The Core Matchings of Markets with Transfers

BY CHRISTOPHER P. CHAMBERS AND FEDERICO ECHENIQUE

We characterize the structure of the set of core matchings of an assignment game (a two-sided market with transfers). Such a set satisfies a property we call consistency. Consistency of a set of matchings states that, for any matching \(\nu \), if, for each agent \(i \) there exists a matching \(\mu \) in the set for which \(\mu(i) = \nu(i) \), then \(\nu \) is in the set. A set of matchings satisfies consistency if and only if there is an assignment game for which all elements of the set maximize the surplus. (JEL C78)

This paper is a study of the structure of the core matchings in a matching market with transfers. Given is a collection of matchings. We want to know if there is some specification of payoffs for matching these agents so that the given collection of matchings is the core of the market.

We study the standard model of two-sided markets with flexible prices: the so-called assignment game. The assignment game was introduced by Koopmans and Beckmann (1957) and Shapley and Shubik (1971). It is the basis for a body of modern economic theories; auction theory being the best known of these. Theoretical work on the assignment game has focused on the model’s predicted utilities. Empirical work, on the other hand, deals almost exclusively with matchings, as utilities and transfers are often unobservable.

We characterize the sets of matchings that can be generated by the model when utilities and transfers are unknown. An assignment game specifies two sets of economic agents, usually understood as buyers and sellers; but, following tradition, we will refer to men and women. Agents have quasilinear preferences over each other and money. Men can match to women; agents can also remain unmatched. Because of quasilinearity, each pair consisting of a man and a woman (a couple) generates some surplus. The games always have nonempty core. Core payoff vectors divide the maximal possible surplus among the set of agents. We will say a matching is a core matching if it is one that maximizes this surplus. Our aim in this paper is to understand the structure of the set of core matchings.

* Chambers: Department of Economics, University of California at San Diego, 9500 Gilman Drive # 0508 La Jolla, CA 92093 (e-mail: cpchambers@ucsd.edu); Echenique: Division of the Humanities and Social Sciences, California Institute of Technology, 1200 E. California Boulevard, Pasadena CA 91125 (e-mail: fede@caltech.edu).

We are grateful to Kim Border for explaining the integer/real version of Farkas’ Lemma, and to Haluk Ergin for his detailed comments. We also thank Guilherme de Freitas and Sang Mok Lee for excellent research assistance, and two anonymous referees for advice on revising our paper for the journal. Our research was supported by the National Science Foundation through grant SES-0751980.

Go to http://dx.doi.org/10.1257/mic.20130089 to visit the article page for additional materials and author disclosure statement(s) or to comment in the online discussion forum.
We show that a set of matchings can be the set of core matchings for an assignment game if and only if a simple property, which we call **consistency**, is satisfied. Consistency of a set of matchings E states the following. Take any matching ν of men to women. Suppose that if a man is matched to a woman under ν, then there exists $\mu \in E$ which matches this man to the same woman. Suppose that if a man is unmatched under ν, there exists $\mu \in E$ for which he is unmatched. Suppose similar statements hold for women. If ν satisfies these properties, then ν must itself be an element of E. Consistency thus might be viewed as the following: allow each agent x to choose some $\mu_x \in E$. If the function $\nu(x) = \mu_x(x)$ is itself a matching, then ν must be an element of E as well.

Consistency is a necessary and sufficient condition for a set of matchings to be the core of some assignment game. In fact, more is true. Consistency is satisfied if and only if a set of matchings is the core of some assignment game with integer values.

Consistency has the property that for any set of matchings, there is a unique smallest consistent extension (with respect to set inclusion). The intersection of an arbitrary collection of sets of consistent matchings is itself consistent. This property is useful in environments in which we are given two disjoint sets of matchings E and F, and we want to know if there is a game for which the matchings in E are in the core, while the matchings in F are not in the core. We simply need to find the smallest consistent extension of E and verify that it is disjoint from F. For example, if we generate matchings that are patently inefficient (e.g., by breaking up matches which should be profitable), we can see if these can be generated from the matchings in E.

We also characterize the set of matchings that coincide with the core of an assignment game where all surpluses are nonnegative. This requires a somewhat more restrictive notion of consistency (which we term monotone consistency) that is nonetheless simple to verify.

Two aspects of our results are worth emphasizing. First, we provide the first characterization of core matchings in the assignment game. For the model without transferable utility, the Gale-Shapley marriage market, a characterization has been known for a long time (Knuth 1997): the core matchings have a lattice structure. The lattice characterization has been very useful in the study of these markets. Our result is, in a sense, a counterpart to the lattice result for the model with transfers.

Second, a well-known observation is that if surpluses are drawn from an absolutely continuous distribution, then the set of core matchings is generically a singleton. To this end, many researchers have focused on the case in which, in fact, there is a unique core matching. Of course, there is no foundation for the hypothesis surpluses are drawn from an absolutely continuous distribution. We believe that the hypothesis is not justified empirically, or economically.

A. Related Literature

Shapley and Shubik (1971) first studied the core of assignment games. They establish results on the set of core imputations (utilities) in the associated transferable utility game. In particular, they characterize core imputations through
a linear programming argument. This characterization implies that a matching is a core matching if and only if it supports any core imputation, with each couple sharing their surplus only amongst themselves. They also show that the set of core imputations restricted to M (or W) form a lattice under the pointwise ordering. Shapley and Shubik present no results on the structure of core matchings.

More recently, Sotomayor (2003) (and later Wako 2006) establish a relationship on the cardinality of the set of core matchings and the structure of the set of core imputations. In particular, these authors establish that if there is only one core matching, then the set of possible imputations is infinite (the converse is not true in general). Núñez and Rafels (2008) study the dimension of the core in the space of imputations.

Related to this work is an earlier paper by Echenique (2008), which studies a matching model in which transfers cannot be made, but each side of the market has strict preferences over the other side. Echenique establishes conditions that are necessary and sufficient for a collection of matchings to be a subset of core matchings for some such preference profile. Strictness of preference in this environment is critical; if preferences are allowed to be weak, all sets of matchings can be the subset of a set of core matchings for some preference profile (the profile in which all agents are indifferent between everything). In our work, there is no trivial analogue of the statement that preferences are strict, and hence statements about subsets of core matchings require instead knowledge that some matchings cannot be core matchings.

A number of papers assume that the data come in the form of “aggregate matchings,” meaning that one observes the frequencies with which agents of different types are matched. Echenique et al. (2013) work out the testable implications for aggregate matchings of the theory with and without transfers, assuming that there is not unobserved heterogeneity. Choo and Siow (2006) and Galichon and Salanié (2009) focus on the optimal assignment with transfers, allowing for unobserved heterogeneity in a parametric model of agents’ preferences for partners.

The papers by Fox (2008) and Bajari and Fox (2008) consider the model of optimal assignment with transfers assuming data on multiple matchings, as we have done here, but they focus on identification and estimation of the parameters in discrete choice specification of agents’ preferences.

Section I provides the model. Section II, the main results, while Section III is devoted to proofs. Section IV concludes.

I. The Model

Let M and W denote disjoint finite sets of agents. A matching is a function $\mu : M \cup W \rightarrow M \cup W$ such that for all $m \in M$, $\mu(m) \in W \cup \{m\}$, for all $w \in W$, $\mu(w) \in M \cup \{w\}$, and for all $i \in M \cup W$, $\mu(\mu(i)) = i$. An agent $i \in M \cup W$ is single in μ if $\mu(i) = i$.

If a matching μ satisfies the property that for all $m \in M$, $\mu(m) \in W$ and for all $w \in W$, $\mu(w) \in M$, we will say it is a complete matching; i.e., a matching μ is complete if no agent is single in μ. Denote the set of matchings by \mathcal{M} and the set of complete matchings by \mathcal{M}_c.
An assignment game α is a matrix $[\alpha_{m,w}] \in \mathbb{R}^{M \times W}$. The interpretation is that $\alpha_{m,w}$ is the surplus generated by m and w if they match. We will say an assignment game α is integer valued if for all $(m,w) \in M \times W$, $\alpha_{m,w} \in \mathbb{Z}$. We say it is nonnegative if for all $(m,w) \in M \times W$, $\alpha_{m,w} \geq 0$.

A matching μ is a core matching of assignment game α if

$$\mu \in \arg \max_{\nu \in \mathcal{M}} \sum_{m \in M} \sum_{w \in W} 1_{\nu(m) = w} \alpha_{m,w}.$$

Implicit in our definition of core matching is that the value of single agents is zero.

For an assignment game α, denote the set of core matchings by $\mathcal{C}(\alpha)$. Our aim is to understand exactly which sets of matchings coincide with core matchings of some assignment game α.

We proceed to describe a general model of coalition formation with transfers; two-sided assignment games are a special case of this model.

Let N be a set of agents; a characteristic function game is a function $v : 2^N \to \mathbb{R}$. A coalition structure over N is a partition of N. Let \mathcal{P} be a family of partitions of N.

We interpret \mathcal{P} as the set of feasible coalitions. For example, in the assignment game $N = M \cup W$ and \mathcal{P} corresponds to the partitions into pairs and singletons defined by some matching. Another example is the roommate game, where \mathcal{P} corresponds to all partitions $\{S_i\}$ of N with $|S_i| \leq 2$.

If Π is a coalition structure over N, we associate with Π the value

$$\sum_{S \in \Pi} v(S).$$

A partition $\Pi \in \mathcal{P}$ is optimal if its value is maximal in \mathcal{P}. Let $O(v)$ denote the set of all optimal partitions for v.

II. The Results

A. General Assignment Games and Consistency

We will say that a set $E \subseteq \mathcal{M}$ is consistent if, whenever $\nu \in \mathcal{M}$ has the property that for all $i \in M \cup W$, there exists $\mu \in E$ for which $\nu(i) = \mu(i)$, then $\nu \in E$. We can rephrase the definition as follows. Say that a set E of matchings generates a matching $\nu \in \mathcal{M}$ if, for all $i \in M \cup W$, there is $\mu \in E$ with $\nu(i) = \mu(i)$. A set E is consistent if any matching that it generates is in E.

THEOREM 1: Let $E \subseteq \mathcal{M}$. The following statements are equivalent:

(i) There exists an integer valued assignment game α such that $E = \mathcal{C}(\alpha)$.

(ii) There exists an assignment game α such that $E = \mathcal{C}(\alpha)$.

1Kaneko and Wooders (1982) is an early reference on this model.
(iii) The set E is consistent.

The proof of Theorem 1 is in Section III. There is a simple constructive proof of the statement that (iii) implies (i) in the case where all matchings in E are complete. In that case, one can construct an assignment game by letting $\alpha_{ij} = 1$ if there is $\mu \in E$ with $\mu(i) = j$, and $\alpha_{ij} = 0$ otherwise. It is easy to verify that consistency implies $E = C(\alpha)$ with this construction. There is also a simple proof that (ii) implies (iii) in the nonnegative case (Section IIB); the proof involves using Shapley and Shubik’s (1971) theorem on the core payoffs.\footnote{Eran Shmaya pointed this out to us.} For the general case of incomplete matchings, we are not aware of a simple proof. In Appendix A we show why the simple construction does not extend.

An intuition for why (ii) implies (iii) was offered to us by an anonymous referee, and goes as follows. Suppose $E = C(\alpha)$ for some assignment game α. By definition, for every $\mu \in E$, it follows that $\sum_{i \in M} \alpha_{i, \mu(i)} = s$ for some real number s, say. Now, suppose that E generates ν. By definition, for each $i \in M \cup W$, there is $\mu^i \in E$ for which $\nu(i) = \mu^i(i)$. Now, consider the multiset of links induced by E: remove from this multiset the links according to ν. Assume that the remaining links in the multiset can be used to construct a set of matchings F (much of the work of the proof is devoted to proving such a statement, through an integer version of the Birkhoff von-Neumann Theorem). Now, the following must be true:

$$s |E| = \sum_{\mu \in E} \sum_{m \in M} \alpha_{m, \mu(m)} = \sum_{m \in M} \alpha_{m, \nu(m)} + \sum_{\mu \in F} \sum_{m \in M} \alpha_{m, \mu(m)}.$$

Because s is the maximal value $\sum_{m \in M} \alpha_{m, \mu(m)}$ a matching can take (by definition of the core), it follows that each matching summed over in the right-hand side of equation (1) has value at most s. Since the sum across all of these matchings is $s |E|$, we must conclude that matching ν has value s, so that it is in the core.

PROPOSITION 2: For any set of matchings there is a unique smallest consistent set that contains it.

PROOF:

First note that if E and E' are consistent sets of matchings, then $E \cap E'$ is consistent: Let $\nu \in \mathcal{M}$ have the property that for all i there exists $\mu \in E \cap E'$ for which $\nu(i) = \mu(i)$. Then, ν is generated by E and by E'. By consistency, $\nu \in E \cap E'$. The set of consistent supersets of E is nonempty as \mathcal{M} is consistent. Then the smallest consistent superset containing E is obtained as the intersection of all consistent supersets of E. \(\blacksquare\)

Note that the smallest consistent set that contains E can be constructed by successively adding matchings that are generated by E.

Observe that by Proposition 2 we can test whether one set E of matchings could be a subset of the set of core matchings, while another set F of matchings are
excluded from the set of core matchings. Let \(E' \) be the smallest consistent set containing \(E \). Then there is a game \(\alpha \) with \(E \subseteq \mathcal{C}(\alpha) \) and \(F \subseteq \mathcal{M}\setminus \mathcal{C}(\alpha) \) if and only if \(F \subseteq \mathcal{M}\setminus E' \). This observation yields the following corollary:

Corollary 3: Let \(E \) and \(F \) be nonempty disjoint sets of matchings. There is an assignment game \(\alpha \) with \(E \subseteq \mathcal{S}(\alpha) \) and \(F \subseteq \mathcal{B} \setminus \mathcal{S}(\alpha) \), if and only if there is no \(\nu \in F \) that is generated from \(E \).

As a simple application of Theorem 1, note that the matchings defined by the cyclic permutations, with \(n = |W| = |M| \), cannot be the core of an assignment game. Indeed, let \(M = \{ m_k : k = 1, \ldots, n \} \), \(W = \{ w_k : k = 1, \ldots, n \} \), and consider the set \(E \) of matchings defined by \(\mu^k(w_i) = m_{i+k \mod n} \), \(k = 0, \ldots, n - 1 \). Define a matching \(\nu \) such that \(\nu(m_i) = w_i \) for \(i = 3, \ldots, n \), while \(\nu(m_1) = w_2 \) and \(\nu(m_2) = w_1 \). Then \(\nu \) is generated by \(E \), but \(\nu \) is not a cyclic permutation and therefore not a member of \(E \).

B. Nonnegative Assignment Games and Monotone Consistency

We may further ask whether there are additional conditions that are required on a set of matchings \(E \) to imply that \(E \) is the set of core matchings of an assignment game with nonnegative entries. Indeed such additional conditions exist. Observe that it is implicit in the definition of core matchings that single agents generate zero surplus: they do not contribute to the sum being optimized. It is then to be expected that the additional conditions on \(E \) involve single agents.

We say that a set of matchings \(E \) is **monotone consistent** if and only for all \(\nu \in \mathcal{M} \), if for all \(i \in M \cup W \), either there exists \(\mu \in E \) for which \(\mu(i) = \nu(i) \), or there exists \(\mu, \mu' \in E \) for which \(\mu(i) = i \) and \(\mu'(\nu(i)) = \nu(i) \), then \(\nu \in E \).

Monotone consistency then requires that \(E \) not only contain the matchings that are generated from \(E \), but also those matchings \(\nu \) for which \(\nu(i) \notin \{ \mu(i) : \mu \in E \} \) for some \(i \), as long as both \(i \) and \(\nu(i) \) are single in some (possibly different) matchings in \(E \).

Theorem 4: Let \(E \subseteq \mathcal{M} \). The following statements are equivalent:

(i) There exists a nonnegative integer valued assignment game \(\alpha \) such that \(E = \mathcal{C}(\alpha) \).

(ii) There exists a nonnegative valued assignment game \(\alpha \) such that \(E = \mathcal{C}(\alpha) \).

(iii) The set \(E \) is monotone consistent.

The proof of Theorem 4 is in Section III.

Example 5: This simple example illustrates the difference between consistency and monotone consistency. Let \(M = \{ m_1, m_2, m_3, m_4 \} \) and \(W = \{ w_1, w_2, w_3, w_4 \} \). Consider the matchings \(\mu_1 \) and \(\mu_2 \) with \(\mu_i(m_k) = w_k \) for \(k = 1, 2, 3 \) and
\(\mu_2(m_k) = w_{k-1} \) for \(k = 2, 3 \), while \(\mu_2(m_1) = w_3 \) and while \(\mu_1(m_4) = \mu_2(m_4) = m_4 \).

Let \(E = \{\mu_1, \mu_2\} \). There is no nonnegative assignment game \(\alpha \) for which \(E = C(\alpha) \) because if the value \(\alpha_{m_4, w_4} \geq 0 \), then the matching that coincides with \(\mu_1 \) on \(\{m_1, m_2, m_3\} \), but pairs \(w_4 \) and \(m_4 \), would also be in the core. In order to obtain a monotone consistent set of matchings, we would need to add the matching \(\nu(m_k) = w_k \) to \(E \). On the other hand, \(E \) satisfies consistency. There is an assignment game \(\alpha \) for which \(\alpha_{m_4, w_4} < 0 \), and such that \(E = C(\alpha) \).

The statements in Proposition 2 and Corollary 3 corresponding to monotone consistency are true and have very simple proofs.

C. General Coalition Formation with Transfers

We present a characterization for general coalition formation games. The result is simple and the characterization probably not surprising; its value lies in the contrast with the results on the assignment game. The characterization for assignment games (Sections IIA and IIB) involves a stronger and more intuitive condition. We wish to emphasize how the two-sided structure of the assignment games makes an important difference here.

Let \((\Pi_i)_i \) and \((\Pi'_i)_i \) be sequences of partitions in \(\mathcal{P} \). Say that \((\Pi'_i)_i \) is an arrangement of \((\Pi_i)_i \) if, for all \(S \), the number of times \(S \) is a cell of some partition in \((\Pi_i)_i \) is the same as the number of times it is the cell of some partition in \((\Pi'_i)_i \).

The idea is that the partitions \((\Pi'_i)_i \) are constructed using only cells from the partitions in \((\Pi_i)_i \), and such that a cell must be available in \((\Pi_i)_i \) as many times as it is used in \((\Pi'_i)_i \). Thus, \((\Pi'_i)_i \) is an arrangement of \((\Pi_i)_i \) if for all \(\Pi_i \) of which \(S \) is a cell, there is a distinct \(\Pi'_i \) of which \(S \) is a cell; and vice versa for all \(S \), for all \(\Pi'_i \) of which \(S \) is a cell, there is a distinct \(\Pi_i \) of which \(S \) is a cell.

For example, with \(N = \{1, 2, 3, 4, 5\} \), consider the following partitions:

\[
\Pi_1 : \{1, 2\} \{3, 4\}, \{5\} \\
\Pi_2 : \{1\} \{2, 5\}, \{3\}, \{4\} \\
\Pi_3 : \{1, 2, 3\} \{4, 5\} \\
\Pi'_1 : \{1, 2\} \{3\} \{4, 5\} \\
\Pi'_2 : \{1\}, \{2, 5\}, \{3, 4\} \\
\Pi'_3 : \{1, 2, 3\}, \{4\}, \{5\}.
\]

Note how \((\Pi'_1, \Pi'_2, \Pi'_3) \) is an arrangement of \((\Pi_1, \Pi_2, \Pi_3) \).

A set of partitions \(E \subset \mathcal{P} \) is closed under arrangements if, whenever \((\Pi'_i)_i \) is an arrangement of partitions in \(E \), we have \(\Pi'_i \in E, i = 1, \ldots, n \).
THEOREM 6: Let $E \subseteq \mathcal{P}$. The following statements are equivalent:

(i) There exists an integer valued characteristic function game $v : 2^N \to \mathbb{Z}$ such that $E = \mathcal{O}(v)$.

(ii) There exists a characteristic function game $v : 2^N \to \mathbb{R}$ such that $E = \mathcal{O}(v)$.

(iii) The set E is closed under arrangements.

The proof of Theorem 6 is in Section III. The proof is simple. Optimality involves maximizing a sum of values that only depend on the cells of the partition. Hence, an arrangement must provide the same value as any sum of maximizing partitions.

The result in Theorem 6 is not surprising. In assignment games, though, the two-sided structure of the problem provides a stronger characterization.

D. Assignment Games and General Coalition-Formation Games

The two-sided nature of assignment games is responsible for the stronger results in Theorems 1 and 4. The following is the crucial consequence of two-sidedness (for our purposes).

In general coalition-formation games, one may “generate” a partition from some sequence $(\Pi_i)_{i=1}^n$ in a way that the remaining coalitions cannot be rearranged into $n - 1$ partitions. For example, consider a roommate model with $N = \{1, 2, 3\}$ and the partitions

\[
\begin{align*}
\Pi_1 &: \{1\} \{2, 3\} \\
\Pi_2 &: \{2\} \{1, 3\} \\
\Pi_3 &: \{3\} \{1, 2\};
\end{align*}
\]

these generate (in the obvious sense) the partition into singletons: $\{1\}, \{2\}, \{3\}$. But the remaining cells, $\{2, 3\}, \{1, 2\}, \{1, 3\}$, cannot be arranged into a collection of partitions.

In assignment games, this situation cannot arise. If we generate a matching from n matchings, then the remaining pairs can always be collected into $n - 1$ matchings; this is the main thrust of the proof of Theorem 1.

For example, if $E = \{\mu_1, \mu_2, \mu_3\}$ generates $\nu \not\in E$, then Step 1 in the proof of Theorem 1 guarantees that, with the pairs (and singletons) that are left after generating ν, we can always generate two matchings ν' and ν''. Since surpluses only depend on individual pairs, the sum of payoffs in all matchings in $\{\nu, \nu', \nu''\}$ has to equal the sum of payoffs in all matchings in E. This contradicts that E is the set of core matchings.

E. Assignment Games and Matching Markets with No Transfers

We present some examples to clarify the relationship between assignment games and matching markets without transfers.
First, we show that there are sets of matchings E which can be the core of one model but not the other. One might initially believe that the model with transfers should have more predictive power than the model without. This turns out to be false; our first example shows that the stable matchings for a model without transfers may never be the core of an assignment game. Second, we present a consistent set of matchings that cannot be stable, for any preferences in the model without transfers.

The following is a succinct description of the model without transfers (Gale and Shapley 1962; Roth and Sotomayor 1990): Let M and W be finite, disjoint, sets. For $m \in M$, a preference, $P(m)$, is a linear order over $W \cup \{m\}$. For $w \in W$, a preference, $P(w)$, is a linear order over $M \cup \{w\}$.

Given lists of preferences $(P(m))_{m \in M}$ and $(P(w))_{w \in W}$, a matching μ is stable if,

(i) for all $i \in M \cup W$ with $\mu(i) \neq i$, $\mu(i) P(i) i$;

(ii) there is no $(m, w) \in M \times W$ with $w \neq \mu(m)$ and $wP(m) \mu(m)$ and $mP(w) \mu(w)$.

Example 7: This example describes an inconsistent set E that is nevertheless a set of stable matchings. Hence, there are sets of stable matchings that cannot be the core of an assignment game. Let $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3, w_4\}$. Consider the preferences:

$$
\begin{align*}
P(m_1) & : w_1 \ w_2 \ w_3 \ w_4 \ & \ P(w_1) : m_4 \ m_3 \ m_2 \ m_1 \\
P(m_2) & : w_2 \ w_1 \ w_4 \ w_3 \ & \ P(w_2) : m_3 \ m_4 \ m_1 \ m_2 \\
P(m_3) & : w_3 \ w_4 \ w_1 \ w_2 \ & \ P(w_3) : m_2 \ m_1 \ m_4 \ m_3 \\
P(m_4) & : w_4 \ w_3 \ w_2 \ w_1 \ & \ P(w_4) : m_1 \ m_2 \ m_3 \ m_4 .
\end{align*}
$$

Then the matchings

<table>
<thead>
<tr>
<th></th>
<th>m_1</th>
<th>m_2</th>
<th>m_3</th>
<th>m_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_1</td>
<td>w_2</td>
<td>w_4</td>
<td>w_1</td>
<td>w_3</td>
</tr>
<tr>
<td>μ_2</td>
<td>w_2</td>
<td>w_1</td>
<td>w_3</td>
<td>w_4</td>
</tr>
<tr>
<td>μ_3</td>
<td>w_3</td>
<td>w_4</td>
<td>w_2</td>
<td>w_1</td>
</tr>
</tbody>
</table>

When data come in the form of aggregate matchings, this is not only false, but the opposite statement is true (Echenique et al. 2013).
are stable.\footnote{Our example is taken from the example in Figures 1.9 and 1.10 in Gusfield and Irving (1989).} The table means that where \(\mu_1(m_1) = w_2, \mu_3(m_1) = w_3, \) and so on. The matching

<table>
<thead>
<tr>
<th></th>
<th>(m_1)</th>
<th>(m_2)</th>
<th>(m_3)</th>
<th>(m_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu)</td>
<td>(w_2)</td>
<td>(w_4)</td>
<td>(w_3)</td>
<td>(w_1)</td>
</tr>
</tbody>
</table>

is generated from \(\{ \mu_1, \mu_2, \mu_3 \} \), but it is not stable, as \(w_2 P(m_4) w_1 = \nu(m_4) \) and \(m_4 P(w_2) m_1 = \nu(w_2) \).

There are more stable matchings than those in \(E \), but since \(\nu \) is generated by \(E \), it is generated by the set of stable matchings. Since \(\nu \) is unstable, the set of stable matchings is inconsistent.

\textbf{Example 8:} Our second example is of a consistent set of matchings that cannot be stable under any preference profile. Let \(M = \{ m_1, m_2, m_3, m_4 \} \) and \(W = \{ w_1, w_2, w_3, w_4 \} \). Consider the set \(E = \{ \mu_1, \mu_2, \mu_3 \} \) of matchings described as follows:

<table>
<thead>
<tr>
<th></th>
<th>(m_1)</th>
<th>(m_2)</th>
<th>(m_3)</th>
<th>(m_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_1)</td>
<td>(w_1)</td>
<td>(w_2)</td>
<td>(w_3)</td>
<td>(w_4)</td>
</tr>
<tr>
<td>(\mu_2)</td>
<td>(w_1)</td>
<td>(w_3)</td>
<td>(w_4)</td>
<td>(w_2)</td>
</tr>
<tr>
<td>(\mu_3)</td>
<td>(w_2)</td>
<td>(w_3)</td>
<td>(w_1)</td>
<td>(w_4)</td>
</tr>
</tbody>
</table>

The set \(E \) is rationalizable as the core of an assignment game, but not as the core of a marriage matching model. We show that \(E \) is consistent. If \(\nu \) is a matching generated by \(E \) we must have \(\nu(m_1) \in \{ w_1, w_2 \} \). Say that \(\nu(m_1) = w_1 \). We must have \(\nu(m_2) \in \{ w_2, w_3 \} \). If \(\nu(m_2) = w_2 \), then \(\nu(m_4) = w_4 \), and so \(\nu = \mu_1 \). If \(\nu(m_2) = w_3 \), then \(\nu(m_3) = w_4 \) (as \(\nu(m_1) = w_1 \)), so \(\nu(m_4) = w_2 \) and \(\nu = \mu_2 \). On the other hand, if \(\nu(m_1) = w_2 \) we must have \(\nu(m_2) = w_3 \) and \(\nu(m_4) = w_4 \). Hence, \(\nu(m_3) = \nu(m_2) = w_4 \).

On the other hand, the matchings in \(E \) cannot be the set of stable matchings of a nontransferable-utility marriage market. Suppose, by way of contradiction, that \((P(m))_{m \in M} \) and \((P(w))_{w \in W} \) are preference profiles, such that the matchings in \(E \) are all stable (admitting that more matchings than those in \(E \) might be stable). Say that \(w_2 P(m_2) w_3 \). This rules out the possibility that \(w_2 P(m_4) w_4 \), as \(\mu_2 \) would then be unstable if \(m_2 P(w_2) m_4 \), and \(\mu_1 \) would be unstable if \(m_4 P(w_2) m_2 \). So we must have that \(w_4 P(m_4) w_2 \). In turn, this implies that \(w_3 P(m_3) w_4 \). Finally, \(w_1 P(m_1) w_2 \) and the stability of \(\mu_2 \) and \(\mu_3 \) obtains that \(w_4 P(m_3) w_1 \). But we established that \(w_4 P(m_4) w_2 \), so if \(m_3 P(w_4) m_4 \mu_3 \) is unstable, and if \(m_4 P(w_4) m_3 \), then \(\mu_2 \) is unstable.
Note that we obtain the same conclusion if we assume instead that $w_3 P(m_2)w_2$.

The previous example is particularly interesting because all matchings in E are complete. There are simpler examples based on the property that any two stable matchings must have the same set of single agents. For example, with two men and two women, consider the matchings defined by $\mu_1(m_1) = \mu_2(m_2) = w_1$ and $\mu_1(m_2) = m_2$ and $\mu_2(m_1) = m_1$. This set is evidently consistent, but the two matchings could not be stable.

III. Proofs

We start with the following lemma, whose proof was shown to us by Kim Border.\footnote{Kim Border claims the result is well-known, but we were unable to find a reference. The lemma is a simple consequence of the standard Farkas’s Lemma and of the rational version of Farkas’s Lemma (see Gale 1960 and Fishburn 1973, 1971). It is crucial since it allows one to relate a primal involving real numbers with a dual involving integers.}

Lemma 9 (Integer-Real Farkas): Let $\{A_{ij}\}_{i=1}^{K}$ be a finite collection of vectors in \mathbb{Q}^n. Then one and only one of the following statements is true:

1. There exists $y \in \mathbb{R}^n$ such that for all $i = 1, \ldots, L$, $A_i \cdot y \geq 0$ and for all $i = L + 1, \ldots, K$, $A_i \cdot y > 0$.
2. There exists $z \in \mathbb{Z}_+^K$ such that $\sum_{i=1}^{K} z_i A_i = 0$, where $\sum_{i=L+1}^{K} z_i > 0$.

Proof:
It is clear that both (i) and (ii) cannot simultaneously hold. We therefore establish that if (ii) does not hold, then (i) holds. By Theorem 3.2 of Fishburn (1973), if (ii) does not hold, there exists $q \in \mathbb{Q}^n$, such that for all $i = 1, \ldots, L$, $A_i \cdot q \geq 0$ and for all $i = L + 1, \ldots, K$, $A_i \cdot q > 0$. Hence, $q \in \mathbb{R}^n$.

Lemma 10: Let $\{A_{ij}\}_{i=1}^{K}$ be a collection of vectors in \mathbb{Q}^n. Then there exists $y \in \mathbb{R}^n$, such that for all $i = 1, \ldots, L$, $A_i \cdot y \geq 0$ and for all $i = L + 1, \ldots, K$, $A_i \cdot y > 0$ if and only if there exists $z \in \mathbb{Z}^n$, such that for all $i = 1, \ldots, L$, $A_i \cdot z \geq 0$ and for all $i = L + 1, \ldots, K$, $A_i \cdot z > 0$.

Proof:
Immediate from Theorem 3.2 of Fishburn (1973) and Lemma 9.

A. Proof of Theorem 1

We first establish the equivalence of (i) and (ii). The existence of an assignment game α is equivalent to the existence of $\alpha \in \mathbb{R}^{M \times W}$ for which for all $\mu \in E$ and all $\nu \in \mathcal{M}$,
\[\sum_{m \in M} \sum_{w \in W} \left(1_{\mu(m) = w} - 1_{\nu(m) = w} \right) \alpha_{m,w} \geq 0, \]

and for all \(\mu \in E \) and all \(\nu \notin E \)

\[\sum_{m \in M} \sum_{w \in W} \left(1_{\mu(m) = w} - 1_{\nu(m) = w} \right) \alpha_{m,w} > 0. \]

As each of the vectors \(\left(1_{\mu(m) = w} - 1_{\nu(m) = w} \right) \) are rational valued, the claim follows from Lemma 10.

Now, we establish the equivalence of (ii) and (iii).

Step 1: A characterization of sums of matrices associated with matchings, using Hall’s Theorem.

The result in this step is closely related to the well-known Birkhoff-von Neumann Theorem, but is distinct from this result. Let \(\mu \in \mathcal{M} \) be a matching. Associated with this matching is the matrix

\[\left(1_{\mu(m) = w} \right)_{m,w}. \]

Note that by definition, for all \(w \in W \),

\[\sum_{m \in M} 1_{\mu(m) = w} \leq 1; \]

this follows as if \(\mu(m') = \mu(m) = w \), then \(m = \mu(\mu(m)) = \mu(w) = \mu(\mu(m')) = m' \). Likewise, for all \(m \in M \),

\[\sum_{w \in W} 1_{\mu(m) = w} \leq 1; \]

this follows simply as \(\mu \) as a function. Consequently, if \(\{ \mu_1, \ldots, \mu_n \} \) is a finite list of matchings, then for all \(w \in W \),

\[\sum_{i=1}^{n} \sum_{m \in M} 1_{\mu_i(m) = w} \leq n \]

and for all \(m \in M \),

\[\sum_{i=1}^{n} \sum_{w \in W} 1_{\mu_i(m) = w} \leq n. \]

Conversely, suppose that \(A \in \mathbb{Z}_{+}^{M \times W} \) satisfies for all \(w \in W \),

\[\sum_{m \in M} A_{m,w} \leq n. \]
and for all $m \in M$,

$$\sum_{w \in W} A_{m,w} \leq n,$$

then there exists a list of matchings $\{\mu_1, \ldots, \mu_n\}$ for which for all $(m, w) \in M \times W$,

$$A_{m,w} = \sum_{i=1}^{n} \mu_i(m) = w.$$

To see this, we construct a matrix $A' \in \mathbb{Z}^{(M \cup W) \times (M \cup W)}$ defined so that for all $m \in M$, $w \in W$, $A'_{m',w} = A'_{m',m} = A_{m,w}$, for all $m, m' \in M$ for which $m \neq m'$, $A'_{m,m'} = 0$, for all $w, w' \in W$ for which $w \neq w'$, $A_{w,w'} = 0$, for all $m \in M$, $A_{m,m} = n - \sum_{w \in W} A_{m,w}$, and for all $w \in W$, $A'_{w,w} = n - \sum_{m \in M} A_{m,w}$. Note in particular that the matrix A' has the property that for all $x \in M \cup W$

$$\sum_{y \in M \cup W} A'_{x,y} = \sum_{y \in M \cup W} A'_{y,x} = n.$$

Now, consider the correspondence $\Gamma : M \cup W \to M \cup W$ defined by

$$\Gamma(x) = \{ y : A'_{x,y} > 0 \}.$$

We first show that there exists a function $\gamma : M \cup W \to M \cup W$ for which

(i) for all $x \in M \cup W$, $\gamma(x) \in \Gamma(x)$, and
(ii) for all $x, x' \in M$ for which $x \neq x'$, $\gamma(x) \neq \gamma(x')$. To do so, we will use the Theorem of König and Hall, which states that the existence of such a γ will follow if we can establish that for all $F \subseteq M \cup W$, $|\bigcup_{x \in F} \Gamma(x)| \geq |F|$ (see e.g., Berge 2001, chapter 10).

We proceed by induction on the cardinality of F. If $|F| = 1$, then the result is trivial: let $F = \{x\}$, then as $\sum_{y \in M \cup W} A'_{x,y} = n$, there exists y for which $A'_{x,y} > 0$.

Now suppose the statement is true for all $F \subseteq M$ for which $|F| \leq k - 1$, and let $F' \subseteq M$ have cardinality $|F'| = k$. We shall prove that $|\bigcup_{x \in F'} \Gamma(x)| \geq k$. Fix $x' \in F'$; note that by the induction hypothesis

$$|\bigcup_{x \in F' \setminus \{x'\}} \Gamma(x)| \geq k - 1.$$

If in fact $|\bigcup_{x \in F' \setminus \{x'\}} \Gamma(x)| > k - 1$, then as $|\bigcup_{x \in F' \setminus \{x'\}} \Gamma(x)| \geq k$, we have established the claim. So suppose that $|\bigcup_{x \in F' \setminus \{x'\}} \Gamma(x)| = k - 1$.

As for all $x \in F' \setminus \{x'\}$ and all B, such that $\Gamma(x) \subseteq B$,

$$\sum_{y \in B} A'_{x,y} = n,$$
we obtain

\[
\sum_{x \in F \setminus \{k\}} \left[\sum_{y \in \cup \hat{x} \in F \setminus \{k\}} \Gamma(\hat{x}) A'_{x,y} \right] = n(k-1).
\]

On the other hand, for all \(y \in \cup \hat{x} \in F \setminus \{k\} \Gamma(\hat{x}) \), \(\sum_{x \in M \cup W} A'_{x,y} = n \). Hence, \(\left| \cup \Gamma(\hat{x}) \right| = k-1 \) implies that

\[
\sum_{y \in \cup \hat{x} \in F \setminus \{k\}} \Gamma(\hat{x}) \left[\sum_{x \in M \cup W} A'_{x,y} \right] = n(k-1).
\]

Reversing sums in the latter equality, and using (4), obtains

\[
\sum_{x \in M \cup W} \left[\sum_{y \in \cup \hat{x} \in F \setminus \{k\}} \Gamma(\hat{x}) A'_{x,y} \right] = n(k-1) = \sum_{x \in F \setminus \{k\}} \left[\sum_{y \in \cup \hat{x} \in F \setminus \{k\}} \Gamma(\hat{x}) A'_{x,y} \right].
\]

Consequently,

\[
\sum_{y \in \cup \hat{x} \in F \setminus \{k\}} A'_{x,y} \leq \sum_{x \in F \setminus \{k\}} A'_{x,y} = 0.
\]

Hence, \(A'_{x,y} = 0 \) for all \(y \in \cup \hat{x} \in F \setminus \{k\} \Gamma(\hat{x}) \). Conclude that there exists \(y \notin \cup \hat{x} \in F \setminus \{k\} \Gamma(\hat{x}) \) for which \(A_{x',y} > 0 \), so that \(\Gamma(x') \subset \cup \hat{x} \in F \setminus \{k\} \Gamma(\hat{x}) \) is false. Hence, \(\left| \cup \Gamma(x') \right| > \left| \cup \Gamma(\hat{x}) \right| = k-1 \), so that \(\left| \cup \Gamma(x) \right| \geq k = |F| \), verifying the claim.

Let \(\gamma \) be the aforementioned mapping. Importantly, \(\gamma(M \cup W) = M \cup W \). Now, for all \(m \in M \), define \(\mu(m) = \gamma(m) \). For all \(w \in W \), if \(w = \mu(m) \) for some \(m \in M \), define \(\mu(w) = m \). Otherwise, define \(\mu(w) = w \). To see that \(\mu \) is a matching, note that we only need to verify that \(\mu(m) \notin M \{m\} \). Suppose by means of contradiction that \(\mu(m) = m' \in M \{m\} \). Then, in particular, \(\mu(m) \in \Gamma(m) \), which implies that \(A'_{m,m'} > 0 \), a contradiction.

We finish the proof of Step 1 by induction. We show that \(\mu \) induces a matrix \(B \in \mathbb{Z}^M_W \), such that \(A - B \) is a nonnegative integer valued matrix and for all \(m \in M \) and \(w \in W \):

\[
\sum_{w \in W}(A_{m,w} - B_{m,w}) \leq n - 1
\]

\[
\sum_{m \in M}(A_{m,w} - B_{m,w}) \leq n - 1;
\]

thus \(A - B \) is under the hypotheses that allowed us to define the matching \(\mu \) above. By applying the argument inductively, we show that \(A \) defines a collection of matchings, as stated in Step 1.

First, let \(B \in \mathbb{Z}^M_W^+ \) be the matrix \([B_{m,w}] = 1_{\mu(m)=w} \). We claim that \(B \leq A \); so let \((m,w) \in M \times W \) be arbitrary. If \(B_{m,w} = 0 \), then \(B_{m,w} \leq A_{m,w} \) by assumption
on A. If $B_{m,w} = 1$, then $\mu(m) = w$; hence, $\gamma(m) = w$ and $A_{m,w} = A'_{m,w} > 0$. Consequently, $B_{m,w} \leq A_{m,w}$. This proves that $A - B$ is nonnegative.

Second, we show that (5) holds by showing that, for all $m \in M$, if $\sum_{w \in W} A_{m,w} = n$, then $\sum_{w \in W} \mathbb{1}_{\mu(m) = w} = 1$. This follows as if $\sum_{m \in M} A_{m,w} = n$, then $A_{m,m} = 0$, so that $\Gamma(m) \subseteq W$, consequently, $\mu(m) = \gamma(m) \in W$. So $B_{m,\gamma(m)} = 1$. Lastly, we show (6) by showing that for all $w \in W$, if $\sum_{m \in M} A_{m,w} = n$, then $\sum_{m \in M} \mathbb{1}_{\mu(m) = w} = 1$. So suppose that $\sum_{m \in M} A_{m,w} = n$. Then $A_{w,w} = 0$. As $\gamma(M \cup W) = M \cup W$, there exists some $x \in M \cup W$ for which $\gamma(x) = w$. But it as $A_{w,w} = 0$, $\gamma(w) = w$ is impossible. Conclude that there exists some $m \in M$ for which $\gamma(m) = w$, or $\mu(m) = w$; hence, $B_{m,w} = 1$.

Step 2: A characterization of nonexistence of a rationalizing assignment game using the Integer-Real Farkas Lemma.

We will show that the converses of (ii) and (iii) are equivalent. The existence of an assignment game α for which $E = C(\alpha)$ is equivalent to the existence of α for which for all $\mu \in E$ and all $\nu \in \mathcal{M}$,

$$\sum_{m \in M} \sum_{w \in W} (\mathbb{1}_{\mu(m) = w} - \mathbb{1}_{\nu(m) = w}) \alpha_{m,w} \geq 0,$$

and for all $\mu \in E$ and all $\nu \notin E$

$$\sum_{m \in M} \sum_{w \in W} (\mathbb{1}_{\mu(m) = w} - \mathbb{1}_{\nu(m) = w}) \alpha_{m,w} > 0.$$

Hence, the nonexistence of such an α is equivalent, by Lemma 9, to the existence of a vector $z \in \mathbb{Z}_{+}^{E \times \mathcal{M}}$ such that for some $(\mu, \nu) \in E \times (\mathcal{M} \setminus E)$, $z_{\mu,\nu} > 0$, and for all $(m,w) \in M \times W$,

$$\sum_{(\mu,\nu) \in E \times \mathcal{M}} z_{\mu,\nu} (\mathbb{1}_{\mu(m) = w} - \mathbb{1}_{\nu(m) = w}) = 0.$$

Step 3: Some basic algebraic manipulation.

The nonexistence of α with the above properties is equivalent to the existence of a finite list of matchings $\{\mu_1, \ldots, \mu_n\} \subseteq E$, and a finite list of matchings $\{\nu_1, \ldots, \nu_n\} \subseteq \mathcal{M}$ such that there exists $j \in \{1, \ldots, n\}$ for which $\nu_j \in \mathcal{M} \setminus E$, such that for all $(m,w) \in M \times W$

$$\sum_{i=1}^{n} \mathbb{1}_{\mu_i(m) = w} = \sum_{i=1}^{n} \mathbb{1}_{\nu_i(m) = w}.$$

Suppose without loss of generality that $\nu_n \in \mathcal{M} \setminus E$; we rewrite the preceding as for all $(m,w) \in M \times W$,

$$\left[\sum_{i=1}^{n} \mathbb{1}_{\mu_i(m) = w} \right] - \left(\sum_{i=1}^{n-1} \mathbb{1}_{\nu_i(m) = w} \right) = \sum_{i=1}^{n-1} \left(\mathbb{1}_{\nu_i(m) = w} \right).$$
The sum on the right of equality (7) equals a sum of \(n - 1 \) matchings. By Step 1, then, the existence of the two sets of matchings satisfying equality (7) is equivalent to the existence of a finite list of matchings \(\{ \mu_1, \ldots, \mu_n \} \in E \) and a matching \(\nu \in \mathcal{M} \setminus E \), such that for all \(m \in M \)

\[
\sum_{w \in W} \left[\sum_{i=1}^{n} \left(1_{\mu_i(m) = w} \right) - \left(1_{\nu(m) = w} \right) \right] \leq n - 1
\]

and all \(w \in W \)

\[
\sum_{m \in M} \left[\sum_{i=1}^{n} \left(1_{\mu_i(m) = w} \right) - \left(1_{\nu(m) = w} \right) \right] \leq n - 1,
\]

and all pairs \((m, w) \in M \times W \), \(\sum_{i=1}^{n} \left(1_{\mu_i(m) = w} \right) - \left(1_{\nu(m) = w} \right) \geq 0 \).

The first inequality is satisfied if and only if whenever \(\nu(m) = m \), there exists \(i \) for which \(\mu_i(m) = m \). The second inequality is satisfied if and only if whenever \(\nu(w) = w \), there exists \(i \) for which \(\mu_i(w) = w \). The last inequality is satisfied if and only if whenever \(\nu(m) = w \), there exists \(i \) for which \(\mu_i(m) = w \). The existence of such matchings therefore occurs if and only if \(E \) is not consistent. \(\blacksquare \)

B. Proof of Theorem 4

That (i) and (ii) are equivalent follow similarly to Theorem 1. For the equivalence of (ii) and (iii), note that the existence of a nonnegative valued assignment game \(\alpha \) for which \(E = \mathcal{C}(\alpha) \) is equivalent to the existence of \(\alpha \in \mathbb{R}_{+}^{M \times W} \) for which for all \(\mu \in E \) and all \(\nu \in \mathcal{M} \),

\[
\sum_{m \in M} \sum_{w \in W} \left(1_{\mu(m) = w} - 1_{\nu(m) = w} \right) \alpha_{m,w} \geq 0,
\]

for all \(\mu \in E \) and all \(\nu \notin E \)

\[
\sum_{m \in M} \sum_{w \in W} \left(1_{\mu(m) = w} - 1_{\nu(m) = w} \right) \alpha_{m,w} > 0,
\]

and for all \((m, w) \in M \times W \),

\[
1_{m,w} \alpha_{m,w} \geq 0.
\]

Hence, the nonexistence of such an \(\alpha \) is equivalent, by Lemma 9, to the existence of a vector \(z \in \mathbb{Z}^{\mathcal{E} \times \mathcal{M} +} \), such that for some \((\mu, \nu) \in \mathcal{E} \times (\mathcal{M} \setminus E) \), \(z_{\mu, \nu} > 0 \), and a vector \(z' \in \mathbb{Z}^{\mathcal{M} \times W +} \), for which for all \((m, w) \in M \times W \),

\[
\sum_{(\mu, \nu) \in \mathcal{E} \times \mathcal{M}} z_{\mu, \nu} \left[1_{\mu(m) = w} - 1_{\nu(m) = w} \right] + z'_{m, w} = 0.
\]
As in the proof of Theorem 1, this is equivalent to the existence of a finite list of matchings \(\{\mu_1, \ldots, \mu_n\} \subseteq E \), a finite list of matchings \(\{\nu_1, \ldots, \nu_n\} \subseteq \mathcal{M} \), such that there exists \(j \in \{1, \ldots, n\} \) for which \(\nu_j \in \mathcal{M}\backslash E \), and for all \((m, w) \in M \times W\) an integer \(z_{m, w} \geq 0 \) for which for all \((m, w) \in M \times W\),

\[
\begin{bmatrix}
\sum_{i=1}^{n} \mu_i(m) = w \\
\sum_{i=1}^{n} \nu_i(m) = w - z_{m, w}
\end{bmatrix}.
\]

Suppose without loss of generality that \(\nu_n \) is not an element of \(E \); let \(\nu = \nu_n \). Therefore the previous equality is equivalent to the existence of matchings \(\{\mu_1, \ldots, \mu_n\} \subseteq E \), a matching \(\nu \in \mathcal{M}\backslash E \), and \(z_{m, w} \geq 0 \) for all \((m, w) \in M \times W\) for which for all \((m, w) \in M \times W\)

\[
\begin{bmatrix}
\sum_{i=1}^{n} \mu_i(m) = w - 1, \nu(m) = w \\
\sum_{i=1}^{n} \nu_i(m) = w - z_{m, w}
\end{bmatrix}.
\]

For \(x \in \mathbb{R} \), define \(x^+ = \max\{0, x\} \).

The right-hand side of (8) satisfies that, for all \(m \in M \),

\[
\sum_{w \in W} \left[\sum_{i=1}^{n-1} \nu_i(m) = w - z_{m, w} \right]^+ \leq n - 1
\]

and for all \(w \in W \), \(\sum_{m \in M} \sum_{i=1}^{n-1} [1, \nu_i(m) = w - z_{m, w}]^+ \leq n - 1 \). In contrast to Theorem 1, the values of the matrix on the right-hand side of (8) may be negative. However, analogously to the proof of Theorem 1, it can be shown that if a matrix \(A \in \mathbb{Z}^{M \times W} \) satisfies for all \(m \in M \),

\[
\sum_{w \in W} A_{m, w}^+ \leq n - 1
\]

and for all \(w \in W \),

\[
\sum_{m \in M} A_{m, w}^+ \leq n - 1,
\]

then there exist matchings \(\{\nu_1, \ldots, \nu_{n-1}\} \subseteq \mathcal{M} \) and a vector \(z \in \mathbb{Z}_+^{M \times W} \) for which for all \((m, w) \in M \times W\),

\[
[A_{m, w}] = \begin{bmatrix}
\sum_{i=1}^{n-1} \nu_i(m) = w - z_{m, w}
\end{bmatrix}.
\]

This follows from the observation that \([A_{m, w}] = [A_{m, w}^+] + [A_{m, w}^-] \). Consequently, the nonexistence of \(\alpha \) under our condition, is equivalent to the existence of a collection of matchings \(\{\mu_1, \ldots, \mu_n\} \subseteq E \) and \(\nu \in \mathcal{M}\backslash E \) such that for all \(w \in W \),

\[
\sum_{m \in M} \left(\left[\sum_{i=1}^{n} \mu_i(m) = w \right] - 1, \nu(m) = w \right]^+ \leq n - 1
\]
and for all \(m \in M \),

\[
\sum_{w \in W} \left(\left(\sum_{i=1}^{n} 1_{\mu_i(m)=w} \right) - 1_{\nu(m)=w} \right)^{+} \leq n - 1.
\]

We claim that the first inequality is satisfied if and only if, for all \(w \in W \):

(i) if \(\nu(w) = w \) then there is \(i \in \{1, \ldots, n\} \) with \(\mu_i(w) = w \);

(ii) if \(\nu(w) \neq w \), then either there exists \(i \in \{1, \ldots, n\} \) with \(\mu_i(\nu(w)) = w \), or
there is \(i \in \{1, \ldots, n\} \) with \(\mu_i(w) = \nu(w) \).

Consider case (i): note that \(\nu(w) = w \) implies that for all \(m \), \(1_{\nu(m)=w} = 0 \). Hence, the first inequality is equivalent to \(\sum_m \sum_i 1_{\mu_i(m)=w} \leq n - 1 \). This is true if and only if there is \(\mu_i \) in which \(w \) is single.

For case (ii), suppose that \(\nu(w) = \tilde{m} \neq w \), and that for all \(i \), \(\mu_i(w) \in M \). Then
\[
\sum_m \sum_i 1_{\mu_i(m)=w} = n.
\]
So for the first inequality to hold there must be some \(i \) with \(1_{\mu_i(m)=w} - 1_{\nu(m)=w} = 0 \); that is \(\mu_i(w) = \nu(w) \).

Similarly, the second inequality is satisfied if and only if for all \(m \in M \), if \(\nu(m) = m \), then there exists \(i \) for which \(\mu_i(m) = m \), and if \(\nu(m) = w \), either there exists \(i \in M \) for which \(\mu_i(m) = w \) or there exists \(i \in M \) for which \(\mu_i(m) = m \).

But the existence of such matchings is equivalent to a violation of monotone consistency.

\[\square \]

\[\text{C. Proof of Theorem 6} \]

That (i) and (ii) are equivalent follow similarly to Theorem 1.

Let \(\Pi' \in P \). We identify \(\Pi \) with the vector \(1_{\Pi} \in \{0, 1\}^{2^n} \) defined by \(1_{\emptyset} = 1 \) if and only if \(S \in \Pi \). We can also identify any characteristic function game \(\nu \) with a vector \(\mathbf{v} \in \mathbf{R}^{2^n} \); the property that \(\Pi \) is optimal in \(P \) is then expressed as, for all \(\Pi' \in P \), \(1_{\Pi} \cdot \mathbf{v} \geq 1_{\Pi'} \cdot \mathbf{v} \).

Now, \(E = \mathcal{O}(\nu) \) if and only if \(1_{\Pi} \cdot \mathbf{v} \geq 1_{\Pi'} \cdot \mathbf{v} \) for all \(\Pi \in E \) and \(\Pi' \in P \); and \(1_{\Pi} \cdot \mathbf{v} > 1_{\Pi'} \cdot \mathbf{v} \) for all \(\Pi \in E \) and \(\Pi \in P \setminus E \). So the property \(E = \mathcal{O}(\nu) \) is equivalent to \(\mathbf{v} \) being a solution to the system of inequalities defined above; in this system, there is a strict inequality associated with each pair \((\Pi, \Pi') \in E \times P \), and a strict inequality associated with each pair \((\Pi, \Pi') \in E \times P \setminus E \).

There is a solution to the system if and only if there are no collections of nonnegative integers \((z_{(\Pi, \Pi')})_{(\Pi, \Pi') \in E \times P} \) and \((z'_{(\Pi, \Pi')})_{(\Pi, \Pi') \in E \times P \setminus E} \), with at least one of the latter being strictly positive, s.t.

\[
\sum_{(\Pi, \Pi') \in E \times P} z_{(\Pi, \Pi')}(1_{\Pi} - 1_{\Pi'}) + \sum_{(\Pi, \Pi') \in E \times P \setminus E} z'_{(\Pi, \Pi')}(1_{\Pi} - 1_{\Pi'}) = 0.
\]
The collections \((z_{(\Pi,\Pi')})(\Pi,\Pi') \in E \times \mathcal{P}\) and \((z'_{(\Pi,\Pi')})(\Pi,\Pi') \in E \times \mathcal{P}\backslash E\) define a sequence \(\Pi_i, i = 1 \ldots n\) in \(E\) and a sequence \(\Pi'_i, i = 1 \ldots n\) in \(\mathcal{P}\), with at least one \(\Pi'_i \in \mathcal{P}\backslash E\), with the property that

\[
\sum_{i=1}^{n} 1_{\Pi_i} = \sum_{i=1}^{n} 1_{\Pi'_i}.
\]

Property (9) says that \((\Pi'_i)\) is an arrangement of \((\Pi_i)\): The number of times a set \(S \subseteq N\) appears as a cell of some \(\Pi_i\) is the same as the number it appears as a cell of some \(\Pi'_i\). ■

IV. Conclusion

This work has studied the structure of the set of core matchings of assignment games. This structure is relevant as in many real-world scenarios, transfers may not be observed, but the actual matchings are. We discuss some related questions, which may be analyzed using similar techniques.

First is the question of assortative matchings (Becker 1973). Becker establishes that, when men and women have equal cardinalities and each set is linearly ordered, if the resulting function \(\alpha\) is strictly supermodular and strictly positive, then the resulting (unique) core matching is assortative. That is, it matches the “best” man with the “best” woman, the second best man with the second best woman, and so forth. The converse of this result is also easily seen to be true; that is, if a unique core matching is assortative, then it can be rationalized with a strictly supermodular assignment game. Simply let \(\alpha\) be any strictly supermodular assignment game and note that there is a unique assortative core matching, which is the matching under consideration. Generalizing this result to the case of different cardinalities of men and women, and the case of weakly supermodular and potentially negative \(\alpha\) is an open question which is amenable to linear programming analysis.

Related is the question that asks, given an assignment game \(\alpha\), which sets of ordinal preferences are compatible with it? This question only makes sense if we explicitly model the underlying transferable utility model which defines \(\alpha\). One standard example is when \(M\) is a set of buyers of objects, and \(W\) is a set of sellers of objects. Each \(m \in W\) has a valuation \(u_m(w)\) of the object \(w \in W\) is selling. Each \(w \in W\) has a valuation \(v_w\) of the object she sells. The surplus \(\alpha_{m,w}\) is then obviously \(u_m(w) - v_w\). The question is then, given \(\alpha\), which lists of preferences \((P(m))_{m \in M}\) have utility representations \(u_m\) which generate \(\alpha\)? Further questions might be asked as to when is it the case that \(v_w(w) \geq 0\) (that is, when is it the case that each seller would rather keep her object than throw it away?) Note that in particular a utility representation must satisfy the requirement that \(u_m(m) = 0\). This question can also be addressed using linear programming techniques. Similarly, one can ask a related question about synergistic matching, in which each \(m \in M\) and each \(w \in W\) have preferences, and the surplus associated with utility functions is given by \(\alpha_{m,w} = u_m(w) + u_w(m)\).
Also related is the question of efficient sets of matchings when preferences are not necessarily quasilinear, which again only makes sense in a model where preferences over objects sold are explicitly modeled. Such models are related to Alkan, Demange, and Gale (1991), for example.

APPENDIX: PROBLEMS WITH EXTENDING THE CONSTRUCTION

We outlined a simple constructive proof for the case where all matchings are complete. There are two problems when one tries to extend the proof to the general case. First, it is not enough to assign pairs \(ij \) a value of 0, 1, or \(-1\). Secondly, one cannot assign \(ij \) a value that depends on the optimal matchings to which \(ij \) belongs. So one cannot construct the matrix of surpluses by an algorithm that ranges over the optimal matchings.

To illustrate the first problem, consider the following example. Suppose there are two men and two women, and the optimal matchings are

\[
\mu_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mu_2 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \mu_3 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix},
\]

where there’s a 1 in entry \(ij \) of the matrix if and only if agents \(i \) and \(j \) are matched.

Then the optimality of \(\mu_1 \) would imply that we need to have values of 1 in entries \(\alpha_{1,2} \) and \(\alpha_{2,1} \) of the surplus matrix. Then \(\mu_2 \) and \(\mu_3 \) implies that we must have a value of 0 in \(\alpha_{2,2} \) and of 2 in \(\alpha_{1,1} \). So the matrix must be

\[
\alpha = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix},
\]

where the matrix \((\alpha_{ij}) \) describes the surplus \(\alpha_{ij} \) available to \(i \) and \(j \) if they match.

To illustrate the second problem, consider instead a market with three men and women. Let the optimal matchings be

\[
\mu_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \mu_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.
\]

Here all the pairs in the cross diagonal are in one complete matching, which suggests one wants to set

\[
\begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}.
\]

Then, one of \(\alpha_{3,2} \) and \(\alpha_{2,3} \) must be a 2. Say we set \(\alpha_{3,2} = 2 \). But then \(\alpha_{1,2} + \alpha_{3,2} = 3 \) and thus a third matchings different from \(\mu_1 \) and \(\mu_2 \) must be optimal.

The only possibility is to set one of the pairs on the cross diagonal to have a surplus of 2. In fact, we need to set
Thus, in the example pairs that belong to the same set of optimal matchings have different surpluses. A constructive proof would have to choose α_{ij} based on all the optimal matchings and not only the matchings that contain the edge ij.

REFERENCES