Shock wave focusing using geometrical shock dynamics
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A finite-difference numerical method for geometrical shock dynamics has been developed based on
the analogy between the nonlinear ray equations and the supersonic potential equation. The method
has proven to be an efficient and inexpensive tool for approximately analyzing the focusing of weak
shock waves, where complex nonlinear wave interactions occur over a large range of physical
scales. The numerical results exhibit the qualitative behavior of strong, moderate, and weak shock
focusing observed experimentally. The physical mechanisms that are influenced by aperture angle
and shock strength are properly represented by geometrical shock dynamics. Comparison with
experimental measurements of the location at which maximum shock pressure occurs shows good
agreement, but the maximum pressure at focus is overestimated by about 60%. This error, though
large, is acceptable when the speed and low cost of the method is taken into consideration. The error
is primarily due to the under prediction of disturbance speed on weak shock fronts. Adequate
resolution of the focal region proves to be particularly important to properly judge the validity of
shock dynamics theory, under-resolution leading to overly optimistic conclusions199F
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I. INTRODUCTION infinite. For weak shocks, Fig.(}), a Mach stem is formed
near the focus. The triple point initially moves outward, but

The focusing of shock waves produces localized highs eventually pushed back to the centerline, and the shock
pressures in the focal region, and the shock emerges from thigont becomes crossed and folded. For strong shocks, Fig.
focus with the front geometry fundamentally changed. Un-1(d), a Mach stem is again formed, but the triple point moves
derstanding the mechanisms of focusing is critical becauseontinuously outward as the front advances past the acoustic
converging fronts occur frequently, for example when passfocus. In this case after focus the front is not crossed or
ing through nonuniform media or reflecting from curved sur-folded. A transition case for moderate strength shocks is also
faces. The high pressures localized near the focus may hsbserved, Fig. (£), where the triple point initially moves
beneficial, as in shock wave lithotripsy, or detrimental, as inoutward from the centerline. Further downstream, the triple
superbooms from supersonic aircraft. The change in shocgoint is swept back toward the centerline but never reaches
geometry downstream of the focus has significant implicathe centerline. Instead the triple point begins to move out-
tions for shock stability, sonic boom propagation, andward again. Later experiments with weak shocks have ob-
sonoluminescence. served similar behaviot:®

One recent application of shock wave focusing is extra-  The shock strength near the focus of a shock wave lithot-
corporeal shock wave lithotripsfESWL). In this treatment riptor, M~1.03—1.05, corresponds to the weak shock case,
for kidney stone disease, weak converging shock waves aréig. 1(b). For these weaker shocks, the behavior near the
generated in water outside the patient’'s body and shaped focus approaches the prediction of acoustics. The focal am-
focus on the stone. In the focal region, the shock pressurglification is higher, and the focal region is narrower and
increases to about 20 MPa, sufficiently strong to fragmentocated closer to the acoustic focus than for stronger
the stone, although the mechanism of fracture is not comshocks'? For smaller aperture angles, corresponding to shal-
pletely understood. Over the course of several thousankbw reflectors, at equal initial Mach numbers, the focal pres-
shocks, the stone is shattered into pieces small enough to Isere is lower and the focus is located farther upstream of the
eliminated naturally. To better understand the source of tisacoustic focus than for larger aperture angles. For weak
sue injury and the primary mechanism of stone fragmentashocks with large aperture angles, the location of the maxi-
tion in ESWL, understanding of the amplitude and geometrymum pressure can lie beyond the acoustic focus. For stronger
of the wave field in the focal region is required. shocks or smaller aperture angles, the focus is located up-

The experiments of Sturtevant and Kulkafriyst dem-  stream of the acoustic focds.
onstrated the complex behavior at the focus. They reflected For the purpose of modeling this behavior numerically,
planar shocks from a parabolic reflector to a line focus. ThéVhitham’s theory of geometrical shock dynanfiésffers
three types of focusing behavior observed are shown in Figan appealing alternative to a full Euler solution. By describ-
1, reproduced from Kulkarny.Solid lines represent the ing only the motion and geometry of the wavefronts, the
shock fronts after reflection from the parabola shown at thelimensionality of the problem is reduced by one and the
left. For sound pulses in acoustic theory, the rays continue toomplexity of numerical calculations is greatly reduced. The
a perfect focus; afterward the shock front is crossed angeometry of the wave field, the most important viewpoint for
folded as shown in Fig.(&). At the focus in acoustic theory, understanding the shock wave physics of complex wave in-
the ray tube area goes to zero and the shock amplitude teractions, is emphasized.
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KZK equatiori'*9. This approximation yields the entire pres-
sure field. For problems in acoustics a formulation treating
the signaling problem has been utilized, in which time series
of pressure are specified on a source plane. To date, shock
tracking or capturing algorithms or nonuniform grids have
not been used in solving the KZK equation to resolve shock

?%%w\/ a @/MV
SR Ry
waves of strengths typically found in lithotriptors. No com-
parisons with experiments such as those of Sturtevant and

(a) Sound pulse (acoustic theory) (b) Weak shock Kulkarny' are available. Brio and Huntérshowed that the
inviscid form of the 2D Burgers equatidthe ZK equatioh
does not support triple shock intersections, a crucial feature

@\// \/ ’3/,,,\,2«——' - of shock focusingFigs. 1(b)—(d)]. Rather, it yields so-called

\(/\;)\*‘_A von Neumann reflection, in which the reflected wave is dif-

fuse. They also showed that an under-resolved numerical cal-
culation of the ZK equation erroneously does show triple
shock intersection.

The objective of this paper is to test the validity of shock
dynamics solutions of weak shock wave focusing. Owing to
FIG. 1. Types of focusing behavior observed in experiment, reproduce&he large ratio of the scale of the initial curvature of the
from Kulkarny. wavefront to the size of the focal spot for weak shocks,
shock focusing is one of the most severe tests of humerical
algorithms for wave interactions. We compare the results of
gwe calculations with experimental resultand we report

In geometrical shock dynamics, the shock propagate Its 1 hock st h | t 1 ESWL :
down ray tubes which are normal to the front, as in geometri-resu S Tor shock strengihs relévant 1o , 85 10w as
1.01. It turns out that for these problems the fact that

cal acoustics. However, shock dynamics is nonlinear, in thaMhOZk q ics d td b | flection f
the velocity of the shock depends on its strength. To closg0CK dynamics does not describe regular refiection irom

the system, an area—Mach number relation is introduced t}g/alls, but only Mach reflection, and also underestimates th_e
relate the shock strength, represented by the Mach numbe??f‘a‘ed of tran_sve_rse waves on weak_shock frpnts, causes sig-
to the variation of the ray tube area. To accomplish this, thé‘Iflcant quantitative disagreement with experiment.
propagation of the shock down the ray tube is treated as
propagation down a tube with solid walls and a slowly vary-, \yMERICAL METHOD
ing cross-sectional area. For this problem, by ignoring the
effect of disturbances overtaking the shock from behind, a Only a small, relatively simple set of problems of inter-
relationship can be derived for the Mach number as a funcest can be worked analytically using the method of shock
tion of area. Since the theory ignores the interaction of thalynamics. Two numerical approaches have been used for a
shock with the flow behind it, it is expected that the theorywide range of problems: the method of characteristits
should be particularly appropriate for problems with accelerand front-tracking methods.Characteristics methods are
ating shocks and/or dominated by geometry. The accuracy dfpically more cumbersome than finite-difference methods
the approximation for specific problems is difficult to assessand difficult to extend to three dimensional problems, and
in advance, but geometrical shock dynamics has proven to ltbus their numerical application has been fairly limited. In
accurate for a wide range of problems. In problems where &ont-tracking methods points along the shock front are ad-
comparison with full compressible flow solutions is avail- vanced along rays normal to the front according to the shock
able, shock dynamics has shown good agreement for strorigdach number. The ray-tube area is then used to compute the
shocks, and is generally less reliable for weak shocks. VariMach number along the front at the new position. The exten-
ous efforts to extend shock dynamics has been proposed, bsibn of front-tracking methods to three-dimensions is
none have gained wide acceptance. straightforward. However, the method requires frequent
Henshawet al.® using a front-tracking method to solve splining of the points and the addition of points in areas
the equations of shock dynamics, analyzed shock focusinghere the front expands and the removal of points where the
and compared calculated results with the experiments diront contracts.
Sturtevant and KulkarnyThey showed that shock dynamics As noted by Whitharh the equations of geometrical
gualitatively reproduces the weak-, moderate- and strongshock dynamics are analogous to the supersonic potential
shock behavior illustrated in Fig. 1, and that, by adjusting theequation, and numerical schemes for the supersonic potential
flatness of the initial shock front, they could quantitatively equation can be adapted to shock dynarfilcEhe use of
match the maximum strength at the focus of a shock wavéinite-difference schemes offers advantages over previous
initially of strengthMy=1.1. characteristic and front methods. Finite-difference schemes
Another approximate method which has been used foprovide conservative formulations where the effects of arti-
calculating shock and ultrasonic wave focusing solves thédicial viscosity can be clearly controlled. The method is eas-
2D Burgers equatioffalso known as transonic small distur- ily extended to three dimensional problems with optimal
bance theory, the nonlinear parabolic wave equation and thgrids for specific problems. In addition, finite-difference

(c) Moderate strength (d) Strong shock
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schemes are typically easier to set up and apply to specifi
problems than previous methods, especially for problem: 10

with weak shocks.
The equations of geometrical shock dynarhicare

1

M
V. WVCM W (2.2

|=0. -

a(x)=agt gives the shock position at tinte wherea, is the
undisturbed sound speed(M) is the area—Mach number
relation. For a perfect gas, the area—Mach number relation
given by

3 MMA(M)
A(M)—ex —JMOmdM , (22)
where
B 2 1—u? 1
ANM)= 1+m 1+2/,L+W , (2.3
—1)M2+2
2 (- DMTH (2.4

B oMZ=(y=1)"

~~
| =
N
<

FIG. 2. Comparison of the area—Mach number relagiM) for water

and y is the ratio of specific heats. An analytical eXpressionusing the modified Tait equatidn="7.15 and perfect gas relatioy=1.4.

for the area—Mach number integral was originally given by
Bryson and Gros¥ Several misprints were later pointed out
by Hendersor®

For shock waves in water, such as occur in lithotripsy,
the modified Tait equation of state originally proposed by
Kirkwood and Beth& provides a convenient form for analy-

sis. A common form of the equation which we use here

assumes that the reference quantitigsand pgy, actually
weak functions of entropy, are constant,

eny

At T=20 C, the value§ =7.15 andp,=998.232 kg/m are
often used to represent wateB. follows from I' and the
sound speed through the relation

a2:< ) _T(p+B)

p L
B=303.975 MPa for water. Using the Tait equation in the
Rankine—Hugoniot conditions for mass and momentu
yields a transcendental
R=p,/p, across a shock wave,

p(p)=B (2.5

p

p (2.6

RI1—(1+T'M?)R+T'M?=0. 2.7

The “shifted” pressure raticZ=(p,+B)/(p,+B) is given
by Z=R'. The A(M) relation for the Tait equation is de-
rived in the usual way from the characteristic relation

du pa’uldA

dp N
dx utaAdx

dx

+pa (2.8

by eliminating the differential of pressure using E2.6), the
differential of velocity using the shock relation for mass con-

R(F+l)/2+ M
R(F+l)/2_ M

»

A comparison of theA(M) relation for water using the
modified Tait equation with’=7.15 and the perfect gas re-
lation with y=1.4 is shown in Fig. 2. The reference Mach
numberM, for the A(M) relation is taken to be the midpoint
of the Mach number range, i.e., the areas at the midpoint are
set to be equal. It is seen thA{M) for a perfect gas with
v=1.4 and water witH"=7.15 are nearly the same. Thus in
this paper we report only results obtained with the perfect-
gas equation of state.

The equations of geometrical shock dynamics form a
hyperbolic, second-order partial differential equation that de-
scribes the wave motion of disturbances propagating along

M1
A(M)=exr{ fM Vi
0

M(R-1)

R+ 172 2.9

X(l+

mthe shock front. Discontinuities, calleshock-shocks can
equation for the density ra,[iJorm along the shock carrying a change in shock angle and

an increase in Mach numbe&hock-expansionscan also
form, for example in shock diffraction around a corner.

In this paper an improved finite-difference scheme is de-
veloped based on the methods developed for the supersonic
potential equation’ which is suitable for weak-shock prob-
lems with strong discontinuities. Introducing an arbitrary co-
ordinate system(not necessarily orthogonaldefined by
E=¢(x,y), 7= n(x,y), Eq. (2.1 can be written in strong-
conservation form:

d (O'U d (O'V)

P R

(2.10

servation and the resulting differentials of density using EqwhereU, V are the contra-variant velocity components given

(2.7), all in favor of dM. The result is
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U=a11a§+a12a,7, V=a12a§+a22a,7, (21]) (a ) _:ai’j—ai_l’j_ (a ) _:ai‘j+1—ai’j_1
M & A¢ ’ 7/1,) 2A7p !
= — 2-1
o AM)’ (2.12 (2.16
. where a backward difference is used for the marching direc-
and the grid parameters are

tion ¢ and a central difference is used for the cross-flow

ap =&+ §y2, =&t Eymy, A= i+ 773, direction . For half-points, the velocities are averaged be-
(2.13 tween neighboring points which gives
I= &y = &y - (2.14 (i) (o aiogg) (2.17)
The Mach number is now given by (@gij+12= 2A¢ P
M=[Ua,+Va,] 2 2.1
[Uag+Va,] 219 @i
In the solution procedure, we consideto be the march- (@p)ij+12= Ay : (2.18

ing, time-like direction and assume that all information is

known at theith and all previous levels. The problem is to Once these quantities are knowd, andV follow directly

advance the solution to the level-1 and obtain newx from Eq.(2.12) andM from Egq.(2.15.

values. Since the¢ direction is the marching direction, the
At all levels, the quantities;, a, are computed from  derivative in Eq.(2.10 is backward differenced as

i(ﬂ) - (a= b ){(dU/d);11;—(aU1J); j} = 6b:{(aU/J); ;= (aU/J); 1} 2.19
a&\ J i+11j_ ajA&;— by (A& +AS) ' '

where locally at each point th& direction is normal to the shock.
) ) The stability requirement Eq2.23, was checked at each
a;=(Ag;+A&)%, by=(A&)%, (220 point in the calculations.

The 7 derivative term in Eq.(2.10 is central-

and differenced and written at levék-1 to make the resulting
Ma=&1—&, AH=&— 6. (2.2  scheme fully implicit
The parameted controls the orderf=0 gives first-order 9oV 1 (/oV oV
accuracy andd=1 gives second-order accuraty. AT AL — | — .
The upwind differencing of th& derivative term pro- 7 i+1) m i+1j+1/2 i+1,j—1/22 5
duces a truncation error whose leading term is (2.24
o a’a; ) The suitability of the above difference depends on the nature
J22 T R T (2.22 of the flow in the cross-flow plane. When-Ja,,a2/V2<0,
the cross flow is elliptic, as shown in Fig(a8. The charac-
This term represents a positive artificial viscosity if teristics propagate information from both the positive and
5 negativey directions, and central differencing is appropriate.
U—>a2 2.23 For hyperbolic cross flow as shown in Fig. (b3
an ’ ' 1—a,@a?/V?<O0. In this case, the characteristics propagate

In general the stability requirement, EQ.23), is satisfied if
the information propagates along characteristics only from
behind the current point. To march in tlgedirection, the
domain of dependence for point must not include infor-
mation from forward of the currenf row. For problems
where the shock is strongly curved, the grid must be choser
to maintain¢ as the propagation direction. For weak shocks,
the characteristic angle approaches zero and stability require
only that the component of the shock velocity along the
marching direction be positive. Stability is more restrictive

- . Elliptic Crossflow Hyperbolic Crossflow
for large Mach number, as the characteristic angle increases @) (b)

and the¢ direction must be more closely aligned with the

shock normal. Ideally, the grid should be aligned such that FIG. 3. Cross-flow type according to characteristic angles.
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information in a singley direction, and the central differenc-
ing of Eq.(2.24 is unstable. In this case, artificial viscosity
is necessary to preserve stability.

To implement the required artificial viscosity, the value
of o is biased in the direction of the cross flow This
corresponds to density biasing, often referred to as artificial
compressibility in the case of the supersonic potential equa- M,

tion. The in Eq. (2.29 is replaced by,

-~ _ 1
Ois1jr12= (1= V)0 1j1 12T 2 V(004 1j+ 12+ 2

TOi1jr12-1), (2.25

where k=0 when Vj,4;,1,>0 and k=1 when
Vit1j+12<0. The artificial viscosity utilized in this imple-
mentation employs upwind differencing based on the direcriG. 4. Focusing problem parameters: initial shock Mach nunibgrand
tion of the characteristic signal propagation; when the crosthe aperture anglé, .

flow is elliptic the upwind differencing is turned off,

a 2
Virj+12= ¢ 1= 22? : (2.2  Mach numberM, and the aperture anglé,. At the very
i+1j+1/2 least, to be judged successful a numerical model should du-
with plicate the strong-, moderate- and weak-focusing behavior
5 observed in experimentsThis requires the prediction of the
¢=0, for |ay,— V_) ~0 path of the experimentally observed triple point, represented
' 2 1412 by a shock—shock in the present analysis. The path of the
triple point is the most demanding element, since this defines
(elliptic cross flow, (227 the geometry of the flow near the focus. Other important
V2 parameters for judging the validity of a simulation include
=1 for |ay— —2) <0 the shock front positions downstream of the focus the shock
i+1j+1/2 pressure jump at focus and the location of the maximum

(2.28 pressure jump. Conditions behind the leading shock cannot
be determined by the theory of shock dynamics.
Given thea values at all previous levels, the differenc- In shock dynamics the angJ@through which a shock of
ing results in a set of nonlinear algebraic equationsafar;  initial strengthM, can be turned in an expansion before its
which are solved using Newton’s method. In general, thestrength vanishes is finite. This means that for weak shocks
artificial viscosity leads to a pentadiagonal system. For larggne bottom of our computational domain can not be horizon-
Mach numbers, when the artificial viscosity terms are smallta|. In such cases the lower boundary was placed at an angle
and for flows without strong shock—shock discontinuities thesjightly larger thang,— 3 to the horizontal(Fig. 4) to ar-
derivative terms due to the artificial viscosity can often berange for the shock front at the corner to be turned to a Mach
neglected, yielding a tridiagonal system. In this case, mor@umber approaching unity.
iterations may be required for convergence of egcstep, For all cases, typical runs used several hundred grid
but each iteration is significantly faster. points in the-direction. For better resolution of the focal
The boundary condition of shock dynamics requires thategion, grid points were packed near the upper boundary.
the shock front be normal to solid boundaries or axes offhe solution was marched at variabe steps chosen to
symmetry. Ifn is the unit vector normal to the boundary, the maintain an average CFL number of unity. Runs of varying
condition requiresia/dn=0 at the boundary. For the grid mesh density were made to verify that the results were inde-
systems used in this work, the boundary is given bypendent of grid resolution, except locally in some cases men-
n=const; therefore, the boundary condition reduces tqjoned below. Computations of the focusing of moderate-to-
V=0. The initial conditions &,,M) are specified along an strong shock wavesM,=1.5-2.0) typically take several
initial row, £=const. Since the Mach number specifies theminutes on an 85 MHz workstation, while weak shocks, with
gradient ofe, the value ofa at the previous’ can be esti- increased grid density required near the axis, slower conver-
mated from the Mach number. Then, withvalues specified gence for very strong shock—shocks, and small time steps to
for two initial £ rows, the solution may be advanced. insure stability, can take as long as 10—20 min. In this paper
we present detailed results for strong and moderately strong
shock waves My=1.3 and 1.1 Calculations for weaker
IIl. FOCUSING RESULTS waves show that the behavior is the same as for the
M= 1.1 casda shortcoming of shock dynamics theory dis-
The convergence of a segment of a cylindrical shockcussed beloyy except that the scale of the focal zone de-
front to a perfect line focus is considered. This problem iscreases rapidly with decreasing shock strength. Therefore,
characterized by two parameters shown in Fig. 4, the initialve do not present the complete results for weak-shock cases,

(hyperbolic cross flow
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FIG. 5. (a8 Shock fronts,(b) shock front normals andc) Mach number

contours for converging shockél,=1.3, §,=80°, y=1.4. The center of

the initial front lies at &,y)=(0,0).

NMHHn I
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N

FIG. 6. Mach number surface for converging shobky=1.3, 6,=80°,
y=1.4. The center of the initial front lies aky)=(0,0). A slight over-
shoot is visible at the upper-edge of the shock—shock discontinuity.

number. To maintain the boundary condition of shock—
dynamics theory that the shock front be normal to the cen-
terline, the reflection of the shock—expansion from the cen-
terline turns the front back toward the centerline. These
reflected disturbances are compressive, and eventually coa-
lesce into a shock—shock discontinuity. The shock—shock is
clearly shown in the figures by a change of shock front angle
[Figs. Ha) and (b)] and an increase of Mach numbétigs.

5(a) and §. It moves continuously outward from the center-
line. As the Mach stem extends it becomes slightly convex
forward and it weakens.

A gquantitative measure of the shock—shock location is
derived by plotting the trajectory of the maximum gradient
of Mach number on each solution rdWig. 7). From the left,
the maximum gradient shows the path of the expansion from
the lower corner, and after reflection it shows the path of the
shock—shock. For strong shock way€sy. 7(a)] the shock—
shock moves continuously outward after focus, consistent

but we plot centerline pressures and maximum wavevith the description of Sturtevant and Kulkatryig. 1(d)].
strengths, together with the location at which they occur, for ~ An example of moderate shock behavidM{=1.1,

all cases computed, 1.6IM ;<<1.3.
A. Results for 80° aperture angle

Results for aperture anglé,=80° and initial Mach
numberM,=1.3 are shown in Figs. 5 and 6. Figuréap

shows contours of constant phase The normals to the

fronts are shown in the ray diagram, Fighp Figure %c)

0,=380°) is shown in Figs. 8 and 9. The maximum turning
angle forMy=1.1is 51°, so the lower boundary must again
be inclined to the centerline. In this case the shock—
expansion reflected from the axis of symmetry almost imme-
diately coalesces into a shock—shock discontinuity. Although
the triple point propagates outward along the shock front, the
shock front itself is still directed strongly inward. The net

displays Mach number contours. A surface plot of the shockesult is that the shock—shock discontinuity is swept back
Mach number is shown in Fig. 6. For clarity, the solution attoward the centerlingFig. 7(b)]. The strength of the shock—

every grid point is not plotted on the surface plot. This hasshock increases as it is pushed inward, producing a further
the effect that the discontinuity appears sharper than actualiycrease in the centerline Mach number. The inward motion

calculated.

of the shock—shock forms a shoulder in the Mach number

This Mach number—aperture combination is an examplgrofile, shown in the Mach number surface plot, Fig. 9. The
of strong-shock behavior. The leading characteristic from thestrength of the shock—shock continues to increase until its
expansion corner at the lower end of the initial shock, andrelocity along the shock front is sufficient for it to move
the shock—expansion behind it turn the shock front awayutward. Downstream of the focus, a narrow Mach-stem is
from the centerline, thereby slowing the increase of the Maclvisible.

Phys. Fluids, Vol. 9, No. 10, October 1997

J. E. Cates and B. Sturtevant 3063

Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



0.00

T T LU S B L \
0.0 [ I S T T Y \\\\\ N
[ TS T B
Vo b
-0.02 -0.2 Loy v v vy ]
[ (SN
[ L O R b
. r VoA [N b
-0.41- AN N —
> -0.04 N r DANAN NN ]
L NN \\\\ ]
—0.6 AN .
[ TR ]
-0.06 : \\\\\\ ]
P N ;
-0.08 r T~ ]
-0.2 E X . . X . !

|
o
1
(=]
w
o
o
o
(4]
o

-0.000 B
= 0.0 E=E = = 7% 7 % 7 .
= = = Z % YA A A
ows BRI
-0.2 A A A A S M
= A A A A A IS Y S N
~0.010 B i NI AR Std ]
= - ARt ]
. EE=== —0.4 1 R RNt ]
-0.015 F=—— > F [V Y S I ]
EE===

=== i Lt ]
e _ [ / .

= e 0.8 F AR ]
B L ]
-0.020 e r ros h
B - [ 4 ]
2= ~0.8F P 4
-0.025 EE=A 2z o p .
-0.2 0.0 0.2 0.4 0.6 r :

X

|
o
|
o
wn
e
o
o
wn
o

0.0000

LA LA

AT i
~0.0010 i b i A ‘ 0.0

I A 1 _
s ;i ii‘ ii ii ! f M 0.2
i

—0.0020

-0.4

e

il

i fet
il i 1 >
] St NW‘ !
e
b

i : -0.6

MU A LKAWAN ALY LSRR

-0.2 0.0 . . 0.6

s b by by e by

—
&
o
I
o
|
o
o
o
<}
o
0
o

FIG. 7. Location of the maximum Mach number gradient near the focus for (©

strong,M = 1.3, moderatelM ,=1.1, and weakM = 1.05, shock behavior

for ,=80°, y=1.4 superimposed over the solution grid. For weak shockFIG. 8. (a) Shock fronts,(b) shock front normals an@c) Mach number
behavior, the discontinuity is immediately pushed to within several gridcontours for converging shockl,=1.1, 6,=80°, y=1.4. The center of
points of the centerline. the initial front lies at &,y)=(0,0).

Figure 1b) shows that the behavior of moderate strengthgrid spacing. In this case the Mach stem is not resolved, and
focusing shocks is in qualitative agreement with the findingdor all practical purposes the reflection at the axis of symme-
of Sturtevant and KulkaryfFig. 1(c)]. Adequate grid points try is regular there. This is consistent with experimental find-
exist to correctly capture the distance of the discontinuityings that the post-focus configuration for weak shocks is
from the wall at the closest approach. The distance betweeregular reflection, as predicted by geometrical acoustics.
the arrival of the expansion disturbance from the lower corHowever, because of the normal—-shock boundary condition
ner and the point of closest approach of the shock—shoc&f shock dynamics theory, the shock—shock inevitably
defines the size of the “focal region” strengthens and the Mach stem lengthens as the shock propa-

Calculations show that weaker shocks behave in thgates downstream, and for all shock strengths calculated in
same way. The disturbance from the lower corner arrives ahis work the shock—-shock eventually departs from the
the axis closer to the acoustic focus than for stronger shockseighborhood of the axis, in disagreement with the findings
and a shock—shock forms at the focus. The weaker the shoak experiments.
wave the stronger is the shock—shock that forms. The dis- Figure 10 plots the shock pressure on the axis of sym-
continuity is pushed back toward the centerline almost im-metry for strong M,=1.3), moderateNl,=1.1) and weak
mediately and the focal region gets continually smaller as thehocks M,=1.05) for aperture anglef,=80°. The
Mach number decreases. For weak shocks, the shock—shoglcoordinate is nondimensionalized with the initial radius,
is actually pushed to within several grid points of the center-and the geometrical focus lies @t 0. The pressure is nor-
line [Figure 7c)], and the path of the shock—shock in the malized with the initial strength of the shock wapg(M)
region near the closest approach becomes dependent on thietained from the Rankine—Hugoniot relations for a perfect
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Moo A similar set of cases was computed for aperture angle
.8 0p=36°, corresponding to the reflector ellipse used in the
e modified Dornier HMS3 lithotriptor which has an eccentricity
L a e=0.8. Two major effects of the smaller aperture angle are
= - seen in the results. The expansion disturbance from the lower
= corner has less transverse distance to travel and reaches the
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the shock strength is smaller, producing lower peak pressure
at the focus. Due to the smaller Mach number, the onset of
weak shock behavior occurs at a smaller Mach number. For
6,=36°, moderate-strength behavior is still seen at
Mo=1.1, while weak-shock behavior is seenMig=1.01.

A summary of the maximum Mach number and its loca-
tion for the two aperture angle®{=36° and 80°) is shown
in Fig. 11. The open points indicate the maximum Mach
number computed on the axis of symmetry for each case.
The pluses indicate the lower Mach numigand the corre-
sponding locationat the shoulder described abofkgs. 9
and 10 for moderate-strength and weak shock waves. As
described below, the pressure at the shoulder agrees better
gas. For strong shocks a single pressure peak is formedith the amplitude and location of experimental maximum
ahead of the acoustic focus. For moderate-strength shockspaessures than does the absolute maximum computed pres-
local maximum occurs before the focus when the lead exsure. The dashed lines in Fig. 11 show the Mach number and
pansive disturbance from the lower end of the initial shockposition of the shock when the leading disturbance from the
front reaches the centerline. An absolute maximum occurfower end of the initial front reaches the axis of symmetry.
farther downstream when the shock—shock becomes stronthe results show that the arrival of the lead disturbance from
enough to again move outward. For the weak casehe lower corner provides an accurate estimate of the begin-
(My=1.05) the upstream shoulder is visible only as aning of the focal region. The absolute maximum of Mach
change of slope. number occurs farther downstream as the bulk of the expan-
sive disturbance from the lower corner of the initial front
arrives.

For aperture angl®@,=36°, a relatively shallow reflec-
tor with relatively larger effects of nonlinearity, the focus
occurs ahead of the acoustic focus, except for the very weak
case,My=1.01. For this case, even the initial shoulder
forms slightly behind the acoustic focus. F6p=80°, a
deep reflector with smaller nonlinearity, the location of the
5 1:08 focus is behind the acoustic focus for weaker shocks. The
focus Mach number is larger with the large aperture angle,
for all initial Mach numbers.
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FIG. 9. Mach number surface for converging shobky=1.1, 6,=80°,
y=1.4. The center of the initial front lies ak{y)=(0,0).
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IV. COMPARISON WITH EXPERIMENTAL RESULTS

Numerical shock dynamics was used to simulate the fo-
cusing experiments of Sturtevant and Kulkatniy this se-
ries of experiments, plane shock waves were reflected from a
parabola to a line focus. After reflection, the shock propa-
gated back into the uniform flow behind the incident shock.
. This problem can be treated with a generalization of the
X method presented hetéHowever, since the velocity is uni-
form, a simple coordinate transformation is sufficient. If the
FIG. 10. The ratio of the calculated shock pressure along the axis of symgniform velocity is given byu,, the free stream is at rest in

metry to the initial shock pressure versus the distance from the geometric . . v
focus for three different initial Mach numbersl,. The shock propagates %he coordinate frame given by _X, Uot. Therefore, at _any
point on the shock fronta(x')=apt, the physical

from left to right and the pressures are measuregd=ad in Fig. 4. Aperture ’
angle ,=80°, y=1.4. x-coordinate value must be computed as
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showed that the slight variation in initial Mach number along
the reflector had little effect on the focal region.

The computed pressure amplification and shock—shock
path are compared with the experimental results in Fig. 12.
The pressure amplification is defined as the pressure jump
across the shock normalized by the pressure jump of the
reflected shock as it leaves the reflector surface. In the ex-
perimental results, the maximum pressure outside the focal
region occurred downstream of the shock, and is not the
pressure computed by shock dynamics theory. However,
within the focal region, the maximum experimental pressure
occurred at the shock front and direct comparison can be
made with the results of shock dynamics. For the three cases
shown in Fig. 12a) shock dynamics theory overestimates the
maximum pressure by 60%—-90%. The over-prediction is not
significantly affected by accounting for the finite size of the
pressure transducer used in the experiments. Since the com-
parison is to ratios of measured pressures, the errors in the
experimental results are probably an order of magnitude
smaller than this discrepancy. For strong shocks the location
of the computed maximum pressure agrees with experiment,
but when a shoulder occurs in the computed variation of
pressure with distance in the intermediate and weak-shock
cases, the location of the shoulder accurately records the ex-
perimentally observed location of maximum pressure. If the
pressure amplitude computed at the shoulder is taken to be
the focal pressure, then the overestimate reduces from 90%
to 55% for theMy=1.1 case. The additional rise of Mach
number in these cases, due to the requirement for Mach re-
flection at the centerline, is not seen experimentally.

As discussed above, the path of the shock—shock de-
pends sensitively on the interplay between several nonlinear
effects, so it is one of the most exacting tests that can be
made of computational results. In Fig.(b2the path is rea-
sonably well predicted foMy=1.3, but for weaker shocks
the agreement deteriorates. Although moderate-strength be-
havior (focal region of finite lengthwas experimentally ob-
served forMy=1.2, shock dynamics does not show this be-
havior until the Mach number reduces b,=1.1. For all

x-location of the maximum for all shock strengths computed. Aperturecases, the origin of the shock—shock agrees closely with the
angles 6,=80° (¢) and 6,=36° (J). (+), shock Mach number and origin of the triple point observed in the experiments.

location of the shoulder on the centerline pressure histbiy. 10 which

appears for moderate and weak shock strengths. Dashed lines represent
shock Mach number and location at the point when the lead disturbanc
from the end of the initial front arrives at the axis of symmetry. Perfect gas,

Up
— | .
p

y=14.

x=x"+

4.1

Y°piscussion

In this work numerical solutions of shock wave focusing
by geometrical shock dynamics theory have been used to
examine nonlinear gasdynamic behavior near foci and to test
the shock dynamics approximation in a difficult problem.
The fact that shock dynamics theory yields hyperbolic equa-
tions for the behavior of disturbances on the shock front

Provided that the initial conditions are specified properly inpermits a physical interpretation of the results in terms of the
the (x’',y) coordinate system, the problem can be solvedcharacteristic curves of the equations. In shock focusing, dif-
with the previous numerical scheme.

A parabolic grid was used for the calculation so the paratude at focus and determine the geometry of the focal field.

bolic reflector is a line of constart, and the initial condi-
tions are specified along the reflector. The initialvalues

fracted waves from the edges of the aperture limit the ampli-

The arrival at the centerline of the leading expansive distur-
bance from the lower corner of the initial front signals the

were calculated from the arrival time of the incoming shockbeginning of the process which limits infinite convergence of
at each point on the reflector. The Mach number was taken tthe shock discontinuity. For weak shocks the speed of the
be the Mach number of the initial planar shock. Computa-diffracted disturbance along the shock front is small, so it
tions using exact values of the reflected-shock Mach numbetoes not reach the centerline until near the acoustic focus and
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FIG. 12. (a) Pressure amplification anil) shock—shock path computed for the reflection of planar shock waves from a parabola compared with experimental
results of Sturtevant and Kulkarr{976. The numerical results are shown as lines without symbols, experimental results are corresponding line types with
symbols. The experimental pressure amplification is based on the maximum pressure which outside the focal region is not the pressure directly at the shock.

the amplification is large. In the limi =1 the disturbance pushed back toward the axis of symmetry in weak-shock
reaches the centerline precisely at the geometric focus, thfecusing, until its velocity along the shock front inevitably
extent of the focal region shrinks to zero and the singularitypecomes so large that it again moves outward. Focusing
of acoustic theory is recovered. For finite-strength shocks thexperimentsdo not indicate that, once the wavefronts cross
nonlinear propagation velocity of disturbances along theand fold in regular reflection about the axis of symmetry, a
shock is larger, so the first disturbance always arrives at thilach reflection configuration ever reappears. However, in
centerline before the acoustic focus. Likewise, for smallerother diffraction problems transition from regular to Mach
apertures the disturbance has a shorter transverse distanceéflection about an axis of symmetry is comm@ee Haas
travel to reach the centerline so diffraction effects are feltand Sturtevant? Fig. 11(f), and Bryson and Gro3, so it
further upstream of the acoustic focus and at a lower Macltan not be ruled out that at least for some focusing configu-
number, i.e., nonlinear effects are larger. rations this could occur. Thus, it is not certain whether the
In an analysis of weak shocks diffracting around a cor-computed departure of the shock—shock from the axis is sim-
ner with a small turning angle Whith&mpointed out that the ply a premature manifestation of an effect which might even-
speed of the initial signal predicted by shock dynamics igually occur in the experiments further downstream, or
half the value given by first-order gasdynamics theory. In thewvhether it is a fundamental failure of shock dynamics theory
current problem this shortcoming results in the leading disin treating the focusing of very weak shock waves.
turbance from the lower corner arriving at the centerline too  For a fair comparison with experimental results, it is
late, at which time the focusing has developed too far, andmportant that the focal region be adequately resolved nu-
the resulting shock—shock is too strong and has too large merically. Too coarse a grid or too high an artificial viscosity
speed outward from the centerline. This explains both theeduces the maximum Mach number at the focus, leading to
over-prediction of the pressure at focus and the excessivelgn over-optimistic assessment of the validity of shock dy-
wide focal region compared to experimental results. namics for shock-focusing problems. This is especially true
For very weak shocks, the computations show that thdor weak shocks, where the focal region becomes very small
focal region closes downstream, in agreement with experiand extremely sensitive to grid resolution.
ments, in the sense that the shock—shock returns to within a In this paper examples from computations for a perfect
few mesh points of the axis of symmetry. We emphasize thagjas with y=1.4 have been presented. In the shock wave
a method without adequate resolution would not detect thisithotripsy shock waves are generated in water and transmit
effect; all shocks would appear to be “strong.” However, into the patient’s body, also a water-like substance. We have
even with adequate resolution, no matter how small theshown (Fig. 2) that the behavior in water modeled by the
Mach numbexkfor My>1.01), if the computation is run long modified Tait equatiofEq. (2.5)] is similar to that in a per-
enough the shock—shock eventually departs from the axifect gas, as might be expected becalise the Tait equation
and becomes resolved. This occurs because of the parallgdays the same role ag in the perfect gas equation. The
flow boundary condition of shock dynamics. A consequencealerivation ofA(M) for water[Eq.(2.9)] was carried out with
is that the strength of the shock—shock increases as it iso reference to the energy equation, because(E§ was
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