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If the doors of perception were cleansed, everything would appear to man as
it is: Iafinite.

William Blake
The Marriage of Heaven and Hell, 1790.

INTRODUCTION

In this briel note, we state two theorems concerning the global behavior of o class
of periodically perturbed dynamical systems that are close to Hamiltonian. The
methoeds are applicable 10 ordinasy ditferential equations (2n-dimensional systems)
and to certain infinite-dimensional evolution equations arising from partial difFeren-
tial equations. Many more detaits and prools will appear in a forthcoming paper.!

To fix ideas, consider the following experiment, which is similar to one performed
by Moon and Halmes.* A slender beam, pinned it cach end, is buckled between o pair
of rigid supports, so that it possesses two (symmetric) equilibeia, wy(v) and wy(v); w -
wixn, £) here denotes the lateral displacement. The supports are then excited
sinusoidally and 1he beam’s inerita causes it 10 move, also. For low excitation levels,
the motion, while not sinusoidal, is still periodie, but as the excitation increases, the
beam begins to snap back and forth in an ircegular, appiarently candom ssianner. Tseng
and Dugundji observed similir behavior in an carlier study.’

The simplest equation of motion fur the beam is the fotlowing  modilied
Euler-Bernoulli equation for the deflection wiz, 1) of the center line of the beam,

W ow™ o e oo a ( [' |""|"df) w” o feos wt - hw), 1D
%)

where « =~ @/, < afaz, 11 - external load, & = stilTness due to “membrane™ ellects,
& « damping, and ¢ is a small parameter. We take w < w” < 0at z = 0, 1, i.c., simply

*This rescarch was supported, in part, by a National Scicnce Foundation grant, no. MCS
78-0671K, a US Army Rescarch Oftice geami, no. DAAG 29-79C-0086, and a Kilkim visiting
fellowship at the University of Calgary, all 1o 3. M. ind by a National Science Fuundation grant,
no. ENG 78-0289), 10 I*, 1.
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|
supported, or hinged, ends. With these boundary conditions, the cigenvistues of the
linearized, unforced cquations form a countable set,

N Y L L A T N

7

Thus,if I' - 2%, all cigenvalues are imaginary and the trivial solution w - 0 is formally
stable; for pasitive damping, it is Lyapunov stable. We shall henceforth assume
that

b b
F SERVEE PV § 4

i which case the solution w - 0 is unstable with one positive and one negative
cigenvitlue and the nonlinear cquation (B with e Oand & - 0 has two nontrivial stable
buckled equilibrium states.

Ia studies of a related model for 2 magnetically buckied cantilever beam.” it was
shown that a singie mode Galerkin approximation takes the form of a Dufling
cquation

¥ = Dy - dycoser AL, 2)

[ 3]

where v(1) and x{f) represent the modal displacement and velocity and y and 6 are
parameters derived from the force amplitude and damping. In an carlicr paper,!
Holmes showed that, for ¢ = 0, small and 5y = 5, (8). equation 2 possesses transverse
homoclinic orbits (and hence Smale horseshaoes) in its Poincaré map. While this docs
uol fully expliin the apparent “strange attractor” motions observed in Reference 2
and studied in Relerence 4, it is clearly of considerable importance and interest, since
it shows, for example, that (2) possesses a countable infinity of periodic orbits of
arbitrarity high periods.

[u this work, the methads of Melnikov were used® (see Reference 6). 1n the presemt
note, we ontline extensions o these methods that enable us 10 apply them to a class of
partial differential equations of which (11is a member and, thus, we can prove reselts
amalogous o those of References 4 6 for the ful) PDIE

ABSTRACT RisurTs
We consider an evolution equartion in a Banach space X of the form
X - fulx) 4 fitan, R}

where /) is periodic of period 7 in ¢ Qur assumptions on {3) are as follows,

ASSUMPTION 1. a. Assume fi(x) = v 1+ B(x), where A is an (unbounded) lincar
opertor that penerates a C one parameter group of transformations on .\ and where
8.0 + Xis C* and has bounded derivatives on boundad sets.

b Assume £33V ox ST« Vs O and has bounded derivatives on bounded sets,
where ' - R/(T), the circle of length 7.
€. Assume that #7is defined for all ¢ C R for « 2« 0 sullicientty small and £ maps
bounded scts in X x S 10 bounded sets in .V x 8 uniformly for small ¢ = 0 and ¢ in
bounded 1ime-intervals,
(Sce Segal” and Hotmes and Marsden®).

)
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Assumption | implies that the associinted suspended autonomous system on X x
S

X fulx) it ),
0o,

H

has a smooth lucal Mlow, £, which can be extended globally in time, i.c., solutions do
not cscape 1o infinity in finite time. Encrgy estimates sullice to prove the kater for
equation |, (¢f. References 1 and 9).

ASSUMPTION 2. a. Assume that the system 4 = f(x) (the unperturbed system) is
Hamiltanian with energy /. V' -+ R.

b. Assume there is a symplectic 2-manifold ¥ C .V invariant under the llow #7 and
that on X there is a lixed point p, and a homocliaic orbit (7). i.c.,

,’;-(I’n) -, Nol) o fulrute))
and
Po - Ii_m Nl - Ii'm AWK

This means that .V carrics o skew symmetric contingous bilinear map, $2: .V x X' - -
R. that is weakly nondegenerate (i.c.. Q(u, ) = 0 for all - implies 4 < 0) called the
symplectic form and it there is a smooth Tunction, Hy: X' —+ R, such that

QC folx), w) = dily(x) - u

, . . Aop® . . -
for all x in D, the domain of . Consult Abraham and Marsden™ and Chernofl’ and
Marsden® for details aboul amiltonian systems.

RiMARKS. o, For i non-Hamiltonian two-dimensional version, sce Holmes® and
Chow, Hale, and Mallet-Parer.” Non-1lamiltoniun infinite-dimensional analogues
can be developed using the methods of this paper.

b. The condition that X be symplectic means that Q restsicted to vectors langent 10 X
defines a nondegenerate bilinear form.

¢. Assumption 2 can be replaced by a similar assumption on the cxistence of
heteroclinic orbits connecting two saddle points: the existence of 1ransverse hetero-
clinic orbits can then be proven using the methods below. For details in the
two-dimensional case, see Holimes.®

The next asswnption states that the homoclinic orbit through p, arises from a
hyperbalic saddle.

ASSUMPTION 3. Assume that o (££,(p)), the spectrum of 23f,(p,). consists of two
nonzero real cigenvalues s A, with the remainder of the spectrum on the imaginary
axis, strictly bounded away from 0. Assume that a{exp {0, (p,)]). the spectrum of
exp [0/, pa}), equals the closure of exp [ta (Df(pu))] and that if «ip C a(DA(PL)).
then o7 is stricily bounded away from mr, Yen (O Z.

See Reference | for details. Note that if Df,(p,) and exp [tDf,{p,)] have only
point spectra, then a(exp (EDf(p)]) = exp [ta(Df(p))]). This is the case for
equation 1.

Consider the suspended system (4) with its Bow 73 U x S'—+ X x S'. Let i X -
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X be defined by
lr(,\‘) - qy o (".’,(-\.(").

where o0 X ox 8+ Vs the projection onto the first fuctor. The map 7 is the
Poincaré map for the ow £, Note that #°(py) - po. and that fixed poims of 2~
carrespond Lo periodic orbits of 2. We can now prove the following lemmi.

Fastna 1 For e - O small, there is o unigue fixed point p, for 2 near p,. moreover,
P, is i smouth function of o

For ordinary differential equations, Lemma | is a standard Fact about persistence
of tixed points. For genceral partial dilfecential equations, its validity can be a delicate
matier; see Reference 1 for details. Assumption 3 does aot hold for equition 1, since
erxp [TatDf(paN] is dense on the wait circle. In this case. perturbation arguments
involving the positive damping mast be used (el Assumption 4).

Qur final hypothesis means, in ellect, that the pertuebation £, (x. ¢} is Hamiltonian
plus damping. Using an assumption like Assumption 3, this condition can be stated
cither in terms of the spectrum of the lincarization of cquation 4 or in terms of the
Poincaré anip.

ASSUMPTION b Assume that, for ¢ = 0, the speetrum of DI7(p) lies strictly inside
the unit circle, with the exception of a single real cigenvalue ™ = 1.

Appendix A of Reference | gives some techniyues for checking this condition.

In Lemma 1, we saw that the fixed point g, perturbs to another tixed point p, for
e perturbed ssstenn, The sime s true for the Jocal invariant minifolds of the map £,
W) and B(p )t which remain €7 close 10 the unperturbed manifolds Wi py)
and Wa{ ). Here, WM 0p) O W5 (p,) and the seperseript ss denotes the strong stable
auifuld. Assumptions 3 and 4 guarantee that ihe center-stable manifold (W5 (py) of
the unperturbed system and the perturbed stable manifold #°(p,) are codimension
one. while the unstable manifolds are one-dimensional. The low in V' x S similarly
has a0 periadic otbit, 5,. €7 close 10 {p) x $* with invariant manifolds close 10
Witpa) x S ete. See Reference ) for a detailed statement.

Equipped with these assamptions and prefiminary results, we now proceed to
aleulinte the separtion of the perturbed manifolds 1(p,) and 12(p,) by caleulating
the 0(e) components of perturbed solution curves of equition 3 from the first variation
cyuation ol (3%

{
t[l Vit ty) - DA G 1 fi(ale ). (5)
.

Here we have expanded solution curves in W on(y, ) o similar expression holds for
those in W°2(9,). Points in B7(p,) are obtained by intersecting 1#7°(5,) with 1he section
A 0} This can also be done on general sections V' x [} and equation § cantains £, a8
an initial starting time,

In i ovnner simikiar to that of References S and 6, it is then possible to compute a
function f(£,) that acts as a measure of the separation of the perturbed manifolds
W) anmd AP, on dillerent Poincaré sections X x e} M(1,) is periodic of period
Tin g, and, as in Reference 6, we prove the following theorem.

)
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Tirorem 1. Let Assumptions 1 4 hold. Let
M(1,) - f | _/;n(-"u(' - ’u”.fl(-\u(' - lu). 'ndl ()]

Suppose that A (1,) hias i simple zero as a function of g, Then for ¢ - O sufliciemly
small, the stable manifold W (p (6,0 of p, for P, and the unstable manifold
WI(p (1)) interseet transversally.

The min idea of the extension of the two-dimeasional Melnikov result lics in the
use of & projected distance function ¢>(4,), projecied Trom X x {r,} into 1the tngem
space T2 to Zata specilicd point, v, (0), lying on the unperturbed homoclinic loap,
The €7 closeness of W(p,) und B5(p,) then guarantees thit d7(8,) is & good measure
of the actual separation of the manitolds H°;(p(4,)) and B (p(1,)) ncar x,(0). The
function Af(z,) in theorem | is the leading (0()) nonzero werm of d(4,). The power of
the method rests on the Gaet that A7(2,) is casily caleulated in specific cases.

The second major resultis an extension of the Smale- Birkholl homoclinie theorem
to infinite dimensions,"?

TueoreM 2,101 the dilfeomarphism £ .V -+ \ possesses i hyperbolic saddle point
£, and an associated transverse homoctinic point ¢ II’:‘(p,]('\ Wip) with 17 p,) of
dimension 1 and Wi(p,) of codimension 1. then some power of P, possesses an
invariant zero-dimensional hyperbolic set, A, homeomarphic 1o a Cantor set, on which
a power of P, is conjugate to a shift on two symbuols.

As in the finite-dimensional case, this implies the following corollary.

COROLLARY 1. A power of £, restricled to A pussesses i dense set of perindic points;
there are points of arbitrarily high period and there is a nonperiodic orbit dense in

A

The hyperbolicity of A under a power of 2 and the structural stability theorem of
Rabbin (see Reference 14) implies that the situation of Theorem 2 persists under
peaturbations so that the complex dymmics cannot be removed by making small
(lower order, bounded) changes in equation 3.

Corortary 2. I P X+ Vis a ditTeomorphism that is suiliciently close to £, in C'
norm, then a power of £ has an invariant set A and there is o homeomorphism, A -
Aosuch that () o b = hie 22 for o suitable power N,

T Cuaonc Bream

Using Theorems | and 2, we now show that the beam cquation (11 possesses
horseshoes i the Toree y exceeds a certain critical level, dependent upon the damping
8. Verilication of the abstract Assumptions | 4 is caeried out in detail in the
Appendices of Reference ).

The partial ditferential equation of the beam is

Wt W g n” - (fl Iu-'l"(ls") [T ‘(jcu.\' wt - dw), N
(1]
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with boundary conditions
wew' o Oatz- 0,1

'l‘hf: bu'xic space is X - Mg x 17, where 11} denotes the set of all 17 functions on [0.1]
satisfying the boundary conditions w - w” . O af = - 0, 1. For ¥  (w,w) C \.the
N-norm s the “energy™ norm [P Jw 4wl where] - [denotes the 2., norm. We
weite (7) in the form (3),
dy
m PN R TAR IR (8)

where

JAXY A B and fi(v ) -

fcos wt - Aw

Here s the lincar operator

pee Io o

W - "

with domiin
Mo e w) C ot ox Hilw - w” 20 and w e Oz - 0. 1)

and & is the nonhnear mapping of .\ to .\ given by

0
#(x) - .
' A (f' [n"l"d()n"’)
o

In the forcing term, fis generally a spatially distributed load. Let £ denote the mean
and expand £ in a Fourier series with a period twice the beam lengih,

fe) - j 2 Z(u,, Sin (nrz) i g, cos (nas)).
n-l

Ihe theorems of Holmes and Marsden show than A s a generator and that 8 and f;
are smooth maps.” This, together with energy estimates (see Refereaces | and 9).
sl‘mws that the cquations generate a global fow, #7: 4 x $' -+ ¥ x §. consisting of
C* maps for cach ¢ and 1. 1T x, bes in the domain of the (unbounded) vperator -, then

v 1% e 3 + . IR e h 1ft ‘] H
Fixa. s} is r-dillerentiable and equation 8 is literally satistied. Thus, Assumption |
holds.

For « - 0, the equation is readily verified o be Hamiltonian by using the
symplectic furm

QU i) Oy, )) - "i'g(:)n',(:) . li',(:)u'_.(:)]d:

~0

)
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and

.
b

| PO | 1 .
ZT s T 1 L [ L P o §|‘.«r.

The invariant symplectic 2 manifold X is the plane in .\ spanaed by the fuactions
(asin w2, bsin a2) and the homoclinice loop is given by

w2, f) - 3 \/l‘ ~ T sin {az) sech (1 VU - %)

" [N

Assumption 2 therefore holds. For ¢ ~ 0, one finds by direet caleslation that the
spectrum of D (), where py = (0. 0), is diserete with 1wo real cigenvalues,

. :H\/F— x’,

and the cenvtinder puse imaginary (since I° - 427)

N *
A« nab - w'al, n 2,3

pd -

{sce Hulmes®). Assumption 3is aot satisfied, since A, 7 is arbitrariby close 10 ma for m,
n large. However, the positive damping, & = 0, comes 10 the rescue (Assumption 4),
and Lemma b holds for the beam equation. See Reference 1.

The Melmkov function (6) is given by

, W 0
mad - [Tl L ds

ol w e - W feos wt - i

.

- f (f'fcu.\' wIw(z, - 1) - aw{z 1 — Wt - lu)d-‘)dl.

(U
Substituting the expressions for wand s along the humoclinic orbit, the imegral can
be evaluated by stundard methods 1o give

) . ELUEES kA
PR (“' ' 2}.) sin (wi,) + _31“_- .
cosh

,
M) - = f— 1 2 ( w )

X
W - :r‘)[ ( w )]
e ——— I.‘Uhh R— N
3wk WJr - &

then the hypotheses of Theorem | hold and the stable and unstable manilolds intersect
transversally. Note that in the spatial integral evaluated in the expression for 42, only
the components fand «, of () survive, due to the orthogonality of the other Fourier
components with the solution

(I' ~ 7% sin (7z) sech (1 VI' = &%) unh (12 Y1~ 7).

Ths, if

lﬂi
P

wylt) = -

Sl w

(3
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,

11 should be A&zcd that, while the formal caleulistion of A(4,) is sinsilar 1o that in
the two-dimensionisl example given in Reference 4, 1ihe full power of Theorem |is
accessary since, in the intinite-dimeasional case, the pertarbed manifolds 18 (p,(1,))
and 12 p,(4,)) do not lic in X,

We hive, therefore, shown that there is o complicated invariant hyperbolic Cantor
sel A embedded in the Poincaré map ol cquation | for a caleulable apen set of
pariameter vittues. Although the dynamics near A are complex, we do not assert thal A
is o strange atteactor. In fact, A i unstable in the sense that its gencralized unstable
manifold (or outset), WO(A) is noncmpty (it is one-dimensional) and 1hus points
stasting near A may wander, remaining near A for a relatively fong time, but
eventatlly leaving a neighborhood of A and approaching an attractor. This kind of
Lehavior has been referred o as transient chaos (or peeturbulence). In two
dimensions, A cian coexist with two simple sinks of period one or with a strange
atteactor, depending on the parameter values (see Holmes')., There is eaperimental
cvidence for transient chaos in the magnctic canmtilever problem  (Haolmes and
Muoon®).

We close with a comment on the bifurcations in which the transversal intersections
are created. Since the Melnikov Tunclion 3 (1) has aondepenerate maxima and
minina, it can be shown that, nedr the parameter vilues at which A (1,) - M'{(¢,) - 0
but M7(1) # 0, the stable and unstable manifolds W73 p,(1,)) and 18 (p,(1,)) have
quadlratic tangencies. This mechanism, described by Newhouse,' then implies thai P,
citn have infinitely many stable periodic orbits of arbitrarily high periods near the
bifurcation paint, at Jeast in the linite-dimensional examples. In practice, it may be
ditlicult 10 distinguish these long period stable periodic paints from transient chaos
and (rom “trae” chaos itsell. In fact, il is not yet understood whit role the Newhouse
sinks phiy e eyperimenta) and computer-generated chaotic mations.
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