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Semirelativistic approximation to gravitational radiation from encounters
with nonspinning black holes
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The capture of compact bodies by black holes in galactic nuclei is an important prospective source for
low frequency gravitational wave detectors, such as the planned Laser Interferometer Space Antenna. This
paper calculates, using a semirelativistic approximation, the total energy and angular momentum lost to
gravitational radiation by compact bodies on very high eccentricity orbits passing close to a supermassive,
nonspinning black hole; these quantities determine the characteristics of the orbital evolution necessary to
estimate the capture rate. The semirelativistic approximation improves upon treatments which use orbits
at Newtonian order and quadrupolar radiation emission, and matches well onto accurate Teukolsky
simulations for low eccentricity orbits. Formulas are presented for the semirelativistic energy and angular
momentum fluxes as a function of general orbital parameters.
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I. INTRODUCTION

Proposed space-based gravitational wave interferome-
ters such as the Laser Interferometer Space Antenna
(LISA) will have good sensitivities in the low frequency
gravitational wave band, from about 10�4 Hz up to about
1 Hz. A promising source of gravitational waves in this
band is the extreme-mass-ratio inspiral (EMRI) of compact
objects (stellar mass black holes, neutron stars, white
dwarfs and even main sequence stars) into massive black
holes. Current estimates suggest we might detect as many
as a thousand EMRI events over the course of the LISA
mission [1]. Gravitational waves from extreme-mass-ratio
captures will serve as a direct probe of the innermost
population of compact objects around galactic central
black holes, and also provide information on the growth
history of such black holes out to a significant redshift
(z� 1). In addition to probing the stellar population of
galactic nuclei, gravitational waves from EMRIs provide a
map which encodes the geometry and structure of the black
hole spacetime [2], allowing a direct comparison of the
astrophysical black hole to the black hole solutions of
general relativity. This technique has been called ‘‘holiod-
esy,’’ in analogy with satellite geodesy, which observes the
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motion of small satellites around the Earth to map out the
structure of the planet’s gravitational field.

The computation of gravitational radiation from stellar
orbits has a long history. The classic treatment was that of
Peters and Mathews [3,4], who computed the gravitational
wave emission from stars on purely Keplerian orbits in flat
space. The problem of generation and propagation of
gravitational waves in a Kerr background was addressed
by the work of Teukolsky and Press in the early 1970s
[5–7], who developed a perturbation formalism in the Kerr
background. Subsequent work using this formalism has
progressed to the point where the emission from a particle
on any orbit in the Schwarzschild spacetime [8] or on a
circular inclined [9] or eccentric equatorial [10] orbit in the
Kerr background can be treated. Computing the inspiral of
stars on eccentric nonequatorial orbits in Kerr required
overcoming some technical obstacles [9], but first results
are now available [11,12].

In this paper we compute a star’s orbital trajectory
by solving the geodesic equations of motion around the
black hole, rather than using Keplerian orbits. Exact geo-
desics of the Schwarzschild spacetime are considered,
particularly orbits with high eccentricity, including mar-
ginally bound (parabolic) and unbound (hyperbolic) orbits.
Here ‘‘parabolic’’ is a statement about the orbital energy E
which labels the geodesic trajectory, rather than a state-
ment about the geometric shape of the orbit in Euclidean
geometry. As will be seen in later sections, the orbital
trajectories around black holes can exhibit ‘‘zoom-whirl’’
behavior, looping around the black hole more than once
-1 © 2005 The American Physical Society
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(i.e., the change in azimuthal angle ��> 2�) on any
given orbital pass. Even in these situations one can still
speak of quantities, such as the eccentricity of the orbit,
which correspond in some formal sense to their Keplerian
counterparts. Taking these geodesic trajectories as the
orbits of the source, we approximate the gravitational
radiation using the classic quadrupole formula at
Newtonian order.

This method of obliging the orbiting body to follow a
geodesic of the spacetime, while using the quadrupole
approximation to calculate the gravitational wave emis-
sion, has been termed the ‘‘semirelativistic approxima-
tion’’ by its originators, Ruffini and Sasaki [13]. Ex-
perience with more accurate, although computationally
intensive, perturbative calculations has shown that
when particles make close approaches to the central
black hole, in particular, when they are relatively close to
the unstable circular orbit (UCO) of the potential
(see Sec. II B for a definition), the properties of the
relativistic gravitational potential are of critical importance
in determining the gravitational wave flux. As will be
seen, employing a more exact description of the particle
trajectory (spacetime geodesics) together with an approxi-
mation of the wave flux is much more accurate in
these cases than using a consistent Newtonian-order
approximation.

The semirelativistic approach complements the more
complex Teukolsky-based computations in several ways.
First, technical difficulties and the demands of computing
power have made Teukolsky calculations computationally
difficult for orbits with eccentricity near unity, a regime
where the work presented here is designed to work well.
Second, because the computationally intensive Teukolsky
approach is not practical for use in conjunction with typical
simulations of the clusters of stars in galactic centers and
their capture rates by the central black hole, it is useful to
look for more convenient approximate methods, which are
sufficiently accurate for reliable results.

An extension of the semirelativistic approach is cur-
rently finding use in the computation of approximate
EMRI waveforms for use in scoping out LISA data analy-
sis [14–16]. A particle inspiral trajectory is computed by
integrating post-Newtonian expressions for the energy and
angular momentum fluxes. Integration of the Kerr geodesic
equations along this trajectory yields the particle position
as a function of time, from which a waveform is computed
from an approximate quadrupole moment tensor generated
as in the semirelativistic approach. These ‘‘numerical
kludge’’ waveforms are inconsistent in that the energy
and angular momentum content of the waveforms differs
from the change in energy and angular momentum of the
particle orbit which is nominally emitting the radiation.
This energy inconsistency means that some of the results
that have been obtained using kludged waveforms, such as
signal-to-noise ratios [1], are inaccurate. The results of the
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semirelativistic calculations presented here allow us to
estimate the magnitude of this inconsistency for inspirals
into Schwarzschild black holes (see Sec. III C). In the
future, using semirelativistic fluxes (once these are ex-
tended to spinning black holes) in the kludge in place of
the post-Newtonian fluxes employed currently will yield
consistent inspirals.

The key results of this paper are summarized as
follows:
(1) N
-2
umerical results are presented which enable us to
explore and evaluate several approximate methods
of calculating energy and angular momentum fluxes
from EMRI orbits, and therefore the evolution of
those orbits (see Sec. III). Significantly better evo-
lutions (compared to the results of exact Teukolsky-
based calculations) can be built out of the semi-
relativistic formalism developed here, but improved
orbital evolutions can also be obtained from classic
gravitational radiation estimates (Peters and
Mathews) simply by choosing to work with ‘‘geo-
desic parameters’’ instead of ‘‘Keplerian parame-
ters,’’ with little consequence to computational
cost. See Sec. III A and Fig. 3.
(2) A
nalytic expressions are derived for the energy
(�E) and angular momentum (�Lz) radiated in
gravitational waves for a single orbital pass near a
black hole, as a function of the orbital parameters,
which exactly reproduce our numerical results. See
Sec. III D 2 and Eqs. (35) and (37), for the case of
parabolic orbits, and Sec. 1 of the appendix for a
more general discussion.
(3) F
itting functions are given which reproduce ap-
proximately, but to high accuracy, the analytic and
numerical results. These functions are relatively
simple expressions which could be conveniently
used in place of consistently Newtonian-order ex-
pressions such as those of Peters and Mathews,
which are significantly less accurate for orbits with
very close periapses (see Sec. III D 1 and Sec. 2 of
the appendix). Although we present fits to the semi-
relativistic results only, the fitting functions have
more general applicability and it should be possible
to derive a fit of the same form to Teukolsky-based
results once these are available for generic orbits.
The remainder of the paper will be organized as follows.
In Sec. II we describe the semirelativistic scheme which we
use to model the gravitational radiation from EMRIs. In
Sec. III we present fluxes calculated using this approach
and compare these with more accurate Teukolsky-based
results, as well as with the consistently Newtonian results
of Peters and Mathews. We also present analytic formulas
which reproduce our numerical results, and discuss the
case of hyperbolic orbits which are initially unbound but
become bound to the black hole via gravitational brems-
strahlung. Finally in Sec. IV we summarize our most
important results and findings.
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Throughout this paper, geometric units where G � c �
1 are employed unless otherwise specified.

II. MODEL OF GRAVITATIONAL RADIATION

A. Quadrupole approximation

The energy and angular momentum carried away by
gravitational waves from a weak-field, slow-motion source
can be computed using the quadrupole formula [17]

dE
dt
� �

1

5
hI
:::
jkI
:::
jki; (1)

and

dLz
dt
� �

2

5
�jklh �IkaI

:::
ali; (2)

where summations are implied over repeated indices, �jkl
is the permutation symbol, and I jk is the reduced quadru-
pole moment of the system,

I jk �
Z
�
�
xjxk �

1

3
�jkr2

�
d3x: (3)

The angle brackets h i in (1) and (2) indicate averaging over
several orbits, but parabolic trajectories (our main focus)
do not have periodic orbits. Indeed, the period of a para-
bolic orbit is infinite, so the average energy flux over the
whole orbit is zero. Therefore it is convenient to work
instead in terms of �E and �Lz, the total energy and
angular momentum radiated over a single orbit, which
are in general finite.

The corresponding gravitational waveform in
transverse-traceless gauge is given by [17]

hTTjk �
2

r

�
Pjl �I lmPmk �

1

2
PjkPml �I lm

�
;

Pjk � �jk � njnk;
(4)

in which nj denotes the direction of propagation of the
wave and r is the proper distance to the source.

For orbits in the weak field, far from the black hole, the
quadrupole formula applies, the source particle orbit is
Keplerian, and the radiation field reduces to the Peters
and Mathews result. For orbits that pass close to the black
hole, the particle’s geodesic orbit is no longer Keplerian
and the motion is neither weak field nor slow motion, so the
quadrupole formula does not describe the wave emission
precisely. As described above, correcting the emission
formula requires use of black hole perturbation theory
(Teukolsky methods), which is computationally very chal-
lenging, but a significantly improved approximation can be
obtained by using the quadrupole formula with source
particle orbits modified to be a geodesic of the black hole
spacetime.

To do this, first identify the Cartesian coordinates, xj, in
the quadrupole moment expression (3) with coordinates in
the Schwarzschild spacetime. Treating the Schwarzschild
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coordinates fr; �; �g as spherical polar coordinates, define
a set of pseudo-Cartesian coordinates by

xi � �r sin� cos�; r sin� sin�; r cos��: (5)

In these coordinates, one can solve the Schwarzschild
geodesic equations (see Sec. II B) to compute the particle
orbit xj�t�, and substitute the resulting trajectory into the
quadrupole moment expression (3) to compute

I jk � m�xjxk � 1
3�
jkr2�; (6)

wherem is the mass of the particle. Finally, we compute an
estimate of the energy and angular momentum radiated
using expressions (1) and (2).

This approximation for gravitational wave emission was
first applied by Ruffini and Sasaki, who termed it a semi-
relativistic approximation [13], since it makes use of the
fully relativistic orbit, but only a weak-field expression for
the gravitational waves. The approach is equivalent to
attaching the compact body to a string in flat space and
forcing it to move on a path that corresponds to a geodesic
of the Schwarzschild potential. In reality, the inspiralling
body does not follow a geodesic, due to the effect of
radiation reaction on the orbit. The loss of energy occurs
continuously, so particle trajectories depart from a true
geodesic path continuously. Instead of stable orbits, parti-
cles follow inspiralling paths with a steadily decreasing
average radial distance from the center. However, in the
typical case for extreme-mass-ratio inspirals, in which the
rate of energy loss per orbit is small, the actual particle
trajectory looks similar to a geodesic orbit for long periods,
so one is justified in making an adiabatic approximation
[9]; simply assume the body evolves through a sequence of
geodesics and determine this sequence using the energy
and angular momentum fluxes from each geodesic orbit.

The adiabatic approximation will break down when the
orbital parameters change significantly on the time scale of
a single orbit, which occurs only very close to the final
plunge. The trajectory and waveform in this region must be
computed using the computationally intensive self-force
formalism (see [18] for a review).

B. Geodesics

The equations governing geodesic motion in the
Schwarzschild spacetime, in the usual Schwarzschild co-
ordinates, are given by�

dr
d�

�
2
� �E2 � 1� �

2M
r

�
1�

L2
z

r2

�
�
L2
z

r2 ; (7)

r2

�
d�
d�

�
� Lz; (8)

�
1�

2M
r

��
dt
d�

�
� E; (9)
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FIG. 1 (color online). Radial gravitational potential for a
zoom-whirl orbit. The dashed line corresponds to the energy
of the orbit. The orbit oscillates in the region where the potential
(solid curve) lies below the energy line. If the energy is too high
and the orbit passes inside the maximum of the radial potential
(rUCO), the particle plunges into the black hole.
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where � is the proper time along the geodesic, Lz is the
conserved specific angular momentum of the particle, E is
the conserved specific energy and M is the mass of the
central black hole. We have taken advantage of spherical
symmetry to assume an equatorial orbit, � � �=2, without
loss of generality. The radial equation of motion (7) may be
written as a cubic polynomial divided by r3. The cubic has
one, two or three roots depending on the values of E and
Lz. These roots correspond to turning points of the radial
motion. Orbits with a single turning point plunge into the
black hole and correspond to energies

E2 � 1>
L2
z

r2
I

�
2M
rI
�

2ML2
z

r3
I

;

where rI �
L2
z

2M

�
1�

���������������������
1�

12M2

L2
z

s �
:

(10)

For bound orbits, it is possible to define an orbital eccen-
tricity by analogy with the Keplerian case. Define the
position of the apoapse of the orbit to be

ra �
1� e
1� e

rp; (11)

where rp is the radius of the periapse. Equation (11) is used
to define the eccentricity of a geodesic in terms of the
turning points of the orbit [8,10]. This definition carries
over to parabolic (E2 � 1) and hyperbolic orbits (E2 > 1).
In the parabolic case, the radial geodesic equation (7) has
only two turning points (the apoapse is ‘‘at infinity’’), but
definition (11) holds with e � 1. In the hyperbolic case,
one of the turning points has r < 0; using this in (11) one
finds e > 1, and so in this case we call that turning point the
apoapse.

For this definition for eccentricity, we use the parameters
�rp; e� to characterize the orbit, instead of �E;Lz�. The
energy and angular momentum are related to the periapse
and eccentricity by

E �

�����������������������������������������������������������������
1�

M�1� e��4M� �1� e�rp�

rp��1� e�rp � �3� e2�M�

vuut ; (12)

Lz �
�1� e�rp�������������������������������������������

�1� e� rpM � �3� e
2�

q : (13)

The radial geodesic equation becomes�
dr
d�

�
2
� �E2 � 1�

�
1

r

�
3
�ra � r��r� rp��r� r�� (14)

where the apoapse, ra, and energy E are given by Eqs. (11)
and (12), and the third root of the potential is given by

r� �
2�1� e�rp

��1� e�rp � 4M�
: (15)

For any given eccentricity, there is a minimum value for the
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periapse below which the orbit plunges directly into the
black hole. This occurs when the two inner turning points
of the geodesic equation, r� and rp, coincide. A geodesic
with precisely this periapse asymptotically approaches a
circular orbit as it nears the periapse, and spends an infinite
amount of time whirling around the black hole. The asymp-
totic circular orbit is an unstable orbit of the gravitational
potential, and we will refer to it as the ‘‘unstable circular
orbit’’ (UCO). The radius of the UCO determines the
minimum periapse for geodesics of a fixed eccentricity.
Equating r� and rp yields an expression for the UCO in
terms of e

rUCO �
2�3� e�

1� e
M: (16)

The statement that orbits with rp < rUCO are plunging is
equivalent to the relationship (10) between the energy and
angular momentum (see [8] for an equivalent relation in
terms of the semilatus rectum). If e � 0 the UCO is at the
familiar innermost stable circular orbit, r � 6M. In the
extreme hyperbolic limit, e! 1, the UCO approaches
the horizon r � 2M. Parabolic orbits (e � 1) have a mini-
mal periapse of r � 4M. Cutler, Kennefick and Poisson [8]
also discuss the UCO, but they call the line rp � rUCO the
‘‘separatrix,’’ since it separates bound from plunging orbits
in phase space.

These orbital properties can be understood by consider-
ing the radial gravitational potential V�r; Lz�, which is
illustrated in Fig. 1 for a typical zoom-whirl orbit. The
characteristic feature of these highly relativistic potentials
is the maximum at rUCO. As an inspiral approaches plunge,
-4
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the orbit is within the potential well but close to the top of
the well. That is, the periapse lies close to the UCO. The
particle thus zooms out to apoapse and back, but loiters
close to periapse, whirling several times around the black
hole on a nearly circular orbit before zooming out to
apoapse again. As one approaches the UCO, the more
exaggerated the whirl phase gets and the closer the resem-
blance to an unstable circular orbit.

C. Waveform structure

The waveforms resulting from zoom-whirl orbits are
easy to comprehend. During the long apoapse passage
the motion of the source is relatively slow, and the ampli-
FIG. 2 (color online). Sample gravitational waveform (top)
from the zoom-whirl orbit indicated in Fig. 1. We show the
plus polarization of the gravitational wave as a function of time.
The radiation is emitted predominantly in a high frequency burst
during the whirl phase of the orbit. For comparison, the wave-
form from the Keplerian orbit with the same parameters is shown
in the bottom diagram.

084009
tude and frequency of the gravitational wave produced are
both low. Near periapse the motion is much more rapid and
the signal has much higher amplitude and frequency. If the
whirling phase of the orbit consists of one or more com-
plete revolutions about the central body then the waveform
will have several cycles (two for each revolution). The
result is a waveform with a very low frequency (deter-
mined by the radial period of the orbital motion) and low
amplitude superposed with a burst of short duration (rela-
tive to the overall period) and relatively high amplitude
whose frequency is determined by the azimuthal period of
the orbital motion. An example waveform is shown in
Fig. 2, corresponding to the orbit indicated in Fig. 1.

Note that while the radial frequency is much too low for
detection by LISA, the azimuthal (�) frequency does fall
in the LISA bandwidth for the orbits of interest. Although
there is a low probability of detecting these bursts since
they are too brief and infrequent (typically occurring once
every few years or even longer, depending on the radial
period) to have high signal-to-noise, the background of all
such bursts occurring throughout our neighborhood of the
Universe will create an astrophysical background of noise
from which other sources must be subtracted [19].
III. ENERGY AND ANGULAR MOMENTUM
FLUXES

The semirelativistic approximation is constructed by
integrating approximate rates of energy and angular mo-
mentum flux over relativistically accurate geodesic orbits.
A consistent approximation would require that the particle
orbit be approximated to the same level of accuracy as
employed for the fluxes. A Newtonian-order approxima-
tion, such as that of Peters and Mathews, makes use of
Keplerian elliptical orbits in flat spacetime and the fluxes
are of quadrupole order only. There might not appear to be
much justification for using accurate orbital paths but
retaining approximate fluxes. For orbits which never
come close to the central black hole the semirelativistic
scheme does not improve significantly on fully consistent
Newtonian approximations—in nearly flat regions of
spacetime all reasonable approximations fare well. How-
ever, orbits with small periapse distances are a very differ-
ent case. More accurate schemes (such as those based on
solution of the Teukolsky equation) show that the radiation
from orbits which come close to the black hole show
features that are greatly modified by the strongly curved
spacetime and which are qualitatively different from those
seen at large radii from the black hole. Many of these
features arise from the properties of the geodesics in the
strong-field regime and therefore, as argued in [14], such
features can be modeled by schemes which combine exact
geodesics with approximate fluxes. This approach shows
significant improvements over the weak-field approxima-
tion [3], as we will see in the next section, while being
-5



FIG. 3. Comparison between the semirelativistic results and
Peters and Mathews as a function of periapse for orbits with
fixed geodesic eccentricity e � 0:99. The solid lines are the
results from the semirelativistic approximation discussed here.
The dashed and dotted lines are the Peters and Mathews results
with geodesic parameters and Keplerian parameters, respec-
tively. We use a logarithmic vertical scale and plot the absolute
value of the energy (upper plot) and angular momentum (lower
plot) fluxes.
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considerably less expensive computationally than solving
the Teukolsky equation.

A. Comparison to Peters and Mathews and Teukolsky
results

The expressions derived in [3] for the energy and angu-
lar momentum fluxes from a Keplerian orbit are�
dE
dt

�
� �

32

5

m

M2

�1� e�3=2

�1� e�7=2

�
1�

73

24
e2 �

37

96
e4

��rp
M

�
�5

(17)

�
dLz
dt

�
� �

32

5

m
M
�1� e�3=2

�1� e�2

�
1�

7

8
e2

��rp
M

�
�7=2

: (18)

These are Eqs. (5.4) and (5.5) of [4], but written to lowest
order in the mass ratio, m=M, in the extreme-mass-ratio
limit M � m1 	 m2 � m. The eccentricity and periapse
of a Keplerian orbit are given in terms of the energy and
angular momentum by

eK �

�����������������������������������
1�

L2
z

M2 �1� E
2�

s
; rKp �

L2
z

M�1� eK�
: (19)

To use (17) and (18) in the strong-field regime, the natural
way to proceed is to evaluate the fluxes in Eqs. (17) and
(18) for the Keplerian orbit with the corresponding energy
and angular momentum, i.e., substitute eK and rKp from
(19) into (17) and (18) (‘‘Peters and Mathews with
Keplerian parameters’’). This approach runs into difficul-
ties however, since Keplerian orbits do not exist for certain
valid choices of E and Lz, for example, if L2

z > M2=�1�
E2� the Keplerian eccentricity is undefined. An alternative
way to proceed is to compute the geodesic eccentricity and
periapse using expressions (12) and (13) and use these in
the flux formulas (17) and (18), thus identifying geometri-
cally similar orbits (‘‘Peters and Mathews with geodesic
parameters’’).

In Fig. 3 we compare the fluxes computed in these three
ways: Peters and Mathews fluxes using Keplerian parame-
ters, Peters and Mathews using geodesic parameters, and
the semirelativistic approximation, all as a function of
geodesic (relativistic) periapse for fixed geodesic (relativ-
istic) eccentricity of e � 0:99. For large periapse, the three
approximations agree as expected, but once the periapse
becomes moderate (rp & 50M), the Peters and Mathews
expression with Keplerian parameters begins to differ quite
significantly from the other approximations. In the strong-
field region (rp & 10M), the semirelativistic approxima-
tion begins to differ significantly from both applications of
the Peters and Mathews formula, predicting greater fluxes
of both energy and angular momentum.

To verify that the semirelativistic results are an improve-
ment over Peters and Mathews, rather than merely being
different, the approximation can be compared to perturba-
084009
tive results from integration of the Teukolsky equation.
Very few results are available for high eccentricities in
the Teukolsky formalism, so the comparisons here are
shown at lower eccentricities. In Fig. 4, the semirelativistic
and Peters and Mathews fluxes are compared to Teukolsky
calculations [10] for orbits with eccentricity e � 0:5 and a
variety of periapses. As one would expect, the semirelativ-
istic approximation is not superior to a consistent
Newtonian approach for periapses greater than about
�50M (sometimes it does worse and sometimes better
than the Peters and Mathews results, but never extremely
different). For periapses less than �50M, the semirelativ-
-6
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istic method improves significantly upon the consistent
Peters and Mathews approximation. The improvement
gained using the semirelativistic approximation was also
noted by [20] in comparisons to a selection of Teukolsky-
based results. Thus for the type of orbit of interest to this
paper (highly eccentric orbits with close periapses), con-
sistent Newtonian approximations should be regarded with
suspicion, but approximations which make use of exact
geodesics (like the semirelativistic approximation), will
fare very well qualitatively and quite well quantitatively,
as long as the periapse is not extremely small.
FIG. 4. Comparison between accurate Teukolsky results and
various approximations, for orbits with fixed eccentricity e �
0:5 and a variety of periapses. The plots show the ratio of the flux
computed using a given approximation to the flux obtained from
the Teukolsky calculation. The upper plot shows the ratio of the
energy fluxes, while the lower plot is the ratio of the angular
momentum fluxes. In both plots, the solid lines are the semi-
relativistic results. The dashed and dotted lines are for Peters and
Mathews, evaluated with geodesic parameters and Keplerian
parameters, respectively. The latter lines cut off at small periapse
since there are no corresponding Keplerian orbits in that region.
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What is perhaps more surprising is that one may obtain
an improved approximation from the Newtonian-order ex-
pressions (i.e., Peters and Mathews) if one carefully choo-
ses the Newtonian parameters which are to be equated with
the ‘‘true’’ curved space parameters (i.e., geodesic parame-
ters rather than Keplerian parameters). While the semi-
relativistic approximation is always an improvement over
this in the strong-field regime, the gain is only significant
for very close periapses, rp & 10M. In fact, for small
eccentricities there is no significant gain using the semi-
relativistic fluxes. For a circular orbit of radius r0,
the quadrupole formulas (1) and (2) tell us that hdE=dti �
�32r4

0�6
� and hdLz=dti � �32r4

0�5
�, where �� �

d�=dt is the angular velocity. For both a Keplerian orbit
and a circular geodesic of the Schwarzschild metric, �� �

1=r3=2
0 . Therefore, the standard Peters and Mathews result

is recovered exactly for circular orbits using either geode-
sic or Keplerian parameters.

We are primarily interested in highly eccentric orbits, for
which the semirelativistic results are a significant improve-
ment over any method based on Peters and Mathews.
Nonetheless, if one does not wish the additional computa-
tional burden of evaluating more accurate semirelativistic
flux expressions, a significant improvement can still be
gained by evaluating the Newtonian fluxes using geodesic
parameters.

B. Phase space structure

An inspiral sequence may be constructed from the semi-
relativistic fluxes by integrating (dE=dt, dLz=dt). While
the duration of the inspiral depends on the value of dE=dt,
the sequence of geodesics that the inspiral passes through
in the �E;Lz� phase space depends only on the ratio
dE=dLz. Equivalently, in the �rp; e� phase space, it de-
pends only on

drp
de
�

@L
@e

dE
dLz
� @E

@e

@E
@rp
�

@Lz
@rp

dE
dLz

: (20)

It turns out that the semirelativistic approximation repro-
duces the ratio dE=dLz to a very high accuracy when
compared to the Teukolsky results. While the value of
�E can differ by as much as 25%, the ratio dE=dLz is
recovered to better than 5%. This means that the structure
of the semirelativistic phase space will be a good approxi-
mation to the true structure, although there is some error in
the estimated duration of inspirals.

This is an interesting result from the point of view of
detection of EMRIs with LISA. An error in the time scale
of an inspiral can be partially corrected by a change in the
mass ratio. Since the phase space trajectory is well ap-
proximated, an inspiral waveform computed using this
approach might be a moderately good fit to a true inspiral
waveform with a slightly different mass ratio, and therefore
-7
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could be used as a detection template over sufficiently
short time stretches. This may not be practical, since the
error in dE=dt is not a constant factor, which would require
varying the mass ratio over the inspiral. Moreover, other
features that these approximations do not include (such as
the ‘‘conservative’’ part of the self-force) may lead to rapid
dephasing of the kludge templates. This is nonetheless an
interesting result.

The accuracy with which the phase space structure is
reproduced can be understood by considering what hap-
pens at the extremes of an inspiral. When the periapse is
very large, the semirelativistic approximation is good, and
is expected to reproduce dE=dLz accurately. For an orbit
that sits on the separatrix between plunging and nonplung-
ing orbits (rp � rUCO), the geodesic spends an infinite
amount of time whirling about the black hole on a nearly
circular orbit at the UCO. The flux of energy and angular
momentum is totally dominated by the circular part of the
orbit. For any radiation field in a spherically symmetric
spacetime, the energy and angular momentum fluxes car-
ried away from a circular orbit obey the relation dE=dt �
���dLz=dt�, where �� is the angular velocity on that
orbit [8]. The quadrupole formulas (1) and (2) reproduce
this result for a circular orbit. Since we use the correct input
geodesic, the semirelativistic approximation should and
does give dE=dLz accurately on the separatrix. Since we
have the correct result in both extremes, it is perhaps less
surprising that we also do quite well at points in between.

Figure 5 illustrates some inspiral trajectories in the
�rp; e� plane. The trajectory properties are determined
largely by two curves—the separatrix where the inspiral
FIG. 5. Sample inspiral trajectories in the �rp; e� plane. The
solid lines illustrate inspiral trajectories. The dotted line marks
the separatrix and all points to the left of this line are plunging
orbits. The dashed line is the locus of points with de=dt � 0. In
the region between this line and the separatrix, de=dt > 0 on all
trajectories.
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ends as the particle plunges into the black hole and the
locus de=dt � 0. These are both marked on Fig. 5. In
general an inspiral will begin with high eccentricity and
moderate periapse. Both the periapse and eccentricity ini-
tially decrease, and this evolution continues until the tra-
jectory intersects the de=dt � 0 curve. After that point, the
periapse continues to decrease, but the eccentricity in-
creases until the trajectory reaches the separatrix and the
particle plunges. As expected from previous arguments,
these general properties are in good agreement with results
based on Teukolsky calculations [8] and quite different to
Peters and Mathews inspirals (which, for instance, have
monotonically decreasing eccentricity). The location of the
separatrix is a property of the geodesics, and is therefore
precisely reproduced in this approximation. The de=dt �
0 curve depends on the expression used for the energy and
angular momentum fluxes and is different here, but only
slightly. In this approximation, the de=dt � 0 curve inter-
sects the e � 0 axis at rp � 6:770M, compared to rp �
6:681M in the Teukolsky case [8].

The increase in eccentricity prior to plunge is a generic
feature of EMRIs, but it is as much a property of the radial
potential as it is of the flux model. As discussed earlier,
realistic gravitational waves will give _E � ��

_Lz � ��1�
e�=�2�3� e���3=2 _Lz on the separatrix. The leading order
piece in both the numerator and denominator of Eq. (20)
thus vanishes in the limit rp ! rUCO�e�, but the leading
correction to both is from the logarithmic piece of dE=dLz,
and hence we find drp=de < 0. However, this conclusion
still holds if the fluxes do not satisfy the circular orbit
condition and the cancellations do not occur. The coordi-
nate derivatives are such that, independent of the value of
dE=dLz on the separatrix,

drp
de

 �

4�3� e�

�1� e��1� e�2
: (21)

The nature of the potential thus forces either rp or e to
increase in the approach to plunge.

A final point to note from Fig. 5 is that _e / e near e � 0.
This property of the inspirals means that an initially eccen-
tric orbit cannot circularize in this model, although the
eccentricity at plunge can be arbitrarily small. The prop-
erty once again derives from the circular condition _E �
��

_Lz, which ensures that circular orbits remain circular
under radiation reaction. This is discussed in more detail in
[15], where corrections are given to enforce this relation in
kludged inspirals. In the semirelativistic waveform model,
the condition is automatically satisfied and no correction is
required.

C. ‘‘Kludge’’ waveform inconsistency

As mentioned in the introduction, waveforms based on
the semirelativistic approximation are being used exten-
sively to scope out LISA data analysis [14–16]. The wave-
-8
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forms are generated by first constructing an inspiral trajec-
tory and then using the semirelativistic construction of the
quadrupole moment tensor to compute a waveform. In the
most basic form of this kludge [14], the phase space
trajectory for inspirals into nonspinning black holes is
computed by integrating the Peters and Mathews energy
and angular momentum fluxes (17) and (18). This leads to
an inconsistency since the energy and angular momentum
content of the gravitational waves differs from the energy
and angular momentum lost by the inspiralling particle that
is nominally generating the radiation. We can estimate this
inconsistency using the semirelativistic results. A phase
space trajectory is generated using the fluxes (17) and (18)
and Eq. (20). We choose to specify the eccentricity of the
inspiral at plunge and integrate backwards along the in-
spiral trajectory. By integrating the semirelativistic fluxes
along this trajectory, we calculate the total energy and
angular momentum content of the gravitational waves.
Figure 6 shows the ratio of the gravitational wave energy
flux to the change in energy of the particle orbit as a
function of the time until plunge (in units of M2=m).
Time along the inspiral trajectory therefore decreases to-
ward the right. There is a curve for each eccentricity at
plunge from e � 0:1 to e � 0:9 in intervals of 0:1. We see
that there is a significant inconsistency in the kludge wave-
forms. For low eccentricity at plunge, the kludge gravita-
tional waves contain less energy than they should, but for
eccentricity at plunge greater than about 0:25, they contain
too much energy, as much as a factor of 3 in extreme cases.
This means that signal-to-noise ratios (SNRs) computed
from these waveforms are likely to be overestimates of the
true SNRs. It is not clear from these results whether this
discrepancy will be larger or smaller when the central
black hole is spinning, but this will be investigated in the
future [16]. However, it is important to be aware of the
existence and magnitude of this problem when interpreting
FIG. 6. Ratio of the energy content of kludge gravitational
waves to the change in energy of the source particle orbit,
relative to the energy at plunge. This is shown as a function of
time until plunge (in unite of M2=m) for eccentricities at plunge
epl � 0:1, 0:2 . . . 0:9 (from lowermost curve to uppermost).

084009
results based on the kludge waveforms. If semirelativistic
fluxes were used to integrate the phase space trajectories,
there would be no such inconsistency and this might there-
fore be another future application of these results, once
they are extended to spinning black holes.

D. Analytic results

The previous results have shown the usefulness of the
semirelativistic approximation, but the described method,
based on integration of the geodesic equations, is not easy
to implement in numerical simulations. In this section, we
present some analytic results based on the semirelativistic
approximation which can be easily evaluated without nu-
merical integration of orbits.

1. Fitting functions for �E and �Lz
A useful tool for simulations is a fitting function that has

a simple form and which reproduces the semirelativistic
results for �E and �Lz to reasonable accuracy. For a
geodesic of given eccentricity, the periapse can have any
value between the UCO for that eccentricity (16) and
infinity. For large values of the periapse, the orbit is en-
tirely within the weak-field region of the spacetime. The
orbit and radiation will therefore look very like those from
a Keplerian orbit, as described by expressions (17) and (18)
[3]. Multiplying these expressions by the Keplerian orbital
period, the energy and specific angular momentum lost on
a single pass may be found to be

�E � �
64�

5

m
M

1

�1� e�7=2

�
1�

73

24
e2 �

37

96
e4

��rp
M

�
�7=2

(22)

�Lz � �
64�

5
m

1

�1� e�2

�
1�

7

8
e2

��rp
M

�
�2
: (23)

In the parabolic case (e � 1), these become

�E � �
85�

12
���
2
p

m
M

�rp
M

�
�7=2

(24)

�Lz � �6�m
�rp
M

�
�2
: (25)

As the periapse approaches the UCO, the energy and
angular momentum lost per pass increases. In fact, ignor-
ing radiation reaction, the energy and angular momentum
losses diverge as rp ! rUCO. This is because the geodesic
with rp � rUCO spends an infinite amount of time whirling
around the black hole with r 
 rUCO. In practice, radiation
reaction will prevent this situation arising (for a discussion
of the transition from inspiral to plunging orbits see [21]).
However, the energy and angular momentum lost should
increase rapidly as the periapse approaches rUCO, since the
orbit whirls around the black hole an increasing number of
times.
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As discussed previously, the whirl behavior is a property
of the geodesics. Thus, although the semirelativistic treat-
ment of the radiation is only approximate, one will still see
this divergent behavior as rp ! rUCO, since the source for
the radiation is an exact geodesic trajectory. This feature is
missing in the Keplerian treatment [3]. For an extreme
zoom and whirl orbit, most of the gravitational radiation
is emitted during the whirl phase, when the particle is on an
approximately circular orbit. It is reasonable to guess that
the total losses due to gravitational radiation are roughly
proportional to the number of times the particle whirls
around the black hole.

In the parabolic case, one can estimate the number of
whirls by computing the proper time taken for the orbit to
pass from periapse to some ‘‘whirling radius,’’ rw. This is
found using (14) to be

� �
1��������
2M
p

Z rw

rp

r3=2�����������������������������������������
�r� rp��r�

2Mrp
rp�2M�

r dr: (26)

The radius does not change significantly during the whirl
phase, so approximating the numerator by r3=2

p

� 

1��������
2M
p r3=2

p cosh�1

�
2�rp � 2M�

rp�rp � 4M�

�
rw �

r2
p

2�rp � 2M�

��
:

(27)

Using the same assumption, d�=d� 
 L=r2
p and we esti-

mate that while r < rw, the number of azimuthal cycles
that the particle completes is

Nwhirls �
��
2�




�������������������
rp

rp � 2M

s
1

�
cosh�1

�
2�rp � 2M�

rp�rp � 4M�

�

�
rw �

r2
p

2�rp � 2M�

��
: (28)

The radius rw should be chosen to define the start and end
of the whirl phase. Our objective is to guess a functional
form that approximates the energy and angular momentum
loss when rp 
 rUCO and we assume that dE and dLz are
proportional to (28) in that limit. This is likely to be a
particularly good approximation for highly eccentric or-
bits, in which the ‘‘zoom’’ and ‘‘whirl’’ phases are quite
084009
distinct. Appropriate fitting functions should approach (22)
and (23) in the limit rp ! 1 and should diverge like (28)
as rp ! rUCO. Working once again in the parabolic case,
the simplest such function is

M
m

�E � AE cosh�1

�
1� BE

�
4M
rp

�
6 M
rp � 4M

�

� CE
�rp
M
� 4

��
M
rp

�
9=2
: (29)

One could fix all three coefficients by matching the behav-
ior in the limit rp ! rUCO, but (29) will not then neces-
sarily reproduce the asymptotic form (24). Instead, we fix
AE and BE using an expansion near rp � rUCO and then fix

CE � ��85�=�12
���
2
p
� � 64AE

���������
2BE
p

� to match (24)
asymptotically.

The next section will demonstrate how exact expressions
for the energy and angular momentum radiated in our
model may be obtained in terms of elliptic integrals.
Using these full analytic expressions, we can predict the
values of the fitting function coefficients

AE � �

���
2
p

10
� �0:141 421; BE � 0:752 091;

CE � �4:634 643:

(30)

The equivalent fitting function for the angular momentum
lost is

�Lz
m
� ALz cosh�1

�
1� BLz

�
4M
rp

�
3 M
rp � 4M

�

� CLz
�rp
M
� 4

��
M
rp

�
3

(31)

with coefficients

ALz � �
4
���
2
p

5
� �1:131 37; BLz � 1:318 99;

CLz � ��6�� 8ALz
����������
2BLz

p
� � �4:149 103:

(32)

The fitting function (29) can be used to match the lowest
order terms in an expansion of �E near rp � rUCO and
rp ! 1. It is possible to add additional terms to give a
more general function which can match �E at arbitrary
orders
M
m

�E �

 XN
n�0

AEn

�M�rp � 4M�

r2
p

�
n
!

cosh�1

�
1� BE0

�
4M
rp

�
NE�1 M

rp � 4M

�
�
MNE=2�rp � 4M�

r1��NE=2�
p

XN
n�0

CEn

�M�rp � 4M�

r2
p

�
n

�
M1��NE=2��rp � 4M�

r2��NE=2�
p

XN�1

n�0

BEn�1

�M�rp � 4M�

r2
p

�
n
: (33)
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In this, we fix NE � 7 to give the correct leading order
behavior (24) as rp ! 1. The parameter N indicates the
order of the fit, i.e., the number of terms we include. The
second and third series have terms in common, but writing
the expansion in this way allows one to read off consecu-
tive coefficients easily. The next section will show that
expanding �E about the separatrix gives terms in �rp �
4M�j ln�rp � 4M� and in �rp � 4M�k, while an expansion
as rp ! 1 gives terms of the form 1=r�NE=2��l

p . The coef-
ficient of the j � 0 term gives AE0 , then the k � 0 term
gives BE0 and the l � 0 term gives CE0 . Continuing in this
way, the j; k; l � n terms determine AEn , BEn and CEn re-
spectively. Thus, an expansion to order N will match the
lowestN � 1 terms in j, k and l. A similar fitting form may
be used for �Lz=M, but with NE replaced by NLz � 4
[once again, to reproduce the correct leading order behav-
ior (25) as rp ! 1]. Figure 7 illustrates how the fitting
FIG. 7. Error using fitting functions to approximate the ana-
lytic expressions for the energy (upper plot) and angular mo-
mentum loss (lower plot). In each plot, the absolute percentage
error in the fit is shown for fitting functions of various orders,
N � 2; � � � ; 6.
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functions converge as the order of the fit, N, is increased.
We see that as N increases, the fit improves at large radii,
but initially gets slightly worse at moderate radii before
converging there also. The N � 2 fit is accurate to about
1% everywhere, so we include these parameters here

AE0 � �0:141 421; AE1 � 0; AE2 � �1:207 97;

BE0 � 0:752 091; BE1 � �103:215;

BE2 � 727:515; CE0 � �4:634 64;

CE1 � 69:1683; CE2 � �439:378;

ALz0 � �1:131 37; ALz1 � 0; ALz2 � 0;

BLz0 � 1:318 99; BLz1 � �53:4491;

BLz2 � 29:7857; CLz0 � �4:1491;

CLz1 � 25:4129; CLz2 � 15:1726:

(34)

This fitting function was derived using simple arguments
about how the energy and angular momentum lost behave.
These arguments are valid in general for radiation that is
produced by a body orbiting in the Schwarzschild potential
and will apply to fluxes computed using the Teukolsky
formalism. In a separate paper [22] we derive a fit of this
form to Teukolsky data computed for parabolic orbits in
[23], which even for N � 2 is accurate to <0:2%
everywhere.

This simple fitting function is clearly a useful and accu-
rate way to evolve EMRI orbits. In the case of arbitrary
eccentricity, a similar type of fitting function can be de-
rived, but the coefficients AE0 etc. are now functions of
eccentricity. In the semirelativistic approximation, the
functions can be evaluated explicitly. This is discussed in
more detail in Sec. 2 of the appendix. It is more compli-
cated to compute a fit to Teukolsky-based fluxes, since the
coefficients in the expansion must be further expanded as
functions of eccentricity. However, it should be possible to
derive a reasonable fit using a polynomial ansatz, of the
form suggested by the semirelativistic results. Once suffi-
cient Teukolsky-based data are available, this fitting pro-
cedure will allow us to generate a comparatively simple
analytic expression for use in computation of EMRIs.

2. Exact expression

As mentioned in the preceding section, it is possible to
derive exact analytic expressions for the radiation loss
predicted by our quadrupole approximation. This is pos-
sible because in any axisymmetric spacetime, the rate of
energy loss at a given moment in time cannot depend on
the absolute value of the � coordinate of the particle, since
a shift �! ���0 will leave the spacetime unchanged
(note that the energy flux in a given direction will be
dependent on the relative difference in � between the
source and the observer). In the quadrupole approximation
used here to compute the gravitational radiation, dE=dt is
-11
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given by the square of the third time derivative of the
quadrupole moment tensor. This is a function only of the
particle coordinates r�t� and ��t�. By the axisymmetry
argument, the expression for dE=dt can depend only on
r, _r, �r, r:::, _�, �� and �

:::
. For geodesics of the Schwarzschild

spacetime (also for equatorial orbits in the Kerr spacetime),
d�=d� and dt=d� are rational functions of r only and
�dr=d��2 � V�r� is a cubic or quartic polynomial in
r. Any derived expression, such as dE=dr �
�dE=dt�=�dr=dt�, will therefore be a rational function of
polynomials in r and

����������
V�r�

p
. It is known [24] that the

integral of any rational function of polynomials in x and
y, where y2 is a cubic or quartic polynomial in x, can be
expressed in terms of elliptic integrals. One can therefore
write the energy and angular momentum radiated in closed
form in terms of elliptic integrals.

By substitution of the geodesic equations (8), (9), and
(14) into (1)–(3), we may write dE=dt and dLz=dt as
functions of r and then integrate over one orbit. In the
parabolic case, the energy loss is found to be

M
m

�E � �
8
���
2
p
M21=2

1 673 196 525�rp � 2M�2r17=2
p

�

�
E
� �������������������

2M
rp � 2M

s �
f1

�rp
M

�

�K
� �������������������

2M
rp � 2M

s �
f1

�rp
M

��
(35)

where

f1�y� � �2y�27 850 061 568� 83 550 184 704y

� 117 662 445 984y2 � 102 686 941 680y3

� 64 808 064 704y4 � 33 026 468 872y5

� 12 784 148 218y6 � 2 873 196 259y7

� 185 808 888y8 � 17 119 626y9 � 2 451 526y10

� 368 640y11 � 20 480y12�

and

f2�y� � ��72 901 570 560� 274 404 834 816y

� 424 693 524 096y2 � 378 109 481 088y3

� 249 480 499 840y4 � 154 011 967 968y5

� 84 437 171 728y6 � 31 689 370 996y7

� 6 231 594 434y8 � 321 950 817y9

� 27 462 280y10 � 4 073 612y11 � 696 320y12

� 40 960y13�:

In this, K and E are the complete elliptic integrals of the
first and second kinds, respectively, defined by [24,25]
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K �k� �
Z �=2

0

d����������������������������
1� k2 sin2�

p ;

E�k� �
Z �=2

0

���������������������������
1� k2 sin2�

q
d�:

(36)

The corresponding result for the angular momentum lost is

�Lz
m
�

64M7

24 249 225r11=2
p �rp � 2M�3=2

�

�
E
� �������������������

2M
rp � 2M

s �
g1

�rp
M

�

�K
� �������������������

2M
rp � 2M

s �
g2

�rp
M

��
(37)

where

g1�y� � y�181 817 664� 363 635 328y� 245 236 248y2

� 49 673 460y3 � 7 833 906y4 � 2 016 105y5

� 283 252y6 � 35 896y7 � 4120y8�

and

g2�y� � �71 285 760� 324 389 184y� 468 548 880y2

� 277 856 496y3 � 54 521 424y4 � 6 181 872y5

� 1 630 457y6 � 238 086y7 � 31 776y8

� 4120y9�:

These exact expressions can be used to derive the fitting
function described in the previous section. As rp ! 1, the

argument of the elliptic integrals,
��������������������������������
2M=�rp � 2M�

q
! 0.

In a series expansion of the integrals about k � 0 the
lowest five orders in k cancel and one successfully recovers
(24) and (25).

As r! rUCO � 4M, the argument of the elliptic inte-

grals
��������������������������������
2M=�rp � 2M�

q
! 1 and the elliptic integrals di-

verge. Using [24] and some algebraic manipulation, the
asymptotic forms of the elliptic integrals as k! 1 are
found to be

K�k� � �1
2 ln�1� k2� � 2 ln2� 1

8�1� k
2� ln�1� k2�

�O�1� k2� (38)

E�k� � 1� 1
4�1� k

2� ln�1� k2� � �ln2� 1
4��1� k

2�

�O��1� k2�2 ln�1� k2��: (39)

The asymptotic form of (35)–(37) as rp ! 4M is

dX
�

 pX ln

�rp
M
� 4

�
� qX �O

�rp
M
� 4

�
: (40)

In this, X refers to either E or Lz=M. The values of the
constants are
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FIG. 8. ‘‘Hyperbolic’’ orbits (i.e., orbits with E> 1) that are
captured after one close encounter with the black hole, for
various mass ratios. Orbits whose energy and angular momen-
tum place them above and to the right of the line for a given mass
ratio remain unbound and are not captured. The line which
begins at bottom left and curves around to top right in the figure
is the separatrix line separating unstable plunging orbits (to its
left) from stable orbits.
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pE �
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���
2
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���
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ln�2�

2
���
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(41)

pLz �
4
���
2
p

5
; qLz � 2

�
1 613 849

���
2
p

1 616 615
� 2

���
2
p

ln�2�
�
:

(42)

The fitting functions (29)–(31) may be similarly expanded
near rp � rUCO � 4M

M
m

�X � �AX ln
�rp
M
� 4

�
� AX ln�2bX� �O

�rp
M
� 4

�
:

(43)

In this, X once again refers to either E or Lz=M, and NE �
7, NLz � 4. Equating (40) and (43), one obtains the coef-
ficients of the fitting function given earlier (30) and (32).

A similar analysis can be performed for orbits of arbi-
trary eccentricity, and is described in Sec. 1 of the appen-
dix. The exact expressions are somewhat cumbersome and
we recommend using the fitting function in most applica-
tions, since this performs extremely well. The exact ex-
pressions have been included for completeness, and to help
explain why the fitting function works.

E. Hyperbolic captures

In this paper we mostly focus on parabolic orbits, which
serve as a useful model for all orbits which are likely to
lead to sources of interest to LISA, since such orbits will
always initially have eccentricities very close to 1.
However, objects can also be captured from orbits with e >
1. In such cases the orbit is unbound, but may ultimately
inspiral if it makes a close approach to the central black
hole and loses enough energy and angular momentum in
doing so to become bound. Our results suggest that if the
angular momentum of this orbit is low (close to the mini-
mum Lz � 4), then the scattered body will become bound
if it is on an orbit whose energy E is such that E2 � 1<
m=M roughly speaking, where m=M, the mass ratio, is
small. For larger angular momenta the amount of excess
energy which can be radiated away on the first pass is
smaller, and so the orbital energy must be even closer to
unity for the body to become bound. Figure 8 shows which
hyperbolic orbits can lead to captures, for low orbital
angular momenta. The energy and angular momentum
lost to gravitational waves by a particle on a hyperbolic
orbit are given by the same Eqs. (A3) and (A4) that apply to
bound orbits, just by inserting e > 1 consistent with the
definitions (12) and (13). Figure 8 was generated by using
Eqs. (12) and (13) in conjunction with Eq. (A3) to write
�E � �m=M�FE�E;Lz� for hyperbolic orbits. Points on the
curves obey the equation

E� 1 � �
m
M
FE�E;Lz�: (44)
084009
Fixing the energy, the angular momentum solution to (44)
is obtained by iteration.

This figure indicates that there is another type of orbit
which becomes bound after the first pass—those that are
close to the separatrix. If the orbit is very close to the
plunge line, it will also lose enough energy to become
bound even if it has much more energy than E2 � 1 �
m=M. The reason seems obvious after a glance at Fig. 1. If
the energy of the scattered body is sufficiently close to 1
then it is close enough to the potential well in which bound
orbits exist to lose sufficient energy on one pass to fall into
the well. If the energy and angular momentum of the orbit
are such that the particle’s energy places it at the maximum
of the potential, then the particle ‘‘whirls’’ around the
central black hole at the radius of the potential maximum.
The scattered body thus spends an abnormally long time
near periastron and hence radiates an unusually large
amount of energy, enough to become bound. Of course
these bodies will generally plunge rather soon after capture
because the amount of angular momentum radiated will
-13
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also decrease the height of the potential barrier. In fact
many of these orbits will plunge on their first pass, having
dissipated enough angular momentum to shrink the poten-
tial barrier so they pass over it into the plunging region
beyond. One has to keep in mind that our adiabatic ap-
proximation breaks down as one approaches the line sep-
arating stable from plunging orbits (depending on the mass
ratio), so that we can give no definitive picture of what
occurs in this regime except to say that the general behav-
ior is probably correct. Readers interested in the transition
from inspiral to plunge should consult [21].

Orbits that are scattered close to the separatrix line are
‘‘captured,’’ in the sense that they either plunge or become
bound. Particles which are close to being parabolic orbits
are also captured and may serve to modestly increase the
capture rate for LISA. Particles passing very near to the
black hole must thus pass between Scylla and Charybdis
[26]. If they pass too close to Scylla, through having energy
only marginally greater than 1, then they are plucked from
their unbound orbit by gravitational radiation reaction
and end up in a bound orbit. If they approach with too
great an energy for their angular momentum then they are
sucked down by Charybdis and plunge into the black hole
itself.
IV. RESULTS AND DISCUSSION

As with Earth-based gravitational wave detectors like
the Laser Interferometer Ground Observatory, theoretical
predictions of source event rates and signal characteristics
for LISA will play an important role in the successful
operation of the observatory. Up to now, Newtonian-order
estimates (like Peters and Mathews) have been widely
relied upon to estimate waveforms and fluxes from
extreme-mass ratio inspirals, even though much of what
is of interest to LISA, even in the early stages of inspiral,
occurs inside the region of relatively strong curvature close
to the central black hole. The principle reason for this is
simply ease of use. Even when accurate methods, such as
the Teukolsky formalism and self-force calculations, prove
capable of dealing with arbitrary orbits they may still be
slow and cumbersome for many applications. This paper
attempts to make available a range of techniques which
combine ease of use with fairly robust accuracy over al-
most the whole inspiral of an extreme-mass-ratio binary.
These results are of particular use for highly eccentric
orbits, where frequency domain Teukolsky calculations
perform poorly [10] and time domain codes have not yet
been fully developed [23].

The key elements to take away from this study of the
semirelativistic approximation are
(i) S
imple analytic expressions to estimate the fluxes
�E and �Lz, suitable for use in computational
endeavours.
(ii) T
he optimal choice of parameters with which to
describe orbits which stray near the central black
084009-14
hole are the geodesic parameters frp; eg rather than
fE;Lzg: the waveforms for orbits which have similar
frp; eg more closely match than orbits which have
similar fE;Lzg values.
This second point cannot be stressed enough, as it
applies to treatments which use the semirelativistic ap-
proximation or Newtonian results; all approaches appear
to be most accurate when the orbits are defined by the
periapse distance rp and eccentricity e rather than by
energy and angular momentum. The reason is that when
working in flat space relating the orbit to the curved-
spacetime orbit with the same rp and e gives much better
agreement with the curved-spacetime fluxes derived by
exact methods (Teukolsky methods) than with the fluxes
from the curved-spacetime orbit with the same E and Lz as
the flat-space orbit. This is one substantial improvement in
accuracy (see Fig. 3) which can be made for no computa-
tional cost whatsoever.

To gain further improvements, the fitting function (A11)
described in Sec. III D 1 can be used for only a small
additional computational cost. Using the coefficients pre-
sented here, we have seen that it can accurately reproduce
the energy and angular momentum fluxes computed using
the semirelativistic approximation. However, it also has
more general applicability. Once sufficient data have been
obtained by numerical solution of the Teukolsky equation,
it should be possible to derive a good fit to that data using
the same fitting ansatz. This will provide a more practical
expression for use in astrophysical calculations.

In Sec. III C we made use of the semirelativistic results
to estimate the inconsistency in kludge gravitational wave-
forms that are being used to scope out LISA data analysis
[14–16]. These waveforms are constructed in a similar way
to the semirelativistic fluxes described here, but the inspiral
trajectory of the particle is computed independently of the
waveforms using post-Newtonian results. We saw that the
energy content of the gravitational waves can be as much
as a factor of 3 greater than the energy lost by the particle
orbit. This is an important point to bear in mind when
interpreting results computed using these approximations.

The semirelativistic formalism presented here should
find uses in computational problems where speed is of
concern (e.g., large numerical simulations) and the role
played by the central black hole is important to the dynam-
ics of individual particles in the problem. Such problems of
interest might include new simulations of star cluster evo-
lution in galactic nuclei to estimate the LISA EMRI event
rate, or supermassive black hole inspiral simulations which
seek to use interactions with stellar populations as a source
of dynamical friction to bring the large black holes into
proximity. In a companion paper [22], we use the insight
gained here, in conjunction with numerical results from
solution of the Teukolsky equation [23], to compute im-
proved expressions for the inspiral time scale of capture
orbits. The resulting expressions can be easily included in
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simulations of stellar clusters [27–29] to improve esti-
mates of capture rates.

The semirelativistic approximation can also be applied
to estimate energy and angular momentum fluxes from
objects orbiting Kerr black holes. The procedure is more
complicated due to the inclusion of spin and lack of
spherical symmetry. In particular, it is not clear how to
evolve the third integral of the motion, the Carter constant,
for Kerr inspirals. However, by identifying Boyer-
Lindquist coordinates with flat-space spherical polar coor-
dinates and constructing the corresponding flat-space
quadrupole moment tensor in the manner employed here,
estimates for the energy and angular momentum fluxes
from Kerr orbits may still be obtained. Preliminary results
suggest that such semirelativistic estimates improve over
standard post-Newtonian results [30] for spinning black
holes as well. To construct inspirals, the angular momen-
tum and energy fluxes can be combined with kludge ap-
proximations for the evolution of the Carter constant
[14,15]. This extension to Kerr will be described in a future
paper.
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APPENDIX: ANALYTIC RESULTS FOR
ARBITRARY ECCENTRICITY

1. Exact expressions

For orbits of arbitrary eccentricity it is also possible to
derive exact expressions for the loss in energy and angular
momentum, which reduce to (35) and (37) in the parabolic
case. This is accomplished by writing the energy and
angular momentum lost as a sum of integrals of the form

In �
Z ra

rp

Mn�1dr

rn
�����������������������������������������������������
�ra � r��r� rp��r� r��r

q : (A1)

By considering the derivative of�����������������������������������������������������
�ra � r��r� rp��r� r��r

q
=rn and using results in [25],

we deduce
In �
�
n� 1

2n� 1

�
In�1 �

M��1� e�rp � �3� e
2�M�

r2
p�1� e�2

�2n� 3�

�2n� 1�
In�2 �

M2�1� e���1� e�rp � 4M�

r3
p�1� e�2

�
n� 2

2n� 1

�
In�3

I0 �
2M
rp

�������������������������������������������������������������������
�1� e���1� e�rp � 4M�

�1� e���1� e�rp � 2�3� e�M�

vuut K
� ����������������������������������������������������

4eM
��1� e�rp � 2�3� e�M�

s �

I1 �
M��1� e�rp � 4M�

�1� e�r3
p

�������������������������������������������������������������������
�1� e���1� e�rp � 4M�

�1� e���1� e�rp � 2�3� e�M�

vuut �
rpK

� ����������������������������������������������������
4eM

��1� e�rp � 2�3� e�M�

s �

�
rp��1� e�rp � 2�3� e�M�

�1� e�rp � 4M
E
� ����������������������������������������������������

4e
��1� e�rp � 2�3� e�M�

s ��
:

(A2)

The functions K�k� and E�k� are the complete elliptic integrals of the first and second kinds (36). Using the recurrence
relation (A2) we can express the energy and angular momentum lost in terms of these elliptic integrals. We find the
expression for the energy loss to be

M
m

�E � �
16M11

1673196525r6
p�1� e�

19=2��rp � 2M���1� e�rp � 2�1� e�M��5=2

�

� ���������������������������������������������
�1� e�

rp
M
� 2�3� e�

r
E
� ����������������������������������������������������

4eM
��1� e�rp � 2�3� e�M�

s �
f1

�rp
M
; e
�

�
�1� e��������������������������������������������

�1� e� rpM � 2�3� e�
q K

� ����������������������������������������������������
4eM

��1� e�rp � 2�3� e�M�

s �
f2

�rp
M
; e
��

(A3)

where
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f1�y; e� � 4608�1� e��1� e�2�3� e2�2�2 428 691 599� 313 957 879e2 � 1 279 504 693e4 � 63 843 717e6�

� 192�1� e�2�908 960 573 673� 155 717 471 796e2 � 88 736 969 547e4 � 293 676 299 040e6

� 195 313 674 237e8 � 26 635 698 156e10 � 346 799 201e12�y� 384�1� e�3�336 063 804 453

� 53 956 775 638e2 � 33 318 942 522e4 � 92 857 670 352e6 � 41 764 459 155e8 � 2 765 710 514e10�y2

� 16�1� e�4�3 418 907 055 555� 580 720 618 635e2 � 168 432 860 626e4 � 606 890 963 686e6

� 176 495 184 865e8 � 3 768 291 999e10�y3 � 32�1� e�5�510 454 645 597� 92 175 635 794e2

� 26 432 814 256e4 � 28 250 211 070e6 � 5 713 846 269e8�y4 � 4�1� e�6�1 107 402 703 901

� 174 239 346 926e2 � 100 957 560 852e4 � 3 707 280 110e6 � 899 162 673e8�y5

� 8�1� e�7�143 625 217 397� 16 032 820 010e2 � 4 238 287 541e4 � 275 190 560e6�y6

� �1� e�8�220 627 324 753� 14 884 378 223e2 � 1 210 713 997e4 � 14 138 955e6�y7

� 8�1� e�9�2 922 108 518� 46 504 603e2 � 2 407 656e4�y8 � 3�1� e�10�241 579 935� 6 314 675e2

� 149 426e4�y9 � 4�1� e�11�8 608 805� 48 992e2�y10 � 2�1� e�12�1 242 083� 16 320e2�y11

� 184 320�1� e�13y12 � 5120�1� e�14y13

and

f2�y; e� � 3072�3� e��3� e��3� e2��7 286 074 797� 3 299 041 125e2 � 792 940 362e4 � 1 366 777 698e6

� 369 698 151e8 � 5 932 745e10� � 384�1� e��2 989 180 413 711� 583 867 932 642e2 � 131 661 872 359e4

� 419 423 580 924e6 � 194 293 515 951e8 � 3 390 301 442e10 � 1 353 430 119e12�y

� 64�1� e�2�14 825 178 681 327� 2 675 442 646 782e2 � 728 511 901 515e4 � 1 837 874 368 340e6

� 591 999 524 567e8 � 1 856 757 710e10 � 841 581 651e12�y2 � 32�1� e�3�14 292 163 934 541

� 2 666 166 422 089e2 � 522 582 885 086e4 � 1 347 373 382 962e6 � 307 066 297 439e8

� 1 675 056 789e10�y3 � 16�1� e�4�9 557 748 374 919� 1 917 809 903 861e2 � 24 258 045 506e4

� 511 875 047 746e6 � 86 779 453 317e8 � 462 078 345e10�y4 � 8�1� e�5�5 390 797 838 491

� 990 602 472 036e2 � 161 182 699 002e4 � 89 978 894 004e6 � 11 363 685 245e8�y5

� 4�1� e�6�2 857 676 457 065� 351 292 910 556e2 � 79 840 371 470e4 � 2 670 080 940e6

� 463 345 647e8�y6 � 2�1� e�7�1 249 768 416 047� 79 903 103 833e2 � 12 179 840 133e4

� 482 157 413e6�y7 � �1� e�8�363 565 648 057� 10 040 939 153e2 � 318 841 465e4 � 14 611 473e6�y8

� 2�1� e�9�13 862 653 487� 100 645 509e2 � 11 015 842e4�y9 � �1� e�10�518 128 485� 16 345 427e2

� 421 398e4�y10 � 16�1� e�11�1 220 639� 13 448e2�y11 � 2�1� e�12�689 123� 18 880e2�y12

� 153 600�1� e�13y13 � 5120�1� e�14y14:

The angular momentum lost is similarly given by

dLz
m
� �

16M15=2

24 249 225�1� e�13=2r7=2
p �rp � 2M�2��1� e�rp � 2�1� e�M�2

�

� ���������������������������������������������
�1� e�

rp
M
� 2�3� e�

r
E
� ����������������������������������������������������

4eM
��1� e�rp � 2�3� e�M�

s �
g1

�rp
M
; e
�

�
�1� e��������������������������������������������

�1� e� rpM � 2�3� e�
q K

� ����������������������������������������������������
4e

��1� e�rp � 2�3� e�M�

s �
g2

�rp
M
; e
��

(A4)

where
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g1�y; e� � 169 728�1� e��1� e�2�279 297� 219 897e2 � 106 299e4 � 9611e6� � 384�1� e�2�192 524 061

� 13 847 615e2 � 36 165 965e4 � 20 710 173e6 � 588 532e8�y� 192�1� e�3�235 976 417� 13 109 547e2

� 3 369 705e4 � 3 292 707e6�y2 � 16�1� e�4�813 592 799� 112 906 199e2 � 53 843 933e4 � 602 061e6�y3

� 16�1� e�5�87 491 089� 7 247 482e2 � 4 608 349e4�y4 � 8�1� e�6�9 580 616� 6 179 243e2

� 92 047e4�y5 � 4�1� e�7�3 760 123� 272 087e2�y6 � �1� e�8�1 168 355� 35 347e2�y7

� 71 792�1� e�9y8 � 4120�1� e�10y9
and
g2�y; e� � 339 456�3� e��3� e��93 099� 10 213e2 � 18 155e4 � 10 551e6 � 420e8� � 1536�1� e��319 648 410

� 35 712 133e2 � 33 099 777e4 � 11 272 311e6 � 457 187e8�y� 128�1� e�2�2 706 209 781� 45 415 294e2

� 103 634 296e4 � 34 056 010e6 � 130 293e8�y2 � 32�1� e�3�3 895 435 659� 212 168 215e2

� 4 641 265e4 � 15 197 651e6�y3 � 16�1� e�4�1 396 737 473� 123 722 895e2 � 27 602 127e4

� 465 119e6�y4 � 16�1� e�5�78 148 621� 3 035 912e2 � 3 130 827e4�y5 � 16�1� e�6�8 005 570

� 1 485 159e2 � 47 943e4�y6 � 2�1� e�7�4 015 181� 601 959e2�y7 � �1� e�8�737 603� 39 467e2�y8

� 47 072�1� e�9y9 � 4120�1� e�10y10:
The limit rp ! 1 corresponds to the argument of the elliptic integrals approaching zero. Using series expansions of the
elliptic integrals about k � 0 [24], we find
M
m

�E 
 �
64�

5

1

�1� e�7=2

�
1�

73

24
e2 �

37

96
e4

��rp
M

�
�7=2
�

64�
5

1

�1� e�9=2

�
1�

31

8
e2 �
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e4 �

1

6
e6

��rp
M

�
�9=2

�O
��rp
M

�
�11=2

�
�Lz
m

 �

64�
5

1

�1� e�2

�
1�

7

8
e2

��rp
M

�
�2
�

192�
5

1

�1� e�3

�
1�

35

24
e2 �

1

4
e4

��rp
M

�
�3
�O

��rp
M

�
�4
�
:

(A5)
The leading order terms agree with the Keplerian results (22) and (23) [3], as expected. In the limit rp ! rUCO �
2�3� e�=�1� e�, the argument of the elliptic integrals approaches 1. The elliptic integrals diverge logarithmically in this
limit, and we may expand them as in Eqs. (38) and (39).

On substitution of these expansions into (A3) and (A4), we find the asymptotic form of �E and �Lz to be
M
m

�X 
 pX ln
�rp
M
�

2�3� e�
1� e

�
� qX �O

��rp
M
�

2�3� e�
1� e

�
ln
�rp
M
�

2�3� e�
1� e

��
: (A6)
As before, X refers to either E or Lz=M. The coefficients pX and qX are functions of eccentricity

pE �
4�1� e�7=2

5
���
e
p
�3� e�3

(A7)
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qE � 4
���
e
p
�126 493 657 290� 548 139 181 590e� 1 030 019 780 790e2 � 1 139 255 611 065e3 � 838 466 930 873e4

� 401 719 467 929e5 � 98 700 067 049e6 � 6 236 043 751e7 � 2 856 045 401e8 � 177 251 547e9

� 1 203 124 043e10 � 316 812 556e11 � 109 455 696e12 � 88 995 328e13�=�1 673 196 525�1� e�5=2�3� e�6�

�
4�1� e�7=2�ln�64� � ln�1� e� � ln�e��

5
���
e
p
�3� e�3

(A8)
pLz �
8
���
2
p
�1� e�2

5�3� e�3=2
���
e
p (A9)

qLz �
16

���
2
p
�1� e�2

24 249 225�3� e�3=2
���
e
p

�
e

�1� e�4�3� e�2
�174 594 420� 523 783 260e� 557 732 175e2 � 241 337 525e3

� 44 249 062e4 � 11 244 922e5 � 29 93 241e6 � 1 809 123e7 � 1 328 784e8 � 172 744e9�

�
4 849 845�6 ln�2� � ln�1� e� � ln�e��

2

�
: (A10)

2. Fitting functions

We can use the exact expressions (A3) and (A4) to derive fitting functions to approximate our results. Following the
same argument used in the parabolic case, a functional form like (29) should capture the main features of the problem, but
the coefficients are now functions of eccentricity, and we replace the parabolic value of the UCO—4M—with the value
appropriate to other eccentricities. The general ansatz is

M
m

�E �

 XN
n�0

AEn �e�
�M��1� e�rp � 2�3� e�M�

�1� e�r2
p

�
n
!

cosh�1

�
1� BE0

�
2�3� e�M
�1� e�rp

�
NE�1 �1� e�M

�1� e�rp � 2�3� e�M

�

�
MNE=2��1� e�rp � 2�3� e�M�

�1� e�r1��NE=2�
p

XN
n�0

CEn

�M��1� e�rp � 2�3� e�M�

�1� e�r2
p

�
n

�
M1��NE=2���1� e�rp � 2�3� e�M�

�1� e�r2��NE=2�
p

XN�1

n�0

BEn�1

�M��1� e�rp � 2�3� e�M�

�1� e�r2
p

�
n
: (A11)

Successive terms in the fit are given by matching consecutive orders in an expansion about rp � 2�3� e�=�1� e� and as
rp ! 1 in the way described in Sec. III D 1 for the parabolic case. To illustrate, the lowest order (N � 0) expansion
coefficients may be determined from the �E and �Lz expansions (A5)–(A10) as follows:

AX0 �e� � �pX�e�; BX0 �e� �
1

2
exp

�
qX�e�
AX�e�

�
;

CE0 �e� � �
64�

5

1

�1� e�7=2

�
1�

73

24
e2 �

37

96
e4

�
� AE0 �e�

���������������
2BE0 �e�

q �
2�3� e�
�1� e�

�
3
;

CLz0 �e� � �
64�

5

1

�1� e�2

�
1�

7

8
e2

�
� ALz0 �e�

����������������
2BLz0 �e�

q �
2�3� e�
�1� e�

�
3=2
:

(A12)

Our main focus is on orbits that are nearly parabolic, with e 
 1. We therefore expand these expressions about e � 1 to
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obtain

AE0 �e� � �
1

5
���
2
p �

1

10
���
2
p �1� e� �

1

160
���
2
p �1� e�2 �O��1� e�3�

BE0 �e� � 0:752 091� 0:094 943 9�1� e� � 0:091 845 8�1� e�2 �O��1� e�3�

CE0 �e� � �4:634 64� 1:639 44�1� e� � 0:327 505�1� e�2 �O��1� e�3�

ALz0 �e� � �
4
���
2
p

5
�

1

5
���
2
p �1� e� �

7

80
���
2
p �1� e�2 �O��1� e�3�

BLz0 �e� � 1:318 99� 0:126 207�1� e� � 0:392 812�1� e�2 �O��1� e�3�

CLz0 �e� � �4:1491� 1:715 17�1� e� � 0:128 645�1� e�2 �O��1� e�3�:

(A13)

The expansion of the BX0 ’s and CX0 ’s may also be written down precisely. However, the expressions are extremely
complicated, which is why the numerical values of these coefficients have been quoted instead. Higher order fitting
functions may be obtained by matching more terms in the expansions of �E and �Lz, as described earlier. For
completeness, we quote here the remaining coefficients of the N � 2 fit, once again expanded to quadratic order about
the parabolic case

AE1 �e� � �0:282 843�1� e� � 0:035 355 3�1� e�2 �O��1� e�3�

BE1 �e� � �103:215� 39:6287�1� e� � 38:3325�1� e�2 �O��1� e�3�

CE1 �e� � 69:1683� 0:682 028�1� e� � 28:7945�1� e�2 �O��1� e�3�

AE2 �e� � �1:207 97� 2:318 72�1� e� � 2:151 34�1� e�2 �O��1� e�3�

BE2 �e� � 727:515� 1570:89�1� e� � 1139:13�1� e�2 �O��1� e�3�

CE2 �e� � �439:378� 1223:38�1� e� � 862:812�1� e�2 �O��1� e�3�

ALz1 �e� � �0:565 685�1� e� � 0:494 975�1� e�2 �O��1� e�3�

BLz1 �e� � �53:4491� 4:387 09�1� e� � 0:469 838�1� e�2 �O��1� e�3�

CLz1 �e� � 25:4129� 16:7694�1� e� � 7:064 19�1� e�2 �O��1� e�3�

ALz2 �e� � 3:9598�1� e� � 4:808 33�1� e�2 �O��1� e�3�

BLz2 �e� � 29:7857� 167:281�1� e� � 66:0607�1� e�2 �O��1� e�3�

CLz2 �e� � 15:1726� 131:512�1� e� � 26:8611�1� e�2 �O��1� e�3�:

(A14)
[1] J. R. Gair, L. Barack, T. Creighton, C. Cutler, S. L. Larson,
E. S. Phinney, and M. Vallisneri, Classical Quantum
Gravity 21, S1595 (2004).

[2] F. D. Ryan, Phys. Rev. D 56, 1845 (1997); 56, 7732
(1997).

[3] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
[4] P. C. Peters, Phys. Rev. 136, B1224 (1964).
[5] S. Teukolsky, Astrophys. J. 185, 635 (1973).
[6] W. Press and S. Teukolsky, Astrophys. J. 185, 649

(1973).
[7] W. Press and S. Teukolsky, Astrophys. J. 193, 443 (1974).
[8] C. Cutler, D. Kennefick, and E. Poisson, Phys. Rev. D 50,

3816 (1994).
[9] S. A. Hughes, Phys. Rev. D 61, 084004 (2000).
084009
[10] K. Glampedakis and D. Kennefick, Phys. Rev. D 66,
044002 (2002).

[11] S. Drasco and S. Hughes, Phys. Rev. D 69, 044015 (2004).
[12] S. A. Hughes, S. Drasco, E. E. Flanagan, and J. Franklin,

Phys. Rev. Lett. 94, 221101 (2005).
[13] R. Ruffini and M. Sasaki, Prog. Theor. Phys. 66, 1627

(1981).
[14] K. Glampedakis, S. A. Hughes, and D. Kennefick, Phys.

Rev. D 66, 064005 (2002).
[15] J. R. Gair and K. Glampedakis (unpublished).
[16] T. Creighton, J. R. Gair, S. A. Hughes, and M. Vallisneri

(unpublished).
[17] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation

(Freeman, New York, 1973).
-19



GAIR, KENNEFICK, AND LARSON PHYSICAL REVIEW D 72, 084009 (2005)
[18] E. Poisson, Living Rev. Relativity 7, 6 (2004), http://
www.livingreviews.org/lrr-2004-6.

[19] L. Barack and C. Cutler, Phys. Rev. D 70, 122002 (2004).
[20] T. Tanaka, M. Shibata, M. Sasaki, H. Tagoshi, and

T. Nakamura, Prog. Theor. Phys. 90, 65 (1993); 71, 79
(1984).

[21] R. O’Shaughnessy, Phys. Rev. D 67, 044004 (2003).
[22] J. R. Gair, D. Kennefick, and S. L. Larson, astro-ph/

0508275.
[23] K. Martel, Phys. Rev. D 69, 044025 (2004).
[24] M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions (Dover, New York, 1964).
[25] I. S. Gradshteyn and I. M. Ryshik, Table of Integrals,

Series and Products (Academic, London, 1994), 5th ed.
084009
[26] In The Odyssey Scylla and Charybdis were monsters who
guarded opposite sides of a narrow strait through which
ships must pass on their way from Troy in Asia Minor to
Ithaca in Greece. Scylla was a six-headed reptile who
plucked sailors from the decks of their ships as they
passed, while Charybdis was an undersea monster which
created a great whirlpool by its sucking in of seawater, the
whirlpool causing ships to be pulled under if they strayed
too near.

[27] M. Freitag, Classical Quantum Gravity 18, 4033 (2001).
[28] M. Freitag and W. Benz, Astron. Astrophys. 394, 345

(2002).
[29] M. Freitag, Astrophys. J. 583, L21 (2003).
[30] F. D. Ryan, Phys. Rev. D 53, 3064 (1996).
-20


