb5a2a2/2 the equilibrium is
axially uniform. This sequence of events should be qu
common and should explain why current-carrying flux tub
are so often observed to be filamentary.
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Finally, it should be emphasized that symmetries in b
f and inz play a critical role in the behavior described her
Symmetry inf ~i.e., toroidal symmetry! prevents the exis-
tence of any toroidal electrostatic field so that the only
lowed toroidal electric field is the toroidal electric field a
sociated with changing poloidal flux, i.e., Ef

52(2pr )21]c/]t. Particles are therefore constrained
stay within a poloidal Larmor radius of a flux surface so th
there can only be ac currents in the direction normal to a fl
surface in which case the plasma acts like a capacitor in
direction normal to the flux surfaces. Because toroidal ac
eration is driven only by the current normal to a flux surfa
and because no toroidal pressure gradient is allowed,
toroidal motion is constrained to be transient, finite, and
pendent on the temporal behavior ofI. Thus whenI is con-
stant, poloidal current flows along poloidal flux surfaces a
there is no toroidal motion. Symmetry about thez50 plane
causes this plane to be a stagnation layer where oppo
plasma jets collide resulting in accumulation of mass and
frozen-in toroidal magnetic flux and also a thermalization
the flow kinetic energy.
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