Measurements of Charged Current Lepton Universality and $|V_{us}|$ Using Tau Lepton Decays

to $e^- \bar{\nu}_e \nu_\tau$, $\mu^- \bar{\nu}_\mu \nu_\tau$, $\pi^- \bar{\nu}_\pi \nu_\tau$, and $K^- \bar{\nu}_K$

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universit´e de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3aINFN Sezione di Bari, I-70126 Bari, Italy
3bDipartimento di Fisica, Universit`a di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
7Ruhr Universit¨at Bochum, Institut f¨ur Experimentalphysik 1, D-44780 Bochum, Germany
8University of Birmingham, Birmingham, B15 2TT, United Kingdom
9Technische Universit¨at Dortmund, Fakult¨at Physik, D-44221 Dortmund, Germany
10Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11University of California at Irvine, Irvine, California 92697, USA
12University of California at Riverside, Riverside, California 92521, USA
13University of California at San Diego, La Jolla, California 92093, USA
14University of California at Santa Barbara, Santa Barbara, California 93106, USA
15University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16California Institute of Technology, Pasadena, California 91125, USA
17University of Cincinnati, Cincinnati, Ohio 45221, USA
18University of Colorado, Boulder, Colorado 80309, USA
19Colorado State University, Fort Collins, Colorado 80523, USA
20Technische Universit¨at Dortmund, Fakult¨at Physik, D-44221 Dortmund, Germany
21Technische Universit¨at Dresden, Institut f¨ur Kern- und Teilchenphysik, D-01062 Dresden, Germany
22Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24aINFN Sezione di Ferrara, I-44100 Ferrara, Italy
24bDipartimento di Fisica, Universit`a di Ferrara, I-44100 Ferrara, Italy
25INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26aINFN Sezione di Genova, I-16146 Genova, Italy
26bDipartimento di Fisica, Universit`a di Genova, I-16146 Genova, Italy
27Harvard University, Cambridge, Massachusetts 02138, USA
28Universit¨at Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29Humboldt-Universit¨at zu Berlin, Institut f¨ur Physik, Newtonstrasse 15, D-12489 Berlin, Germany
30Imperial College London, London, SW7 2AZ, United Kingdom
31University of Iowa, Iowa City, Iowa 52242, USA

PRL 105, 051602 (2010) PHYSICAL REVIEW LETTERS week ending 30 JULY 2010

051602-2
Iowa State University, Ames, Iowa 50011-3160, USA

Johns Hopkins University, Baltimore, Maryland 21218, USA

Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, Boîte Postale 34, F-91898 Orsay Cedex, France

Lawrence Livermore National Laboratory, Livermore, California 94550, USA

University of Liverpool, Liverpool L69 7ZE, United Kingdom

Queen Mary, University of London, London, E1 4NS, United Kingdom

University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

University of Louisville, Louisville, Kentucky 40292, USA

Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany

University of Manchester, Manchester M13 9PL, United Kingdom

University of Maryland, College Park, Maryland 20742, USA

University of Massachusetts, Amherst, Massachusetts 01003, USA

Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

McGill University, Montréal, Québec, Canada H3A 2T8

INFN Sezione di Milano, I-20133 Milano, Italy

Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy

University of Mississippi, University, Mississippi 38677, USA

Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7

Mount Holyoke College, South Hadley, Massachusetts 01075, USA

INFN Sezione di Napoli, I-80126 Napoli, Italy

Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy

NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

University of Notre Dame, Notre Dame, Indiana 46556, USA

Ohio State University, Columbus, Ohio 43210, USA

University of Oregon, Eugene, Oregon 97403, USA

INFN Sezione di Padova, I-35131 Padova, Italy

Dipartimento di Fisica, Università di Padova, I-35131 Padova, Italy

Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France

University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

INFN Sezione di Perugia, I-06100 Perugia, Italy

Dipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy

INFN Sezione di Pisa, I-56127 Pisa, Italy

Dipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy

Scuola Normale Superiore di Pisa, I-56127 Pisa, Italy

Princeton University, Princeton, New Jersey 08544, USA

INFN Sezione di Roma, I-00185 Roma, Italy

Dipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy

Universität Rostock, D-18051 Rostock, Germany

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

CEA, Ifé, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France

SLAC National Accelerator Laboratory, Stanford, California 94309 USA

University of South Carolina, Columbia, South Carolina 29208, USA

Stanford University, Stanford, California 94305-4060, USA

State University of New York, Albany, New York 12222, USA

Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel

University of Tennessee, Knoxville, Tennessee 37996, USA

University of Texas at Austin, Austin, Texas 78712, USA

University of Texas at Dallas, Richardson, Texas 75083, USA

INFN Sezione di Torino, I-10125 Torino, Italy

Dipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy

INFN Sezione di Trieste, I-34127 Trieste, Italy

Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy

IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

University of Victoria, Victoria, British Columbia, Canada V8W 3P6

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

University of Wisconsin, Madison, Wisconsin 53706, USA

(Received 2 December 2009; published 28 July 2010)
Decays of the \(\tau \) lepton to a single charged particle and neutrino(s) probe the standard model (SM) predictions of charged current lepton universality and the unitarity relation of the first row of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [1]. Previous measurements of universality [2,3], expressible in terms of the coupling strength \(g_\ell \) of lepton of flavor \(\ell \) to the charged gauge boson of the electroweak interaction are in agreement with the SM where \(g_\ell / g_\mu = g_\mu / g_\tau = 1 \). Similarly, kaon decay measurements sensitive to \(|V_{us}| \), the relative weak coupling between up and strange quarks, yield a value consistent with unitarity \((|V_{ud}|^2 + |V_{ub}|^2 + |V_{ub}|^2) = 1 \), where nuclear beta decays provide \(|V_{ud}| \) [5] and \(|V_{ub}| \) is negligible [3]. However, new physics that couples primarily to the third generation could be revealed through deviations from the SM in precision universality and \(|V_{us}| \) measurements involving the \(\tau \). Significant deviations of this nature are unambiguous signatures of new physics that provide crucial but complimentary information to the direct searches for Higgs bosons [6] and other new physics models with, e.g., lepto-quarks [7], heavy gauge bosons, heavy quarks or leptons, compositeness or extra dimensions [8].

Recent measurements of the sum of strange \(\tau \) branching fractions interpreted in the framework of the operator product expansion (OPE) and finite energy sum rules yield a value of \(|V_{us}| \) that is approximately 3 standard deviations \((\sigma)\) lower than expectations from CKM unitarity [9]. This Letter addresses both experimental and theoretical aspects of this question by providing the first precision measurements of \(R_K = \frac{\mathcal{B}(\tau \rightarrow K^- \nu \bar{\nu})}{\mathcal{B}(\tau \rightarrow \mu^- \nu \bar{\nu})} \) [10] and \(R_K/\pi = \frac{\mathcal{B}(\tau \rightarrow K^- \pi^- \nu \bar{\nu})}{\mathcal{B}(\tau \rightarrow \pi^- \mu^- \nu \bar{\nu})} \) enabled by the unique combination of a very large \(\tau \) sample with particle momenta amenable to particle identification using Cherenkov radiation. By using values of the meson decay constants from lattice QCD [11], we provide two precision determinations of \(|V_{us}| \) from \(\tau \) decays independent of the OPE framework. We also report on new measurements of \(R_\pi = \frac{\mathcal{B}(\tau \rightarrow \pi^- \nu \bar{\nu})}{\mathcal{B}(\tau \rightarrow e^- \nu \bar{\nu})} \) and \(R_\mu = \frac{\mathcal{B}(\tau \rightarrow \mu^- \nu \bar{\nu})}{\mathcal{B}(\tau \rightarrow e^- \nu \bar{\nu})} \) provided an improved measurement of \(g_\mu / g_\tau \), whereas \(R_\pi \) and \(R_K \), when compared to the muonic branching fractions of the pion and kaon, yield improved measurements of \(g_\mu / g_\tau \) involving pseudoscalar mesons.

The data sample corresponds to an integrated luminosity of \(L = 467 \text{ fb}^{-1} \) recorded at an \(e^+e^- \) center-of-mass (CM) energy \((\sqrt{s})\) near 10.58 GeV and was collected with the BABAR detector at the SLAC PEP-II \(e^+e^- \) storage rings. With a luminosity-weighted average cross section of \(\sigma_{\tau^+e^- \rightarrow \tau^-\tau^-} = (0.919 \pm 0.003) \text{ nb} \) [12,13], this corresponds to the production of \(4.29 \times 10^8 \tau \)-pair events. The BABAR detector [14] is composed of a silicon vertex tracker, drift chamber (DCH), ring-imaging Cherenkov detector (DIRC), and electromagnetic calorimeter (EMC), all contained in a 1.5-T solenoid. The iron flux return for the solenoid is instrumented (IFR) to identify muons.

Tau-pair events are simulated with the KK Monte Carlo (MC) generator [13], which includes higher-order radiative corrections. We simulate \(\tau \) decays with TAULA [15] and PHOTOS [16] using measured branching fractions [3]. The detector response is simulated with GEANT4 [17]. Simulated events for signal as well as background processes [13,15,16,18,19] are reconstructed in the same manner as data. The MC samples are used for selection optimization, control sample studies, and systematic error studies. The number of simulated nonsignal events is comparable to the number expected in the data, with the exception of Bhabha and two-photon events, which are not simulated but which data studies show to be negligible.

We study \(e^+e^- \rightarrow \tau^+\tau^- \) events with the \(\tau^- \) decaying via \(\tau^- \rightarrow e^- \bar{\nu}_e\nu_\tau, \tau^- \rightarrow \mu^- \bar{\nu}_\mu\nu_\tau, \tau^- \rightarrow \pi^- \bar{\nu}_\pi \) or \(\tau^- \rightarrow K^- \nu_\tau \) modes and the \(\tau^+ \) decaying via a \(\tau^+ \rightarrow \pi^+ \pi^- \pi^- \) tagging channel with the selection criteria optimized to minimize the combined statistical and systematic uncertainties [20]. The number of signal events for decay modes \(i = \{e, \mu, \pi, K\} \) is \(\mathcal{E}_i \), which normalizes to \(N_i^B \) (\(N_i^0 \)) the number of selected data events, and \(N_i^B \) (\(N_i^0 \)) the estimated number of background events for the \(i \)th mode.

We measure the ratios \(R_i = N_i^B / N_i^0 \) which normalizes to the most precisely known relevant SM process available, and in which several common sources of systematic uncertainty cancel. \(N_i^0 \) are multiplied with reproducible random numbers until all efficiency and uncertainty estimates are finalized. Once unblinded, we use the values of the three branching ratios to update world averages of the branching fractions, which we then use to recalculate the backgrounds for our final results.

Events with a net charge of zero and with four well-reconstructed tracks not originating from the conversion of
a photon in the detector material are selected. For good particle identification, each track is required to be within the acceptance of the DIRC and EMC, and have a transverse momentum greater than 0.25 GeV to ensure that it reaches the DIRC. The plane normal to the thrust axis divides the event into hemispheres in the CM frame. The “signal” hemisphere contains a single track and the “tag” hemisphere the other three tracks.

Each tag hemisphere track is required to be consistent with being a pion and the energy deposited in the EMC unassociated with any tracks in this hemisphere is required to be less than 0.20 GeV. Also, events that contain track pairs consistent with coming from a \(K^0 \) are vetoed.

The signal track momentum is required to lie between 1 and 4 GeV/c. Information from the five detector subsystems is combined in likelihood selectors which identify \(e, \pi, \) and \(K \) particles and in a neural network which identifies muons. The \(\pi - K \) separation is provided by the DIRC and DCH whereas \(\pi - \mu \) separation is primarily accomplished with the IFR and EMC. The identification efficiencies are given in Table I and cross-contaminations are given below.

We suppress di-muon and Bhabha backgrounds by requiring signal tracks identified as a lepton to have CM momentum less than 80% of \(\sqrt{s} \). Also, events with an EMC track passing the loose muon selection if its measured momentum exceeds \(0.85 \) GeV are rejected. A similar veto is applied for a kaon track passing the loose muon selection if its measured momentum exceeds 3 GeV/c. Also, events with an EMC energy \(\{1.0, 0.5, 0.2, 0.1\} \) GeV in the signal hemisphere unassociated with the \(\{e, \mu, \pi, K\} \) track are removed.

Pion and kaon control samples from \(D^{*+} \rightarrow \pi^+ D^0 \), \(D^0 \rightarrow \pi^+ K^- \) decays are used to study and correct for small differences between MC and data. We cross-check these with independent \(\pi^+ (K^-) \) control samples from \(\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau (\tau^- \rightarrow K^- \pi^- K^+ \nu_\tau) \) decays using particle identification of two of the oppositely charged particles and the fact that the wrong sign \(\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_\tau \) decays are heavily suppressed. Samples of radiative Bhabha and radiative \(\mu^- \) pair events provide control samples of electrons and muons. The systematic uncertainty associated with charged particle identification is assessed from the control sample statistical errors, consistency between control samples, and the sensitivity of the control sample corrections to the number of particles near the track. The statistical errors in the more limited cross-check control samples dominate these errors. Because we use control samples to correct charge conjugate particles separately, charge-dependent detector responses are accounted for by construction.

To remove two-photon and Bhabha backgrounds, the event must have a missing CM energy between 10% and 70% of \(\sqrt{s} \). The angle between the missing momentum and electron beam direction in the CM, \(\theta_{\text{miss}}^{\text{CM}} \), is constrained to satisfy \(|\cos(\theta_{\text{miss}}^{\text{CM}})| < 0.7 \), the thrust of the event is required to be above 0.9, and the net missing transverse momentum in the CM greater than 0.009\(\sqrt{s} \).

Each of the three tagside tracks has an electron veto applied to further reduce the Bhabha contamination. This results in less than 0.03% contamination from two-photon events and less than 0.1% contamination from Bhabha events in the electron signal sample. These backgrounds were investigated by studying samples enriched in Bhabha and two-photon events by adjusting the requirements on the thrust, \(\cos(\theta_{\text{miss}}^{\text{CM}}) \), and transverse momentum of the event. Potential background from Bhabha events were further probed by studying the number of events having a high signal track momentum as the electron veto was progressively lifted from one, then two, and finally all three tracks in the tag hemisphere.
To suppress backgrounds in the $\tau^- \rightarrow \pi^- \nu_\tau$ and $\tau^- \rightarrow K^- \nu_\tau$ channels from τ decays with undetected neutral particles other than the ν_τ (e.g., K^0_L mesons, ν_μ), we reconstruct the direction of the back-to-back $\pi^+ \pi^-$ system in the CM frame. The polar angle of the τ momentum with respect to the tagside hadronic system is calculated assuming that the CM energy of the τ is $\sqrt{s}/2$, and the azimuthal angle of the τ momentum is fixed to a value that has been optimized to minimize the total error on $\theta_{\text{CM}} [20]$. With this estimator for the τ momentum, we require the missing mass in the signal hemisphere to be less than 0.56 GeV/c2.

For the selected $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$ events, the dominant backgrounds are $\tau^- \rightarrow \pi^- \nu_\tau (1.46 \pm 0.01)%$ and $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau (0.85 \pm 0.01)%$. For the $\tau^- \rightarrow \pi^- \nu_\tau$ channel, the dominant backgrounds are $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau (12.90 \pm 0.07)\%$, $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau (5.87 \pm 0.04)\%$, and non-$\tau$ backgrounds (0.34 \pm 0.05)\%. The major backgrounds in the $\tau^- \rightarrow K^- \nu_\tau$ channel are from $\tau^- \rightarrow \pi^- \nu_\tau$ decays (10.06 \pm 0.13)\%, $\tau^- \rightarrow K^- K^0_L \nu_\tau (3.87 \pm 0.41)\%$, $\tau^- \rightarrow K^- \pi^0 \nu_\tau (1.97 \pm 0.14)\%$, $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau (1.07 \pm 0.06)\%$, and non-$\tau$ backgrounds (2.58 \pm 0.38)\%. The uncertainties are from MC statistics, branching fractions and, for non-τ backgrounds, the systematic uncertainty on background rates. Figure 1 shows the momentum distributions in the CM frame for each of the four decay modes for data, along with the background MC contributions.

For the $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$ channel, 884426 events are selected with an efficiency and purity of (0.589 \pm 0.010)\% and (99.69 \pm 0.06)\%, respectively. The number of selected events, efficiency, purity, and systematic uncertainties on $R_{\tau} \equiv \sigma(\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau)/\sigma(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)$, $R_{\tau_K} \equiv \sigma(\tau^- \rightarrow K^- \nu_\tau)/\sigma(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)$, and $R_{\tau_{\pi}} \equiv \sigma(\tau^- \rightarrow \pi^- \nu_\tau)/\sigma(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau)$ selections are presented in Table I. These uncertainties include contributions from the particle identification, the sensitivity to detector response including the impact of changing the MC momentum scale and DCH resolution, modeling of hadronic and electromagnetic showers in the EMC, the EMC energy scale, and angular measurements made by these detectors within their modelling uncertainties, the backgrounds, initial- and final-state radiation, radiation in τ decays, and shape of $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_\tau$ decays, the trigger, and $\mathcal{L}_\text{int}\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$. The systematic uncertainty on R_{μ} is dominated by uncertainties in particle identification. The R_{τ} and R_{τ_K} measurements have additional dominant contributions from the detector modelling and associated backgrounds, due to stronger cuts on the EMC energy necessary to reduce non-τ backgrounds. Presence of the ~20% backgrounds in these channels render them more sensitive to the modelling of the tagside decays. The dominant background uncertainty in the $R_{\tau_{\pi}}$ measurement arises from the electron contamination in the π sample investigated by measuring the number of events that fail the E/ρ electron veto requirement in data and MC. In the R_{τ_K} event sample, the uncertainty arising from τ decay branching fractions of background modes is 0.58\%, which is dominated by the uncertainty of the $\tau^- \rightarrow K^0_S K^- \nu_\tau$ fraction. There is also a 0.49\% uncertainty assigned for $q\bar{q}$ backgrounds, which are studied using events with an invariant mass of the tracks in the tag hemisphere above the τ mass and cross-checked in regions of thrust and $\cos(\theta_{\text{CM}})$ enriched with these backgrounds.

The measured branching ratios and fractions are

\[R_{\mu} = (0.9796 \pm 0.0016 \pm 0.0036), \]
\[R_{\tau_{\pi}} = (0.5945 \pm 0.0014 \pm 0.0061), \]
\[R_{\tau_K} = (0.03882 \pm 0.00032 \pm 0.00057), \]
\[R_{h} = R_{\tau_{\pi}} + R_{\tau_K} = (0.6333 \pm 0.0014 \pm 0.0061), \]
\[B(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_{\tau}) = (17.46 \pm 0.03 \pm 0.08)\% \]
\[B(\tau^- \rightarrow \pi^- \nu_{\tau}) = (10.59 \pm 0.03 \pm 0.11)\% \]
\[B(\tau^- \rightarrow K^- \nu_{\tau}) = (0.692 \pm 0.006 \pm 0.010)\%, \quad (1) \]

where $h = \pi$ or K and we use $B(\tau^- \rightarrow e^- \bar{\nu}_e \nu_{\tau}) = (17.82 \pm 0.05)\% [3]$. The off-diagonal elements of the correlation matrix for the measured ratios (branching fractions) are $\rho_{\mu\tau} = 0.25 (0.34)$, $\rho_{\mu K} = 0.12 (0.20)$, and $\rho_{\pi K} = 0.33 (0.36)$. The μ and π measurements are con-
consistent with and of comparable precision as the world averages [3], whereas the K measurement is consistent with but twice as precise as the world average [3].

Tests of $\mu - e$ universality can be expressed as

$$\frac{g_\mu}{g_e} = \frac{B(\tau \rightarrow \mu^- \bar{\nu}_\mu \nu_e) f(m_\mu^2/m_\tau^2)}{B(\tau \rightarrow e^- \bar{\nu}_e \nu_e) f(m_e^2/m_\tau^2)},$$

where $f(x) = 1 - 8x + 8x^2 - x^3 - 12x^2 \log x$, assuming that the neutrino masses are negligible [21]. This gives $\langle \frac{g_\mu}{g_e} \rangle = 1.0036 \pm 0.0020$, yielding a new world average of 1.0018 ± 0.0014, which is consistent with the SM and the value of 1.0021 ± 0.0015 from pion decays [3,22].

Tau-muon universality is tested with

$$\frac{g_\tau}{g_\mu} = \frac{B(\tau \rightarrow h \nu_\tau)}{B(h \rightarrow \mu \nu_\mu)} \frac{2m_h m_\mu^2 \tau_h}{2m_\tau m_\mu^2 \tau_\tau} \left(1 - \frac{m_\mu^2}{m_\tau^2}\right)^2 S_{\text{EW}},$$

where the radiative corrections are $\delta_\pi = (0.16 \pm 0.14)\%$ and $\delta_K = (0.90 \pm 0.22)\%$ [23]. Using the world averaged mass and lifetime values and meson decay rates [3], we determine $\langle \frac{g_\tau}{g_\mu} \pi(K) \rangle = 0.9856 \pm 0.0057$ (0.9827 \pm 0.0086) and $\langle \frac{g_\tau}{g_\mu} h \rangle = 0.9850 \pm 0.0054$ when combining these results; this is 2.8σ below the SM expectation and within 2σ of the world average.

We use the kaon decay constant $f_K = 157 \pm 2$ MeV [11], and our value of

$$B(\tau \rightarrow K^- \nu_\tau) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^2 S_{\text{EW}}}{16\pi h} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2,$$

where $S_{\text{EW}} = 1.2021 \pm 0.0003$ [24], to determine $|V_{us}| = 0.2193 \pm 0.0032$. This measurement is within 2σ of the value of 0.2255 ± 0.0010 predicted by CKM unitarity and is also consistent with the value of $|V_{us}| = 0.2165 \pm 0.0027$ derived from the inclusive sum of strange τ decays [9].

Both of our measured $|V_{us}|$ values depend on absolute strange decay rates. Our value of $R_{K/\pi} = (0.06531 \pm 0.00056 \pm 0.00093)$, however, provides a $|V_{us}|$ value driven by the ratio between strange and nonstrange decays. We use $f_K/f_\pi = 1.189 \pm 0.007$ [11], $|V_{us}|$ [5], and the long-distance correction $\delta_{\text{LD}} = (0.03 \pm 0.44)\%$ estimated [25] using corrections to $\tau \rightarrow h \nu$ and $h \rightarrow \mu \nu$ [23,26] in

$$R_{K/\pi} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{us}|^2} \left(1 - \frac{m_K^2}{m_\tau^2}\right)^2 (1 + \delta_{\text{LD}}),$$

to obtain $|V_{us}| = 0.2255 \pm 0.0024$ where short-distance electro-weak corrections cancel in this ratio. This value is consistent with CKM unitarity [5] and 2.5σ higher than $|V_{us}|$ from the inclusive sum of strange τ decays.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

*Deceased.
\^ Present address: Temple University, Philadelphia, Pennsylvania 19122, USA.
\‡ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
\& Also with Università di Roma La Sapienza, I-00185 Roma, Italy.
* Present address: University of South AL, Mobile, AL 36688, USA.
\|| Also with Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France.

** Also with Università di Sassari, Sassari, Italy.

[10] Charge conjugate τ decays are implied throughout.