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A Bell inequality defined for a specific experimental configuration can always be
extended to a situation involving more observers, measurement settings, or mea-
surement outcomes. In this article, such “liftings” of Bell inequalities are studied. It
is shown that if the original inequality defines a facet of the polytope of local joint
outcome probabilities then the lifted one also defines a facet of the more complex
polytope. ©2005 American Institute of Physics.fDOI: 10.1063/1.1928727g

I. INTRODUCTION

In a typical Bell experiment, two or more entangled particles are distributed to separate
observers. Each observer measures on his particle one from a set of possible observables and
obtains some outcome. One of the most striking features of quantum mechanics is that the result-
ing joint outcome probabilities can violate a Bell inequality,1 indicating that quantum mechanics is
not, in Bell’s terminology, locally causal. This prediction has been confirmed, up to some loop-
holes, in numerous laboratory experiments.2,3 The implications of nonlocality for our fundamental
description of nature4,5 have long been discussed; more recently, nonlocality has also acquired a
significance in quantum information science.6–12 From this perspective, being able to decide
whether a joint probability distribution can be reproduced with classical randomness only, or
whether entanglement is necessary, is an important issue.

For a given number of observers, measurement settings, and measurement outcomes, the set
of joint probabilities accessible to locally causal theories is a convex polytope.13 It is therefore
completely characterized by a finite number of linear inequalities that these probabilities must
satisfy—that is, by a finite number of Bell inequalities. Each of these inequalities corresponds to
a facetof the local polytope. Note, however, that not every Bell inequality represents a facet. Facet
inequalities are the ones which characterize precisely the border between the local and the non-
local region. They form a minimal and complete set of Bell inequalities.

In the simple situation where they are only two observers, two measurement choices, and two
outcomes per measurement, all the facet inequalities are known:14,15 up to permutation of the
outcomes, they correspond to the Clauser–Horne–Shimony–HoltsCHSHd inequality.16 Beyond
this, little is known. It is in principle possible to obtain all the facet inequalities of an arbitrary Bell
polytope using specific algorithms. In practice this only allows one to extend the range of solved
cases to a few more observers, measurements, or outcomes,17,18 as these algorithms are exces-
sively time-consuming. The problem of listing all facet inequalities has in fact been demonstrated
to be NP-complete;19 it is therefore unlikely that it could be solved in full generality. Discouraging
as this result may seem, it nevertheless leaves open several possibilities. First, complete sets of
facet inequalities may be obtained for particular classes of Bell polytopes or for simplified ver-
sions of them. For instance, in the case where “full correlation functions” are considered instead of
complete joint probability distributions, all facet inequalities are known for Bell scenarios con-
sisting of an arbitrary number of parties with two measurement choices and two outcomes.20,21
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Second, in more complicated situations it may still be possible to obtain partial lists of facets. For
instance, families of facet inequalities are known for arbitrary number of measurements19 or
outcomes.22

Further progress in the derivation of Bell inequalities would certainly benefit from a better
characterization of the general properties of Bell polytopes. This is the motivation behind the
present article. The question that we will investigate is how, and to what extent, the facial structure
of a Bell polytope determines the facial structure of more complex polytopes. More specifically
consider a bipartite Bell experiment characterized by the probabilitypk1k2u j1j2

for the first observer
to obtain outcomek1 and for the second one to obtain outcomek2, given that the first observer
measuresj1 and the second onej2. Suppose that each observer chooses one from two dichotomic
observables, that is,k1, k2P h1,2j and j1, j2P h1,2j. A necessary condition for this experiment to
be reproducible by a local model is that the joint probabilities satisfy the CHSH inequality

p11u11 + p11u12 + p11u21 − p11u22

+ p22u11 + p22u12 + p22u21 − p22u22 ù 0. s1d

Although this inequality is defined for the specific Bell scenario that we have just described, it also
constrains the set of local joint probabilities involving more observers, measurements, and out-
comes. Indeed, as was noted by Peres23 there are obvious ways to extend Bell inequalities to more
complex situations, or tolift them following the terminology of polytope theory. As an illustration,
let us consider the following three possible extensions of our CHSH scenario.

sid More observers. Consider a tripartite Bell experiment with joint probability distribution
pk1k2k3u j1j2j3

, wherek1, k2, k3P h1,2j and j1, j2, j3P h1,2j. A necessary condition for this
tripartite distribution to be local is that the probabilitiesp̃k1k2u j1j2

for the first two observers
to measurej1 and j2 and to obtain outcomesk1 and k2 conditional on the third observer
measuringj3=1 and obtainingk3=1 satisfy the CHSH inequality. These conditional prob-
abilities are given by p̃k1k2u j1j2

=pk1k21u j1j21/p13u13
, where the marginal p13u13

=ok1,k2
pk1k21u j1j21 is independent ofj1 and j2 by no signalingssee Sec. III Ad. Inserting these

probabilities ins1d and multiplying both sides byp13u13
leads to

p111u111+ p111u121+ p111u211− p111u221

+ p221u111+ p221u121+ p221u211− p221u221ù 0, s2d

a natural extension of the CHSH inequality to three parties.
sii d More measurements. Consider our original bipartite Bell scenario, but assume that the

second observer may choose between three different measurement settingsj2P h1,2,3j.
Clearly, a necessary condition for the corresponding joint distribution to be reproducible by
a local model is that, when restricted to the probabilities involvingj2P h1,2j, it satisfies the
CHSH inequality. Therefore, inequalitys1d is, as such, a valid Bell inequality for this
three-measurement scenario.

siii d More outcomes. Suppose now that the measurement apparatus of the second observer may
output one out of three distinct valuesk2P h1,2,3j. Merging the outcomesk2=2 andk2

=3, we obtain an effective two-outcomes distribution with probabilitiesp̃k11u j1j2
=pk11u j1j2

and p̃k12u j1j2
=pk12u j1j2

+pk13u j1j2
. The existence of a local model for the original distribution

obviously implies a model for the coarse-grained one. Expressing the fact that thep̃k1k2u j1j2
should satisfys1d, we thus deduce the following lifting

p11u11 + p11u12 + p11u21 − p11u22

+ p22u11 + p22u12 + p22u21 − p22u22

+ p23u11 + p23u12 + p23u21 − p23u22 ù 0 s3d

of the CHSH inequality to three outcomes.
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These three examples can be combined and used sequentially to lift the CHSH inequality to an
arbitrary number of observers, measurements, and outcomes. It is also straightforward to gener-
alize them to other Bell inequalities than the CHSH one. How strong are the constraints on the
joint probabilities obtained in this way? We will show that if the original inequality describes a
facet of the original polytope, then the lifted one is also a facet of the more complex polytope. This
implies, for instance, that the CHSH inequality is a facet of every Bell polytope since it is a facet
of the simplest one.

This article is organized as follows. Section II introduces the concepts and notations that will
be used in the remainder of the paper. In particular, we briefly review the definition of Bell
polytopes and elementary notions of polytope theory. In Sec. III, we derive some basic properties
of Bell polytopes that are necessary to prove our main results concerning the lifting of facet
inequalities. These results are presented in Sec. IV. We conclude with a discussion and some open
questions in Sec. V.

II. DEFINITIONS

A. Bell scenario

Considern systems and assume that on each systemi a measurementj P h1,… ,mij is made,
yielding an outcomekP h1,… ,vi jj. Note that the number of possible measurementsmi may be
different for each systemi, and that the number of possible outcomesvi j may be different for each
measurementj on systemi. Such a Bell scenario is thus characterized by the triplesn,m,vd where
m=sm1,… ,mnd specifies the number of possible measurements per system, and where the table
v=fsv11,… ,v1m1

d ;… ; svn1,… ,vnmn
dg specifies the number of possible outcomes per measurement

on each system. When notations such assn,2 ,vd are used, it should be understood thatmi =2 for
all i.

The joint probability of obtaining the outcomessk1,… ,knd given the measurement settings
s j1,… , jnd will be denotedpk1…knu j1… jn

. We will view theset=pi=1
n so j=1

mi vi jd probabilities as forming
the components of a vectorp in Rt. For a given observeri P h1,… ,nj, measurementj
P h1,… ,mij and outcomekP h1,… ,vi jj, we will often be interested in the subset of the compo-
nents ofp that have the indiceski and j i corresponding to observeri fixed, and equal, respectively,
to k and j . In other words, we will be interested in the variablespk1…ki−1k ki+1…knu j1… j i−1j j i+1… jn

. The
restriction ofp to these components will be denotedpsi , j ,kd.

B. Bell polytopes

The setB#Rt of correlations reproducible within a locally causal model is the set of corre-
lationsp satisfying

pk1…knu j1… jn
=E dmqsmdPsk1u j1,md…Psknu jn,md,

where qsmdù0, edm qsmd=1, andPski u j i ,md is the probability of obtaining the measurement
outcomeki given the settingj i and the hidden-variablem.1,4 From this definition it is easily
deducedssee Ref. 13 for instanced thatp is generated by specifying probabilities for every assign-
ment of one of the possible outcomes to each of the measurement settings. More precisely, let the
table l=fsl11,… ,l1m1

d ;… ; sln1,… ,lnmn
dg assign to each measurementj on systemi the out-

comeli j . The sfinited set of all such possible assigmenents will be denotedL. Let

pk1…knu j1… jn

l =H1 if l1j1
= k1,…,lnjn

= kn

0 otherwise
J s4d

be the deterministic vector corresponding to the assignmentl. Then
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B = Hp P Rtup = o
lPL

qlpl,ql ù 0, o
lPL

ql = 1J . s5d

The setB of local correlations is thus the convex hull of a finite number of points, i.e., it is a
polytope. The deterministic vectorshpl ulPLj form the extreme points of this polytope.

C. Notions of polytope theory

We review in this section some elementary notions of polytope theory. For more detailed
introductions, see Refs. 24–26.

The pointsp1,… ,pn in Rt are said to be affinely independent if the unique solution to
oimipi =0, oimi =0 is mi =0 for all i, or equivalently, if the pointsp2−p1,… ,pn−p1 are linearly
independent. They are affinely dependent otherwise. The affine hull of a set of points is the set of
all their affine combinations. An affine set has dimensionD, if the maximum number of affinely
independent points it contains isD+1.

Let B#Rt be a polytope defined as ins5d. Let sb,b0dPRt+1 define the inequalityb·pùb0. If
this inequality is satisfied for allpPB, it is called a valid inequality for the polytopeB, or a Bell
inequality in the context of Bell polytopes. Note that to check whether an inequality is a valid
inequality, it is sufficient, by convexity, to check whether it is satisfied by the extreme points
hpl ulPLj. Given the valid inequalityb·pùb0, the setF=hpPB ub·p=b0j is called a face ofB
and the inequality is said to supportF. If FÞx andFÞB, it is a proper face. The dimension of
F is the dimension of its affine hull. Proper faces clearly satisfy dimFødim B−1. Proper faces of
maximal dimension are called facets. An inequalityb·pùb0 thus supports a facet ofB if and only
if dim B affinely independent ofB satisfy it with equality.

A fundamental result in polyhedral theory, known as Minkowski–Weyl’s theorem, states that
a polytope represented as the convex hull of a finite number of points, as ins5d, can equivalently
be represented as the intersection of finitely many half-spaces:

B = hp P Rtubi · p ù b0
i , for all i P Ij, s6d

where hbi ·pùb0
i , i P Ij is a finite set of inequalities. The inequalities supporting facets ofB

provide a minimal set of such inequalities.27 In particular, any valid inequality forB can be
derived from the facet inequalities.

Given a Bell scenariosn,m,vd, the task of finding all the Bell inequalities is thus the problem
of finding all the facets of the convex polytopeBsn,m,vd defined bys4d ands5d. This connection
between the search for optimal Bell inequalities and polyhedral geometry was observed by differ-
ent authors.14,23,28,29For discussions on the complexity of this facet enumeration task see Refs. 19
and 30. For the instances for which this problem has been partially or completely solved, see Refs.
14, 15, 17–22, 31, and 32.

III. BASIC PROPERTIES OF BELL POLYTOPES

A. Affine hull

Local correlationspPB satisfy the following equality constraints:the normalization condi-
tions

o
k1…kn

pk1…knu j1… jn
= 1 s7d

for all j1,… , jn; and the no signaling conditions

o
ki

pk1…ki…knu j1… j i… jn
= o

ki

pk1…ki…knu j1… j i8… jn
s8d

for all i, k1,…ki−1, ki+1,… ,kn and j1,… j i−1, j i , j i8 , j i+1,… , jn.
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The no signaling conditions imply that for each subsethi1,… , iqj of sizeq of the observers,
the q-marginalspki1

…kiq
u j i1

… j iq
=okiq+1

…okin
pk1…knu j1… jn

are well-defined, that is, are independent of

the precise value of the measurement settingsj iq+1
… j in.

The two conditionss7d and s8d also imply that the polytopeB is not full dimensional inRt,
i.e., it is contained in an affine subspace. The following theorem generalizes results given in Refs.
22 and 19.

Theorem 1: The constraintss7d and s8d fully determine the affine hull ofB and

dim B = p
i=1

n So
j=1

mi

svi j − 1d + 1D − 1. s9d

Proof: Consider the marginalspki1
…kiq

u j i1
… j iq

as defined above for all possible subsetshi1,… , iqj
of sizeq, and for allq=1,… ,n. Of these marginals retain only the ones such thatki Þ1 for all
i P hi1,… , iqj. These probabilities define in totalD=pi=1

n so j=1
mi svi j −1d+1d−1 numbers. It is

straightforward to check that their knowledge is sufficient to reconstruct, using the normalization
and no signaling conditions, the originalpk1…knu j1… jn

. This implies that the affine subspace defined
by s7d and s8d is of dimensionøD.

Let us now show that dimBùD, or equivalently thatB containsD+1 affinely independent
points. For this, note that the definitions4d implies that an extreme pointpl can be written as the
productpk1…knu j1… jn

l =pk1u j1
l …pknu jn

l , wherepkiu j i
l is a vector of lengtho j=1

mi vi j such that

pkiu j i
l =H1 if li j i

= ki

0 otherwise.
J s10d

For fixed i, consider, for eachj i8P h1,… ,mij and for eachki8P h2,… ,vi j i8
j, the pointspkiu j i

l

defined byli j i
=1 for all j i Þ j i8 andli j i8

=ki8. In addition, consider the vectorpkiu j i
l defined byli j i

=1 for all j i. Theseo j=1
mi svi j −1d+1 points are linearly independent. The productspk1…knu j1… jn

l

=pk1u j1
l …pknu jn

l of all these points thus definepi=1
n so j=1

mi svi j −1d+1d=D+1 linearly independent ex-
treme points ofB, which are therefore also affinely independent. h

SinceB is not full dimensional, it follows that there is no unique way to write down a valid
inequality forB. More specifically, the inequalitiesb·pùb0 and sb+mcd ·pù sb+mc0d, wherem
PR and wherec·p=c0 is a linear combination of the equalitiess7d and s8d, impose the same
constraints onB. In particular, it is always possible to use the normalization conditions to rewrite
an inequality such that its lower bound is 0, that is, in the formb·pù0. This fact will be used later
on.

B. Trivial facets and nontrivial polytopes

In addition to the normalization and no signaling conditions,B also satisfy the following
positivity conditions:

pk1…knu j1… jn
ù 0 s11d

for all k1,… ,kn and j1,… , jn.
Theorem 2: The positivity conditions support facets ofB.
Proof: Without loss of generality, suppose thatpk1…knu j1… jn

ù0 is such that thek1,… ,kn are all
different than 1. Then, in the proof of Theorem 1, we enumerated dimB+1 affinely independent
points, dimB of which satisfypk1…knu j1… jn

=0. h

The normalization, no signaling, and positivity conditions are obviously not only satisfied by
local probabilities, but also by all no signaling nonlocal ones, and in particular by quantum ones.
The only useful constraints that separate the local region from the nonlocal thus correspond to the
facets ofB that are not of the forms11d.
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Let us also note that when determining the facets of a Bell polytope, we can always assume
thatn, mi andvi j are allù2 because otherwise all the corresponding facets are trivial or belong to
simpler polytopes. Indeed,

sid the only facet inequalities of one-partite polytopes are the positivity constraints,
sii d all the facet inequalities of a polytope wheremi =1 for some partyi are equivalent to the

facet inequalities of the polytope obtained by discarding that party,
siii d a polytope withvi j =1 for some measurementj of party i is equivalent to the polytope

obtained by discarding that measurement choice.

Point sid is easily established. To showsii d, assume thatB is a polytope such that for partyi the
only measurement choice isj P h1j. A valid inequality forB can thus be written as

o
k

bk · psi, j ,kd ù 0, s12d

where, without loss of generality, the right-hand side is equal to zero. It then follows that for all
kP h1,… ,vi jj the following inequalities

bk · psi, j ,kd ù 0 s13d

are also valid forB. Indeed, for each extreme pointpl, either the assignmentl is such thatli j

=k and s12d and s13d impose the same constraints onpl, or li j Þk and s13d gives the trivial
inequality 0ù0. Every extreme point satisfyings12d thus also satisfiess13d. Note further that
every extreme point satisfyings12d with equality also satisfiess13d with equality. This implies that
the face supported bys12d cannot be—unlesss12d is itself equivalent to one of the inequalities
s13d—a facet ofB, because it lies in the intersection of the faces supported bys13d and is therefore
of dimension,dim B−1. We can thus assume that all facet inequalities ofB are of the forms13d.
It will be shown in Sec. IV A that all these facet inequalities are equivalent to facet inequalities of
the polytope obtained by discarding partyi. Finally, point siii d follows immediately when we
notice that a polytope withvi j =1 for some measurementj of party i and the polytope obtained by
discarding that measurement have the same dimension and have their extreme points in one-to-one
correspondence.

C. A useful lemma

As we have reminded earlier an inequality defines a facet of a polytopeB if and only if it is
satisfied by dimB affinely independent points ofB. To prove the results of the next section
concerning the lifting of facet inequalities, we will then need to count the number of affine points
that a facet contains. The following lemma will be our main tool to achieve this task.

Lemma 3: Let the inequality b·pùb0 support a facet ofBsn,m,vd. Let i8P h1,… ,nj, j8
P h1,… ,mi8j and k8P h1,… ,vi8 j8j. Then there are at exactly r extreme points pl of B such that
b·pl=b0, li8 j8=k8, and such that the r restrictions plsi8 , j8 ,k8d are affinely independent, where

sid r =piÞi8so j=1
mi svi j −1d+1d−1, if b ·pùb0 is equivalent to an inequality of the form

c·psi8 , j8 ,k8dù0;
sii d r =piÞi8so j=1

mi svi j −1d+1d, otherwise.

Proof: Let hpd udPD#Lj be dimB affinely independent extreme points which belong to the
facet supported byb·pùb0. Among these, lethpg ugPG#Dj be the extreme points satisfying
gi8 j8=k8 and such that their restrictionshpgsi8 , j8 ,k8d ugPGj are affinely independent.

Consider the polytopeBn−1 obtained fromB by discarding partyi8. The components ofp
PBn−1 are thus of the formpk1…ki8−1ki8+1…knu j1… j i8−1j i8+1… jn

. Given thatpgsi8 , j8 ,k8d corresponds to

the components ofpg where the indices associated to thei8th party are fixed and satisfyki8
=k8 , j i8= j8, given thatgi8 j8=k8, and given definitions4d, it follows that eachpgsi8 , j8 ,k8d can be
identified with an extreme point of thesn−1d-partite polytopeBn−1 fand conversely, each extreme
point of Bn−1 can be identified with the restrictionpgsi8 , j8 ,k8d of some extreme pointpgPB
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satisfyinggi8 j8=k8g. Thus no more than dimBn−1 of the pgsi8 , j8 ,k8d can be affinely independent,
andr ødim Bn−1+1=piÞi8soi=1

mi svi j −1d+1d. Alternatively, one could have deduced the same result
starting from the fact that thepg satisfy the implicit equalitiess7d ands8d, and counting the number
of constraints that these equalities impose on thepgsi8 , j8 ,k8d.

Suppose thatr ,dim Bn−1+1. Then thehpg ugPGj satisfy at least one constraint

c · psi8, j8,k8d = 0 s14d

linearly independent from the implicit equalities ofB. Following the remark at the end of Sec.
III A, we have not lost generality by taking the right-hand side ofs14d equal to zero. Note that the
constraints14d is in fact satisfied by allhpd udPDj. Indeed, eitherdi8 j8Þk8 and s14d gives the
trivial equation 0=0, orpdsi8 , j8 ,k8d is affinely dependent from thepgsi8 , j8 ,k8d, which satisfy
s14d.

As the hpd udPDj form a set of dimB independent extreme points, they can satisfy at most
one constraint linearly independent from the implicit equalities ofB, i.e., there can only be one
constraint of the forms14d. Thus at mostr =dim Bn−1=piÞi8soi=1

mi svi j −1d+1d−1. Furthermore, as
the hpd udPDj already satisfy the equalityb·p=b0, this can only be the case ifs14d is equivalent
to b·p=b0, that is if b·pùb0 is equivalent either toc·psi8 , j8 ,k8dù0 or s−cd ·psi8 , j8 ,k8dù0. h

IV. LIFTING BELL INEQUALITIES

We now move on to study the liftings of Bell inequalities that we have presented in Sec. I and
their natural generalizations. We will prove that these liftings are facet-preserving. It was already
shown in Ref. 19 that a Bell inequality that supports a facet ofBs2,m,2d also supports a facet of
Bs2,m8 ,2d for all m8ùm. Furthermore, in Ref. 33 liftings of “partial constraint satisfaction
polytopes”spolytopes encountered in certain optimization problemsd were considered. Although
such liftings were studied independently from any potential relation to Bell inequalities, it turns
out that partial constraint satisfaction polytopes over a complete bipartite graph are bipartite Bell
polytopessin particular, the “4-cycle inequality” introduced in Ref. 33 corresponds to the CHSH
inequalityd. The results presented in Ref. 33 then imply that an inequality that supports a facet of
Bs2,m,vd also supports a facet ofBs2,m8 ,v8d for all m8ùm, v8ùv. It is in fact these results that
inspired the ones that are presented here.

In Secs. IV A–IV C, we will see that the lifting of an arbitrary inequality to a situation
involving, respectively, one more observer, one more measurement outcome, and one more mea-
surement setting are facet-preserving. Combined together these results imply that a Bell inequality
that supports a facet of a Bell polytopeBsn,m,vd, also supports, when lifted in the appropriate
way, a facet of any higher dimensional polytopeBsn8 ,m8 ,v8d with n8ùn, m8ùm, v8ùv.

A. One more observer

Consider a polytopeB;Bsn,m,vd, where then parties are labeledh1,… , i8−1,i8+1… ,n
+1j for some valuei8. Let the inequality

b · p ù 0 s15d

be valid forB. Note that we have taken, without loss of generality, the right-hand side ofs15d to
be equal to 0. Let us extend the polytopeB by inserting an additional observer in positioni8. The
resultingsn+1d-partite polytope will be denotedBn+1.

Given a pointpPBn+1, remember thatpsi8 , j8 ,k8d represents the probabilities ofp for which
the indices corresponding to the measurement setting and the outcome of partyi8 are fixed, and are
equal, respectively, toj8 and k8. Thereforepsi8 , j8 ,k8d /pk

i8
8 u j

i8
8 , wherepk

i8
8 u j

i8
8 denotes the marginal

probability for observeri8 to measurej8 and obtaink8, is the joint outcome probability distribution
for the n observersh1,… , i8−1,i8+1,…n+1j conditional on partyi8 measuringj8 and obtaining
k8. Either this conditional probability is equal to zero, or it corresponds to a point ofB. In both
cases, it satisfiess15d. It thus follows immediately that the following inequality
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b · psi8, j8,k8d ù 0 s16d

is valid for Bn+1. Further, this lifting is facet-preserving.
Theorem 4: The inequalitys15d supports a facet ofB if and only if s16d supports a facet of

Bn+1.
Proof: As we have noted in the proof of Lemma 3, the restrictionplsi8 , j8 ,k8d of an extreme

point pl of Bn+1 satisfyingli8 j8=k8 can be identified with an extreme point ofB, and conversely.
Moreover, it is clear that ifplsi8 , j8 ,k8d satisfys16d with equality the corresponding extreme point
of B satisfy s15d with equality, and the other way around.

Assume thats16d supports a facet ofBn+1. Then it follows from Lemma 3 that they are
piÞi8so j=1

mi svi j −1d+1d−1=dimB extreme points ofBn+1 that satisfys16d with equality, such that
li8 j8=k8 and for which the restrictionsplsi8 , j8 ,k8d are affinely independent. By the above remark,
these extreme points define dimB affinely independent extreme points ofB that satisfys15d with
equality, hence this inequality supports a facet ofB.

To prove the converse statement, suppose now thats15d defines a facet ofB, that is, there exist
dim B affinely independent extreme points ofB that satisfy it with equality. By the above remark,
there thus exist dimB extreme points ofBn+1 that satisfys16d with equality, such thatli8 j8=k8 and
for which the restrictionsplsi8 , j8 ,k8d are affinely independent. To show thats16d defines a facet
of Bn+1, it thus remains to find dimBn+1−dim B affinely independent points satisfying it with
equality. For this, consider34 the extreme points ofBn+1 with li8 j8Þk8. They form an affine
subspace of dimension dimBn+1−piÞi8so j=1

mi svi j −1d+1d=dim Bn+1−dim B−1 since they can be
identified with the extreme points of the polytope involving one outcome less thanBn+1 for the
measurementj8. Moreover, because they verifyplsi8 , j8 ,k8d=0, they satisfys16d with equality,
and are affinely independent from the extreme points for whichli8 j8=k8. h

We thus have just shown that any facet inequality of ann-partite polytope can be extended to
a facet inequality for a situation involvingn+1 parties. This result can be used sequentially so that
facets ofn-party polytopes are lifted tosn+kd-partite polytopes. For instance, the positivity con-
ditions s11d can be viewed as the successive lifting of 1-party inequalities.

The result holds in the other direction as well, since any facet inequality of the forms16d is the
lifting of an n-partite inequality. When studying Bell polytopes, it is thus in general sufficient to
considergenuinely n-partite inequalities, that is, inequalities that cannot be written in a form that
involves only probabilities associated with one specific measurement settingj8 and one specific
outcomek8 for some partyi8. Note that we can extend this definition to also exclude all inequali-
ties such ass12d that involve only probabilities associated to one measurement settingsbut pos-
sibly several outcomes corresponding to this measurementd. Indeed, we have noted at the end of
Sec. III B that such inequalities cannot be stronger than inequalities of the forms16d.

B. One more measurement outcome

Consider a polytopeB;Bsn,m,vd, where for measurementj8 of party i8 the vi8 j8 outcomes
are labeledh1,… ,k8−1,k8+1,… ,vi8 j8+1j for somek8. Let

b · p ù b0 s17d

be a genuinelyn-partite inequality valid forB. Let us consider the polytopeBv+1 obtained fromB
by allowing an extra outcomek8 for the measurementj8 of party i8. To lift the inequalityb·p
ùb0 to the polytopeBv+1, we can merge the additional outcomek8 with some other outcomek*

P h1,… ,k8−1,k8+1,… ,vi8 j8+1j, and insert the resulting probability distribution ins15d. This
results in the inequality

b · p + bsi8, j8,k*d · psi8, j8,k8d ù b0. s18d

Theorem 5: If the genuinely n-partite inequalitys15d supports a facet ofB, thens18d supports
a facet ofBv+1.

Proof: The dimension ofBv+1 equals dimB+piÞi8so j=1
mi svi j −1d+1d. The extreme points ofB
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that belong to the facetb·pùb0 provide dimB affinely independent points satisfyings18d with
equality. By Lemma 3, there existpiÞi8so j=1

mi svi j −1d+1d extreme pointspl with li8 j8=k* that
saturates15d, and thuss18d, and for which theplsi8 , j8 ,k*d are affinely independent. Replacek* by
k8 in these extreme points. These new extreme points still satisfys18d with equality and are
affinely independent with all the previous ones, since they are the unique extreme points with
plsi8 , j8 ,k8dÞ0. In total, we thus enumerated dimBv+1=dim B+piÞi8so j=1

mi svi j −1d+1d affinely
independent point satisfyings18d with equality. h

C. One more measurement setting

Consider a polytopeB;Bsn,m,vd, where for partyi8 the mi8 measurements are labeled
h1,… , j8−1,j8+1,… ,mi8+1j for somej8. Let the polytopeBm+1 be the polytope obtained fromB
by allowing the additional measurement settingj8 for party i8. An inequalityb·pùb0 valid for B
is also clearly valid forBm+1. Moreover, the following stronger result holds.

Theorem 6: Let b·pùb0 be a genuinely n-partite inequality supporting a facet ofB. Then it
is also support a facet ofBm+1.

Proof: Consider the polytopeB̃m+1 defined asBm+1 but such that for the measurementj8 of
party i8 is associated a single possible outcome, i.e.,vi8 j8=1. The inequalityb·pùb0 is a valid

genuinelyn-partite inequality forB̃m+1. Further, sinceB̃m+1 andB have the same dimension, it is

also facet defining forB̃m+1. Following the procedure to lift an inequality to more outcomes

delineated in Sec. IV B, this inequality can be lifted fromB̃m+1 to Bm+1. Sinceb·pùb0 does not
involve components associated with the measurementj8 of party i8, this results in the inequality
b·pùb0 itself. By Theorem 5, this inequality is facet defining forBm+1. h

V. CONCLUSION

We have shown that the facial structure of Bell polytopes is organized in a hierarchical way,
with all the facets of a given polytope inducing, through their respective liftings, facets of more
complex polytopes. Instead of considering the entire set of facets of a Bell polytope, it is thus in
general sufficient to characterize the ones that do not belong to simpler polytopes. It would be
interesting to investigate whether this fact could be exploited to improve the efficiency of the
algorithms used to list facet inequalities or to simplify analytical derivations of Bell inequalities.

Note that for certain polytopes, the complete set of facet inequalities is constituted entirely by
inequalities lifted from more elementary polytopes. For instance for Bell scenarios involving two
observers, the first having a choice between two dichotomic measurements and the second one
between an arbitrary number of them, all the facet-defining inequalities correspond to liftings of
the CHSH inequality.18,31A natural extension of the results reported in this article would then be
to investigate more generally when inequalities lifted from simpler polytopes describe complete
sets of facets. Progress along this line would allow one to narrow down the class of Bell scenarios
that have to be considered to find new Bell inequalities. Following this approach, all the polytopes
for which the only facets correspond to liftings of the CHSH inequality have recently been
characterized.35

Finally, let us note that while the facet-preserving liftings that we have considered are inter-
esting because they throw light on the structure of Bell polytopes, the inequalities obtained in this
way are not essentially different from the original ones, they are merely re-expressions of these
inequalities adapted to more general scenarios. However, it is also in principle possible to consider
more complicated generalizations of Bell inequalities that alter significantly their intrinsic struc-
ture. For instance, the family of Bell inequalities introduced in Ref. 36 can be understood as being
generated by successive nontrivial liftings of the CHSH inequality. Studying such liftings, as well
as the other possible extensions of our results, seems a promising path toward a more accurate
characterization of the constraints that separate the set of local joint probabilities from the set of
nonlocal ones.
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