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A Bell inequality defined for a specific experimental configuration can always be
extended to a situation involving more observers, measurement settings, or mea-
surement outcomes. In this article, such “liftings” of Bell inequalities are studied. It
is shown that if the original inequality defines a facet of the polytope of local joint
outcome probabilities then the lifted one also defines a facet of the more complex
polytope. ©2005 American Institute of PhysiddDOIl: 10.1063/1.1928727

I. INTRODUCTION

In a typical Bell experiment, two or more entangled particles are distributed to separate
observers. Each observer measures on his particle one from a set of possible observables and
obtains some outcome. One of the most striking features of quantum mechanics is that the result-
ing joint outcome probabilities can violate a Bell inequa]rimdicating that quantum mechanics is
not, in Bell's terminology, locally causal. This prediction has been confirmed, up to some loop-
holes, in numerous laboratory experimeﬁs‘[he implications of nonlocality for our fundamental
description of natuf®® have long been discussed; more recently, nonlocality has also acquired a
significance in quantum information scierfcé’ From this perspective, being able to decide
whether a joint probability distribution can be reproduced with classical randomness only, or
whether entanglement is necessary, is an important issue.

For a given number of observers, measurement settings, and measurement outcomes, the set
of joint probabilities accessible to locally causal theories is a convex polfl?omés therefore
completely characterized by a finite number of linear inequalities that these probabilities must
satisfy—that is, by a finite number of Bell inequalities. Each of these inequalities corresponds to
afacetof the local polytope. Note, however, that not every Bell inequality represents a facet. Facet
inequalities are the ones which characterize precisely the border between the local and the non-
local region. They form a minimal and complete set of Bell inequalities.

In the simple situation where they are only two observers, two measurement choices, and two
outcomes per measurement, all the facet inequalities are kfibtwnip to permutation of the
outcomes, they correspond to the Clauser—Horne—Shimony-8bISH) inequality.16 Beyond
this, little is known. It is in principle possible to obtain all the facet inequalities of an arbitrary Bell
polytope using specific algorithms. In practice this only allows one to extend the range of solved
cases to a few more observers, measurements, or outé¢dtiess these algorithms are exces-
sively time-consuming. The problem of listing all facet inequalities has in fact been demonstrated
to be NP-completé? it is therefore unlikely that it could be solved in full generality. Discouraging
as this result may seem, it nevertheless leaves open several possibilities. First, complete sets of
facet inequalities may be obtained for particular classes of Bell polytopes or for simplified ver-
sions of them. For instance, in the case where “full correlation functions” are considered instead of
complete joint probability distributions, all facet inequalities are known for Bell scenarios con-
sisting of an arbitrary number of parties with two measurement choices and two outdothes.
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Second, in more complicated situations it may still be possible to obtain partial lists of facets. For
instance, families of facet inequalities are known for arbitrary number of measuréments
outcomeg?

Further progress in the derivation of Bell inequalities would certainly benefit from a better
characterization of the general properties of Bell polytopes. This is the motivation behind the
present article. The question that we will investigate is how, and to what extent, the facial structure
of a Bell polytope determines the facial structure of more complex polytopes. More specifically
consider a bipartite Bell experiment characterized by the probapijlil;)!“lj2 for the first observer
to obtain outcomek; and for the second one to obtain outcokyegiven that the first observer
measureg, and the second ong. Suppose that each observer chooses one from two dichotomic
observables, that i&;, k, € {1,2} andj,, j, € {1,2}. A necessary condition for this experiment to
be reproducible by a local model is that the joint probabilities satisfy the CHSH inequality

P1y11+ P1y12+ P1yjz1 ~ P12z
+ Paoj11+ Pogj12+ Pogj21~ P2z22 = 0. 1)

Although this inequality is defined for the specific Bell scenario that we have just described, it also
constrains the set of local joint probabilities involving more observers, measurements, and out-
comes. Indeed, as was noted by Petdwere are obvious ways to extend Bell inequalities to more
complex situations, or thft them following the terminology of polytope theory. As an illustration,

let us consider the following three possible extensions of our CHSH scenario.

(i) More observersConsider a tripartite Bell experiment with joint probability distribution
Pi,kokslizinie WHETEKy, Ko, kse{1,2} andj4, jo, jse{1,2}. A necessary condition for this
tripartite distribution to be local is that the probabilit|"p§1§lk2“1j2 for the first two observers
to measurg, and j, and to obtain outcomels; andk, conditional on the third observer
measuringi;=1 and obtaininds=1 satisfy the CHSH inequality. These conditional prob-
abilites are given by Tjklkz“ljzzpklkzlljljzl/p13|13' where the marginal py;,
:Eklrkzpklkzl“lizl is independent of; andj, by no signaling'see Sec. Il A. Inserting these
probabilities in(1) and multiplying both sides bp13|13 leads to

P113211F P11y121+ P11y211~ Pr1g221
+ Paoy111t Pooy121t Po21211~ P221221= 0, 2

a natural extension of the CHSH inequality to three parties.

(i)  More measurementsConsider our original bipartite Bell scenario, but assume that the
second observer may choose between three different measurement gettifds2, 3.
Clearly, a necessary condition for the corresponding joint distribution to be reproducible by
a local model is that, when restricted to the probabilities involying{1, 2}, it satisfies the
CHSH inequality. Therefore, inequalitfl) is, as such, a valid Bell inequality for this
three-measurement scenario.

(i) More outcomesSuppose now that the measurement apparatus of the second observer may
output one out of three distinct valuése {1,2,3. Merging the outcomegk,=2 andk,
=3, we obtain an effective two-outcomes distribution with probabilifes); ; =Pk, 1j.j

_ . A R A R P P
and Pr,2i1i, = Piy2li1jp Pky3ligiy The existence of a local model for the original distribution
obviously implies a model for the coarse-grained one. Expressing the fact trmtl,;zm(lalz
should satisfy(1), we thus deduce the following lifting

Pry11+ Piyaz+ P1y21 = Paa22
* P2gj11 T P2g12+ P2gor ~ P2g22
+Pag11t Pogiat Pogor— P23 =0 3

of the CHSH inequality to three outcomes.
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These three examples can be combined and used sequentially to lift the CHSH inequality to an
arbitrary number of observers, measurements, and outcomes. It is also straightforward to gener-
alize them to other Bell inequalities than the CHSH one. How strong are the constraints on the
joint probabilities obtained in this way? We will show that if the original inequality describes a
facet of the original polytope, then the lifted one is also a facet of the more complex polytope. This
implies, for instance, that the CHSH inequality is a facet of every Bell polytope since it is a facet
of the simplest one.

This article is organized as follows. Section Il introduces the concepts and notations that will
be used in the remainder of the paper. In particular, we briefly review the definition of Bell
polytopes and elementary notions of polytope theory. In Sec. Ill, we derive some basic properties
of Bell polytopes that are necessary to prove our main results concerning the lifting of facet
inequalities. These results are presented in Sec. IV. We conclude with a discussion and some open
questions in Sec. V.

II. DEFINITIONS

A. Bell scenario

Considem systems and assume that on each systammeasuremerjte {1,...,m} is made,
yielding an outcomek e {1,...,v;;}. Note that the number of possible measurementsay be
different for each system and that the number of possible outcomgsnay be different for each
measuremernjton systeni. Such a Bell scenario is thus characterized by the tfiplen,v) where
m=(my,...,m,) specifies the number of possible measurements per system, and where the table
v=[(v11, .- Wim); - 1 (Ungs - 'v“mn)] specifies the number of possible outcomes per measurement
on each system. When notations suchra®,v) are used, it should be understood that 2 for
all i.

The joint probability of obtaining the outcomék;, ...,k,) given the measurement settings
(J1,---,Jn) will be denotedoy i j, ..j - We will view thesa:H{Ll(E}“:ilvij) probabilities as forming
the components of a vectop in R'. For a given observei {1,...,n}, measurement
e{l,...,m} and outcomek e {1,...,v;;}, we will often be interested in the subset of the compo-
nents ofp that have the indicel§ andj; corresponding to observefixed, and equal, respectively,
to k andj. In other words, we will be interested in the variabmg_ki_lk Koy K . The
restriction ofp to these components will be denotpd, j,k).

n‘jl---ii—ljji+l"'jn

B. Bell polytopes

The setBCR! of correlations reproducible within a locally causal model is the set of corre-
lations p satisfying

Py kfigomin = f dua(m)P(kyljg, ). P(Kolin, ),

where q(u) =0, [duq(x)=1, andP(k|j;,x) is the probability of obtaining the measurement
outcomek; given the settingj; and the hidden—variz:1b|¢c.l'4 From this definition it is easily
deducedsee Ref. 13 for instang¢hatp is generated by specifying probabilities for every assign-
ment of one of the possible outcomes to each of the measurement settings. More precisely, let the
table N=[(A11, ..., Nm)) ;s (A1, -, Moy )] @SSigN to each measuremgnon systemi the out-
come\;;. The (finite) set of all such possible assigmenents will be dendtetiet

\ D ERLR T PR WIS @)
Py kiliz-in™ | o otherwise

be the deterministic vector corresponding to the assignmemhen
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B:{peR‘|p= > qpha =0, X qx:l}' (5
AeA AeA

The setB5 of local correlations is thus the convex hull of a finite number of points, i.e., it is a

polytope. The deterministic vectofp*|\ € A} form the extreme points of this polytope.

C. Notions of polytope theory

We review in this section some elementary notions of polytope theory. For more detailed
introductions, see Refs. 24-26.

The pointsp,,...,p, in R! are said to be affinely independent if the unique solution to
2imiPi=0, Ziui=0 is ;=0 for all i, or equivalently, if the point®,—p4,...,p,— Py are linearly
independent. They are affinely dependent otherwise. The affine hull of a set of points is the set of
all their affine combinations. An affine set has dimendprif the maximum number of affinely
independent points it contains B+ 1.

Let BCR! be a polytope defined as iB). Let (b,by) € R"*! define the inequality-p=by,. If
this inequality is satisfied for afpp € 53, it is called a valid inequality for the polytop®, or a Bell
inequality in the context of Bell polytopes. Note that to check whether an inequality is a valid
inequality, it is sufficient, by convexity, to check whether it is satisfied by the extreme points
{p*|\ € A}. Given the valid inequalityo-p= by, the setF={p € B|b-p=hy} is called a face of3
and the inequality is said to suppdit If F+ @ andF # B, it is a proper face. The dimension of
F is the dimension of its affine hull. Proper faces clearly satisfy Bisndim B5—-1. Proper faces of
maximal dimension are called facets. An inequalitp = b, thus supports a facet & if and only
if dim 5 affinely independent oB satisfy it with equality.

A fundamental result in polyhedral theory, known as Minkowski—Weyl's theorem, states that
a polytope represented as the convex hull of a finite number of points,(&5 itan equivalently
be represented as the intersection of finitely many half-spaces:

B={peRib -p=bi, forallie I}, (6)

where {b'-p=b},i e} is a finite set of inequalities. The inequalities supporting facetds of
provide a minimal set of such inequaliti@sln particular, any valid inequality fol3 can be
derived from the facet inequalities.

Given a Bell scenarign,m,v), the task of finding all the Bell inequalities is thus the problem
of finding all the facets of the convex polytofn, m,v) defined by(4) and(5). This connection
between the search for optimal Bell inequalities and polyhedral geometry was observed by differ-
ent authors*?322%or discussions on the complexity of this facet enumeration task see Refs. 19
and 30. For the instances for which this problem has been partially or completely solved, see Refs.
14, 15, 17-22, 31, and 32.

Ill. BASIC PROPERTIES OF BELL POLYTOPES
A. Affine hull

Local correlationsp € B satisfy the following equality constraintthe normalization condi-
tions

2 Prgkipa, =1 ()
ky...kn
for all j4,...,],; and the no signaling conditions

il

% SR :% Prcy.. eeokligeeed i 8
i i

for all i, Ky, ..., Kists oo oK @NQ 1, ccdicgs Jidl viietseeesine
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The no signaling conditions imply that for each subfSet...,iq} of sizeq of the observers,
the q—marginalspt< K i =2 . k pk1 Kiy.j, are well-defined, that is, are independent of
I I 1 +1
the precise value of the measurement settun@gs j,
The two conditiong7) and(8) also imply that the polytop# is not full dimensional inRt,
i.e., itis contained in an affine subspace. The following theorem generalizes results given in Refs.
22 and 19.

Theorem 1. The constraintg7) and(8) fully determine the affine hull a8 and

no/m
dimB:H(E(vij—1)+l>—1. (9)
i=1

j=1
Proof: Consider the marglnahtk i as defined above for all possible subgets... ,iq}

of sizeq, and for allg=1,...,n. Of these marglnals retain only the ones such k&t for all
ie{ig,....igh. These probabllmes define in totdd= Hl”zl(Elmz'l(v,J 1)+1)-1 numbers. It is
straightforward to check that their knowledge is sufficient to reconstruct, using the normalization
and no signaling conditions, the origimal __ jj,...; . This implies that the affine subspace defined
by (7) and(8) is of dimension<D.

Let us now show that dins=D, or equivalently that3 containsD +1 affinely independent
points. For this, note that the definitign) implies that an extreme poim* can be written as the

productpy ;. j =Pijj,--Pi i, Wherepy; is a vector of lengtfE{Y,; vj; such that
1 if N = k,
A Ji
= 10
Pil {0 otherwise. (10

For fixedi, consider, for eacljf €{1,...,m} and for eachq e{2,... Uiy '}, the pomtspk“
defined by)\,J =1 for all j; #j/ and )\”r—k’ In addition, consider the vectqnﬁ defined by)\IJ
=1 for all j;. TheseZ”‘l(vIJ 1)+1 pomts are linearly independent. The produpﬁs Klign
:pﬁlh pk i of all these points thus defifé’, (2 1(vij—1)+1)=D+1 linearly mdependent ex-
treme pomts of3, which are therefore also afflnely independent. O
SinceB is not full dimensional, it follows that there is no unique way to write down a valid
inequality for 5. More specifically, the inequalitigs- p=by and (b+ uc) -p= (b+ ucy), wherepu
e R and wherec-p=c; is a linear combination of the equaliti€¢g) and (8), impose the same
constraints orf3. In particular, it is always possible to use the normalization conditions to rewrite
an inequality such that its lower bound is 0, that is, in the forp= 0. This fact will be used later
on.

B. Trivial facets and nontrivial polytopes

In addition to the normalization and no signaling conditioisalso satisfy the following
positivity conditions

Pr,.. .k fig.iy, = O (11)

for all ky,...,k, andjq,...,Jn

Theorem 2 The positivity conditions support facets 6f

Proof: Without loss of generality, suppose thgt_x ;, j =0 is such that thé,, ..., k, are all
different than 1. Then, in the proof of Theorem 1, we enumerateddirh affinely independent
points, dims of which satisfypkl___kn“l___jn:O. O

The normalization, no signaling, and positivity conditions are obviously not only satisfied by
local probabilities, but also by all no signaling nonlocal ones, and in particular by quantum ones.
The only useful constraints that separate the local region from the nonlocal thus correspond to the
facets ofB that are not of the forng11).
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Let us also note that when determining the facets of a Bell polytope, we can always assume
thatn, my andv;; are all=2 because otherwise all the corresponding facets are trivial or belong to
simpler polytopes. Indeed,

(i) the only facet inequalities of one-partite polytopes are the positivity constraints,

(i)  all the facet inequalities of a polytope wherg=1 for some partyi are equivalent to the
facet inequalities of the polytope obtained by discarding that party,

(i) a polytope withv;=1 for some measurementof party i is equivalent to the polytope
obtained by discarding that measurement choice.

Point (i) is easily established. To shofi), assume thaB is a polytope such that for partythe
only measurement choice js= {1}. A valid inequality for B can thus be written as

k

where, without loss of generality, the right-hand side is equal to zero. It then follows that for all
ke{l,...,v;;} the following inequalities

b - p(i,j,k) =0 (13

are also valid for3. Indeed, for each extreme poipt, either the assignment is such that;;

=k and (12) and (13) impose the same constraints ph, or \jj #k and (13) gives the trivial
inequality 0=0. Every extreme point satisfyin(l2) thus also satisfie§l3). Note further that
every extreme point satisfying2) with equality also satisfied 3) with equality. This implies that

the face supported b§l2) cannot be—unles§l?) is itself equivalent to one of the inequalities
(13—a facet of3, because it lies in the intersection of the faces supporte¢d®yand is therefore

of dimension<dim B-1. We can thus assume that all facet inequalitie8 afe of the form(13).

It will be shown in Sec. IV A that all these facet inequalities are equivalent to facet inequalities of
the polytope obtained by discarding paityFinally, point (iii) follows immediately when we
notice that a polytope with;; =1 for some measuremenbf partyi and the polytope obtained by
discarding that measurement have the same dimension and have their extreme points in one-to-one
correspondence.

C. A useful lemma

As we have reminded earlier an inequality defines a facet of a polygapand only if it is
satisfied by dinB affinely independent points dB. To prove the results of the next section
concerning the lifting of facet inequalities, we will then need to count the number of affine points
that a facet contains. The following lemma will be our main tool to achieve this task.

Lemma 3: Let the inequality bp=b, support a facet of3(n,m,v). Let i’ €{1,...,n}, j’
e{l,...,m.} and K e{1,...,v;/;/}. Then there are at exactly r extreme pointsqf 3 such that
b-p*=hy, \i/j=k’, and such that the r restrictions'i’,j’ ,k’) are affinely independent, where

(i) r:H#i,(EJ-"ﬁl(vij—lHl)—l, if b-p=b, is equivalent to an inequality of the form
c-p(i’,j",k')=0;
(il r=Mi.p (3 v;-1)+1), otherwise

Proof. Let {p’| e AC A} be dimB affinely independent extreme points which belong to the
facet supported by -p=b, Among these, le{p?|ye ' C A} be the extreme points satisfying
;»=k’ and such that their restrictiodp’(i’,j’ ,k’)| y e I'} are affinely independent.

Consider the polytopés"* obtained from by discarding partyi’. The components op
e B" ! are thus of the formpy .k, vy ke figeiir g g CiVEN thatp?(i’,j’,K’) corresponds to
the components op” where the indices associated to thHéh party are fixed and satisflg,
=k’, ji-=]’, given thaty,,;,=k’, and given definitior(4), it follows that eactp?(i’,j’,k’) can be
identified with an extreme point of tHa- 1)-partite polytope3™* [and conversely, each extreme
point of B"* can be identified with the restrictiop*(i’,j’ ,k’) of some extreme poinp” € B
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satisfyingy;.j =k’]. Thus no more than dirf"™* of the p”(i’,j’,k’) can be affinely independent,
andr <dim B" 1+ 1:Hi¢i,(2i”;il(vij —-1)+1). Alternatively, one could have deduced the same result
starting from the fact that thg” satisfy the implicit equalitie§7) and(8), and counting the number
of constraints that these equalities impose onpghe’,j’,k’).

Suppose that<dim B"1+1. Then the{p?| y e I'} satisfy at least one constraint

c-p(i’,j"k')=0 (14)

linearly independent from the implicit equalities Bf Following the remark at the end of Sec.
[l A, we have not lost generality by taking the right-hand sidd1of) equal to zero. Note that the
constraint(14) is in fact satisfied by al{p’|5e A}. Indeed, eithers;;, #k’ and (14) gives the
trivial equation 0=0, op?(i’,j’ k") is affinely dependent from thp”(i’,j’,k’), which satisfy
(14).

As the{p’| s A} form a set of dim3 independent extreme points, they can satisfy at most
one constraint linearly independent from the implicit equalitie$3pf.e., there can only be one
constraint of the fornm(14). Thus at most =dim B"*=II_;,(£2,(v;; - 1)+ 1)~ 1. Furthermore, as
the {p’| 5 e A} already satisfy the equality-p=b,, this can only be the case (i{4) is equivalent
to b-p=b,, that is if b-p=by is equivalent either te-p(i’,j’,k’)=0 or (-c)-p(i’,j’,k’)=0. [

IV. LIFTING BELL INEQUALITIES

We now move on to study the liftings of Bell inequalities that we have presented in Sec. | and
their natural generalizations. We will prove that these liftings are facet-preserving. It was already
shown in Ref. 19 that a Bell inequality that supports a facdB(@,m, 2) also supports a facet of
B(2,m’",2) for all m"=m. Furthermore, in Ref. 33 liftings of “partial constraint satisfaction
polytopes” (polytopes encountered in certain optimization problemsre considered. Although
such liftings were studied independently from any potential relation to Bell inequalities, it turns
out that partial constraint satisfaction polytopes over a complete bipartite graph are bipartite Bell
polytopes(in particular, the “4-cycle inequality” introduced in Ref. 33 corresponds to the CHSH
inequality). The results presented in Ref. 33 then imply that an inequality that supports a facet of
B(2,m,v) also supports a facet &(2,m’,v’) for allm'=m, v’ =v. It is in fact these results that
inspired the ones that are presented here.

In Secs. IV A-IV C, we will see that the lifting of an arbitrary inequality to a situation
involving, respectively, one more observer, one more measurement outcome, and one more mea-
surement setting are facet-preserving. Combined together these results imply that a Bell inequality
that supports a facet of a Bell polytof#n, m,v), also supports, when lifted in the appropriate
way, a facet of any higher dimensional polytoS&gn’,m’,v’) with n’=n, m'=m, v’ =v.

A. One more observer

Consider a polytopds=B(n,m,v), where then parties are labeledl,...,i’-1,i"+1...,n
+1} for some valug’. Let the inequality

b-p=0 (15

be valid forB. Note that we have taken, without loss of generality, the right-hand sid&5pto
be equal to 0. Let us extend the polytafdy inserting an additional observer in positiohThe
resulting(n+1)-partite polytope will be denotef"**.

Given a pointp e B™*, remember thap(i’,j’ k') represents the probabilities pffor which
the indices corresponding to the measurement setting and the outcome af pagtfixed, and are
equal, respectively, t¢’ andk’. Thereforep(i’ ,j’,k’)/pklf,“i/,, wherepki/,“if, denotes the marginal
probability for observer’ to measurg’ and obtairk’, is the joint outcome probability distribution
for then observerd1,...,i"’=1,i’+1,...n+1} conditional on party’ measuring’ and obtaining
k’. Either this conditional probability is equal to zero, or it corresponds to a poift ¢f both
cases, it satisfie€l5). It thus follows immediately that the following inequality
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b-pli’,j'k)=0 (16)

is valid for B"1. Further, this lifting is facet-preserving.
Theorem 4 The inequality(15) supports a facet oB if and only if (16) supports a facet of

B™L,

Proof: As we have noted in the proof of Lemma 3, the restriciiofi’,j’ k') of an extreme
point p* of BM! satisfying\;/;; =k’ can be identified with an extreme point Bf and conversely.
Moreover, it is clear that ip\(i’,j’ k') satisfy(16) with equality the corresponding extreme point

of B satisfy (15) with equality, and the other way around.

Assume that(16) supports a facet o5, Then it follows from Lemma 3 that they are
H#i,(EJT“:il(vij -1)+1)-1=dimB extreme points oB3"*! that satisfy(16) with equality, such that
\i-j=k" and for which the restrictiong(i’,j’,k’) are affinely independent. By the above remark,
these extreme points define disnaffinely independent extreme points Bfthat satisfy(15) with
equality, hence this inequality supports a facef3of

To prove the converse statement, suppose now(ifstefines a facet aB, that is, there exist
dim B affinely independent extreme pointsBfthat satisfy it with equality. By the above remark,
there thus exist din® extreme points of8"** that satisfy(16) with equality, such thax;,;,=k’ and
for which the restrictiong(i’,j’ k') are affinely independent. To show tha6) defines a facet
of B™1 it thus remains to find din8"™*-dim B affinely independent points satisfying it with
equality. For this, consid&t the extreme points oB"™?! with Ny #K'. They form an affine
subspace of dimension diBf**~II;..; (2 (v;;— 1)+ 1) =dim B™*-dim B-1 since they can be
identified with the extreme points of the polytope involving one outcome less&ignfor the
measurement’. Moreover, because they verify*(i’,j’ ,k’)=0, they satisfy(16) with equality,
and are affinely independent from the extreme points for whigh=Kk'. O

We thus have just shown that any facet inequality ohgpartite polytope can be extended to
a facet inequality for a situation involvingt+ 1 parties. This result can be used sequentially so that
facets ofn-party polytopes are lifted tn+k)-partite polytopes. For instance, the positivity con-
ditions (11) can be viewed as the successive lifting of 1-party inequalities.

The result holds in the other direction as well, since any facet inequality of the(fdns the
lifting of an n-partite inequality. When studying Bell polytopes, it is thus in general sufficient to
considergenuinely Rpartite inequalitiesthat is, inequalities that cannot be written in a form that
involves only probabilities associated with one specific measurement sgttargl one specific
outcomek’ for some partyi’. Note that we can extend this definition to also exclude all inequali-
ties such a$12) that involve only probabilities associated to one measurement sélftirigpos-
sibly several outcomes corresponding to this measuremendieed, we have noted at the end of
Sec. Il B that such inequalities cannot be stronger than inequalities of the(id&m

B. One more measurement outcome

Consider a polytopd=5(n,m,v), where for measuremet of partyi’ thev;,;, outcomes
are labeled1,..., k' =1 k' +1,...,vy/j,+1} for somek’. Let

b-p=h, (17)

be a genuinely-partite inequality valid foi3. Let us consider the polytop#’*! obtained from3
by allowing an extra outcomk’ for the measuremerjt of partyi’. To lift the inequalityb-p
=D, to the polytopeB’*!, we can merge the additional outcorklewith some other outcomk’
e{l,....k-1,k'+1,...,v;;,+1}, and insert the resulting probability distribution {45). This
results in the inequality

b-p+b(i’,j’ k) -pi’,j’ k)= b. (19

Theorem 5 If the genuinely rpartite inequality(15) supports a facet oB, then(18) supports
a facet of B+,
Proof: The dimension of3°*! equals dirrB+Hi#i,(2j”§1(vij -1)+1). The extreme points of
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that belong to the facdi-p=b, provide dimB affinely independent points satisfyiri@8) with
equality. By Lemma 3, there exiﬂ#ir(E;‘ll(uij—lHl) extreme pointsp* with )\i,j,:k* that
saturatg15), and thug18), and for which theg*(i’,j’ k") are affinely independent. Replakieby

k’ in these extreme points. These new extreme points still satisdy with equality and are
affinely independent with all the previous ones, since they are the unique extreme points with
p(i’,j’,k')#0. In total, we thus enumerated difi*'=dim B+II;.;/(23,(v;—1)+1) affinely
independent point satisfyin@.8) with equality. O

C. One more measurement setting

Consider a polytope3=B(n,m,v), where for partyi’ the m;, measurements are labeled
{1,...,j'"=1,j"+1,...,m,+1} for somej’. Let the polytope3™* be the polytope obtained froif
by allowing the additional measurement settjhdor partyi’. An inequalityb-p= b, valid for B
is also clearly valid for3™*. Moreover, the following stronger result holds.

Theorem 6 Let b-p=b, be a genuinely fpartite inequality supporting a facet &. Then it
is also support a facet af™1,

Proof: Consider the polytop@m+1 defined asB™? but such that for the measuremgntof
partyi’ is associated a single possible outcome, ig;;=1. The inequalityb-p=b, is a valid
genuinelyn-partite inequality for3™?. Further, since3™* and B have the same dimension, it is
also facet defining fol3™1, Following the procedure to lift an inequality to more outcomes

delineated in Sec. IV B, this inequality can be lifted frddfit! to B™L. Sinceb-p=b, does not
involve components associated with the measurerjieot partyi’, this results in the inequality
b-p=b, itself. By Theorem 5, this inequality is facet defining . O

V. CONCLUSION

We have shown that the facial structure of Bell polytopes is organized in a hierarchical way,
with all the facets of a given polytope inducing, through their respective liftings, facets of more
complex polytopes. Instead of considering the entire set of facets of a Bell polytope, it is thus in
general sufficient to characterize the ones that do not belong to simpler polytopes. It would be
interesting to investigate whether this fact could be exploited to improve the efficiency of the
algorithms used to list facet inequalities or to simplify analytical derivations of Bell inequalities.

Note that for certain polytopes, the complete set of facet inequalities is constituted entirely by
inequalities lifted from more elementary polytopes. For instance for Bell scenarios involving two
observers, the first having a choice between two dichotomic measurements and the second one
between an arbitrary number of them, all the facet-defining inequalities correspond to liftings of
the CHSH inequality®>* A natural extension of the results reported in this article would then be
to investigate more generally when inequalities lifted from simpler polytopes describe complete
sets of facets. Progress along this line would allow one to narrow down the class of Bell scenarios
that have to be considered to find new Bell inequalities. Following this approach, all the polytopes
for which the only facets correspond to liftings of the CHSH inequality have recently been
characterized®

Finally, let us note that while the facet-preserving liftings that we have considered are inter-
esting because they throw light on the structure of Bell polytopes, the inequalities obtained in this
way are not essentially different from the original ones, they are merely re-expressions of these
inequalities adapted to more general scenarios. However, it is also in principle possible to consider
more complicated generalizations of Bell inequalities that alter significantly their intrinsic struc-
ture. For instance, the family of Bell inequalities introduced in Ref. 36 can be understood as being
generated by successive nontrivial liftings of the CHSH inequality. Studying such liftings, as well
as the other possible extensions of our results, seems a promising path toward a more accurate
characterization of the constraints that separate the set of local joint probabilities from the set of
nonlocal ones.
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