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THE HAMILTONIAN FORMULATION OF 

CLASSICAL FIELD THEOR Y 

Jerrold E. Marsden· 

1. INTRODUCfION 

I shall present some results from the theory of classical non­

relativistic field theory and discuss how they might be useful in 

the general relativistic context. Some of the Hamiltonian 

formalism has already been successfully employed in the general 

relativistic context, but much more remains to be done in the area 

of dynamic stability, linearization stability, bifurcation, symmetry 

r-"aking, and covariant reduction. 

2. POISSON MANIFOLDS 

Let us begin with some terminology. A Poisson manifold is a 

manifold P together with a bracket { , } on Yep) := Cco(P,R) 

satisfying 

(PBI) 

and 

(PB2) 

{ , } makes Yep) into a Lie algebra 

{FG,H} = F{G,H} + G(F,H}. 

We call C e Yep) a Casimir if 

(C,F) = 0 
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for all F e Yep). If H e Y(P), the Hamiltonian vector field X H 

associated to H is defined by 

for all Fe Y(P), where XH[F] = dF,XH denotes the derivative of F 

in the direction XH• Thus, C is a Casimir when Xc = O. 

Besides the standard canonical, or symplectic examples, one has 

the following non-canonical examples: 

EXAMPLES. A. Let P :::: R3 with elements denoted J. Let 

(F,H}(J) = -J .(VF x vH). 

One checks that this makes P into a Poisson manifold and that the 

functions 

for any 4> e Y(R), are Casimirs. For H e Y(P), one has 

In particular, if 

for a positive definite symmetric rna trix I (the inertia tensor), then 

gives Euler'S rigid body equations. 

B. Let P be the space of triples (M,p,n) where M = a one form 

density, p = a density, and n :::: a function on a domain D in R3, 

with appropriate boundary conditions. Let 
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(F,H) = fD M [[:~ . V) :~ - (:~ . V):] 
+ f p[(SH . V]~ _ (~. vlSH] 

D SM Sp SM JsP 

[
SH SF SF SH] 

+ f D nv· SM 6n - SM sn 

which is a Poisson structure on P. Here SF /SM is the functional 
derivative, a vector field on D. The function 

C(M,p.n) = f D p~n.n) 

where n = lJdn " d(M/p)] (the potential vorticity) and ~ e Y(R2), is 
a Casimir. 

The equations for adiabatic compressible flow are 

Dv 
P"it= -vP. 

Dp 
- + p div v = 0 
dt • 

Dn 
-=0 
dt 

~ , .:re D/dt = a/at + v· v. v = velocity field. p = density. n = 

entropy, p = pressure. Here p = p2(Bw/ap) where w(p.n) is the 

energy· density per unit mass, a given function of P. n. and we 

assume c2 := ap/ap > O. With M = pvand 

H = f p[nv0 2/2 + wl. 
o 

the equations are Hamiltonian relative to the above bracket. 

C. The two preceding brackets are special cases of Lie-Poisson 
brackets. These are defined on the dual g* of a Lie algebra Q by 

where JL e g •• < , ) is the pairing between Q. and Q, SF ISJL e Q 

is the functional derivative: 

d· SF 
DF(JL)'v:= -F(IL + EV) I E-O = <v. -) 

dE - SIL 
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and [ , ] is the Lie algebra bracket. For example A, 9 . = so(3) = (~,x) 
(with the '-' sign), and for example B, Q. is the semi-direct product 

(vector fields) s (functions x densities) (with the '+' sign). ! 

These brackets are not conjured out of thin air, but are 
produced by the methods of reduction (see Marsden, Weinstein, ct. 

a1. (1983) for a review). For example, for the rigid body, one starts 

with phase space T*SO(3) with the canonical bracket and reduces 
by SO(3), an intrinsic symmetry group. This produces a map 

T*SO(3) ... so(3)* (6 dimensions'" 3) 

given by left translation to the identity. This map is a Poissoll 

map; Le., is bracket preserving. This map is in fact a momentum 

map (Noether conserved quantity) 

J :p ... g * G . ,. 

which is defined for a Poisson action of a Lie group G with 

associated Lie algebra g, on P by 

where t e g. and tp is the corresponding infinitesimal generator of 

the action. (For SO(3) use the action by SO(3) on the right.) It is a 

general fact that equivariant momentum maps are Poisson maps 

(use ~ t for left actions, 9 ~ for right actions). For fluids, the 

relevant group one reduces by is the particle relabelling (or 

rearrangement) group. 

Obviously, the Casimirs are conserved quantities for any 

Hamiltonian system. If H is G-invariant, a momentum map J is 
conserved as well. For Lie-Poisson brackets, conservation of the 
Casimirs corresponds to the fact that any Hamiltonian system leaves 
the coadjoint orbits invariant. For the rigid body these are the body 

angular momentum spheres IIJ0 2 = constant and for adiabatic flow, 
they are the states that are "kinematically connected"; i.e., there is a 

diffeomorphism (representing a conceivable particle motion) mapping 

one to another. These coadjoint orbits are also the symplectic leaves; 
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3. THE ENERGY-CASIMIR METHOD 

Two important applications of this formalism are to stability 

and to bifurcation. The first is based on the energy-Casimir 

method, developed and used by Arnold [1969] a nd Holm et. al. 

[1985]. To motivate it, first consider the classical canonical case. 

For the Hamiltonian systems in canonical form 

" aH aH 
q1 e- p.e--

api' 1 aqi ' 

there is a classical stability criterion due to Lagrange and Dirichlet. 

Clearly, an equilibrium point in this case is a critical point of H. 

If the 2n x 2n matrix D2H of second partial derivatives evaluated 

at (qe'Pe) is positive or negative definite (Le. all the eigenvalues 

have the same sign), then (qe'Pe) is stable. This follows from 

conservation of energy and the fact, proven in advanced calculus, 

that the level sets of H near (qe,pe> are approximately ellipsoids. 

Apart from KAM theory, which gives stability of periodic ,solutions 

~\r two degree of freedom systems, the Lagrange-Dirichlet theorem 

is the only known general stability theorem for canonical systems. 

T,he energy-Casimir method is a generalization of the 

Lagrange-Dirichlet method. Given an equilibrium ue for evolution 

equations u = X(u), it proceeds in the following steps: 

Energy-Casimir Method 

Step A. Write the equations in Hamiltonian form F = {F,H}. 

Step B. Find a family of conserved quantities C, such as a family 

of Casimirs. 

Step C. Select C such that H + C has a critical point at ue' 

Step D. Check to see if D2(H + C)(ue), the matrix of second partial 
derivatives of H + C at ue' is positive or negative definite. 

With regard to step C, we point out that an equilibrium 

solution need not be a critica,l point of H alone; in general DH(ue) to 

O. An example where this occurs is a rigid body spinning about 
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one of its principal axes of inertia. In this case. a critical point of H 

alone would have zero angular velocity; but a critical point of H + C is 

a (nontrivial) stationary rotation about one of the principal axes. 

Formally. the same argument used to establish the Lagrange· 

Dirichlet test also works here. Unfortunately. for systems with 

infinitely many degrees of freedom (like fluids and plasmas). there is 

a snag. The calculus argument used before simply runs into 

problems; one might think these are just technical and that we just 

need to improve the methods. In fact there is widespread belief in 

this "energy criterion" (see. for instance, the discussion and references 

in Marsden and Hughes [1983]. Chapter 6). However, Ball and 

Marsden [1984] have shown by means of a "realistic" example from 

. elasticity theory that the difficulty is genuine. One way to 

overcome this difficulty is to modify step D using a convexity 

argument of Arnold [1969]. 

Convexity Analysis 

Modified Step D 

(a) Let flu = U - ue denote a finite variation in phase space. ~ 
(b) Find quadratic functions Q1 and Q2 such that 

Ql(flu) , H(ue + flu) - H(ue) - DH(ue) . flu 

Q2(Au) , qUe + All) - C(ue) - DC(ue) . Au. 

(c) Require that Ql(All) + Q2(AlI) > 0 for all All i- O. 

(d) Introduce the norm lIl1ulI by 

so IIl1ull as a measure of the distance from U to "e; 
d(u,ue) = Dl1uU. 

(e) Reauire that 

and 
IH(ue + l1u) - H(ue)1 , C1 UlluU 

Ique + Au) - qUe)1 Iii C2 11Auli 

for constants C1 and C2, and Dl1uD sufficiently small . 

. ~ 
! 
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These conditions guarantee stability of ue and provide the 
distance measure relative to which stability is defined. The key part 

of the proof is simply the observation that if we add the two 
inequalities in (b), we get 

here, DH(IlJ ·t:.ll and DC(uJ·t:.u have added up to zero by step C. 

But Hand C are constant in time so 

Now employ the inequalities in (e) to get 

This estimate bounds the temporal growth of finite perturbations in 

terms of initial perturbations, which is exactly what is needed for 
stability. 

~ In the next section we give an example of how this technique 

atJplies in a concrete example. See Holm, Marsden, Ratiu and 

Weinstein [1985] and A barbanel, Holm, Marsden and Ra tin [1986] 

for a more extensive analysis. 

4. LIQUID DROPS WITH SURFACE TENSION 

Because of the historic and sustained interest in the dynamics 

of gravitating masses, I shall present a somewhat related example, 

the rotating liquid drop. Consider a planar liquid drop consisting 

of an incompressible, in viscid fluid with a free boundary and 

forces of surface tension on the boundary. The dynamic variables 
are the free boundary I: and the spatial velocity field v, a 

divergence free vector field on the region Dr. bounded by ,r.. The 

surface r. is an element of the set S of closed curves (respectively 

surfaces) in R2 (respectively R S) diffeomorphic to the boundary of 

a reference region D and enclosing the same area (respectively 
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volume) as D. We let /II denote the space of all such pairs (E,V). 

The Hamiltonian approach to hydrodynamic problems was 

introduced in the fixed boundary case by Arnold [1966] and 

developed by Marsden and Weinstein [1974,1982,1983]. The free 

boundary case has also been studied by Sedenko and Iudovich 

[1978]. 

The equations of motion for an ideal fluid with a free 

boundary E with surface tension Tare 

av 
- + (v . V)v = -Vp, at 
aE 
- = (vv) at " 

div v = 0 and plI: = TK, 

where v is the unit normal to the surface E, K is the mean 

curvature of I: and T is the surface tension coefficient, a numerical 

constant. 

The Poisson bracket will be defined for functions F, G: /II ..... ~ 
which possess jUllctional derivatives, defined as follows: 

i) SF /Sv is a divergence free vector field on Dr. such that 

SF 
D F(E,v). Sv = f (-, Sv)dA 

y DE Sv 

where the partial (Frechet) derivative DyF is computed with E 

fixed. 

ii) SF /'0, is the function on I: with zero integral given by 

SF SF = (-, v>. 
6<9 6v 

(The symbol, represents the potential for the gradient part of v in 

the Helmholtz, or Hodge, decomposition.) 

iii) SF /SI: is a function on I: determined up to an additive 

constant as follows. A variation 61: of I: is identified with a 
function on I: representing the infinitesimal variation of I: in its 

normal direction. It follows from the incompressibility assumption 
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tha t sr has zero integral. Let SF /SI: be the function determined up 

to an additive constant by 

SF 
J r SI: sr ds = DrF(I:.v) . sr. 

We now define a Poisson bracket on N as follows. For 

functions F and G mapping N to R and possessing functional 
derivatives as defined above, set 

SF SG J (SF SG SG SF ] {F,G} = J <w, - x - >dA + -- --- ds, Dr Sv Sv r sr Scp sr Scp 

where w = curl v. This Poisson bracket on N is derived from the 

canonical cotangent bracket on T* , where, in the two-dimensional 
case, C = EmbYOI(D,R 2) is the manifold of volume-preserving 
embeddings of a two-dimensional reference manifold D into R2. by 

reduction by the group G::: Diffvo1(D), the group of volume­

preserving diffeornorphisms of D (Le. the group of particle 

~labelling transformations). (See Lewis, Marsden, Montgomery and 

atiu [1986a] for details.) 

We take our Hamiltonian to be 

The functional derivatives of H are computed to be 

and 

SH 
- == v 
SV ' 

SH SH 
- = <-,v> = <v,v>, 
Scp Sv 

SH - = llv)2 + TIC sr 2' ' 

where SH/Sr is taken modulo constants. For this H and the 

Poisson bracket defined above, the equations of motion for the free 

boundary fluid with surface tension are equivalent to the relation 
F = {F,H} for all functions F on N possessing functional derivatives. 
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This explains the Hamiltonian structure for the free boundary 
problem. It is used in the following two ways: 

1. Stability. The circular planar drop is nonlinearly stable 

provided 

where n is the rotation rate of the circular drop. Formal stability 

is proved using the energy-Casimir method, taking H + C to be the 

energy plus a multiple of the angular momentum. (See Lewis, 

Marsden and Ratiu [l986b].) To prove nonlinear stability 

rigorously requires some more work, analogous to using the 

convexity estimates. Here it is the Weierstrass theory in a version 
due to Hestenes that does the job. See Lewis [1987] for details. 

2. Bifurcatioll. If the parameters T, r or n are varied to violate 

the stability condition, one can prove that a bifurcation occurs, so 

in this sense the stability condition is sharp. The result, due to 

Lewis, Marsden and Ratiu [l986c] uses the bifurcation theory for 

Hamiltonian systems with symmetry (see Golubitsky and Stewar ~ 
[1986]). 

5. COMMENTS ON GENERAL RELATIVISTIC FLUIDS 

The Poisson structure given in Section 2 has been shown to be 

relevant for general relativistic fluids by BMW (Bao, Marsden and 
Walton) [1985]. They show that the evolution equations in a 

general lapse and shift (not necessarily comoving with the fluid) 

have the form F = (F,H) where H = me + X·] (N = lapse, X = shift, 
Jt = superhamiltonian, J = supermomentum) and where { } is the 
canonical bracket for the ADM variables (g,n) plus the Lie-Poisson 

bracket for the fluid variables. This is the Poisson bracket form 
which corresponds to the adjoint form of the ADM equations 

(Fischer a nd Marsden [1979]). 
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Remarks and Open Questiolls: 

1. Does the free boundary bracket of §4 also carryover to the 

general relativistic case? 
2. The energy-Casimir method has been used for fluids in a 

fixed background by Holm and Kuperschmidt [1984. 19861; is it 
useful in the coupled case as well? 

3. Is the bifurcation theory with symmetry useful for 

studying general relativistic gravitating masses. fission. etc? We 
point out. as a curiosity. that the bifurcation that occurs in the 

liquid drop example is to a shape with "galactic symmetry" or 

"propellor symmetry". i.e. symmetry under rotation by n, but not 
under reflections. 

4. The Hamiltonian structure can surely be generalized to 
include electromagnetic effects. following Marsden and Weinstein 

[1982] and Marsden. Weinstein. ct. al. [1983]. for both fluids and 

plasmas. 

5. The Hamiltonian structure of Bao et. al. is useful for 
~earization stability. Recall that the main result of the 

lInearization stability program is that a spacetime (with a compact 

Cauchy surface of constant mean curvature) is linearization stable 
if and only if it has no Killing fields; if it docs. then obstructions 

to perturbation expansions are the second order Taub conditions. 

(See Fischer. Marsden and Moncrief [1980], Arms. Marsden and 

Moncrief [1982]. Isenberg and Marsden [1982].) For fluids. this 
result appears to be true as well, provided one imposes constraints 

on the perturbations corresponding to, for example, preserving 

baryon number - these constraints are, mathematically, preserving 

the coadjoint orbit structure and are closely related to "Lin 

constraints" (see Cendra and Marsden [1986]). 

6. COVARIANT REDUCTION 

Finally. I wish to point out some interesting open issues in 
classical relativistic field theory which are suggested by the 
preceding sections. 
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First of all, one should note that there is a beautiful covariant 

version of the multisymplectic formalism adapted especially for the 

linearization stability program, and which incorporates momentum 

maps. called the "GIMMSY project"; see Gotay ct. al. [1987]. This is 

a covariant analogue of thc formalism linking Lagrangians on TQ 

(Q = configuration space) with Hamiltonians on T*Q via the 

Legendre transformation. 

PROBLEM 1. Develop a cOl'ariant theory of reduction. starting with 

the Gimmsy setup and producillg. after 3 + lillg, the BMW bracket 

for GR fluids. The work of Kunzle and Ncster [1984] and Holm 

[1985] suggests this is reasonable. 

On the other hand, it seems that thcre is also a co~'arialll 

version of Poisson brackets (where the bracket does "ot depend on 

any hypersurface and involves integration over spacetime). In this 

formalism, due to Marsden, Montgomery. Morrison and Thompson 

[1986] (M3n. the Euler-Lagrange field equations take the form 

(F,S) = 0 where S is an appropriate action integral. It does work 

for general relativistic fluids 

electromagnetic effects. One obta ins 

Poisson brackets. 

and plasmas, includin~ 

covariant analogues of Lit. 

A more grandiose project is: 

PROBLEM 2. Make a commlltatil'e diagram of the following sort: 

Covariant Multisymplectic 
Formalism for GR fluids 

(GIMMSY) 

3 + I 1 proeedure 

3+1 GR fluids in material 
(Lagrangian) or inverse 
material representation 
(Kunzle and Nester) 

Covariant 
Reduction Covariant Lie Poisson 

Formalism for GR 
Fluids (M3n 

3 + I 1 procedure 
Standard 
material to 
spatial reduc-

:> 
tion (Holm 
(1985], Holm, 
Marsden and 
Ratiu [1986] 

3+1 GR fluids in 
spa t ia I represcn ta tion 

(BMW) 
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Bits of this scheme are known (see the quoted references); it would 

greatly clarify classical field theory if the whole picture were 

known in detail for fluids in particular and for GR fluids more 

generally. 
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