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1. Introduction 

One of the most commonly used procedures in bifurcation theory 

is the Liapunov-Schmidt procedure (which we review in §2). However, 

in differential topology this procedure is also regularly used, but 

of course, under a different name, namely "transversality." The aim 

of this short note is to make this link explicit. 

There are two reasons for geometrizing the Liapunov-Schmidt 

procedure. First of all, it is useful in some applications the author, 

A. Fischer and V. Moncrief have made to relativity (work in progress). 

Secondly, the dynamic analogue of the procedure, namely center mani-

fold theory, already has a geometric flavor (i.e. it makes intrinsic 

sense on manifolds), so it is natural to bring the classical Liapunov-

Schmidt procedure in line with it. 

2. Review of the Liapunov-Schmidt Procedure 

Let x and Y be Banach spaces and f: X x RP + Y a map, 

k ~ 1. Let Dxf(x,A) be the (Frechet) derivative of f with respect 

to x, a continuous linear map of X to Y. Let f(xO,A O) = 0 and 

let 
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Bifurcation and its Applications, Springer Applied Math Sciences 
#19 (1976). 
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Assume Xl is finire dimensional with a complement X2 so that 

X = Xl ~ X2 · Also, assume 

is closed and has a finite-dimensional complement Y
2

• In other words, 

Dxf(xO'YO) is a Fredholm operator. Write Y = YI ~ Y2 and let 

P: Y 7 YI be the projection. By the implicit function theorem, the 

equation 

has a unique solution x = 2 
near where 

x = xl + x
2 

E X = Xl ~ X
2

. Thus, the equation f(x,A) = 0 is equiva­

lent to the bifurcation equation 

a system of dim Y2 equations in dim Xl unknowns. This reduction of 

f(X,A) = 0 to the bifurcation equation is the Liapunov-Schmidt 

procedure. 

For purposes of this procedure alone, the assumption that Xl 

and Y
2 

are finite dimensional is, of course, irrelevant. This is 

made with the theory of Fredholm operators waiting in the wings. 

Similarly, the parameter space RP may be replaced by a Banach space 

Z. In fact, the parameter is just "along for the ride." 

3. A Topological Procedure 

Let X and Z be Banach manifolds, Y a Banach space and 

f: X x Z 7 Y be a map. (More generally, one can replace X x Z 

by a fiber bundle over Zl. We are interested in solving the equation 
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f(x,A) o for (X,A) E X x Z. Let (XO,A O) be a known solution and 

let 

and assume Xl splits; i.e. 

X2 C T X. Let 
Xo 

Xl ® X2 for a closed subspace 

and assume YI is closed and splits; i.e. Y = YI @ Y2 for a closed 

subspace Y
2

• (This, of course, involves a choice of Y
2

, as it 

did above. ) Let P: Y -+ YI be the projection. 

The map f is, for fixed A 0' transversal to the subspace Y2 

at (XO,A O). Therefore, in a neighborhood of (XO,A O)' 

{(X,A) I Pf(x,A) o} 

is a smooth submanifold of X x Z tangent to Xl x TA Z at 
0 

(XO,A O). [In the notation of § 2, Sp = { (xl + u (xl' A ) ,A ) } ] . 

Let fp denote the restriction of f to Sp. Clearly f(x,A) = 
iff (I - P)fp(x,A) = 0 iff fp(x,A) = O. The later condition is the 

geometric version of the bifurcation equation. It has proven to be 

useful, at least to the author. 

4. More General 

We can allow Y to be an arbitrary Banach manifold to clarify 

the choices involved. (I don't know any examples where this is 

necessary or useful.) Now we fix Yo E Y and attempt to solve 

f(x,A) = yO near a known solution (xo,yO)· Let Xl' X2 be as 

above and let T Y = YI @ Y2 where YI = Range Dxf(xO,A
O
). 

yo 

0 
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Now choose a submanifold M C Y tangent to Y2 at The proce-

dure only depends on this choice; it is analogous to the choice in §2 

of a linear complement to Yl . 

Again, f is transversal to M (with A. a parameter), so 

SM {(x,A.) I f(x,A.) E M} 

is a submanifold of X x Z. Let fM be the restriction of f to SM' 

regarded as a map of SM to M. Then the obvious assertion that 

f(x,A.) Yo E M 

is the abstract Liapunov-Schmidt procedure. 

5. A Sample Calculation 

In the usual Liapunov-Schmidt theory of §2, to analyze zeros 

of the map 

we need to compute its derivatives at (x lO ,1,.0) (x lO is the first 

component of x O). It is usually assumed that DAf(xO,k O) = O. Thus 

(xlO,A. O) is a critical point for g. By implicit differentiation 

one finds that 

(The right hand side appropr£ately restricted.) 

In the context of f3, it is clear that if DA.f(xO'A.O) = 0 then 

(xO,A. O) is a critical point (in the sense of zero derivative) of f p . 

Moreover, it is now obvious from the fact that Hessians are well-
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defined at critical points that 

restricted to 

i.e. we recover the same conclusion as above. The procedure can, 

of course, be repeated to obtain a formula for if the k-l 

jet of fp vanishes, as is well-known in bifurcation theory. Note 

that once the structure of the zeros of g is found, this still has 

to be lifted via the graph of u to obtain the zeros of f. In the 

geometric setting this is not necessary; the zeros of fp are the 

zeros of f. 

While these results are essentially nothing more than new 

language for well-known material, the geometric setting seems to 

clarify and even simplify what is going on. 

6. Pbtential Operators and Vector Fields 

If X = Yare Hilbert spaces and the original map f in 

Section 2 is the gradient of a potential function ~ in the variable 

x, then the reduced function g(xl,A) = (l-P)f(xl + u(xl,A) ,A)) is 

also a gradient, with a modified potential ~ (depending on u); 

see, for instance. P. Rabinowitz, J. Funct. An. ~ (1977) 412-424. 

We wish to explain the geometric meaning of this. In such cases, the 

function f may be thought of as a vector field on a manifold X, 

depending on the parameters A. 

For vector fields the procedure in §3 can be refined somewhat. 

At a zero (XO,A O) of a (parametrized) vector field f: X x Z + TX, 

the derivative Dxf(xO,A O) makes intrinsic sense as a linear map of 

T X to itself. One can now seek an invariant manifold SA for 
Xo 0 

f tangent to the subspace Xl = ker Dxf(xO,A O)' To do this for 

nearby A as well~ it is convenient to suspend f to the vector 

field I: X x Z +T(X x Z) by setting I(x,A) = (f(x,A),O) and 

find an invariant manifold S associated to ker DI(xO,A O); one can 
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then take SA = S n X x {A}, an invariant manifold for each A. One 

may regard SA as implicitly defined in' the same way as the function 

U(Xl,A) in the Liapunov-Schmidt procedure is implicitly defined. 

Zeros of f near (XO,A O) necessarily lie on S, so the 

problem reduces to finding zeros of fls, the analogue of the bifur­

cation equation. For finding fixed points , this is a geometric 

formulation of the Liapunov-Schmidt procedure. The fact that we are 

dealing with vector fields entails that the choice of Y2 (or M in 

Section 4) is now automatically made; both Sp and M are now re­

placed by S. 

In order to capture dynamic bifurcations as well as static ones, 

it is necessary to enlarge S to the full center manifold, as is 

explained in, for example, J. Marsden and M. McCracken, The Hopf 

Bifurcation and Its Applications 3 Springer Appl. Math. Sciences #19 

(1976). (For operators with real eigenvalues, such as potential 

operators, S equals the center manifold.) 

The fact that the reduction of a potential operator by the 

Liapunov-Schmidt procedure results in a potential operator is now 

clear. In fact, if one uses the space S, a modification of ~ is 

not necessary; one needs only to restrict it to S. This is because 

of the following obvious fact: the restriction of a gradient vector 

field to an invariant submanifold is a gradient vector field whose 

potential is the restriction of the original one; i.e. 

if V~ is tangent to S. 

(V ~) I S = V (~ I S) 


