AIAA 95-2430
Pulsed Instabilities in Combustion Chambers
V. S. Burnley, G. Swenson, and F. E. C. Culick
California Institute of Technology
Pasadena, CA
PULSED INSTABILITIES IN COMBUSTION CHAMBERS

V. Burnley; G. Swenson; and F.E.C. Culick
California Institute of Technology, Pasadena, California 91125

Abstract

A pulsed or “triggered” instability occurs when pressure oscillations develop in a linearly stable combustion system after being subjected to a sufficiently large disturbance. Such true nonlinear instabilities usually occur as subcritical bifurcations in dynamical systems theory. Understanding which nonlinear processes can lead to subcritical bifurcations is the focus of this work. Earlier work with the approximate analysis used here has shown convincingly that nonlinear acoustics alone does not contain the phenomenon of pulsed instabilities; evidently some other nonlinear contribution must also be included. An extensive experimental and numerical investigation conducted by Baum and Levine strongly suggests that nonlinear combustion is required. Using models of pressure and velocity coupling, the current work studies the effect of nonlinear combustion on the behavior of the system.

1 Introduction

Combustion instabilities were discovered as a serious problem in propulsion systems more than four decades ago. Since their discovery, two main types of instabilities have been observed in practice: spontaneous instabilities and pulsed instabilities. Spontaneous instabilities occur in combustion systems which are linearly unstable so that any disturbance initially grows exponentially in time. Under the influence of nonlinear processes, the oscillations may reach a limiting amplitude. Pulsed instabilities, also known as “triggering,” occur in systems which are stable to small perturbations but are unstable to larger disturbances.

Methods of analyzing spontaneous oscillations are now highly developed, though it cannot be claimed that predictions and interpretations of observed behavior can be accomplished with wholly satisfactory accuracy. However, experience has shown that the errors and uncertainties are, almost certainly, due in all cases to imperfect information required to produce quantitative results. The most significant uncertainties are associated with the response of combustion to unsteady motions, but none of the contributing processes are well understood.

Pulsed instabilities have received less attention, and methods are thus less advanced. This seems to be partly due to difficulties in analysis, and partly to less pressing practical concern compared with the widespread need for coping with problems of spontaneous instabilities early in the development of propulsion systems. The most extensive investigation of pulsed oscillations, both experimentally and theoretically, was conducted by the Air Force Rocket Propulsion Laboratory beginning in the mid-1970s lasting through 1988. As part of the effort to understand experimental observations, Baum and Levine used numerical methods to solve partial differential equations (PDEs) approximating the experiments. Nonlinear combustion was modeled using a nonlinear combustion response based on the idea of velocity coupling – the unsteady equivalent of erosive burning.

There are certain drawbacks to using a purely numerical method to interpret data. It is often difficult, for example, to produce general trends useful in the design process. Also, numerical methods do not readily allow one to determine the relative influence
and importance of the various nonlinear processes. Nonetheless, the results of Baum and Levine showed convincingly that nonlinear combustion is an important process in triggering to an astable limit cycle.

For the reasons cited above, an approximate analysis is better suited for the purposes of this work. The approximate analysis used here was introduced by Zinn,4-6 and independently, by Culick.7,8 It is based on application of spatial averaging in the form of Galerkin’s method, which has proven to be a very useful technique in the study of combustion instabilities.

Over the past twenty years, this approximate analysis has been used extensively to study the effects of nonlinear processes on combustion instabilities. Although it has not been proven explicitly, calculations for a wide range of special cases have shown that nonlinear gasdynamics alone does not contain pulsed instabilities.5-12 The reason seems to be that nonlinear gasdynamic coupling causes transfer of energy among acoustic modes in a special way. Any possible transfer of internal thermodynamic energy to the energy of a pulse takes place at a rate insufficient to compensate the dissipation of energy causing the acoustic system to be linearly stable.

Other investigations have studied acoustics-mean flow interactions as a possible mechanism of triggering. While the mean flow offers a significant energy source which could possibly sustain such oscillations, the investigation by Yang et al.10 did not reveal any conditions under which triggering will occur.

Nonlinear combustion processes have also been treated in the context of the approximate analysis. Gadiot and Gany13 reported triggering when nonlinear pressure coupling was included. However, the validity of the results are questionable due to the high amplitudes of the oscillations. In addition, limited results of triggering have been obtained by Kim14 and Greene15 using ad hoc velocity coupled models along with the additional approximations of time-averaging and truncation to two modes.

More recently, pulsed instabilities were treated in the companion paper of this work.16 Using two ad hoc models of velocity coupling, dynamical systems theory was used to study the effects of nonlinear combustion and gasdynamics. Results were obtained for up to six modes, both with and without the approximation of time-averaging.

The current study is an extension of that article. The present investigation also uses dynamical systems theory to study nonlinear pressure coupling and to extend the nonlinear velocity coupled models to account for threshold velocity effects. Discrepancies in results obtained with and without time-averaging are also addressed.

2 Formulation of the Approximate Analysis

The development of the approximate analysis has been covered in many works beginning in 19768 and most recently in the companion article of this work.16 As with any analysis of the flow in a liquid or solid rocket, the development must begin with the conservation equations for two-phase flow. A wave equation for the pressure is then derived for a medium having the mass-averaged properties of the mixture of gas and particulate matter.1 As an approximation to the unsteady pressure and velocity fields, we will use the classical acoustic modes of the chamber ψ_m as an orthogonal basis:

\begin{align}
 p'(r,t) &= \bar{p} \sum_{m=1}^{\infty} \eta_m(t) \psi_m(r) \tag{1} \\
 u'(r,t) &= \sum_{m=1}^{\infty} \frac{\eta_m(t)}{\gamma k_m^2} \nabla \psi_m(r) \tag{2}
\end{align}

The time-dependent amplitudes $\eta_m(t)$ will eventually be the variables to be determined. Substitution of these approximations in the wave equation followed by spatial averaging transforms the problem from a system of PDEs to a system of ODEs, a notable simplification.

\begin{equation}
 \frac{d^2 \eta_n}{dt^2} + \omega_n^2 \eta_n = F_n \tag{3}
\end{equation}

where $\omega_n = ak_n$ and

\begin{equation}
 F_n = -\frac{a^2}{\bar{p}E_n^2} \left\{ \int \psi_n h dV + \oint \psi_n f dS \right\} \tag{4}
\end{equation}

Generally, F_n will depend both linearly and nonlinearly on the pressure and velocity fluctuations. If
we deal only with acoustic motions, then it is appropriate to use Eqs. (1) and (2) to evaluate F_n, thereby introducing η_n and $\bar{\eta}_n$ in the right hand side of Eq. (3). Further considerations are necessary to treat more general unsteady motions, as we shall discuss in Sec. 3.

For the numerical results discussed in Sec. 4, we shall treat only longitudinal modes normally excited in straight chambers having uniform cross-section. Neglecting nonlinear contributions other than gasdynamics and combustion, we obtain the following set of coupled nonlinear oscillators:

$$\ddot{\eta}_n + \omega_n^2 \eta_n = 2\alpha_n \dot{\eta}_n + 2\omega_n \theta_n \eta_n - \sum_{i=1}^{n-1} \left(C_{ni}^{(1)} \dot{\eta}_n \eta_{n-i} + D_{ni}^{(1)} \eta_n \eta_{n-i} \right) - \sum_{i=1}^{\infty} \left(C_{ni}^{(2)} \dot{\eta}_n \eta_{n+i} + D_{ni}^{(2)} \eta_n \eta_{n+i} \right) + (F_n)^{\text{NL}}$$

(5)

where $(F_n)^{\text{NL}}$ will be replaced by one of the nonlinear combustion models which will be developed in the next section and

$$C_{ni}^{(1)} = \frac{-1}{2\gamma i(n-i)} [n^2 + i(n-i)(\gamma - 1)]$$

$$C_{ni}^{(2)} = \frac{1}{\gamma (n+i)} [n^2 - i(n+i)(\gamma - 1)]$$

$$D_{ni}^{(1)} = \frac{(\gamma - 1)\omega_n^2}{4\gamma} [n^2 - 2i(n-i)]$$

$$D_{ni}^{(2)} = \frac{(\gamma - 1)\omega_n^2}{2\gamma} [n^2 + 2i(n+i)]$$

Many previous investigations using the approximate analysis have also used the method of time-averaging. The idea is that in many applications, the oscillations have slowly varying amplitudes and phases: only small fractional changes in one period of the lowest mode. It is then reasonable to write (without approximation at this point),

$$\eta_n(t) = r_n(t) \sin[\omega_n t + \phi_n(t)]$$

$$= A_n(t) \sin \omega_n t + B_n(t) \cos \omega_n t$$

(6)

where A_n and B_n are assumed to be slowly varying in time. Substituting this expression in Eq. (3) followed by averaging over one period of the fundamental mode yields

$$\frac{dA_n}{dt} = \frac{1}{\omega_n \tau_1} \int^t_{t-	au_1} F_n \cos \omega_n t' dt'$$

(7)a

$$\frac{dB_n}{dt} = - \frac{1}{\omega_n \tau_1} \int^t_{t-	au_1} F_n \sin \omega_n t' dt'$$

(7)b

When the integrals are carried out, the A_n and B_n in F_n are assumed constant since they vary little over the time of integration, τ_1. The companion article calculated solutions using the method of time-averaging in order to determine the effect of this approximation.

3 Modeling Nonlinear Combustion Response of a Solid Propellant

Analysis of unsteady burning has been directed largely to investigating the response of burning to fluctuations of the flow field, in order to satisfy the needs for predicting linear stability. Most of the results were obtained early in the development of the subject; see Culick for a review of calculations of the response function.

Motivated by observations suggesting that the response of a burning solid likely depends on the scouring effect of flow velocity parallel to the surface, McClure and his colleagues treated the corresponding phenomenon for unsteady motions. The idea is that changes in the burning rate of a solid may be dependent on changes of the magnitude but not the direction of the flow past the surface. The simplest possible cause of such behavior is associated with convective heat transfer. Whatever its true physical origin, this sort of nonlinear behavior is commonly called “velocity coupling.” In the first instance, including this effect in analysis of the unsteady burning rate introduces essentially a kinematical nonlinearity. Without a thorough analysis of the entire burning process, it is not possible to state unequivocally the form that the nonlinearity should take.

For the purposes here, the precise formula for nonlinear unsteady combustion is unimportant. We intend primarily to determine the effect of nonlinear
combustion on the behavior of the nonlinear system. Two models are used in this investigation; one representing nonlinear pressure coupling, and one representing velocity coupling with a threshold velocity. The pressure coupled model is derived by extending the derivation of a linear response function to include second-order terms. The threshold velocity model is a modification of the velocity coupled model proposed by Greene. This model was also used in the companion article.

In order to be used in the present analysis, any model of unsteady combustion must be put in such a form as to fit into the appropriate terms in the forcing function given by Eq. (4). For gasdynamics up to second-order, the right hand side of Eq. (4) can be written:

\[-\frac{\rho E^2}{a^2} F_n = \left\{ \bar{\rho} \int (\bar{u} \cdot \nabla u' + u' \cdot \nabla \bar{u}) \cdot \nabla \psi_n \, dV \right\} \]

\[+ \left\{ \frac{1}{a^2} \frac{\partial}{\partial t} \int \left(\gamma p' \nabla \cdot \bar{u} + \bar{u} \cdot \nabla p' \right) \psi_n \, dV \right\} \]

\[+ \left\{ \frac{1}{a^2} \frac{\partial}{\partial t} \int \left(\gamma p' \nabla \cdot u' + u' \cdot \nabla p' \right) \psi_n \, dV \right\} \]

\[\text{linear gasdynamics} \]

\[+ \left\{ \frac{1}{a^2} \frac{\partial}{\partial t} \int \left(\gamma p' \nabla \cdot u' + u' \cdot \nabla p' \right) \psi_n \, dV \right\} \]

\[\text{nonlinear gasdynamics} \]

\[+ \int \bar{\rho} \frac{\partial u'}{\partial t} \cdot \bar{n} \psi_n \, dS - \int \left[\frac{1}{a^2} \frac{\partial p'}{\partial t} \psi_n + \mathcal{F} \cdot \nabla \psi_n \right] \, dV \]

\[\text{linear and nonlinear surface processes} \]

All terms in the first two pairs of brackets labeled linear and nonlinear gasdynamics will be computed using the zeroth-order approximations (1) and (2) for the pressure and velocity as described in Sec. 2. Those terms labeled “other contributions”, containing for example, interactions between the gas and condensed phase, will be ignored here.

As a means of accommodating nonlinear combustion of solid propellants, we are concerned in this section with the remaining terms arising from unsteady processes on the boundary of the chamber. Part of this contribution is due to the exhaust nozzle and will be absorbed in the linear attenuation. For the nonlinear combustion, the term labeled “surface processes” nearly equals the time derivative of the second-order fluctuation of mass flux inward. The mass flux at the surface is defined as \(\dot{m} = \rho u \) so that the fluctuating part becomes

\[\dot{m}' = \dot{m} - \bar{m} \]

\[= (\bar{\rho} + \rho')(\bar{u} + u') - \rho \bar{u} \]

\[= \rho u' + \rho'(\bar{u} + u') \]

Taking the time derivative and rearranging terms, we obtain a form which can be substituted into Eq. (8): \[\frac{\partial}{\partial t} (\bar{u} + u') \cdot \bar{n} \]

\[- \frac{\partial}{\partial t} (\bar{u} + u') \cdot \bar{n} \]

\[\text{(9)} \]

It happens that analysis and modeling of unsteady combustion leads to results for mass fluctuation but, as shown by Eq. (8), the gasdynamics problem within the chamber requires the unsteady velocity as the boundary condition. Thus we can include contributions from nonlinear combustion by use of Eq. (9). Substitution of Eq. (9) into the surface process term of Eq. (8) gives

\[-\frac{\rho E^2}{a^2} (F_n)_{\text{comb}} = \int \frac{\partial \dot{m}'}{\partial t} \cdot \bar{n} \psi_n \, dS \]

\[- \int \rho' \frac{\partial u'}{\partial t} \cdot \bar{n} \psi_n \, dS - \int \frac{\partial}{\partial t} (\bar{u} + u') \cdot \bar{n} \psi_n \, dS \]

\[\text{(10)} \]

To evaluate the last two integrals, the linear approximation for \(u' \) expressed in terms of the admittance function \(A_b \) will be used:

\[-\bar{u}' \cdot \bar{n} = a A_b \frac{p'}{\gamma \bar{\rho}} \]

\[\text{It should be noted that the approximate analysis can also accommodate nonlinear combustion processes of liquid propellants through the terms labeled “other contributions.”} \]
Using this approximation along with the isentropic assumption, \(\rho' = \frac{\tilde{\rho} E^2}{a^2} (F_n)_{\text{comb}} \), yields

\[
\frac{3}{a^2} \int \left[\tilde{u}_b + 2a A_b \frac{\rho'}{\gamma \rho} \right] \frac{\partial \psi_n}{\partial t} \psi_n dS + \rho \int \left(\frac{\tilde{u}_b}{\gamma \rho} \right) \frac{\partial \psi_n}{\partial t} \psi_n dS
\]

where we have defined \(\tilde{u}_b = -\tilde{u} \cdot \tilde{n} \) and \(\tilde{m}' = -\tilde{m}' \cdot \tilde{n} \) to simplify the equations.

3.1 Second-Order Pressure Coupling

The linear response of a solid propellant to pressure fluctuations at the flame has been treated in many analyses, usually leading to the same parameter expression as found by Denison and Baum.\(^{17,20}\) The form of the two parameters depend on the models chosen for the solid and gas phases. Here, we will derive the nonlinear response by retaining terms to second-order in fluctuations using the following models for the solid and gas phase: 1) the solid is assumed to be homogeneous and nonreactive with constant properties, 2) combustion is assumed to be uniformly distributed with combustion beginning immediately at the solid-gas interface, 3) combustion responds quasi-statically to fluctuations in pressure only. The linear response for this special case has been previously treated by Culick,\(^{21}\) so many of the details will not be covered here.

3.1.1 The Solid Phase and Solid-Gas Interface

We begin with the energy balance at the solid-gas interface.

\[
\left(k_g \frac{dT}{dx} \right)_{+} = \left(k_p \frac{dT}{dx} \right)_{-} + (c_p - c) \tilde{m}_s T_s' + Q_s \tilde{m}_s' + (c_p - c) \tilde{m}_s' T_s' \quad (13)
\]

where the subscript \(s \) denotes the value at the solid-gas interface. \(Q_s \) is the heat released at the surface, while \(c_p \) and \(c \) are the specific heats of the gas and solid, respectively. This will be the main equation in which the solutions from the solid and gas phases will be substituted. Under the assumptions listed above, solution for the solid phase yields the fluctuation of heat transfer from the interface to the solid.

\[
\left(\frac{dT}{dx} \right)_{s} = \tilde{m}_s c T_s \left[\frac{T_s'}{T_s} + \frac{1 - \frac{T_s'}{T_s}}{\lambda \tilde{m}_s} \right] \quad (14)
\]

\(\lambda \) is a complex function of frequency found by solving the equation \(\lambda (\lambda - 1) = i k_p \omega / \tilde{E}; T_c \) is the temperature of the cold propellant. To complete the analysis of the solid-gas interface, an assumption regarding the rate of conversion of solid to gas must be made. As is common practice, an Arrhenius Law will be used for pyrolysis at the surface.

\[
m_s = B_s T_s^\beta e^{-E_s / R_0 T_s} \quad (15)
\]

To second-order in fluctuations, the mass flux is given by

\[
\frac{\tilde{m}_s'}{\tilde{m}_s} = (\beta_1 + \tilde{E}) \frac{T_s'}{T_s} + \left[\frac{\beta_1 (\beta_1 - 1)}{2} + \beta_1 \tilde{E} + \left(\frac{\tilde{E}^2}{2} - E \right) \right] \left(\frac{T_s'}{T_s} \right)^2 \quad (16)
\]

where

\[
\tilde{E} = \frac{E_s}{R_0 T_s}
\]

Combining Eqs. (13), (14), and (16) leads to an equation relating the surface temperature fluctuations to the heat transfer from the gas to the solid-gas interface.

\[
\left(k_g \frac{dT}{dx} \right)_{+,} = \tilde{m}_s c T_s \left[C_1 \frac{T_s'}{T_s} + C_2 \left(\frac{T_s'}{T_s} \right)^2 \right] \quad (17)
\]

where

\[
C_1 = \lambda + \frac{A}{\lambda} + \left(\frac{c_p}{c} - 1 \right) - \frac{Q_s (\beta_1 + \tilde{E})}{cT_s}
\]

\[
C_2 = \left(\frac{c_p}{c} - 1 \right) (\beta_1 + \tilde{E}) + \left(\frac{1 - \frac{T_s'}{T_s}}{\lambda} - \frac{Q_s}{cT_s} \right)
\]

\[
\times \left[\frac{\beta_1 (\beta_1 - 1)}{2} + \beta_1 \tilde{E} + \left(\frac{\tilde{E}^2}{2} - \tilde{E} \right) \right]
\]

\[
A = (\beta_1 + \tilde{E}) \left(1 - \frac{T_s'}{T_s} \right)
\]

American Institute of Aeronautics and Astronautics
3.1.2 The Gas Phase

The solution for the gas phase gives another formula for the fluctuation of heat transfer to the solid.

\[
\left(k_g \frac{dT}{dx} \right)_{s+} = \frac{\dot{m} c_p T_s \Lambda^2}{\dot{m} c_p} \left[\frac{w'}{\dot{m}} - \frac{\dot{m}'}{\dot{m}s} - \frac{w'}{w \dot{m}s} + \left(\frac{\dot{m}'}{\dot{m}s} \right)^2 \right]
\]

where

\[
\Lambda^2 = \frac{Q/\dot{m} \ddot{w}}{m^2 c_p \ddot{T}_s}
\]

This expression introduces an additional variable, the reaction rate \(w \). Thus, we need another relation between the pressure and the reaction rate to complete the analysis. We assume that the reaction rate can be expressed as a function of pressure only and that the linear burning rate may be approximated by \(\dot{m} = ap^n \). This leads to the following second-order equation relating the reaction rate and pressure.

\[
\frac{c_p}{c} \left(\frac{\Lambda^2}{1 - \frac{\ddot{w}}{w}} \right) \frac{w'}{\ddot{w}} = W_1 \frac{p'}{\ddot{p}} + W_2 \left(\frac{p'}{\ddot{p}} \right)^2
\]

where

\[
W_1 = 2n(1-H) + \frac{c_p}{c} \frac{n}{A} \\
W_2 = 2n^2 - n(1-H) + 2n^2 \frac{c_p}{c} \frac{n(n-A)}{2A^2}
\]

Substitution of Eq. (19) into Eq. (18) yields

\[
\left(k_g \frac{dT}{dx} \right)_{s+} = \frac{\dot{m} c_p T_s \Lambda^2}{(\beta_1 + \ddot{E})} \left[W_1 A \frac{p'}{\ddot{p}} + W_2 A \left(\frac{p'}{\ddot{p}} \right)^2 \right.
\]

Finally, equating Eqs. (20) and (17) followed by substitution for \(T_s \) from Eq. (16) leads to the nonlinear response function. In the linear limit, the response function can be written in the two parameter form of Denison and Baum.\(^{20}\)

\[
R_{b=} \text{linear} = \left(\frac{\dot{m}'}{\dot{m}} \right) \frac{p'}{\ddot{p}} = \frac{nAB}{\lambda + \frac{A}{c} - (1 + A) + AB}
\]

with

\[
B = 2 \left(1 - \frac{Q_s}{c(T_s - T_c)} \right) + \frac{c_p}{c} \frac{1}{A}
\]

Using this definition, the nonlinear response function is written as a function of the linear response function.

\[
R_{b=}^{n, 1} = R_{b=} \text{linear} + \left[\frac{W_2}{W_1} R_{b=} \text{linear} - (R_{b=} \text{linear})^2 \right] \left(\frac{p'}{\ddot{p}} \right) - \frac{D}{AW_1} (R_{b=} \text{linear})^3 \left(\frac{p'}{\ddot{p}} \right)
\]

where

\[
D = \left(\frac{c_p - 1}{c} \right) \left(1 - \frac{C_3}{C_4} \right) - \lambda \frac{C_3}{C_4} - \frac{c_p}{c} C_4 A^2
\]

\[
C_3 = \frac{\beta_1 (\beta_1 - 1)}{2} + \beta_1 \ddot{E} + \left(\frac{\ddot{E}^2}{2} - \ddot{E} \right)
\]

\[
C_4 = \beta_1 + \ddot{E}
\]

The linear response function is a complex quantity in general. When used in calculations of time-dependent motions, an approximation to \(R_{b=} \text{linear} \) can be made for pure oscillations

\[
[R_{b=}^{(r)} + iR_{b=}^{(i)}] e^{i\omega t} = \left[R_{b=}^{(r)} + R_{b=}^{(i)} \frac{1}{\omega} \frac{\partial}{\partial t} \right] e^{i\omega t}
\]

Hence, to incorporate the linear response functions in the analysis, we may set

\[
R_{b=} \text{linear} = R_{b=}^{(r)} + R_{b=}^{(i)} \frac{1}{\omega} \frac{\partial}{\partial t}
\]

since to zero order, we have pure oscillatory motions. \(\omega \) is taken to be \(\omega_n \) in the \(n^{th} \) oscillator equation. It is assumed that the nonlinear response function can be handled in the same manner.

American Institute of Aeronautics and Astronautics
3.2 Threshold Velocity Model

In the companion work16 two ad hoc velocity coupled models were used to study the effects of nonlinear combustion on the solution to the coupled nonlinear equations. The first model was proposed by Baum and Levine.3 In this model, the mass burning rate is modified by a function of velocity as follows:

\[\dot{m} = \dot{m}_{pc}[1 + R_{vc}F(u)] \]

(26)

where \(\dot{m}_{pc} \) is the mass flux due to linear pressure coupling only and \(R_{vc} \) is the velocity coupled response function. \(F(u) = |u'| \) was chosen since the burn rate should depend on the magnitude but not the direction of the parallel flow. Any possible influences of the mean flow are ignored at the present time.

\[\dot{m} = \dot{m}_{pc}[1 + R_{vc}|u'|] \]

(27)

The second model, suggested by Greene,15 is a subset of Baum and Levine's model. In this model, the fluctuating part of the mass flux is assumed to depend only on the magnitude of the velocity at the surface.

\[\dot{m}' = \bar{m}R_{vc}|u'| \]

(28)

Results for these two models have been reported in the companion article and will be discussed further in Sec. 4.2.

Threshold effects have been observed in experimental investigations of velocity coupling.22 We will investigate the possible influences of such a threshold using a modified form of Greene's model. Instead of using a direct dependence on the magnitude of velocity, the following model will be used.

\[\dot{m}' = \bar{m}R_{vc}F(u') \]

(29)

where \(F(u) \) is shown in Fig. 1. This function introduces a dead zone in which the nonlinear contribution from combustion does not affect the system. When the amplitudes of oscillations become larger than the chosen threshold value \(u_t \), the nonlinear effects are then felt.

![Threshold velocity function; \(u_t = 0.02 \)]

Figure 1: Threshold velocity function; \(u_t = 0.02 \)

4 Discussion of Results

Dynamical systems theory was first applied to the study of nonlinear combustion instabilities by Jahnke and Culick.23 As demonstrated by that work and by Culick et al.,16 dynamical systems theory is indeed a very useful tool, allowing general trends to be obtained in a systematic manner.

As in the previous studies, we will use a continuation method to trace periodic solutions as a function of a free parameter of the system. Here the free parameter is chosen to be the linear growth rate of the first mode, \(\alpha_1 \). The linear growth rates of all other modes are negative so that \(\alpha_1 < 0 \) denotes a linearly stable system. The results are presented as the maximum value of \(\eta_1 \) in the limit cycle as a function of \(\alpha_1 \). For details on the continuation method, see Jahnke and Culick23 and Doedel et al.24,25

4.1 Nonlinear Pressure Coupling

Even for small amplitude oscillations, the nonlinear response function can differ substantially from the linear response function as shown in Figs. 2 and 3 for \(A = 6.0 \) and \(B = 0.55 \). When \(p'/\bar{p} = 0.01 \), the second-order terms increase the magnitudes of both the real and imaginary parts of the response function substantially. Nonetheless, no triggering has been found for these parametric values, as well as other realistic values of \(A \) and \(B \). The parameter space is large, so it is quite possible that this nonlinear model could lead to triggering for some values. So
far, however, the search has been unsuccessful.

For the case of nonlinear pressure coupling, it is important to know the linear stability boundary of the propellant response. Culick reported the following stability criterion for the parameters of the linear response function.

\[A < \frac{(B + 1)}{(B - 1)^2} \]

(30)

If this condition is not met, the propellant is intrinsically unstable and the values of \(A \) and \(B \) are not realistic.

Interesting enough, triggering to stable limit cycles was found for values of \(A \) and \(B \) outside this stability limit. The values given in Table 1 yield \(A = 6.0 \) and \(B = 0.486 \), which are located just outside the stability boundary. As a result, the response functions, shown in Figs. 4 and 5 are quite different.

The results for truncation to two and four modes are displayed in Figs. 6 and 7. In both cases, a region of triggering was found. We have no explanation for this behavior at the present time. Although the values are unrealistic, this case may be useful if it helps gain a better understanding of the coupling between modes.

4.2 The Discrepancy between the Time-Averaged and Original Oscillator Equations

Results reported previously for velocity coupling, showed a substantial difference in the behavior predicted by the original oscillator equations and the time-averaged equations. The original oscillator equations produce a subcritical Hopf bifurcation at the origin with a very low amplitude unstable branch. The time-averaged results, however, show an \(\alpha \)-shift, so that branching to periodic solutions occurs at a negative value of \(\alpha_1 \). This bifurcation can be either subcritical or supercritical depending on other parameters of the system. Figures 8 and 9 show bifurcation diagrams for the original oscillator and the time-averaged equations, respectively.

After further consideration, it is now apparent that this discrepancy is the result of an approximation used when applying the continuation method to the original oscillator equations. Since the continuation method is based on the implicit function theorem, it is required that all functions be continuously differentiable. To meet this requirement, an approximation to \(u' \) was used in the velocity coupled models. All plots reported in the companion paper utilized \(u' \approx u'_2 \arctan(1000u') \). As Fig. 10 illustrates, the two functions are very different near \(u' = 0 \). Although this approximation was necessary,
it changed the nature of the equations by introducing an artificial threshold velocity. The threshold is very small, but it changes the behavior of the system from a shifted spontaneous oscillation to an apparent region of triggering. Therefore, the original oscillator equations should in fact produce results similar to those predicted by the time-averaged equations, i.e., a much smaller region of triggering or none at all.

This result suggests that a threshold velocity may be important in triggering. In the next section, we will study the possible effects of a larger threshold velocity.

4.3 Threshold Velocity Effects

The results obtained using the threshold velocity model do in fact lead to triggering as suggested by the above discussion. It is expected that since the nonlinear effects from combustion will not be felt until the threshold velocity is reached, at low amplitudes of oscillations, the path should be identical to the case of zero velocity coupling, i.e., a supercritical bifurcation at the origin. This is precisely the behavior shown in Fig. 11.

Once the threshold velocity is attained, nonlinear combustion quickly becomes important, and a fold in the path is produced. This unstable path follows a near horizontal path until other nonlinear effects become strong enough to produce a second fold. It is also to be expected that the amplitudes of oscillations will be smaller for this case than the zero threshold case due to the dead zone in the nonlinear response.

5 Concluding Remarks

Using an approximate analysis and the tools of dynamical systems theory, the present work has studied pulsed instabilities in combustion chambers. Since nonlinear combustion processes likely play an important role in this type of instability, two non-
linear combustion models were used in the analysis. The first model was a nonlinear pressure coupled model and was developed by extending the derivation of a linear response function to include second-order terms. This particular model did not exhibit triggering when realistic values of A and B were used, although a more thorough parameter search should be performed. The second model extended Greene's velocity coupled model to study the effects of a threshold velocity. As expected, the threshold velocity model produced a large region of triggering.

Previous results showed a discrepancy between results obtained using the time-averaged equations and the original oscillator equations. The cause was determined to be an approximation used to make the original oscillator equations continuously differentiable, a necessary condition for use in the continuation method.

Acknowledgments

This work was partly supported by the Palace Knight Program of the U. S. Air Force, and partly by the California Institute of Technology, Pasadena, California.
Figure 11: Maximum amplitude in limit cycle of first acoustic mode with and without a threshold velocity of 0.02; four modes; $R_{ve} = 7.8$

References

Table 1. Physical Values

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propellant temperature</td>
<td>$T_c = 300 \text{ K}$</td>
</tr>
<tr>
<td>Surface temperature</td>
<td>$T_s = 880 \text{ K}$</td>
</tr>
<tr>
<td>Flame temperature</td>
<td>$T_f = 3539 \text{ K}$</td>
</tr>
<tr>
<td>Thermal conductivity of propellant</td>
<td>$k_p = 0.41868 \text{ J/m·s·K}$</td>
</tr>
<tr>
<td>Thermal conductivity of gas</td>
<td>$k_g = 0.083736 \text{ J/m·sec·K}$</td>
</tr>
<tr>
<td>Thermal diffusivity of propellant</td>
<td>$\kappa_p = 1.0 \times 10^{-7} \text{ m}^2$/sec</td>
</tr>
<tr>
<td>Burning rate</td>
<td>$\dot{r}_b = 0.1145 \text{ m/sec}$</td>
</tr>
<tr>
<td>Activation energy</td>
<td>$E_a/R_o = 8011 \text{ K}$</td>
</tr>
<tr>
<td>Heat release on surface</td>
<td>$Q_s = 700687 \text{ J/kg}$</td>
</tr>
<tr>
<td>Heat release in gas phase</td>
<td>$Q_f = 2512080 \text{ J/kg}$</td>
</tr>
<tr>
<td>Average reaction rate</td>
<td>$\bar{\omega} = 10657.1 \text{ kg/m}^3\text{·sec}$</td>
</tr>
<tr>
<td>Average mass burn rate</td>
<td>$\bar{m} = 3.4 \text{ kg/m}^2\text{·sec}$</td>
</tr>
<tr>
<td>Specific heat of gas</td>
<td>$c_p = 2020 \text{ J/kg·K}$</td>
</tr>
<tr>
<td>Specific heat of propellant</td>
<td>$c = 1373.6 \text{ J/kg·K}$</td>
</tr>
<tr>
<td>Average specific heat ratio</td>
<td>$\bar{\gamma} = 1.18$</td>
</tr>
<tr>
<td>Pressure exponent in burning rate law</td>
<td>$n = 0.3$</td>
</tr>
<tr>
<td>Temperature exponent in pyrolysis law</td>
<td>$\beta_1 = 0$</td>
</tr>
</tbody>
</table>