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A finite-difference numerical method for geometrical shock dynamics has been developed based on
the analogy between the nonlinear ray equations and the supersonic potential equation. The method
has proven to be an efficient and inexpensive tool for approximately analyzing the focusing of weak
shock waves, where complex nonlinear wave interactions occur over a large range of physical
scales. The numerical results exhibit the qualitative behavior of strong, moderate, and weak shock
focusing observed experimentally. The physical mechanisms that are influenced by aperture angle
and shock strength are properly represented by geometrical shock dynamics. Comparison with
experimental measurements of the location at which maximum shock pressure occurs shows good
agreement, but the maximum pressure at focus is overestimated by about 60%. This error, though
large, is acceptable when the speed and low cost of the method is taken into consideration. The error
is primarily due to the under prediction of disturbance speed on weak shock fronts. Adequate
resolution of the focal region proves to be particularly important to properly judge the validity of
shock dynamics theory, under-resolution leading to overly optimistic conclusions. ©1997
American Institute of Physics.@S1070-6631~97!02109-0#
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I. INTRODUCTION

The focusing of shock waves produces localized h
pressures in the focal region, and the shock emerges from
focus with the front geometry fundamentally changed. U
derstanding the mechanisms of focusing is critical beca
converging fronts occur frequently, for example when pa
ing through nonuniform media or reflecting from curved s
faces. The high pressures localized near the focus ma
beneficial, as in shock wave lithotripsy, or detrimental, as
superbooms from supersonic aircraft. The change in sh
geometry downstream of the focus has significant impli
tions for shock stability, sonic boom propagation, a
sonoluminescence.

One recent application of shock wave focusing is ext
corporeal shock wave lithotripsy~ESWL!. In this treatment
for kidney stone disease, weak converging shock waves
generated in water outside the patient’s body and shape
focus on the stone. In the focal region, the shock press
increases to about 20 MPa, sufficiently strong to fragm
the stone, although the mechanism of fracture is not co
pletely understood. Over the course of several thous
shocks, the stone is shattered into pieces small enough
eliminated naturally. To better understand the source of
sue injury and the primary mechanism of stone fragmen
tion in ESWL, understanding of the amplitude and geome
of the wave field in the focal region is required.

The experiments of Sturtevant and Kulkarny1 first dem-
onstrated the complex behavior at the focus. They reflec
planar shocks from a parabolic reflector to a line focus. T
three types of focusing behavior observed are shown in
1, reproduced from Kulkarny.2 Solid lines represent the
shock fronts after reflection from the parabola shown at
left. For sound pulses in acoustic theory, the rays continu
a perfect focus; afterward the shock front is crossed
folded as shown in Fig. 1~a!. At the focus in acoustic theory
the ray tube area goes to zero and the shock amplitud
3058 Phys. Fluids 9 (10), October 1997 1070-6631/97/9
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infinite. For weak shocks, Fig. 1~b!, a Mach stem is formed
near the focus. The triple point initially moves outward, b
is eventually pushed back to the centerline, and the sh
front becomes crossed and folded. For strong shocks,
1~d!, a Mach stem is again formed, but the triple point mov
continuously outward as the front advances past the acou
focus. In this case after focus the front is not crossed
folded. A transition case for moderate strength shocks is a
observed, Fig. 1~c!, where the triple point initially moves
outward from the centerline. Further downstream, the tri
point is swept back toward the centerline but never reac
the centerline. Instead the triple point begins to move o
ward again. Later experiments with weak shocks have
served similar behavior.3–5

The shock strength near the focus of a shock wave lith
riptor, M;1.03– 1.05, corresponds to the weak shock ca
Fig. 1~b!. For these weaker shocks, the behavior near
focus approaches the prediction of acoustics. The focal
plification is higher, and the focal region is narrower a
located closer to the acoustic focus than for stron
shocks.1,3 For smaller aperture angles, corresponding to sh
low reflectors, at equal initial Mach numbers, the focal pr
sure is lower and the focus is located farther upstream of
acoustic focus than for larger aperture angles. For w
shocks with large aperture angles, the location of the ma
mum pressure can lie beyond the acoustic focus. For stro
shocks or smaller aperture angles, the focus is located
stream of the acoustic focus.1,5

For the purpose of modeling this behavior numerical
Whitham’s theory of geometrical shock dynamics6,7 offers
an appealing alternative to a full Euler solution. By descr
ing only the motion and geometry of the wavefronts, t
dimensionality of the problem is reduced by one and
complexity of numerical calculations is greatly reduced. T
geometry of the wave field, the most important viewpoint f
understanding the shock wave physics of complex wave
teractions, is emphasized.
(10)/3058/11/$10.00 © 1997 American Institute of Physics
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In geometrical shock dynamics, the shock propaga
down ray tubes which are normal to the front, as in geome
cal acoustics. However, shock dynamics is nonlinear, in
the velocity of the shock depends on its strength. To cl
the system, an area–Mach number relation is introduce
relate the shock strength, represented by the Mach num
to the variation of the ray tube area. To accomplish this,
propagation of the shock down the ray tube is treated
propagation down a tube with solid walls and a slowly va
ing cross-sectional area. For this problem, by ignoring
effect of disturbances overtaking the shock from behind
relationship can be derived for the Mach number as a fu
tion of area. Since the theory ignores the interaction of
shock with the flow behind it, it is expected that the theo
should be particularly appropriate for problems with acce
ating shocks and/or dominated by geometry. The accurac
the approximation for specific problems is difficult to asse
in advance, but geometrical shock dynamics has proven t
accurate for a wide range of problems. In problems whe
comparison with full compressible flow solutions is ava
able, shock dynamics has shown good agreement for st
shocks, and is generally less reliable for weak shocks. V
ous efforts to extend shock dynamics has been proposed
none have gained wide acceptance.

Henshawet al.,8 using a front-tracking method to solv
the equations of shock dynamics, analyzed shock focu
and compared calculated results with the experiments
Sturtevant and Kulkarny.1 They showed that shock dynamic
qualitatively reproduces the weak-, moderate- and stro
shock behavior illustrated in Fig. 1, and that, by adjusting
flatness of the initial shock front, they could quantitative
match the maximum strength at the focus of a shock w
initially of strengthM051.1.

Another approximate method which has been used
calculating shock and ultrasonic wave focusing solves
2D Burgers equation~also known as transonic small distu
bance theory, the nonlinear parabolic wave equation and

FIG. 1. Types of focusing behavior observed in experiment, reprodu
from Kulkarny.
Phys. Fluids, Vol. 9, No. 10, October 1997
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KZK equation9,10!. This approximation yields the entire pre
sure field. For problems in acoustics a formulation treat
the signaling problem has been utilized, in which time ser
of pressure are specified on a source plane. To date, s
tracking or capturing algorithms or nonuniform grids ha
not been used in solving the KZK equation to resolve sho
waves of strengths typically found in lithotriptors. No com
parisons with experiments such as those of Sturtevant
Kulkarny1 are available. Brio and Hunter11 showed that the
inviscid form of the 2D Burgers equation~the ZK equation!
does not support triple shock intersections, a crucial fea
of shock focusing@Figs. 1~b!–~d!#. Rather, it yields so-called
von Neumann reflection, in which the reflected wave is d
fuse. They also showed that an under-resolved numerical
culation of the ZK equation erroneously does show trip
shock intersection.

The objective of this paper is to test the validity of sho
dynamics solutions of weak shock wave focusing. Owing
the large ratio of the scale of the initial curvature of t
wavefront to the size of the focal spot for weak shoc
shock focusing is one of the most severe tests of numer
algorithms for wave interactions. We compare the results
the calculations with experimental results,1 and we report
results for shock strengths relevant to ESWL, as low
M051.01. It turns out that for these problems the fact th
shock dynamics does not describe regular reflection fr
walls, but only Mach reflection, and also underestimates
speed of transverse waves on weak shock fronts, causes
nificant quantitative disagreement with experiment.

II. NUMERICAL METHOD

Only a small, relatively simple set of problems of inte
est can be worked analytically using the method of sho
dynamics. Two numerical approaches have been used f
wide range of problems: the method of characteristics12,13

and front-tracking methods.8 Characteristics methods ar
typically more cumbersome than finite-difference metho
and difficult to extend to three dimensional problems, a
thus their numerical application has been fairly limited.
front-tracking methods points along the shock front are
vanced along rays normal to the front according to the sh
Mach number. The ray-tube area is then used to compute
Mach number along the front at the new position. The ext
sion of front-tracking methods to three-dimensions
straightforward. However, the method requires frequ
splining of the points and the addition of points in are
where the front expands and the removal of points where
front contracts.

As noted by Whitham7 the equations of geometrica
shock dynamics are analogous to the supersonic pote
equation, and numerical schemes for the supersonic pote
equation can be adapted to shock dynamics.14 The use of
finite-difference schemes offers advantages over prev
characteristic and front methods. Finite-difference schem
provide conservative formulations where the effects of a
ficial viscosity can be clearly controlled. The method is e
ily extended to three dimensional problems with optim
grids for specific problems. In addition, finite-differenc

d

3059J. E. Cates and B. Sturtevant
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schemes are typically easier to set up and apply to spe
problems than previous methods, especially for proble
with weak shocks.

The equations of geometrical shock dynamics6,7 are

“•S M

A~M !
“a D50, M5

1

u“au
. ~2.1!

a(x)5a0t gives the shock position at timet, wherea0 is the
undisturbed sound speed.A(M ) is the area–Mach numbe
relation. For a perfect gas, the area–Mach number relatio
given by

A~M !5expF2E
M0

M Ml~M !

M221
dMG , ~2.2!

where

l~M !5S 11
2

g11

12m2

m D S 112m1
1

M2D , ~2.3!

m25
~g21!M212

2gM22~g21!
, ~2.4!

andg is the ratio of specific heats. An analytical express
for the area–Mach number integral was originally given
Bryson and Gross.12 Several misprints were later pointed o
by Henderson.15

For shock waves in water, such as occur in lithotrip
the modified Tait equation of state originally proposed
Kirkwood and Bethe16 provides a convenient form for analy
sis. A common form of the equation which we use he
assumes that the reference quantitiesB and r0 , actually
weak functions of entropy, are constant,

p~r!5BF S r~p,T!

r0
D G

21G . ~2.5!

At T520 C, the valuesG57.15 andr05998.232 kg/m3 are
often used to represent water.B follows from G and the
sound speed through the relation

a25S ]p

]r D
s

5
G~p1B!

r
, ~2.6!

B5303.975 MPa for water. Using the Tait equation in t
Rankine–Hugoniot conditions for mass and moment
yields a transcendental equation for the density ra
R5r2 /r1 across a shock wave,

RG112~11GM2!R1GM250. ~2.7!

The ‘‘shifted’’ pressure ratioZ5(p21B)/(p11B) is given
by Z5RG. The A(M ) relation for the Tait equation is de
rived in the usual way from the characteristic relation

dp

dx
1ra

du

dx
1

ra2u

u1a

1

A

dA

dx
50, ~2.8!

by eliminating the differential of pressure using Eq.~2.6!, the
differential of velocity using the shock relation for mass co
servation and the resulting differentials of density using E
~2.7!, all in favor of dM. The result is
3060 Phys. Fluids, Vol. 9, No. 10, October 1997
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A~M !5expF E
M0

M 1

M S R~G11!/21M

R~G11!/22M
D

3S 11
M ~R21!

R~G11!/2 D dMG . ~2.9!

A comparison of theA(M ) relation for water using the
modified Tait equation withG57.15 and the perfect gas re
lation with g51.4 is shown in Fig. 2. The reference Mac
numberM0 for theA(M ) relation is taken to be the midpoint
of the Mach number range, i.e., the areas at the midpoint
set to be equal. It is seen thatA(M ) for a perfect gas with
g51.4 and water withG57.15 are nearly the same. Thus i
this paper we report only results obtained with the perfe
gas equation of state.

The equations of geometrical shock dynamics form
hyperbolic, second-order partial differential equation that d
scribes the wave motion of disturbances propagating alo
the shock front. Discontinuities, calledshock–shocks, can
form along the shock carrying a change in shock angle a
an increase in Mach number.Shock–expansionscan also
form, for example in shock diffraction around a corner.

In this paper an improved finite-difference scheme is d
veloped based on the methods developed for the supers
potential equation,17 which is suitable for weak-shock prob-
lems with strong discontinuities. Introducing an arbitrary c
ordinate system~not necessarily orthogonal! defined by
j5j(x,y), h5h(x,y), Eq. ~2.1! can be written in strong-
conservation form:

]

]jS sU

J D1
]

]hS sV

J D50, ~2.10!

whereU, V are the contra-variant velocity components give
by

FIG. 2. Comparison of the area–Mach number relationA(M ) for water
using the modified Tait equationG57.15 and perfect gas relation,g51.4.
J. E. Cates and B. Sturtevant
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U5a11aj1a12ah , V5a12aj1a22ah , ~2.11!

s5
M

A~M !
, ~2.12!

and the grid parameters are

a115jx
21jy

2, a125jxhx1jyhy , a225hx
21hy

2,
~2.13!

J5jxhy2jyhx . ~2.14!

The Mach number is now given by

M5@Uaj1Vah#21/2. ~2.15!

In the solution procedure, we considerj to be the march-
ing, time-like direction and assume that all information
known at thei th and all previous levels. The problem is
advance the solution to the leveli 11 and obtain newa
values.

At all levels, the quantitiesaj , ah are computed from
om

se
ks
ui
he
ve
s
e
ha
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~aj! i , j5
a i , j2a i 21,j

Dj
; ~ah! i , j5

a i , j 112a i , j 21

2Dh
,

~2.16!

where a backward difference is used for the marching dir
tion j and a central difference is used for the cross-fl
directionh. For half-points, the velocities are averaged b
tween neighboring points which gives

~aj! i , j 11/25
~a i , j 112a i 21,j 11!1~a i , j2a i 21,j !

2Dj
, ~2.17!

~ah! i , j 11/25
a i , j 112a i , j

Dh
. ~2.18!

Once these quantities are known,U and V follow directly
from Eq. ~2.11! andM from Eq. ~2.15!.

Since thej direction is the marching direction, thej
derivative in Eq.~2.10! is backward differenced as
]

]jS sU

J D
i 11,j

5̇
~a12ub1!$~sU/J! i 11,j2~sU/J! i , j%2ub1$~sU/J! i , j2~sU/J! i 21,j%

a1Dj12ub1~Dj11Dj2!
, ~2.19!
.
h

ture

nd
te.

ate
where

a15~Dj11Dj2!2, b15~Dj1!2, ~2.20!

and

Dj15j i 112j i , Dj25j i2j i 21 . ~2.21!

The parameteru controls the order:u50 gives first-order
accuracy andu51 gives second-order accuracy.17

The upwind differencing of thej derivative term pro-
duces a truncation error whose leading term is

s

Ja2S 12
a2a11

U2 DU2ajjjDj. ~2.22!

This term represents a positive artificial viscosity if

U2

a11
.a2. ~2.23!

In general the stability requirement, Eq.~2.23!, is satisfied if
the information propagates along characteristics only fr
behind the current point. To march in thej direction, the
domain of dependence for pointi , j must not include infor-
mation from forward of the currentj row. For problems
where the shock is strongly curved, the grid must be cho
to maintainj as the propagation direction. For weak shoc
the characteristic angle approaches zero and stability req
only that the component of the shock velocity along t
marching direction be positive. Stability is more restricti
for large Mach number, as the characteristic angle increa
and thej direction must be more closely aligned with th
shock normal. Ideally, the grid should be aligned such t
n
,

res

es,

t

locally at each point thej direction is normal to the shock
The stability requirement Eq.~2.23!, was checked at eac
point in the calculations.

The h derivative term in Eq. ~2.10! is central-
differenced and written at leveli 11 to make the resulting
scheme fully implicit,

]

]hS sV

J D
i 11,j

5̇
1

Dh H S sV

J D
i 11,j 11/2

2 S sV

J D
i 11,j 21/2

J .

~2.24!

The suitability of the above difference depends on the na
of the flow in the cross-flow plane. When 12a22a

2/V2,0,
the cross flow is elliptic, as shown in Fig. 3~a!. The charac-
teristics propagate information from both the positive a
negativeh directions, and central differencing is appropria
For hyperbolic cross flow as shown in Fig. 3~b!,
12a22a

2/V2,0. In this case, the characteristics propag

FIG. 3. Cross-flow type according to characteristic angles.
3061J. E. Cates and B. Sturtevant
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information in a singleh direction, and the central differenc
ing of Eq. ~2.24! is unstable. In this case, artificial viscosi
is necessary to preserve stability.

To implement the required artificial viscosity, the valu
of s is biased in the direction of the cross flowV. This
corresponds to density biasing, often referred to as artifi
compressibility in the case of the supersonic potential eq
tion. Thes in Eq. ~2.24! is replaced bys̃ ,

s̃ i 11,j 11/25~12n!s i 11,j 11/21
1
2 n~s i 11,j 11/212k

1s i 11,j 11/221!, ~2.25!

where k50 when Vi 11,j 11/2.0 and k51 when
Vi 11,j 11/2,0. The artificial viscosityn utilized in this imple-
mentation employs upwind differencing based on the dir
tion of the characteristic signal propagation; when the cr
flow is elliptic the upwind differencing is turned off,17

n i 11,j 11/25zF12
a22a

2

V2 G
i 11,j 11/2

, ~2.26!

with

z50, for S a222
V2

a2 D
i 11,j 11/2

.0

~elliptic cross flow!, ~2.27!

51 for S a222
V2

a2 D
i 11,j 11/2

,0

~hyperbolic cross flow!. ~2.28!

Given thea values at all previous levels, the differen
ing results in a set of nonlinear algebraic equations fora i 11

which are solved using Newton’s method. In general,
artificial viscosity leads to a pentadiagonal system. For la
Mach numbers, when the artificial viscosity terms are sm
and for flows without strong shock–shock discontinuities
derivative terms due to the artificial viscosity can often
neglected, yielding a tridiagonal system. In this case, m
iterations may be required for convergence of eachj step,
but each iteration is significantly faster.

The boundary condition of shock dynamics requires t
the shock front be normal to solid boundaries or axes
symmetry. Ifn is the unit vector normal to the boundary, th
condition requires]a/]n50 at the boundary. For the gri
systems used in this work, the boundary is given
h5const; therefore, the boundary condition reduces
V50. The initial conditions (a0 ,M0) are specified along an
initial row, j5const. Since the Mach number specifies t
gradient ofa, the value ofa at the previousj can be esti-
mated from the Mach number. Then, witha values specified
for two initial j rows, the solution may be advanced.

III. FOCUSING RESULTS

The convergence of a segment of a cylindrical sho
front to a perfect line focus is considered. This problem
characterized by two parameters shown in Fig. 4, the in
3062 Phys. Fluids, Vol. 9, No. 10, October 1997
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Mach numberM0 and the aperture angleu0 . At the very
least, to be judged successful a numerical model should
plicate the strong-, moderate- and weak-focusing beha
observed in experiments.1 This requires the prediction of th
path of the experimentally observed triple point, represen
by a shock–shock in the present analysis. The path of
triple point is the most demanding element, since this defi
the geometry of the flow near the focus. Other importa
parameters for judging the validity of a simulation includ
the shock front positions downstream of the focus the sh
pressure jump at focus and the location of the maxim
pressure jump. Conditions behind the leading shock can
be determined by the theory of shock dynamics.

In shock dynamics the angleb through which a shock of
initial strengthM0 can be turned in an expansion before
strength vanishes is finite. This means that for weak sho
the bottom of our computational domain can not be horiz
tal. In such cases the lower boundary was placed at an a
slightly larger thanu02b to the horizontal~Fig. 4! to ar-
range for the shock front at the corner to be turned to a M
number approaching unity.

For all cases, typical runs used several hundred g
points in theh-direction. For better resolution of the foca
region, grid points were packed near the upper bound
The solution was marched at variablej steps chosen to
maintain an average CFL number of unity. Runs of varyi
mesh density were made to verify that the results were in
pendent of grid resolution, except locally in some cases m
tioned below. Computations of the focusing of moderate-
strong shock waves (M051.5– 2.0) typically take severa
minutes on an 85 MHz workstation, while weak shocks, w
increased grid density required near the axis, slower con
gence for very strong shock–shocks, and small time step
insure stability, can take as long as 10–20 min. In this pa
we present detailed results for strong and moderately str
shock waves (M051.3 and 1.1!. Calculations for weaker
waves show that the behavior is the same as for
M051.1 case~a shortcoming of shock dynamics theory di
cussed below!, except that the scale of the focal zone d
creases rapidly with decreasing shock strength. Theref
we do not present the complete results for weak-shock ca

FIG. 4. Focusing problem parameters: initial shock Mach numberM 0 and
the aperture angleu0 .
J. E. Cates and B. Sturtevant
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but we plot centerline pressures and maximum wa
strengths, together with the location at which they occur,
all cases computed, 1.01,M0,1.3.

A. Results for 80° aperture angle

Results for aperture angleu0580° and initial Mach
numberM051.3 are shown in Figs. 5 and 6. Figure 5~a!
shows contours of constant phasea. The normals to the
fronts are shown in the ray diagram, Fig. 5~b!. Figure 5~c!
displays Mach number contours. A surface plot of the sho
Mach number is shown in Fig. 6. For clarity, the solution
every grid point is not plotted on the surface plot. This h
the effect that the discontinuity appears sharper than actu
calculated.

This Mach number–aperture combination is an exam
of strong-shock behavior. The leading characteristic from
expansion corner at the lower end of the initial shock, a
the shock–expansion behind it turn the shock front aw
from the centerline, thereby slowing the increase of the Ma

FIG. 5. ~a! Shock fronts,~b! shock front normals and~c! Mach number
contours for converging shock,M051.3, u0580°, g51.4. The center of
the initial front lies at (x,y)5(0,0).
Phys. Fluids, Vol. 9, No. 10, October 1997
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number. To maintain the boundary condition of shoc
dynamics theory that the shock front be normal to the c
terline, the reflection of the shock–expansion from the c
terline turns the front back toward the centerline. The
reflected disturbances are compressive, and eventually
lesce into a shock–shock discontinuity. The shock–shoc
clearly shown in the figures by a change of shock front an
@Figs. 5~a! and ~b!# and an increase of Mach number@Figs.
5~a! and 6#. It moves continuously outward from the cente
line. As the Mach stem extends it becomes slightly conv
forward and it weakens.

A quantitative measure of the shock–shock location
derived by plotting the trajectory of the maximum gradie
of Mach number on each solution row~Fig. 7!. From the left,
the maximum gradient shows the path of the expansion fr
the lower corner, and after reflection it shows the path of
shock–shock. For strong shock waves@Fig. 7~a!# the shock–
shock moves continuously outward after focus, consist
with the description of Sturtevant and Kulkarny1 @Fig. 1~d!#.

An example of moderate shock behavior (M051.1,
u0580°) is shown in Figs. 8 and 9. The maximum turnin
angle forM051.1 is 51°, so the lower boundary must aga
be inclined to the centerline. In this case the shoc
expansion reflected from the axis of symmetry almost imm
diately coalesces into a shock–shock discontinuity. Althou
the triple point propagates outward along the shock front,
shock front itself is still directed strongly inward. The n
result is that the shock–shock discontinuity is swept ba
toward the centerline@Fig. 7~b!#. The strength of the shock–
shock increases as it is pushed inward, producing a fur
increase in the centerline Mach number. The inward mot
of the shock–shock forms a shoulder in the Mach num
profile, shown in the Mach number surface plot, Fig. 9. T
strength of the shock–shock continues to increase unti
velocity along the shock front is sufficient for it to mov
outward. Downstream of the focus, a narrow Mach-stem
visible.

FIG. 6. Mach number surface for converging shock,M 051.3, u0580°,
g51.4. The center of the initial front lies at (x,y)5(0,0). A slight over-
shoot is visible at the upper-edge of the shock–shock discontinuity.
3063J. E. Cates and B. Sturtevant
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Figure 7~b! shows that the behavior of moderate stren
focusing shocks is in qualitative agreement with the findin
of Sturtevant and Kulkarny1 @Fig. 1~c!#. Adequate grid points
exist to correctly capture the distance of the discontinu
from the wall at the closest approach. The distance betw
the arrival of the expansion disturbance from the lower c
ner and the point of closest approach of the shock–sh
defines the size of the ‘‘focal region.’’1

Calculations show that weaker shocks behave in
same way. The disturbance from the lower corner arrive
the axis closer to the acoustic focus than for stronger sho
and a shock–shock forms at the focus. The weaker the sh
wave the stronger is the shock–shock that forms. The
continuity is pushed back toward the centerline almost
mediately and the focal region gets continually smaller as
Mach number decreases. For weak shocks, the shock–s
is actually pushed to within several grid points of the cent
line @Figure 7~c!#, and the path of the shock–shock in th
region near the closest approach becomes dependent o

FIG. 7. Location of the maximum Mach number gradient near the focus
strong,M 051.3, moderate,M 051.1, and weak,M 051.05, shock behavior
for u0580°, g51.4 superimposed over the solution grid. For weak sho
behavior, the discontinuity is immediately pushed to within several g
points of the centerline.
3064 Phys. Fluids, Vol. 9, No. 10, October 1997

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP
h
s

y
en
-
ck

e
at
ks
ck
s-
-
e
ck
-

the

grid spacing. In this case the Mach stem is not resolved,
for all practical purposes the reflection at the axis of symm
try is regular there. This is consistent with experimental fin
ings that the post-focus configuration for weak shocks
regular reflection, as predicted by geometrical acousti1

However, because of the normal–shock boundary condi
of shock dynamics theory, the shock–shock inevita
strengthens and the Mach stem lengthens as the shock p
gates downstream, and for all shock strengths calculate
this work the shock–shock eventually departs from
neighborhood of the axis, in disagreement with the findin
of experiments.

Figure 10 plots the shock pressure on the axis of sy
metry for strong (M051.3), moderate (M051.1) and weak
shocks (M051.05) for aperture angleu0580°. The
x-coordinate is nondimensionalized with the initial radiu
and the geometrical focus lies atx50. The pressure is nor
malized with the initial strength of the shock wavep0(M0)
obtained from the Rankine–Hugoniot relations for a perf

r

kFIG. 8. ~a! Shock fronts,~b! shock front normals and~c! Mach number
contours for converging shock,M051.1, u0580°, g51.4. The center of
the initial front lies at (x,y)5(0,0).
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gas. For strong shocks a single pressure peak is for
ahead of the acoustic focus. For moderate-strength shoc
local maximum occurs before the focus when the lead
pansive disturbance from the lower end of the initial sho
front reaches the centerline. An absolute maximum occ
farther downstream when the shock–shock becomes st
enough to again move outward. For the weak c
(M051.05) the upstream shoulder is visible only as
change of slope.

FIG. 9. Mach number surface for converging shock,M 051.1, u0580°,
g51.4. The center of the initial front lies at (x,y)5(0,0).

FIG. 10. The ratio of the calculated shock pressure along the axis of s
metry to the initial shock pressure versus the distance from the geome
focus for three different initial Mach numbers,M 0 . The shock propagate
from left to right and the pressures are measured aty50 in Fig. 4. Aperture
angleu0580°, g51.4.
Phys. Fluids, Vol. 9, No. 10, October 1997
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B. Effect of aperture angle

A similar set of cases was computed for aperture an
u0536°, corresponding to the reflector ellipse used in
modified Dornier HM3 lithotriptor which has an eccentrici
e50.8. Two major effects of the smaller aperture angle
seen in the results. The expansion disturbance from the lo
corner has less transverse distance to travel and reache
centerline to start the focusing process farther upstream.
also means that the expansion reaches the centerline w
the shock strength is smaller, producing lower peak press
at the focus. Due to the smaller Mach number, the onse
weak shock behavior occurs at a smaller Mach number.
u0536°, moderate-strength behavior is still seen
M051.1, while weak-shock behavior is seen atM051.01.

A summary of the maximum Mach number and its loc
tion for the two aperture angles (u0536° and 80°) is shown
in Fig. 11. The open points indicate the maximum Ma
number computed on the axis of symmetry for each ca
The pluses indicate the lower Mach number~and the corre-
sponding location! at the shoulder described above~Figs. 9
and 10! for moderate-strength and weak shock waves.
described below, the pressure at the shoulder agrees b
with the amplitude and location of experimental maximu
pressures than does the absolute maximum computed
sure. The dashed lines in Fig. 11 show the Mach number
position of the shock when the leading disturbance from
lower end of the initial front reaches the axis of symmet
The results show that the arrival of the lead disturbance fr
the lower corner provides an accurate estimate of the be
ning of the focal region. The absolute maximum of Ma
number occurs farther downstream as the bulk of the exp
sive disturbance from the lower corner of the initial fro
arrives.

For aperture angleu0536°, a relatively shallow reflec-
tor with relatively larger effects of nonlinearity, the focu
occurs ahead of the acoustic focus, except for the very w
case, M051.01. For this case, even the initial should
forms slightly behind the acoustic focus. Foru0580°, a
deep reflector with smaller nonlinearity, the location of t
focus is behind the acoustic focus for weaker shocks. T
focus Mach number is larger with the large aperture ang
for all initial Mach numbers.

IV. COMPARISON WITH EXPERIMENTAL RESULTS

Numerical shock dynamics was used to simulate the
cusing experiments of Sturtevant and Kulkarny.1 In this se-
ries of experiments, plane shock waves were reflected fro
parabola to a line focus. After reflection, the shock prop
gated back into the uniform flow behind the incident sho
This problem can be treated with a generalization of
method presented here.18 However, since the velocity is uni
form, a simple coordinate transformation is sufficient. If t
uniform velocity is given byu0 , the free stream is at rest i
the coordinate frame given byx85x2u0t. Therefore, at any
point on the shock front a(x8)5a0t, the physical
x-coordinate value must be computed as

-
al
3065J. E. Cates and B. Sturtevant
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Provided that the initial conditions are specified properly
the (x8,y) coordinate system, the problem can be solv
with the previous numerical scheme.

A parabolic grid was used for the calculation so the pa
bolic reflector is a line of constantj, and the initial condi-
tions are specified along the reflector. The initiala values
were calculated from the arrival time of the incoming sho
at each point on the reflector. The Mach number was take
be the Mach number of the initial planar shock. Compu
tions using exact values of the reflected-shock Mach num

FIG. 11. The maximum Mach number on the axis of symmetry and
x-location of the maximum for all shock strengths computed. Apert
anglesu0580° (L) and u0536° (h). (1), shock Mach number and
location of the shoulder on the centerline pressure history~Fig. 10! which
appears for moderate and weak shock strengths. Dashed lines represe
shock Mach number and location at the point when the lead disturb
from the end of the initial front arrives at the axis of symmetry. Perfect g
g51.4.
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showed that the slight variation in initial Mach number alo
the reflector had little effect on the focal region.

The computed pressure amplification and shock–sh
path are compared with the experimental results in Fig.
The pressure amplification is defined as the pressure ju
across the shock normalized by the pressure jump of
reflected shock as it leaves the reflector surface. In the
perimental results, the maximum pressure outside the fo
region occurred downstream of the shock, and is not
pressure computed by shock dynamics theory. Howe
within the focal region, the maximum experimental press
occurred at the shock front and direct comparison can
made with the results of shock dynamics. For the three ca
shown in Fig. 12~a! shock dynamics theory overestimates t
maximum pressure by 60%–90%. The over-prediction is
significantly affected by accounting for the finite size of t
pressure transducer used in the experiments. Since the
parison is to ratios of measured pressures, the errors in
experimental results are probably an order of magnitu
smaller than this discrepancy. For strong shocks the loca
of the computed maximum pressure agrees with experim
but when a shoulder occurs in the computed variation
pressure with distance in the intermediate and weak-sh
cases, the location of the shoulder accurately records the
perimentally observed location of maximum pressure. If
pressure amplitude computed at the shoulder is taken to
the focal pressure, then the overestimate reduces from
to 55% for theM051.1 case. The additional rise of Mac
number in these cases, due to the requirement for Mach
flection at the centerline, is not seen experimentally.

As discussed above, the path of the shock–shock
pends sensitively on the interplay between several nonlin
effects, so it is one of the most exacting tests that can
made of computational results. In Fig. 12~b! the path is rea-
sonably well predicted forM051.3, but for weaker shocks
the agreement deteriorates. Although moderate-strength
havior ~focal region of finite length! was experimentally ob-
served forM051.2, shock dynamics does not show this b
havior until the Mach number reduces toM051.1. For all
cases, the origin of the shock–shock agrees closely with
origin of the triple point observed in the experiments.

V. DISCUSSION

In this work numerical solutions of shock wave focusin
by geometrical shock dynamics theory have been used
examine nonlinear gasdynamic behavior near foci and to
the shock dynamics approximation in a difficult problem
The fact that shock dynamics theory yields hyperbolic eq
tions for the behavior of disturbances on the shock fr
permits a physical interpretation of the results in terms of
characteristic curves of the equations. In shock focusing,
fracted waves from the edges of the aperture limit the am
tude at focus and determine the geometry of the focal fie
The arrival at the centerline of the leading expansive dis
bance from the lower corner of the initial front signals t
beginning of the process which limits infinite convergence
the shock discontinuity. For weak shocks the speed of
diffracted disturbance along the shock front is small, so
does not reach the centerline until near the acoustic focus

e
e

t the
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,
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FIG. 12. ~a! Pressure amplification and~b! shock–shock path computed for the reflection of planar shock waves from a parabola compared with expe
results of Sturtevant and Kulkarny~1976!. The numerical results are shown as lines without symbols, experimental results are corresponding line typ
symbols. The experimental pressure amplification is based on the maximum pressure which outside the focal region is not the pressure directly a
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the amplification is large. In the limitM051 the disturbance
reaches the centerline precisely at the geometric focus,
extent of the focal region shrinks to zero and the singula
of acoustic theory is recovered. For finite-strength shocks
nonlinear propagation velocity of disturbances along
shock is larger, so the first disturbance always arrives at
centerline before the acoustic focus. Likewise, for sma
apertures the disturbance has a shorter transverse distan
travel to reach the centerline so diffraction effects are
further upstream of the acoustic focus and at a lower M
number, i.e., nonlinear effects are larger.

In an analysis of weak shocks diffracting around a c
ner with a small turning angle Whitham6 pointed out that the
speed of the initial signal predicted by shock dynamics
half the value given by first-order gasdynamics theory. In
current problem this shortcoming results in the leading d
turbance from the lower corner arriving at the centerline
late, at which time the focusing has developed too far,
the resulting shock–shock is too strong and has too larg
speed outward from the centerline. This explains both
over-prediction of the pressure at focus and the excessi
wide focal region compared to experimental results.

For very weak shocks, the computations show that
focal region closes downstream, in agreement with exp
ments, in the sense that the shock–shock returns to with
few mesh points of the axis of symmetry. We emphasize
a method without adequate resolution would not detect
effect; all shocks would appear to be ‘‘strong.’’ Howeve
even with adequate resolution, no matter how small
Mach number~for M0.1.01), if the computation is run long
enough the shock–shock eventually departs from the
and becomes resolved. This occurs because of the par
flow boundary condition of shock dynamics. A consequen
is that the strength of the shock–shock increases as
Phys. Fluids, Vol. 9, No. 10, October 1997
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pushed back toward the axis of symmetry in weak-sho
focusing, until its velocity along the shock front inevitab
becomes so large that it again moves outward. Focus
experiments1 do not indicate that, once the wavefronts cro
and fold in regular reflection about the axis of symmetry
Mach reflection configuration ever reappears. However
other diffraction problems transition from regular to Mac
reflection about an axis of symmetry is common~see Haas
and Sturtevant,19 Fig. 11~f!, and Bryson and Gross12!, so it
can not be ruled out that at least for some focusing confi
rations this could occur. Thus, it is not certain whether
computed departure of the shock–shock from the axis is s
ply a premature manifestation of an effect which might eve
tually occur in the experiments further downstream,
whether it is a fundamental failure of shock dynamics the
in treating the focusing of very weak shock waves.

For a fair comparison with experimental results, it
important that the focal region be adequately resolved
merically. Too coarse a grid or too high an artificial viscos
reduces the maximum Mach number at the focus, leadin
an over-optimistic assessment of the validity of shock d
namics for shock-focusing problems. This is especially t
for weak shocks, where the focal region becomes very sm
and extremely sensitive to grid resolution.

In this paper examples from computations for a perf
gas with g51.4 have been presented. In the shock wa
lithotripsy shock waves are generated in water and trans
into the patient’s body, also a water-like substance. We h
shown ~Fig. 2! that the behavior in water modeled by th
modified Tait equation@Eq. ~2.5!# is similar to that in a per-
fect gas, as might be expected becauseG in the Tait equation
plays the same role asg in the perfect gas equation. Th
derivation ofA(M ) for water@Eq. ~2.9!# was carried out with
no reference to the energy equation, because Eq.~2.5! was
3067J. E. Cates and B. Sturtevant
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assumed to be independent of entropy. On the other h
Holl3 and Best20 use the Rankine Hugoniot relation for th
conservation of energy to write an over-determined sys
which they use to deriveA(M ) for water. Cates18 has shown
that this approach can lead to unnecessary error when c
lating the Mach number from pressure. The present meth
ology avoids this difficulty.

VI. CONCLUSIONS

The finite-difference method for geometrical shock d
namics developed in this work provides an efficient and
expensive tool for approximately solving problems of sho
focusing where strong shock–shock discontinuities occ
The physical mechanisms which are influenced by aper
angle and initial Mach number are properly represented
geometrical shock dynamics. The numerical results exh
the qualitative behavior of strong and moderate-stren
shock focusing observed in experiments. A comparison w
experimental measurements of the location at which m
mum shock pressure occurs at a focus shows that shock
namics gives accurate results, within the accuracy of the
periments, for strong and moderate shock waves. For w
shock waves, when the computations show a knee on
pressure profile, the agreement is equally good if the loca
of the knee is taken to be the focal point. However, owing
under-prediction of the speed of diffracted waves from
corner by shock dynamics, the pressure at the focus is o
predicted by approximately 60%, and the strength of
shock–shock moving out from the centerline is correspo
ingly too large. Agreement degrades with decreasing sh
strength, as is well known for shock dynamics. Furthermo
even for weak shock waves, far downstream from the fo
the shock–shock always moves away from the axis of s
metry, and the reflection becomes irregular, in disagreem
with experiment. This may simply be another example
qualitative but not quantitative agreement with experime
or it may be a fundamental failure of shock dynamics theo
It remains a subject for future research. We conclude
shock dynamics calculations are useful for obtaining qu
qualitative estimates of the geometrical configuration
complex weak-shock interactions, but that the quantita
values returned are of limited accuracy for moderate-stren
shocks (M0;1.2! and the accuracy worsens as the sho
strength decreases.
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