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Symmetry, Stability, 
Geometric Phases, 
and Mechanical 
Integrators (Part I) 
J. E. Marsden*, O. M. O'Reillyt. 
F. J. Wicklint, B. W. Zombro§ 

.('Iew analytical tcch.niques an~ recent algorit.hms which numer-
. .cally compute the time evolution of mechamcal systems enable 

today's scientists. engineers. and mathematicians to predict 
events more accurately and more rapidly than ever before. Be­
yond the problems of simulation and prediction. however. lie 
the problems of understanding a dynamical system and choos­
ing a correct dynamical system to model a given physical situ­
ation. Many systems remain too intricate to fully understand. 
but modem methods of mathematical analysis can sometimes 
offer insight. Most of this insight is obtained by viewing dy­
namics geometrically, and in fact the recent advances in me­
chanics which we review in this anicle all share this geometric 
perspective. Much of the value of these techniques lies in their 
appl.ic~tions, and ~Ithough applications exist in a broad rdnge of 
dlsclphnes. we Will focus on examples from space mechanics 
and robotics because these are simple to visualize. 

A key problem in space mechanics is the problem of effi­
ciently and effectively controlling the attitude of satellites in 
their orbits. Several spacecraft. including the very first U.S. 
satellite, Explorer I. have been unable to complete their mis­
sions because they began to tumble in space and could not be 
stabilized. Much research has been devoted to prevent current 
orbiting telescopes from suffering a similar fate. These tele­
scopes must be controlled with high precision. since small er­
rors can seriously degrade observations made of objects 
thousands of light years away. Several problems have plagued 
the Hubble Space Telescope. including low-frequency vibra­
tions in the structure's solar-power panels due to unanticipated 
thermal expansion effects as the telescope passes from night 
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into day. These vibrations were further amplified by the tele­
scope's computer controlled stabilization mechanisms (Wil­
ford. [ 1990 /). Two of the topics we shall discuss-stabi I ity and 
numerical integration-arc pertinent to the analysis and control 
of such vibrations. 

Stability and control are also important issues in the field of 
robotics. This is certainly the case for a team at the MIT Arti­
ficial Intelligence Laboratory which is trying to construct a 
somersaulting robot (Hodgins and Raibert [1989]) as shown in 
Figure I. Specifically. the project is to build a robot which will 
gather a running start. launch itself into the air. complete a 
forward revolution. and then land firmly on its feet. As might 
be imagined, the challenges involved in such a venture are 
formidable. 

Recent ideas of Berry [1984. 1985/. Hannay [1985/. and 
Montgomery (1990). however. may help to solve this problem 
as well as provide the means for a way of efficiently controlling 
mechanical systems such as orbiting telescopes. It is amusing to 
note that many of these recent ideas are related to a natural 
curiosity that has fascinated and motivated investigations in 
physiology as well as dynamics: How does a falling cat often 
manage to land upright even if released while upside down from 
a complete rest? (See Figure 2.) The cat cannot violate the 
conservation of angular momentum. yet somehow it manages to 
tum itself 180 degrees in mid-air. This process has been inves­
tigated many times over the past century (see Nature 1 I 894). 
Crabtree [19091. Kane and Scher [ 1969) and references therein) 
and recently has been analyzed by Montgomery [19901 with an 
emphasis on how the cat (or. more generally. a deformable 
body) can efficiently readjust il~ orientation by changing its 
shape. By "efficiently," we mean that the reorientation mini­
mizes some function-for example the total energy expended. 
Montgomery's results characterize the deformations which al­
low a cat to most efficiently reorient itself without violating 
conservation of angular momentum. 

We begin with a review of Hamiltonian systems and canon­
ical formulations. We then introduce noncanonical formulations 
and the concept of reduction of dynamics. Recent results in 
determining stability arc presented in the next section. and these 
are followed by a discussion of geometric phases in mechanics. 
We conclude with a survey of some recent advances in numer­
ical integration algorithms. 

Figure 1: Diagram of the planar biped robot 
constructed at MIT (from Hodgins and Raibert (1990)). 
The robot is designed to take a running start, jump into 
the air, pitch Itself forward so that it completes a 
forward flip, and continue running when it lands. 
©1990 MIT Press, used by permiSSion. 
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Figure 2: A falling cat manages to land on its feet even 
if released upside down without initial angular 
momentum. The explanation of this counter-intuitive 
feat may lead to new ways of controlling the dynamics 
of mechanical systems such as robots and space 
telescopes (drawing from R. Montgomery Commun. 

rsth. Phys. 128, 567 (1990).) 

Hamiltonian Formulation 
The equations of motion for a classical mechanical system con­
sisting of n particles may be written as a set of first order 
equations in the fonn established by Hamilton: 

. iJH 
il= -

iJPi 

iJH 

iJt! 
i = I ..... II. (CHE) 

The generalized configurdtion coordinates (ql • ...• q") and 
momenta (PI' ...• p,,) together define the system's instanta­
neous state. which may also be regarded as the coordinates of a 
point in a 2n-dimensional vector space called the phase space. 
We denote such a point by (q,p). The Hamiltonian function 
H(q,p) completely defines the system. In the absence of con­
straining forces and time dependence. H(q,p) is simply the total 
energy of the system. 

In the modem theory of Hamiltonian systems. this classical 
setting is generalized in two essential ways. First. the phase 
space, which identifies the possible states of the system. is 
allowed to be a differentiable manifold rather than merely a 
linear vector space. This generalization allows for the simplest 
and most natural characterization of systems consisting of bod­
ies whose motions arc spatially constrained. The set of all pos-

Fible spatial positions of bodies in the system is known as the 
\, Jnjiguration space. For example. the configuration space for a 
- three dimensional rigid body moving freely in space is SE(3), 

the six dimensional group of Euclidean (rigid) transfonnations 
of three-space, that is, all possible rotations and translations. If 
translations are ignored and only rotations are considered. then 
the configuration space is SO(3). 

When the constraints defining a system arc complicated, the 
configuration space may be an equally complicated manifold. 
For example. if two rigid bodies are connected at a point by an 
idealized ball-in-socket joint, then to specify the position of the 
bodies. we must specify a single translation (since the bodies 
are coupled) but we need to specify two rotations (since the 
bodies are free to rotate in any manner). The configuration 
space is therefore SE(3) x SO(3). This is already a fairly com­
plicated object, but remember that one must keep track of both 
positions and momenta of each component body in order to 
fonnulate the system's dynamics completely. If Q denotes the 
configuration space (only positions), then the corresponding 
phase space P (positions and momenta) is the manifold known 
as the cOlangent bundle of Q, which is denoted by T*Q. De­
scribing dynamics on such a manifold in tenns of standard 
vcctor calculus can be quite cumbersome and computationally 
costly. but the modem theory of Hamiltonian systems allows us 
to take advantage of the powerful differential calculus on man­
ifolds. 

The second important way in which the modem theory of 
Hamiltonian systems generalizes the classical theory is by re­
laxing the requirement of using canonical phase space coordi­
nate systems, i.e., coordinate systems for which the equations 
of motion take the standard fonn (CHE). An arbitrary transfor­
mation of the coordinates (q,p) does not necessarily result in a 
system in which the new coordinates obey the canonical equa­
tions. As a simple example, the canonical description of the 
simple harmonic oscillator is defined by the Hamiltonian H(q,p) 
= (l + p2)f2, but if we change variables according to q = xy 
and p = y, then it is easy to verify that x and yare not canonical 
coordinates. 

Canonical coordinates are sometimes convenient variables 
through which to study Hamiltonian systems, but rigid body 
dynamics, celestial mechanics, robotics, and biomechanics pro­
vide a rich supply of examples of systems for which canonical 
coordinates are unwieldy and awkward. The free motion of a 
rigid body in space is the simplest such example. It was treated 
by Euler in the 18th century and yet it remains remarkably rich 
as an illustrative example. 

As mentioned earlier, the rigid body problem in its primitive 
fonnulation has the six dimensional configuration space SE(3). 
This means that the phase space, T*SE(3), is twelve dimen­
sional. Assuming that no external forces act on the body. con­
servation of linear momentum allows us to solve for the 
components of the position and momentum vectors of the center 
of mass. This reduces the problem to finding the body's rota­
tional orientation in space as if its center of mass were fixed. 
Each possible orientation corresponds to an element of the ro­
tation group SO(3), which we may view as a configuration 
space for all non-trivial motions of the body. 

Euler fonnulated a description of the body's orientation in 
space in terms of three angles between axes which are either 
fixed in space or are attached to symmetry planes of the body's 
motion, as shown in Figure 3. The three Euler angles,l\I, ~, and 
6, are generalized coordinates for the problem. 

It is possible to construct a canonical Hamiltonian of the 
body's rotational motion in tenns of the three Euler angles and 
their conjugate momenta. This leads to a fairly complicated 
system of six coupled ordinary differential equations. Euler's 
fonnulation, however, is simpler than the canonical Hamilto­
nian approach. Assuming that no external moments act on the 
body, the angular momentum vector is conserved. Euler used 
this fact to write the three associated momentum equations in a 
coordinate system fixed within the body rather than fixed in 
space. Letting (01, O2 , 0;1) denote the components of the an­
gular momentum vector n = n(l) along the principal inertial 
axes of the body, the momentum equations are given by the 
well-known Euler equations: 
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Figure 3: Diagram of Euler angles 0, tj>, til in the case of 
a symmetric top. (After Goldstein (1980]). 

(EE) 

where the constants I., 12 and 13 are the principal moments of 
inertia of the body. It was Arnold [1966a) who first clarified in 
a satisfactory way the relationships between the various repre­
sentations (body. space, Euler angles) of the equations and 
showed how the same ideas apply to fluid mechanics as well. 

The formulation above is remarkable for the simplicity of its 
geometrical interpretation. Viewing (11 •• I12• 113) as coordi­
nates in a three dimensional vector space, the Euler equations 
are evolution equations for a point in this space. An integral 
(constant) of motion for the system is given by the magnitude of 
the angular momentum vector: 110112 = n~ + m + n~. This 
can be verified directly from the Euler equations (EE). Because 
of this. the evolution in time of any initial point 0(0) is con­
strained to the sphere 11011 = 110(0)11 = constant. Thus we may 
view the Euler equations as describing a two dimensional evo­
lution on an invariant sphere. We call this sphere the reduced 
phase space for the rigid body equations. The constant IIDII may 
be interpreted as a parameter which determines the size of the 
invariant sphere. 

A basic fact about this description is that this two dimensional 
system is a Hamiltonian system on the nvo-sphere S2. The 
Hamiltonian structure is not obvious from Euler's equations 
because the description in terms of angular momentum is in­
herently non-canonical. This means that there is no way to 
choose a pair of coordinates from (11 •• 1I2• Il3) to satisfy the 
canonical Hamilton equations (CHE). As mentioned above. 
however, Hamiltonian systems may be generalized to include 
Euler's formulation. The Hamiltonian for the reduced system is 

(RBH) 

and we shall shortly show how this function allows us to recover 
Euler's equations (EE). Since solutions curves of (EE) are con-
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fined to the level sets of H (which are in general ellipsoids) a~ 
well as to the invariant spheres 11011 = constant. the intersectiOl. 
of these surfaces are precisely the trajectories of the rigid body. 
shown in Figure 4. 

When considering a reduced phase space such as the sphere 
in the case of the rigid body equations. we call the fixed points 
relative equilibria. The equilibria are "relative" in the sense 
that they are equilibria only on the reduced phase space. These 
equilibria correspond to periodic orbits in the unreduced phase 
space. specifically to steady rotations about a principal inertial 
axis. The locations and stability types of the relative equilibria 
for the rigid body are clear from Figure 4. The four points 
located at the intersections of the invariant sphere with the x and 
z axes correspond to pure rotational motions of the body about 
its major and minor principal axes. These motions are stable. 
whereas the other two relative equilibria corresponding to roo 
tations about the intermediate principal axis are unstable. 

We shall shortly see how the stability analysis for a large 
class of more complicated systems can be greatly simplified 
through a careful choice of non-canonical coordinates. We 
managed to visualize the trajectories of the rigid body without 
really doing any calculations. but this occurrence is rare; the 
rigid body is a rather special system. Not only is the rigid body 
problem completely integrable (one can write down the solution 
in terms of integrals). but the problem reduces in some sense to 
a two dimensional manifold and allows questions about trajec­
tories to be phrased in terms of level sets of integrals. Many 
Hamiltonian systems are not completely integrable and trajec­
tories must be studied numerically. However, the fact that we 
were able to reduce the number of dimensions in the problem 
(from twelve to two) and the fact that this reduction was ac­
complished by appealing to non-canonical coordinates turns or~ 
to be a general feature of Hamiltonian systems with symmetry. 
One of the major results of contemporary theoretical mechanics 
has been the rigorous formalization of a general reduction pro­
cedure. 

One of the most attractive features of the reduction procedure 
is that it may be applied to non-integrable or chaotic systems 
just as easily as to integrable ones. In a Hamiltonian context. 
non-integrability is generally taken to mean that. once the "ob-

Figure 4: Phase portrait for the rigid body. The 
magnitude of the angular momentum vector determines 
a sphere. The intersection of the sphere with the 
ellipsoids of constant Hamiltonian gives the trajectories 
of the rigid body. This figure. as well as Figures 12, 13. 
and 14, were produced using the software package 
kaos which may be obtained from John Guckenheimer. 
Cornell University. Figure provided by Mark Meyers. 
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~ious" integrals are removed any analytic constant of motion is 
{ function of the Hamiltonian. We will not attempt to fonnulate 

a general definition of chaos. but mther usc the tenn in a loose 
way to refer to systems whose motion is so extremely compli­
cated that long-tenn prediction of dynamics is virtually impos­
sible. It can sometimes be very difficult to establish whether a 
given system is chaotic or non-integrable. Sometimes theoret­
ical tools such as "Melnikov's method" (cf. Guckenheimer and 
Holmes [19831 and Wiggins [1988» arc available. Other times, 
one resorts to numerics or direct observation. For instance, 
numerical integration suggests that irregular natural satellites 
such as Saturn's moon, Hyperion. tumble in their orbits in a 
highly irregular manner (Wisdom. Peale, and Mignard (1984)). 
The equations of motion for an irregular body in the presence of 
a non-unifonn gravitational field are similar to the Euler equa­
tions except that there is a configuration-dependent gravita­
tional moment tenn in the equations which may render the 
system non-integrable. 

The evidence that Hyperion tumbles chaotically in space 
leads to difficulties in numerically modelling this system. It 
turns out that the manifold SO(3) cannot be covered by a single 
three dimensional coordinate chart such as the Euler angle 
chart. Hence, an integrdtion algorithm using canonical variables 
must employ more than one coordinate system. alternating be­
tween coordinates on the basis of the body's current configu­
mtion. For a body which tumbles in a complicated fashion, the 
body's configuration might switch from one chart of SO(3) to 
another in a very short time interval. In the worst case. this 
could entail switching coordinate charts at nearly every step of 
the integration algorithm. The computational cost for such a 
procedure could be prohibitive. This situation is worse still for 

~ies with internal degrees of freedom like robots and large­
I, .::ale space structures. Such examples dramatically point out the 

need to go beyond canonical fonnulations in the context of 
practical problems. 

Geometry, Symmetry, and Reduction 
To motivate the discussion that follows, let us recap the two 
major clements of our discussion of the problem of the free rigid 
body: (I) The equations of motion for a system may be simpler 
in tenns of non-canonical coordinates (e.g .• Euler's equations) 
than in canonical coordinates; (2) The essential dynamics of a 
system may be described in tenns of trajectories on a manifold 
(e.g., the invariant momentum sphere) which has a lower di­
mension than the dimension of the problem's original phase 
space. The reduction of dimension involved may be difficult to 
recognize and cumbersome to fonnulate within a canonical 
framework. 

We now describe how modem developments in mechanics 
have led to coordinate-free fonnulations of equations of motion. 
These provide a framework for the non-canonical formulation 
of problems. We then outline a general method for reducing the 
dimension of the phase space of a Hamiltonian system provided 
that the system is invariant under an appropriate symmetry 
group. 

We have emphasized the distinction between canonical and 
non-canonical coordinates by contrasting Hamilton's (canoni­
cal) equations with Euler's equations. We may view this dis­
tinction from a different perspective by introducing Poisson 
bracket notation. Given two smooth (C"') real-valued functions 

J and H defined on the phase space of a Hamiltonian system, 
r::fine the (canonical) Poisson bracket of F and H by 

n 

" (aF aH aH aF) 
{F,H} = -;: aq api - iJq api ' 
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where every (qi,PI) is a conjugate pair of canonical coordinates. 
Now suppose that H is the Hamiltonian function for the system. 
Then the formula for the Poisson bmcket is precisely the direc­
tional derivative of F along the flow. that is, 

F = {F,H}. 

In particular, Hamilton's equations themselves are recovered if 
we let F be each of the canonical coordinates in tum: 

. . iJH 
it = {q'.H} = ;- , 

dPi 

iJH 
Pi = {Pi,H} = - iJqi . 

Once H is specified, the statement "F = {F,H} for all smooth 
functions F" is equivalent to Hamilton's equations. In fact, it 
tells how any function F evolves along the flow. 

This representation of the canonical equations of motion 
leads to a generalization of the bracket notation to cover non­
canonical fonnulations. There is an appropriate definition of the 
binary operation { , } such that the .equations of motion in the 
given coordinates are equivalent to F = {F,H} which is valid in 
any system of coordinates. This holds for Hamiltonian systems 
on reduced phase spaces, such as the angular momentum sphere 
of the free rigid body. as well as systems expressed in their 
unreduced fonns. 

As an example. we once again consider Euler's equations. 
The solution to the equations are trajectories given in tenns of 
the coordinates (TIl' Oz, 03) of the three dimensional "angular 
momentum space," and the constraint 11"11 = constant reduces 
the dynamics to a sphere imbedded in this space. We define the 
following non-canonical bracket of smooth functions on the 
angular momentum space 

{F.H} = -". (VF x VH), 

where the gradients are taken with respect to the (II I' lIz, Ill) 
coordinates. The geometry of the scalar triple product operation 
insures that the induced bracket of functions defined on any 
invariant sphere is represented by the same fonnula. If H is the 
rigid body Hamiltonian (see (RBH» and F is, in tum, allowed 
tll be each of the three coordinate functions II;, then the fonnula 
F = {F.H} yields the three Euler equations. 

The non-canonical bracket corresponding to the reduced free 
rigid body problem is an example of what is known as a Lie­
Poisson bracket (see Appendix A). Other bracket operations 
have been developed to handle a wide variety of Hamiltonian 
problems in non-canonical form, including some problems out­
side of the framework of traditional Newtonian mechanics (see. 
for instance, Arnold [I966a] or Marsden et al. [1983». The 
generalization of the Poisson bracket exemplifies the geometri­
cal emphasis of modem theoretical mechanics. When studying 
Hamiltonian dynamics from a geometrical perspective, it is es­
sential to distinguish features of the dynamics which depend on 
the Hamiltonian function from those which depend only on 
properties of the phase space. The generalized bracket operation 
is a geometrical invariant in the sense that it depends only on the 
structure of the phase space. The phase spaces arising in mc­
chanics often have an additional geometrical structure closely 
related to the Poisson bracket. Specifically, they may be 
equipped with a certain differential two-form called the sym­
plectic form. The symplectic fonn defines the geometry of a 
symplectic manifold much as the metric tensor defines the ge­
ometry of a Riemannian manifold. Bracket operations can be 
defined entirely in tenns of the symplectic fonn without refer­
ence to a particular coordinate system. (See Marsden et al. 
[l983J.) 

The classical concept of a canonical transformation can also 
be given a more geometrical definition within this framework. 
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A canonical transfonnation is classically defined as a transfor­
mation of phase space which takes one canonical coordinate 
system to another. The modem analogue of this concept is a 
symplectic map-a smooth map of a symplectic manifold to 
itself which preserves the symplectic fonn or, equivalently. the 
Poisson bracket operation. Symplectic maps of cotangent bun­
dles arise naturally in mechanics since every smooth map on a 
configuration space induces a symplectic map on the cotangent 
bundle of that space. This induced map is known as a cotallgent 
lift· 

The geometry of symplectic manifolds is an essential ingre­
dient in the fonnulation of the reduction procedure for Hamil­
tonian systems with symmetry. We now outline some important 
ingredients of this procedure. Some additional infonnation is 
contained in Appendix A. In Euler's problem of the free rota­
tion of a rigid body in space (assuming that we have already 
exploited conservation of linear momentum), the six dimen­
sional phase space is T*SO(3)-the cotangent bundle of the 
three dimensional rotation group. The reduction from six to two 
dimensions is classically described as a consequence of two 
essential features of the problem: 

(I) the existence of a coordinate system in which the Hamilto­
nian can be expressed independently of the body's config­
uration, and 

(2) the existence of a conserved quantity. fL. the angular mo­
mentum in space. 

Condition (1) is equivalent to rotational invariance of the 
Hamiltonian, while condition (2) expresses the conservation of 
the total angular momentum of the rigid body. These two con­
ditions are generalized to arbitrary mechanical systems with 
symmetry in the general reduction theory of Meyer (1973) and 
Marsden and Weinstein [1974], which was inspired by the sem­
inal works of Arnold (1966aJ and Smale [1970]. In this theory. 
one begins with a given phase space that we denote by P. We 
assume there is a group G of symmetry transfonnations of P that 
transfonn P to itself by canonical transfonnations. Generalizing 
(I) above, one assumes that the Hamiltonian is invariant under 
these tnmsfonnations. Generalizing (2). wc use the symmetry 
group to generate a vector-valucd conserved quantity which we 
denote J; it is called the momentum map. 

Analogous to the set where the total angular momentum has 
a given value. we consider the set of all phase space points 
where J has a given value IJ.. We call this set the IJ.-lcvel set for 
J. The analogue of the two dimensional body angular momen­
tum sphere in Figure 4 is the reduced phase space. denoted P .... ' 
that is constructed as follows: P IL is the IJ.-Ievel set for J with 
any two points that can be transfonned one to the other by a 
group transfonnation. identified. This identification procedure 
is not unlike the procedure one uses to bend an interval into a 
circle by identifying the two endpoints of the interval-what 
were two points before become one point in the new system. In 
the reduction theorem. many points can get identified with one 
new point, but the idea is thc same. The reduction process states 
that p~ inherits the symplectic (or Poisson bracket) structure 
from that of p, so it can be used as a new phase space. Also. 
dynamical trajectories of the Hamiltonian H on P detennine 
new reduced trajectories on the reduced space. This new dy­
namical system is. naturally, called the reduced system. The 
trajectories on the sphere in Figure 4 are the reduced trajectories 
for the rigid body problem. 

We saw that steady rotations of the rigid body correspond to 
fixed points on the reduced manifold, namely, the body angular 
momentum sphere in Figure 4. In general. fixed points of the 
reduced dynamics on P II- are called relative equilibria, follow­
ing tenninology first introduced by Poincare around 1880. The 

.%. Vii 

reduction process can be applied to the system which model~ 
the motion of the moon Hyperion, to spinning tops, to fluid anl ) 
plasma systems, and to systems of coupled rigid bodies. For 
example. if a system of coupled rigid bodies is undergoing 
steady rotation, with the internal parts not moving relative to 
each other. this will be a relative equilibrium of the system. An 
oblate Earth in steady rotation is a relative equilibrium for a 
fluid-elastic body. In general, the biggcr the symmetry group. 
the richer the supply of relative equilibria. 

Stability 
Having discussed the reduction procedure, we tum to the sta­
bility of the reduced dynamics. There is a standard procedure 
for finding the stability of equilibria of an ordinary differential 
equation 

x = f(x) 

where x = (XI' ••• , xn) and f is smooth. Thc procedure in­
volves solving for the equilibria (fixed points) of the differential 
equation. These are the point" Xe such that f(x,,) = 0; i.e .• 
points that are fixed in time under the dynamics. The goal of 
this procedure is to detennine the stability of the fixed point "". 
By stability here we mean that any solution to x = f(x) that 
starts ncar "" remains close to "" for all future time. 

A traditional method of ascertaining the stability of "" is to 
examine the first variation equation 

E = D.l(xe)~ 
where Dxf(x,,) is the Jacobian of f at "" and is defined to be the 
matrix of partial derivatives 

The eigcnvalues of D.,f(x,,) are then examined. If all the eigen­
values lie in the left half plane, then, by a result of Liapunov 
[1909], the fixed point is stable. If any of the eigenvalues lie in 
the right half plane, then the fixed point is unstable. However, 
for Hamiltonian systems the eigenvalues come in pairs or quar­
tets symmetric about the origin and so they cannot all lie in the 
left half plane. Thus, this standard stability result will never 
allow us to deduce whether a Hamiltonian system contains a 
stable fixed point. As the class of Hamiltonian systems includes 
the equations which arc used to model motions of orbiting space 
stations and space telescopes. it is imperative to develop ex­
plicit conditions to ensure the stability of their orbits. 

When the Hamiltonian is in canonical fonn one can use a 
stability test for fixed points due to Lagrange and Dirichlet. 
This method uses the fact that for a fixed point (qc'Pc) of such 
a system. 

iJH iJH 
~qe,Pe) = ap;<qe,Pe) = O. 

Hence, the fixed point occurs at a critical point of the Hamil­
tonian. If the 2n x 2n matrix D2H of second partial derivatives 
is either positive or negative definite at (qc'Pc) then one has a 
stable fixed point. Consider the positive definite case. Concep­
tually. the reason for stability is very simple: since H has a 
minimum at (qc,p,,) and energy is conserved, solutions stay on 
level surfaces of H, so that a solution starting near the minimum 
has to stay ncar the minimum. For a Hamiltonian of the form 
kinetic plus potential (V), critical points occur when Pc = 0 an ~ 
qe is a critical point of the potential of V. This criterion thc.. . 
reduces to asking for a minimum of V. 

In fact. this criterion was used to solve one of the classical 
problems of the 19th century: the problem of rotating gravitat­
ing fluid masses. This problem was studied by Newton. Mac-
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Figure 5: The formation of pear-shaped objects of 
equilibrium of a rotating fluid mass as it solidifies. 
Shown are the horizontal and vertical projections of the 
fluid masses during bifurcation (after Poincare (1892)). 

Laurin. Jacobi. Riemann. Poincare. and others. The motivation 
for its study was in the conjectured birth of two planets by the 
splitting of a large mass of solidifying rotating fluid as shown in r Figure 5. This is an example of what has since bec0n.te known 

. as a symmetry-breaking bifurcation. These ideas are Important 
in understanding pattern formation and many of the resulting 
symmetric objects we see in nature. Poincare (1892, 1901) was 
a major contributor to the study of this phenomenon and used 
the potential energy and angular momentum to deduce the sta­
bility and bifurcation of rotating fluids. 

The Lagrange-Dirichlet method was generalized by Arnold 
[1966b) into what has become known as the energy-Casimir 
method. Arnold analyzed the stability of stationary flows of 
perfect fluids and also developed an explicit stability criterion 
for the case in which the configuration space for the Hamilto­
nian of this system is a group which coincides with the sym­
metry group of the mechanical system. A Casimir C is 
characterized by the fact that it Poisson commutes with any 
function F defined on the phase space of the Hamiltonian sys­
tem. i.e .• 

{C.F} = O. 

(The name Casimir is used in recognition of work by H. B. G. 
Casimir, who introduced closely related ideas in representation 
theory.) Large classes of Casimirs usually occur when the re­
duction procedure is performed. resulting in systems with non­
canonical brackets. 

For example. in the case of the rigid body discussed previ­
ously. if <I> is a function of one variable and n is the angular 
momentum vector in the inertial coordinate system. then 

C(O) = <1>(110112
) 

is a Casimir for the rigid body bracket. The energy-Casimir 
method involves choosing C such that H + C has a critical r point at an equilibrium Zc and then examining D2(H + C)(zc). 

, If this matrix is positive or negative definite then the e!Juilib­
rium z is stable. When the phase space is obtained by reduc-
tion, the eqUilibrium Zc is a relative eqUilibrium of the original 
Hamiltonian system. 

The energy-Casimir method has been applied to a variety of 

problems including problems in fluids and plasmas (Holm. 
Marsden. Ratiu. Weinstein [1985]) and rigid bodies with flex­
ible attachments (Krishna prasad and Marsden (1987». If appli­
cable, the energy-Casimir method may permit an explicit 
determination of the stability of the relative equilibria. It is 
important to remember. however. that these techniques .give 
stability information only. As such one cannot use them to lOfer 
instability without further investigation. 

The energy-Casimir method is restricted to certain types of 
systems. since its implementation relies on an abundant supply 
of Casimir functions. In some important examples, Casimirs 
have not yet been found and may not even exist. Two methods 
developed to overcome this difficulty arc known as the energy 
momentum method (EMM) and the reduced energy momentum 
method (REMM). These two methods arc closely linked to the 
method of reduction. They use conserved quantities. namely the 
energy and momentum maps. that arc usually readily available. 
rather than Casimirs. 

The energy momentum method (Simo. Posbergh and Mars­
den [1990a.b), Simo. Lewis and Marsden (1990). and Lewis 
and Simo (1990» involves the allgmemed Hamiltonian defined 
by 

H~ = H(q. p) - ~ . J(q. pl. 

where J is the momentum map described in the previous section 
and ~ may be thought of as a Lagmnge multiplier. One then sets 
the first variation of H~ equal to zero to obtain the relative 
equilibria. To ascertain stability, the second variation D2H~ is 
calculated. One is then interested in determining the definite­
ness of the second variation. 

Definiteness in this context has to be properly interpreted to 
take into account the conservation of the momentum map J and 
the fact that D2H may have zero eigenvalues due to symmetry. 
The variations oJ p and q must satisfy the linearized angular 
momentum constraint (8q. 8p) E ker[DJ(qc. Pc)!. and must not 
lie in symmetry directions; only these variations are used to 
calculate the second variation of the augmented Hamiltonian 
H~. The energy momentum method has been applied to. t~e 
stability of relative equilibria of among others. coupled ngld 
bodies and geometrically exact rods (Simo. Posbergh and Mars­
den (1990a.b) and Patrick (1990». 

Cornerstones in the development of the EMM and REMM were 
laid by Routh (1877) and Smale [1970). who studied the stability 
of relative equilibria of simple mechanical systems. Simple me­
chanical systems are those whose Hamiltonian may be written as 
the sum of the ~tential and kinetic energies; the linear harmonic 
oscillator x + "lx = 0 is an example of such a system. Smale 
showed that there is a naturally occurring connection that plays an 
important role in the reduction of a simple mechanical system with 
symmetry. (A connection can be thought of physically as a gen­
eralization of the electromagnetic vector potential. A. Sec Zwan­
ziger, Koenig. and Pines (1990)). We now call this the mechanical 
connection. Smale also showed that the relative equilibria of these 
systems are given by the critical points of the amended potential 
junction V .... ' defined below. 

The amended potential plays a crucial role in the REMM (see 
Simo, Lewis and Marsden (1990). and Lewis and Simo 
(1990». The REMM exploits properties of the reduction 
method to put the second variation into a normal form. First one 
calculates the amended potential V.. which is the potential en­
ergy of the system plus a generalization of the potential energy 
of the centrifugal forees in stationary rotation: 

I 
V .... (q) = V(q) + iJ.Lc . U-I(q)lLc' 

where 0 is the locked inertia tensor. a generalization of the 
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inertia tensor of the rigid body obtained by locking all the joints 
in the configuration q. The momentum Pe need not be zero since 
the system is typically in motion. The second variation directly 
yields the stability of the relative equilibria. However. an in­
teresting phenomenon occurs if the tangent space 11 is split into 
two specially chosen subspaces VRIG and VINT (Simo, Lewis and 
Marsden (1990)). In this case the second variation block diag­
onalizes: 

D2V Iv x V = .... 

[wv ... .1 VROIG x VRIG 0] 
D2V ... .IVINTXVII'IT . 

The space VR1G (rotation variations) is generated by the sym­
metry group. and VINT arc the internal or shape variations. In 
addition. the whole matrix D2Ht block diagonali:?es in a very 
efficient manner. This oflen allows the stability conditions as­
sociated with D2V ... I V x V to recast in tenns of a standard 
eigenvalue problem' for the second variation of the amended 
potential. 

This splittingldiagonalization has important computational 
implications. In the case of pseudo-rigid bodies (Lewis and 
Simo [l990}). this splitting results in reducing the stability 
problem to the examination of a single 3 x 3 matrix instead of 
a full 18 x 18 array. (The large matrix becomes diagonal except 
for a 3 x 3 subblock on the diagonal.) The block diagonaliza­
tion approach enabled Lewis and Simo to solve their problem 
analytically. whereas without it. a substantial numerical com­
putation would have been necessary. The idea of block diago­
nalization can be taken further. It turns out that D2H~ and the 
symplectic structure can be explicitly brought into nonnal fonn 
simultaneously. Although investigations arc still at an early 
stage. this result promises to simplify computations in pertur­
bation theory and the study of bifurcation phenomena. 

In general, this diagonalization explicitly separates the rota­
tional and internal modes. a result which is extremely important 
not only in rotating and clastic fluid systems, but also in mo­
lecular dynamics and robotics. Similar simplifications are ex­
pected in the analysis of other problems to be tackled using the 
reduced energy momentum method. 

Appendix A: On the 
Reduction Construction 
In this appendix. we explain a few of the general notions used 
in the reduction theorem. In the text. we used the example of the 
free rigid body to illustrate the concept of reduction. The an­
gular momentum space for the rigid body can be interpreted as 
the dual space of the Lie algebra of SO(3). This is a three 
dimensional vector space usually identified with R3. The ana­
logue of the angular momentum space in general reduction the­
ory is g *. the dual of the Lie algebra of the symmetry group G. 

The momentum map is a map J : P - g* with the property 
that. for each ~ E g. (J.~) generates. in the sense of Hamilton's 
equations, the infinitesimal action in the same way that angular 
momentum q x p generates rotations. The level set with value 
J.L E g* is r I(J.L). which will be a submanifold of P under 
certain conditions. The group G ... is the subgroup of G that maps 
r I(J.L) to itself. (It can also be defined as the subgroup that 
fixes the value J.L under the coadjoint action of G on g*.) The 
reduced space is then the quotient p ... = J-I(J.L)/G .... 

Whereas p ... is symplectic. the manifold PIG is Poisson (the 
bracket of two functions on PIG is defined by regarding them as 
G-invariant functions on Pl. If J.L is considered as a parameter. 
one can show that the p ... arc the symplectic leaves in PIG in the 
same way that the spheres IIBII = constant arc the symplectic 
leaves in the three dimensional angular momentum space. 

Geometric phase { 
(holollomy) 
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Figure A1: Holonomy for the rigid body (after Marsden. 
Montgomery. and Ratiu (1990)). As the body completes 
one period in P jA' the reduced phase space. the body's 
true configuration does not return to its original value. 
The phase difference is equal to the influence of a 
dynamic phase which takes into account the body's 
energy. and a geometric phase which depends only on 
the area of P jA enclosed by the reduced trajectory. 

An important case of the reduction theorem arises when the 
configuration space is identical to the symmetry group. so that 
P = T*Q = T*G. Then the Poisson manifold PIG = (T*G)/G .~ 
is identified with the linear space \1*. This identification induces 
a special Poisson structure on \1* known as the Lie-Poisson 
structure. The Lie-Poisson bracket of two functions F and K on 
g* is defined by 

J.LE !l*, 

where the derivative &FI&J.L is the usual derivative of F regarded 
as taking values in \1. and (. J is the Lie bracket on !J. The 
general Lie-Poisson bracket {.}~ is the bracket obtained from 
(T*G)/G using right multiplication for the plus sign and left 
multiplication for the minus sign. The rigid body bracket dis­
cussed in the text is the special case G = SO(3). using the 
minus sign in the definition above. 

Let us indicate how holonomy is linked closely to the reduc­
tion process by returning to our rigid body example. Picture the 
rigid body as tracing out a path in its phase space T*SO(3). 
Conservation of angular momentum implies that the path lies in 
the submanifold consisting of all points which arc mapped onto 
,... by the momentum map. These points are then mapped to a 
curve in p ... by the reduction process; i.e .• by the quotient map 
J - I (J.L) - p.... As Figure 4 in the text shows. almost every 
trajectory on this reduced space is periodic. but this does not 
imply that the original path was periodic. as is shown in Figure 
A 1. The difference between the true trajectory and a periodic 
trajectory is given by the holonomy plus the dynamic phase. 
This is given quantitatively by fonnula (RBP) in the text and the 
reduction picture presented here is useful in proving it. 

We remark that the reduction construction for the rigid body 
corresponds to the Hop! fibration which describes the three­
sghere S3 as a nontrivial circle bundle over S2. In our example. 
S is the subset of phase space which is mapped to J.L under the 
reduction process. (More accurately, r I(J.L) is SO(3) "" sY1L2.) 

See Ko~ak et al. [1986] or Appendix C for more details. 

.. 
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