CaltechAUTHORS
  A Caltech Library Service

Dynamical methods for polar decomposition and inversion of matrices

Getz, N. H. and Marsden, Jerrold E. (1997) Dynamical methods for polar decomposition and inversion of matrices. Linear Algebra and its Applications, 258 (June). pp. 311-343. ISSN 0024-3795. http://resolver.caltech.edu/CaltechAUTHORS:20100810-081116107

[img] PDF - Published Version
Restricted to Repository administrators only
See Usage Policy.

325Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20100810-081116107

Abstract

We show how one may obtain polar decomposition as well as inversion of fixed and time-varying matrices using a class of nonlinear continuous-time dynamical systems. First we construct a dynamic system that causes an initial approximation of the inverse of a time-varying matrix to flow exponentially toward the true time-varying inverse. Using a time-parameterized homotopy from the identity matrix to a fixed matrix with unknown inverse, and applying our result on the inversion of time-varying matrices, we show how any positive definite fixed matrix may be dynamically inverted by a prescribed time without an initial guess at the inverse. We then construct a dynamical system that solves for the polar decomposition factors of a time-varying matrix given an initial approximation for the inverse of the positive definite symmetric part of the polar decomposition. As a byproduct, this method gives another method of inverting time-varying matrices. Finally, using homotopy again, we show how dynamic polar decomposition may be applied to fixed matrices with the added benefit that this allows us to dynamically invert any fixed matrix by a prescribed time.


Item Type:Article
Related URLs:
URLURL TypeDescription
http://dx.doi.org/10.1016/S0024-3795(96)00235-2 DOIUNSPECIFIED
Additional Information:© 1997 Elsevier. Received 4 May 1995; accepted 1 April 1996; Submitted by Richard A. Brualdi Available online 14 April 2003.
Record Number:CaltechAUTHORS:20100810-081116107
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20100810-081116107
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:19357
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:10 Aug 2010 20:18
Last Modified:26 Dec 2012 12:18

Repository Staff Only: item control page