CaltechAUTHORS
  A Caltech Library Service

Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists

Bosanac, Natasha and Marsden, Jerrold E. and Moore, Ashley and Campagnola, Stefano (2010) Titan Trajectory Design Using Invariant Manifolds and Resonant Gravity Assists. In: Spaceflight Mechanics 2010. Advances in astronautical sciences. No.136. American Astronautical Society , San Diego, Calif., pp. 1057-1070. ISBN 9780877035602 http://resolver.caltech.edu/CaltechAUTHORS:20101006-081907422

[img]
Preview
PDF - Accepted Version
See Usage Policy.

1806Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20101006-081907422

Abstract

Following the spectacular results of the Cassini mission, NASA and ESA plan to return to Titan. For missions such as this to the giant planets and their moons, the primary challenge for trajectory designers is to minimize ΔV requirements while simultaneously ensuring a reasonable time of flight. Employing a combination of invariant manifolds in the planar circular restricted three-body problem and multiple resonant gravity assists allows for the design of trajectories with a very low ΔV. However, these trajectories typically exhibit long flight times. In this study, desired resonances are targeted that, at any single node, minimize the time of flight. The resulting time of flight for a trajectory created using this methodology is compared to that of a trajectory utilizing the maximum single point decrease in semi-major axis. Then, using this framework, the effect of the Jacobi constant on the trajectory’s total ΔV and time of flight is explored. The total trajectory ΔV is shown to vary over the range of Jacobi constants tested due to the interaction between the ΔV required for capture at Titan and the resonances encompassed by the targeted invariant manifold exit region. Over the range of Jacobi constants tested, the total ΔV varies by 28 m/s while the time of flight varies by 3.2 months between the minimum and maximum cases. The lowest Jacobi constant tested results in a 23-month trajectory and a total ΔV of 626 m/s, including a controlled insertion into a 1000 km circular orbit about Titan.


Item Type:Book Section
Related URLs:
URLURL TypeDescription
http://www.univelt.com/linkedfiles/ADV136.pdfPublisherUNSPECIFIED
Additional Information:The authors wish to thank Evan Gawlik for his valuable insight and discussions. This research was made possible through financial support from the California Institute of Technology Summer Undergraduate Research Fellowship Program.
Funders:
Funding AgencyGrant Number
Caltech Summer Undergraduate Research Fellowship ProgramUNSPECIFIED
Record Number:CaltechAUTHORS:20101006-081907422
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20101006-081907422
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:20314
Collection:CaltechAUTHORS
Deposited By: Tony Diaz
Deposited On:17 Nov 2010 19:44
Last Modified:26 Dec 2012 12:30

Repository Staff Only: item control page