A threshold-based earthquake early warning using dense accelerometer networks

Aldo Zollo,1 Ortensia Amoroso,1 Maria Lancieri,1,2 Yih-Min Wu3 and Hiroo Kanamori4

1Department of Physics (RISSC-Lab), University of Naples ‘Federico II’, Italy. E-mail: aldo.zollo@unina.it
2École Normale Supérieure, Paris, France
3Department of Geosciences, National Taiwan University, Taipei, Taiwan
4Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA

Accepted 2010 August 4. Received 2010 July 24; in original form 2010 April 30

SUMMARY
Most earthquake early warning systems (EEWS) developed so far are conceived as either ‘regional’ (network-based) or ‘on-site’ (stand-alone) systems. The recent implementation of nationwide, high dynamic range, dense accelerometer arrays makes now available, potentially in real time, unsaturated waveforms of moderate-to-large magnitude earthquakes recorded at very short epicentral distances (<10–20 km). This would allow for a drastic increase of the early warning lead-time, for example, the time between the alert notification and the arrival time of potentially destructive waves at a given target site. By analysing strong motion data from modern accelerograph networks in Japan, Taiwan and Italy, we propose an integrated regional/on-site early warning method, which can be used in the very first seconds after a moderate-to-large earthquake to map the most probable damaged zones. The method is based on the real-time measurement of the period ($\tau_c$) and peak displacement (Pd) parameters at stations located at increasing distances from the earthquake epicentre. The recorded values of early warning parameters are compared to threshold values, which are set for a minimum magnitude 6 and instrumental intensity VII, according to the empirical regression analyses of strong motion data. At each recording site the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the parameters Pd and $\tau_c$, which are set according to the error bounds estimated on the derived prediction equations. Given a real time, evolutionary estimation of earthquake location from first P arrivals, the method furnishes an estimation of the extent of potential damage zone as inferred from continuously updated averages of the period parameter and from mapping of the alert levels determined at the near-source accelerometer stations. The off-line application of the method to strong motion records of the $M_w$ 6.3, 2009 Central Italy earthquake shows a very consistent match between the rapidly predicted (within a few seconds from the first recorded P wave) and observed damage zone, the latter being mapped from detailed macroseismic surveys a few days after the event. The proposed approach is suitable for Italy, where, during the last two decades, a dense network of wide dynamic-range accelerometer arrays has been deployed by the Department of Civil Protection (DPC), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and other regional research agencies.

Keywords: Earthquake ground motions; Earthquake source observations; Early warning

1 INTRODUCTION
In the past two decades, progresses have been made towards implementation of earthquake early warning systems (EEWS) in many active seismic regions of the world.

In particular, operational EEWS are actually running in Japan (Nakamura 1984; Nakamura 1988; Odaka et al. 2003; Horiuchi et al. 2005), Taiwan (Wu & Teng 2002; Wu & Zhao 2006) and Mexico (Espinosa-Aranda et al. 2009), whereas other systems are under testing or development in California (Allen & Kanamori 2003; Allen et al. 2009a,b, Böse et al. 2009), southern Italy (Zollo et al. 2006; Zollo et al. 2009a,b), Turkey (Aleik et al. 2009) and Romania (Böse et al. 2007).

EEWS are aimed at providing a rapid notification of the potential damaging effects of an impending earthquake, through fast telemetry and processing of data from dense instrument arrays deployed in the source region of the event of concern or in the area surrounding the target infrastructure (Kanamori 2005).

Most developed EEWS are conceived as either ‘regional’ (network-based) or ‘on-site’ (stand-alone) systems (Kanamori
A ‘regional’ EEWS is based on a dense sensor network covering a portion or the entirety of an area that is threatened by earthquakes. The relevant source parameters (event location and magnitude) are estimated from the early portion of recorded signals and are used to predict, with a quantified confidence, a ground motion intensity measure at a distant site where a target structure of interest is located. An ‘on-site’ EEWS consists of a single sensor or an array of sensors deployed in the proximity of the target structure that is to be alerted, and the peak amplitude and/or predominant period on the initial P-wave motion are used to predict the ensuing peak ground motion (mainly related to the arrival of S and surface waves) at the same site.

An optimal performing EEWS can be defined as the system providing at the same time the largest ‘lead-time’ (e.g. the time interval between the arrival of the damaging waves and alert notification) and minimum prediction error on peak ground motion (e.g. difference between observed and predicted logarithmic peak motion amplitude) (Zollo et al. 2009a,b).

The main advantage of a network-based EEWS is that a continuously updated and more accurate estimation of source parameters (location and magnitude) is available in real time, as new data are acquired by the network. The accuracy on peak ground motion prediction at distant sites is essentially related to the parameter uncertainty of the used ground motion prediction equation (GMPE). On the other hand, for an on-site EEWS, the alert on an impending earthquake damage at the target site is mainly issued based on a local measurement of P-wave ground motion, with no need for accurate estimation of source parameters. In terms of lead-time, a network-based system can provide with a potential warning time a factor of about two longer than for a site-specific, as it can be estimated by theoretical calculations of P- and S-wave travel times at stations located in the source region and far away, using a standard crustal velocity model.

Wu & Kanamori (2005, 2008) have proposed a methodology for on-site early warning applications aimed at the rapid assessment of earthquake damage potential, which is based on the near source (epicentral distance smaller than 30 km), real-time measurement of the peak displacement (Pd) and predominant period (τc) from early P-wave signals. The settings of specific thresholds for Pd and τc allow the system to rapidly issue an earthquake alert based on a four-entry decision-table scheme.

In this note we explore the feasibility of applying a similar approach in Italy, based on the analysis of the strong motion records from the European Strong Motion Data Base and from the larger events (Ml ≥ 3.9) of the recent 2009, Mw 6.3 Central Italy (L’Aquila) earthquake sequence. By extending the observation epicentral distance to 100 km, and by comparing data from different worldwide seismic regions, we generalize the Wu & Kanamori (2005) method and propose an integrated regional/on-site early warning method which can be used in the very first seconds after a moderate-to-large earthquake for mapping the most probable damaged zones. The proposed approach is suitable for Italy, where, during the last two decades, a dense network of wide dynamic range accelerometer arrays has been deployed by the Department of Civil Protection (DPC), the Istituto Nazionale di Geofisica e Vulcanologia (INGV) and other regional research agencies.

2 DATA PROCESSING AND ANALYSIS

For this study we have analysed 3552 strong motion records from 296 events, which have been recorded in Japan (K-Net), Taiwan (TSMIP Central Weather Bureau network) and Central Italy (RAN, Department Civil Protection). These records were obtained by the modern digital accelerometer networks operating for about one decade in those countries. The data set includes the acceleration records of the main shock and 12 largest magnitude (Ml ≥ 3.9) aftershocks of the Mw 6.3, Central Italy (L’Aquila) earthquake sequence, which occurred in 2009 April. The distribution of the analysed waveform records as a function of the epicentral distance and magnitude is displayed in Fig. 1. The spanned magnitude range is 4–8.5 with a maximum epicentral distance of 150 km, whereas most of records are acquired at less than 60 km hypocentral distance. The analysed events are for the most occurring at crustal depths (z < 50 km), encompassing different geological and tectonic regions and are associated with various types of faulting mechanisms.

The procedure of data analysis involved sensitivity correction, P-phase identification and picking, single and double integration to obtain the velocity and displacement records, and causal Butterworth filtering with a high pass frequency of 0.075 Hz. The choice of the filter was made by trial and error to remove long-period artificial fluctuations contaminating the records with a relatively low signal-to-noise ratio.

The first P-wave arrival is picked on the unfiltered vertical acceleration components, and the peak displacement Pd (Wu & Kanamori 2005; Zollo et al. 2006) and the period parameter τc (Nakamura 1988; Kanamori 2005) (see next section) are measured from the bandpass-filtered displacement and velocity records over a 3-s time window after the first P time. To minimize the effect of S arrival in the P-wave time window, the peak displacement and period parameter have been measured on the high-pass filtered, vertical component of ground motion, assuming that the direct P rays are nearly vertical incident to the receiver, due to the generally observed increase of seismic velocities as a function of depth within the Earth.

The peak ground velocity (PGV) is measured from the maximum amplitude on the unfiltered horizontal components of the ground-motion velocity records.

For both Japanese and Italian waveforms data from low magnitude (M < 5) events, we had a large scatter of τc data, the measurement of which is critically dependent on the signal-to-noise ratio in the selected P wave window. The data scatter can be reduced by selecting for the analysis only those data for which the peak P velocity (P max) over the selected time window is larger than a given threshold, 0.05 cm s−1. This threshold was set after several trials on Japanese and Italian waveform data.

Another signal artefact appeared from visual inspection of some acceleration and velocity waveforms from the Japanese K-Net. Some traces showed a sudden step on the acceleration trace, which seems to happen when very high-frequency energy arrives. This is most likely originated from the sensor spring system and/or electronics. We have decided to remove these records from our analyses. As the sensors of the K-Net were replaced by new types of sensors, this problem seems to have been almost eliminated.

In Fig. 2 is shown an example of waveform data from two stations which recorded the Mw 6.3, 2009 earthquake in L’Aquila (central Italy).

3 EMPIRICAL PREDICTION EQUATIONS FOR A THRESHOLD-BASED EARLY WARNING SYSTEM

The early warning procedure that we propose is based on the real time, simultaneous measurements of peak displacement (Pd) and
Figure 1. Distribution of the number of earthquake records as a function of the magnitude and epicentral distance. Waveform data are extracted from the Japan, Taiwan and Italy (Aquila 2009 earthquake sequence) databases.

Figure 2. Examples of waveform data from the $M_w$ 6.3, 2009 L’Aquila main shock recorded at stations FMG and ORC of the RAN-DPC network in Central Italy. The acceleration, velocity displacement and $\tau_c$ time-series are plotted from the top to the bottom. The selected time window for $P_d$ and $\tau_c$ measurements is delimited by vertical bars. The $\tau_c$ trace is computed as the continuous measurement of the period parameter in consecutive 3-s wide windows, and each value corresponds to the one measured in the preceding 3-s time window. The map shows the location of RAN accelerometric stations and main- and aftershocks earthquakes whose data are used for the analysis in this study.
the period parameter $\tau_c$ for a 3-s window after the first $P$-arrival time at an array of accelerometer stations located at increasing distances from the epicentre. Based on the off-line analysis of strong motion records from Japan, Taiwan and Italy we determine three ground-motion empirical relationships (PGV versus Pd, $\tau_c$ versus magnitude and Pd versus $\tau_c$ and distance) which can be used in real time to rapidly predict the potential for earthquake damage near the recording site and estimate the approximate extent of the potential damage zone (PDZ).

3.1 PGV versus Pd

To rapidly assess the potential for earthquake damage, Wu & Kanamori (2005) suggested the use of Pd as a proxy for PGV, based on the observed correlation between the early $P$-wave peak displacement and strong ground-motion parameters.

From the comparison with observed intensity maps, Wald et al. (1999), observed that peak velocity and earthquake damages are correlated through the intensity parameter $I_{MM}$ (Modified Mercalli Intensity) for intensities larger than VII. $I_{MM}$ is an instrumentally derived, estimated Modified Mercalli Intensity parameter, relating the recorded ground motions to the expected felt and damage distribution. The instrumental intensity map is based on a combined regression of recorded peak acceleration and velocity amplitudes. The relationship between PGV and $I_{MM}$ is implemented by the USGS in the ShakeMap generation procedure for rapid estimation of strong ground shaking after a damaging earthquake. Thus, the potential damaging effects of a moderate-to-large earthquake can be rapidly predicted by Pd measurements using the correlation of this parameter with peak motion velocity.

In Fig. 3 the PGV data measured from the integrated acceleration records in Japan, Taiwan and Italy (2009 $Mw$ 6.3 L’Aquila main shock and aftershocks) are plotted as a function of peak displacement measured over a 3-s window after the first $P$ arrival on the vertical component of double-integrated acceleration records. For the Taiwan data sets, records analysed by Wu & Kanamori (2005) have been considered for this analysis (with a maximum epicentral distance of 30 km) whereas a larger maximum distance (60 km) has been considered for data from Japan and L’Aquila sequence data sets. Overall the log (PGV) appears linearly correlated with log (Pd) over about four orders of magnitude independently of the maximum distance and earthquake size within the considered ranges. The data distribution that are obtained by selecting a maximum epicentral distance of 30 km and 60 km are shown in Figs 3(a) and (b), respectively. No significant changes are noted in the parameters of the log (PGV) versus log (Pd) relationship by increasing the epicentral distance, except a slight increase of the standard error. The empirical relationship retrieved for the 60-km data set has been used for further analyses.

In particular, the L’Aquila earthquake data show a pattern of parameter variability consistent with that from other regions, suggesting that the PGV versus Pd correlation is independent also of the tectonic environments and specific source and propagation effects like directivity, radiation pattern, anelastic attenuation and site effects. We note the relatively high values of Pd and PGV greater than 1 cm and 30 cm $s^{-1}$ recorded during the $Mw$ 6.3 L’Aquila main shock at stations less than 10 km from the epicentre.

Considering a maximum recorded distance of 60 km, we obtain a regression relation

$$\log \text{ (PGV)} = 0.73 \pm 0.01 \log \text{ (Pd)} + 1.30 \pm 0.02, \tag{1}$$

where PGV is in cm $s^{-1}$ and Pd is in centimetres.

3.2 $\tau_c$ versus $M$

Nakamura (1988) first proposed the measurement of the predominant period ($\tau_{p_{max}}$) from the first $P$ wave train to be used for early warning purposes. The method has been extensively applied to broad-band and strong-motion records from several seismic regions worldwide, showing that $\tau_{p_{max}}$ scales with earthquake magnitude while being not dependent on the epicentral distance up to a few hundred kilometres of the event (Allen & Kanamori 2003; Allen et al. 2009a,b). Alternatively, Wu & Kanamori (2005) adopted a different approach based on the estimation of the period

---

**Figure 3.** Plot of peak ground velocity (PGV) versus initial peak displacement (Pd), for records at epicentral distances smaller than 30 km (left-hand panel) and 60 km (right-hand panel). The figures display data from Japan (grey dots), Taiwan (black triangles) and Central Italy (red squares) earthquakes. Pd is measured (in centimetres) over a 3-s window after the first $P$ arrival on bandpass-filtered vertical displacement records. PGV is the max of the two horizontal velocity records (in cm $s^{-1}$). The relationship between PGV and instrumental intensity ($I_{MM}$) (Wald et al., 1999) is used to estimate the bounds (horizontal and vertical solid lines) for Pd and PGV associated to an instrumental intensity $I_{MM} = VII$; sdv indicates the standard error for the best-fit regression equations, also reported in the figures.
integrals in (2) are computed over a time window $(0, \tau)$, which relates the initial $P$ peak ground displacement with the period parameter $\tau_c$ and hypocentral distance, $R$. Given the observed dependency of the period parameter with magnitude this relationship is similar to a GMPE for the parameter $P_d$ in the investigated range of distances. A multivariate linear regression analysis has been performed to search the best-fit parameters of the equation

$$
\log(P_d) = A + B \log(\tau_c) + C \log(R),
$$

where $R$ is the hypocentral distance. To estimate the coefficients $A$, $B$ and $C$ of eq. 4, $\tau_c$ and distance data have been initially binned in cells of constant size over the sampled distance and period space. The mean value of the peak displacement parameter and its standard deviation for each cell have been computed and used for the weighted least-square fitting of eq. 4, by assigning a weight to each data point. The weights are inversely proportional to the cell standard deviation of $P_d$. The results of the regression analyses provided values of coefficients $A = 0.6 \pm 0.1$, $B = 1.93 \pm 0.03$ and $C = -1.23 \pm 0.09$, with a standard error of 0.70, with $P_d$ measured in cm, $\tau_c$ in seconds and $R$ in km.

Fig. 5 shows the observed $P_d$ distribution as a function of the distance and period parameter, along with the best-fit GMPEs obtained for different values of $\tau_c$.

4 ALERT LEVELS AND STRATEGY FOR EARLY WARNING NOTIFICATION

The proposed early warning system is based on the real-time measurement of the parameters $P_d$ and $\tau_c$ in a short time window after the first $P$ wave at a single site of a widely distributed and interconnected network of strong motion sensors.

A threshold-based alert system requires the definition of alert levels which are set depending on a priori selected threshold values for the real time-measured ground-motion parameters. According
to Wu & Kanamori (2005) and using the empirical relationships

eqs 1 and 3, we define four alert levels depending on the
measured values of the parameters $P_d$, $\tau_c$ at a given strong motion site

(Fig. 6).

The threshold values for $P_d$ and $\tau_c$ (0.2 cm and 0.6 s, respectively)
have been chosen to have the maximum alert level (level 3) for an
earthquake with predicted magnitude $M \geq 6$ and damage effects in
the epicentral area associated with an instrumental intensity $I_{MM} \geq 7$.
In particular, the peak displacement threshold is set based on the
Wald et al. (1999) relationships between instrumental intensity and
PGV used for ShakeMap computation and the estimated 1-$\sigma$ error
bounds on the PGV versus $P_d$ relationship obtained in this study
(Fig. 3). The $\tau_c$ threshold is instead inferred from the 1-$\sigma$
error bounds of the $\tau_c$ versus $M$ relationship for an $M = 6$ (Fig. 4).

It should be noted that if we consider a series of measurements
$P_d$, $\tau_c$, at sites located at increasing epicentral distances, not all
the transitions from one alert level to another are allowed (Fig. 6). This
is mainly related to the attenuation of $P$ peak displacement with
distance, for which, beyond a given distance, the parameter $P_d$ is
expected to be smaller than the threshold value. The table in Fig. 6
illustrates the possible combination of alert levels as detectable at
sites located at increasing distances from the epicentre.

The alert scheme displayed in Fig. 6 can be used to define the
early warning notification procedure and strategy, given a dense
network of accelerometers deployed in- and outside the epicentral
area of a potentially damaging earthquake. As the $P$ wave front
expands away from the epicentre, local measurements of $\tau_c$ and $P_d$
can be performed at strong motion stations located at increasing
epicentral distances, allowing the system to define an alert level for
each recording site (Fig. 7). The information about the alert level
recorded at near-source stations can be transmitted to more distant
sites before the arrival of the $P$ and of the potentially destructive $S$
wave train, similar to the procedure used for regional early warning
systems. According to the alert scheme in Fig. 6 and depending
on the maximum alert level defined at the stations closest to the
epicentre, the areal distribution of alert levels provides a fairly
accurate estimation of the PDZ, as the area delimiting the maximum
alert level sites (two or three) in case of an earthquake occurring
within the network.

However, a rough but very rapid estimation of the PDZ extent can
also be made from the updated averages of the period parameter $\tau_c$,
which is recorded at strong motion sites in the near-source region.
Fixing the parameter $P_d$ at its threshold value (e.g. 0.2 cm), and using
the progressively updated estimations of the period parameter, the

Figure 6. Alert levels and threshold values for observed early warning parameters. We define four alert levels: 3 = damages expected nearby and far-away from station; 2 = damages expected only nearby the station; 1 = damages expected only far way from the station and 0 = no expected damage. Left: expected variation of alert levels as a function of the epicentral distance. Colours are assigned according to the scheme shown in the right-hand panel. Table reports the allowed transitions from each initial level as a function of the distance from the earthquake epicentre. Right: $P_d$ versus $\tau_c$ diagram showing the chosen threshold values and the regions delimiting the different alert levels.

Figure 7. Illustration of the early warning procedure. The method foresees a progressive detection of alert levels moving from near- to far-source stations. The local measurements of $P_d$ and $\tau_c$ allow to define the alert level for that site, define the potential damage/not damaged zone (circular dashed area) an alert to more distant sites and finally make a decision based on both the regional information and the local measurement of ground motion. The extent of the potential damage zone (PDZ) is mapped from the geographical distribution of recorded alert levels and updated averages of $\tau_c$ as new measurements are available at the network.

$P_d$ GMPE (eq. 4) can be used to determine the radius of the area
within which the strong ground motion is expected to produce an
instrumental intensity $I_{MM}$ greater than VII. This information can
be available only a few seconds after the recording of the first $P$
arrival at near-source accelerometers, and it will be confirmed
and refined as more measurements of the period parameter are
available at more distant stations. In this case an evolutionary, real-
time estimate of the earthquake location is needed to map the PDZ.
The earthquake location can be obtained from the automatic first
$P$-picking measurement and a real-time location procedure.

In our application to the $M_w$ 6.3 L’Aquila earthquake records
(next section) we have used the methodologies for picking, event
binding and location implemented for the southern Italy early warn-
ing system PRESTo (Probabilistic and Evolutionary Early Warning
System) (Zollo et al. 2009a,b; Satriano et al. 2010). We used a phase
detector and picker algorithm optimized for real-time seismic monitoring and earthquake early warning; the basic concepts are similar to those of the Baer and Kradolfer picker (Baer & Kradolfer 1987), and the Allen picker (Allen 1978). The real-time location algorithm (RTLloc, Satriano et al. 2008) is based on the equal differential time (EDT) formulation (Font et al. 2004) and on a fully probabilistic description of the hypocentre. At each time step, the method uses both the arrival times automatically measured at the triggered stations, as well as the implicit information that can be derived from the lack of arrival detections at the other stations, which are not yet reached by the $P$ waves.

The RTLloc location algorithm is used for the initial estimation of the PDZ extent, through the evaluation of the hypocentral distance by eq. 4. The method is able to provide with a first, approximate epicentral location by using just one station, applying the concept of Voronoi cells (Cua & Heaton 2007; Satriano et al. 2008). As far as new $P$ picks are available, a probabilistic, evolutionary estimation of epicentre, depth and origin time is obtained, with improved accuracy. Tests on synthetic and real data, showed that enough accurate and robust estimation can be obtained using three to four stations depending on the station density and azimuthal coverage of the source (Satriano et al. 2010).

5 OFF-LINE APPLICATION TO THE Mw 6.3 2009 L’AQUILA EARTHQUAKE IN CENTRAL ITALY

On 2009 April 6 a moderate size earthquake struck the Abruzzo region in Central Italy destroying the entire districts of the town of L’Aquila, and causing several hundred casualties and a series of building collapses in a wide region, mainly south-east of the epicentral area.

The main shock fault plane solution indicates that the earthquake rupture occurred along a NW–SE-oriented normal fault segment, dipping towards the SW, with the city of L’Aquila lying a few kilometres away on the hanging wall (Maercklin et al. 2009; Pondrelli et al. 2009). Kinematic modelling of strong motion, GPS and InSAR data suggest a fault length and width of about 20 and 10 km, respectively, with a heterogeneous final slip distribution and rupture velocity on the SW-dipping fault plane (Cirella et al. 2009; Yano et al. 2009).

Two main aftershocks occurred after the main event with $Mw$ 5.6 and $Mw$ 5.4, respectively activating additional faults at the north-western and south-eastern edges of the main fracture (Falucchi et al. 2009) explaining the dense and wide spread aftershock activity (Chiarabba et al. 2009).

The main shock was recorded by more than 50 digital accelerometer stations of the Italian Accelerometric Network (RAN) (Fig. 8) owned by the national DPC and located at epicentral distances between 0 and 250 km. Very high values of peak acceleration (>0.5 g) were recorded downtown and nearby the city of L’Aquila (Akinçi et al. 2010).

A detailed reconstruction of the damage spatial distribution has been performed based on a rapid survey carried out by a joint group of the national DPC and INGV, which provided a map of macroseismic intensity $I_{MCS}$ (MCS = Mercalli-Cancani-Sieberg Intensity scale) (max $I_{MCS} = IX$) (Galli et al. 2009).

The Mercalli-Cancani-Sieberg, MCS, is used in Italy as the standard intensity scale that describes the earthquake effects on the built environment. This scale differs from the Mercalli Modified Intensity scale ($I_{MM}$) adopted in other countries and assumed as standard for ShakeMap computation at USGS (Wald et al. 1999). Recently, Faenza & Michelini (2010) derived new regression relationships between $I_{MCS}$ and peak ground-motion parameters, PGV and PGA, based on the Italian databases of macroseismic information and digital accelerometric waveforms. Combining the empirical relationships retrieved for $I_{MM}$ versus PGV by Wald et al. (1999) and for $I_{MCS}$ versus PGV by Faenza & Michelini (2010) one obtains $I_{MCS} = 3.51 + 0.671_{MM}$, so that the threshold value for damage effects of $I_{MCS} = VII$ roughly corresponds to $I_{MM} = VIII$.

In this study, the parameters $Pd$ and $\tau_c$ have been measured from a 3-s window after the first $P$ arrival, automatically detected on the vertical component of the L’Aquila earthquake strong motion records. Fig. 8 displays the time evolution of ground-motion measurements and of alert levels which would have been issued at the accelerometer sites located at an increasing epicentral distances. We note that first measurements of $Pd$ and $\tau_c$ are available 6–7 s after the origin time, for example, about 3 s after the first recorded $P$ wave. An alert with level 3 is issued based on measured $Pd$ and $\tau_c$ at near-source stations, both parameters showing values greater than the threshold ones (0.2 cm and 0.6 s). At increasing distances (or times from the event origin) measurements of the parameter $\tau_c$ remain stable and consistent with each other (mean value of 1.5 s), whereas $Pd$ generally decreases, as expected, at values below the threshold one (alert level 1). Finally, the prediction error on PGV, as expressed by the log (PGVobs/PGVcal), also remain stable with time, showing a maximum variability of ±0.5, which is comparable to fluctuations observed for standard GMPEs (e.g. Akkar & Bommer 2010).

To illustrate the real-time operation mode of a threshold-based early warning system we have computed the snapshots of the space and time evolution of the alert levels as determined from $Pd$ and $\tau_c$ measurements for the L’Aquila main shock (Fig. 9). The Fig. 9 shows that the most damaged zone ($I_{MCS} > VIII$) for the L’Aquila earthquake is confined within an area having a radius of about 20–30 km around the main shock epicentre.

At each time step after the first recorded $P$ wave, the earthquake location is computed in real time by using the available $P$ picks and the RTLloc method. At each recording site an alert level is assigned depending on the measured $Pd$ and $\tau_c$ values whereas the radius of the PDZ is estimated from eq. 4 using progressively updated averages of the period parameter. It is noteworthy that the first measurements of the period parameter at near-source stations provide a reliable estimation of the PDZ, which is consistent with the extent of observed largest damaged area ($I_{MM} > VII$, $I_{MCS} > VIII$) (Fig. 9a). As the time from the event origin progressively increases, more distant stations record the $P$ arrival and a lower alert level is detected at stations located more than 20–30 km from the epicentre (Figs 9b and c). The spatial distribution of detected alert levels about 14 s after the origin time (10 s after the first recorded $P$ wave) clearly defines the extent of the PDZ at almost all azimuthal sectors, except in the northeastern sector where the station coverage is poorer.

6 DISCUSSION AND CONCLUSIONS

We have analysed the strong motion records from modern digital accelerographs now operating in Japan, Taiwan and Italy with the aim to investigate the feasibility of a threshold-based early warning system for earthquakes in the magnitude range 4–8.

The main advantage of using strong motion records for early warning relies on the wide dynamic range of digital accelerometer
stations, which are able to record unsaturated amplitude waveforms of moderate-to-large magnitude earthquakes even at very small epicentral distances (<10–20 km). Reducing the distance of the first recording station from the source allows to increase the lead time, for example, the time between the alert notification and the arrival time of potential destructive waves at a given target site.

The early warning method is based on the real-time measurement of two ground-motion parameters, the peak displacement \( P_d \) and the period parameter \( \tau_c \), over a narrow time window (3 s) after the automatically detected first \( P \)-wave arrival.

\( P_d \) and \( \tau_c \) are measured on the vertical component of ground motion records assuming a near vertical incidence of direct \( P \)-wave
Figure 9. Off-line simulation of the threshold-based early warning method. The figure shows four snapshots of the space and time evolution of the recorded alert levels at 3 s, 6 s, 9 s and 12 s after the time of first $P$ detection. The example illustrates how they can be used to define the potential damage zone (PDZ). At each time step the location is computed in real time by using the available $P$ picks and the RTLoc method developed by Satriano et al. The solid black circle indicates the radius of PDZ (dimension is given in kilometres) as obtained from the updated averages of $\tau_c$. The dashed red and blue circles approximate the direct $S$ and $P$ wave front propagation away from the source epicentre. The estimation of damage has been performed by a joint group DPC and INGV which provided a detailed map of macroseismic intensity $I_{MCS}$ (max $I_{MCS} = IX-X$) (Galli et al. 2009), reported in figures. Note the consistency between the extents of the predicted and observed damaged zones, the latter being approximately described by $I_{MCS} >$VII-VIII zones of the observed macroseismic intensity distribution.

Rays and near-horizontal polarized $S$ waves. At distances smaller than about 30 km, $S$ waves are expected to arrive within 3 s after the first $P$, and may have a significant amplitude on the vertical component depending on the source location and mechanism and on the velocity model. In these cases, the application of an $S$-wave detector algorithm, could help in to discriminate the $S$-wave arrival and to better define the $P$-wave window for the peak measurement. However, most of up-to-date developed algorithms for $S$-wave
automatic picking are not well suited to operate in real time since they are based on block or batch processing of windowed data. The very basic polarization filtering used in our approach (measurements are performed along the vertical component of ground-motion records) produces reasonable results when implemented in a real-time data streaming processing chain. Only very recently, Rosenberg (2010) has proposed a promising real-time method for future applications, which is able to distinguish basic seismic phases online from a stream of three-component data with sample-to-sample resolution.

Our study confirms and generalizes the previously found empirical regression relations relating these parameters to peak ground-motion velocity and earthquake magnitude (e.g. Wu & Kanamori 2008). In particular the three determined empirical regression relations (log PGV versus log Pd, log τ versus M and log Pd versus log τ, log R) are consistent with all the analysed data in a wide magnitude and distance range, despite the diversity of the considered tectonic environments, earthquake faulting and regional attenuation mechanisms. In particular, we have shown that the relationship between initial P-peak displacement and final PGV can be extended up to a distance of 60 km without a significant variation of the regression parameter estimation and the standard error. These observations suggest that the empirical relationships for early warning parameters Pd and τ are generally valid globally, whereas the uncertainty bounds on regression equations accounts for regional and earthquake mechanism differences.

Our proposed seismic alert methodology integrates the approach of regional and on-site early warning systems currently under development and testing worldwide. It is based on the real-time measurement of a period and peak amplitude parameter at stations located at increasing distances from the earthquake epicentre. The recorded values of early warning parameters are compared to the threshold values, which are set for a minimum magnitude M 6 and instrumental intensity VII. These threshold values have been determined by the empirical regression analysis of strong motion data from Japan, Taiwan and Italy earthquake sequences. The main advantage of this methodology is that the potential damage effects of a moderate-to-large earthquake can be rapidly assessed and notified without the need for new measurements of Pd and τ, when applied to a very densely spaced strong motion network as the records shows the feasibility and robustness of such an approach when applied to a very densely spaced strong motion network as the one operating in Japan, Taiwan or Italy. For Italy, a special effort is made to install dense strong motion networks. At each recording site the alert level is assigned based on a decisional table with four alert levels defined upon critical values of the early warning parameter Pd and τ.

Here we assume a discontinuous transition from an alert level to another, but we are working at generalizing the method through a probabilistic description of the early warning parameter distribution. The change between different alert levels is essentially controlled by the distance attenuation effect on the peak displacement parameter, whereas the real-time mapping of alert levels recorded at increasing epicentral distances allows for a preliminary but fast estimation of the areal extent of the PDZ.

Given a real-time, evolutionary estimation of earthquake location from the first P arrivals, the method furnishes an estimation of the PDZ extent as inferred from continuously updated averages of the period parameter and from the previously determined GMPE for Pd as a function of τ and hypocentral distance. In our application, we have used the method for real-time earthquake location developed by Satrano et al. (2008) which generalizes the two-station method by Horiuchi et al. (2005), by jointly using the picked and not-yet detected arrival times, but giving a probabilistic estimation of the earthquake location coordinates and their uncertainties as a function of the time from the first detected P wave at the network. The method is able to provide with a first, approximate epicentral location by using just one station, applying the concept of Voronoi cells (Cua & Heaton 2007; Satrano et al. 2008). As far as new P picks are available, a probabilistic, evolutionary estimation of epicentre, depth and origin time is obtained, with improved accuracy. Tests on synthetic and real data, show that enough accurate and robust location estimation can be obtained using 3–4 stations depending on the station density and azimuthal coverage of the source.

The off-line application to Mw 6.3, 2009 Central Italy main shock records shows the feasibility and robustness of such an approach when applied to a very densely spaced strong motion network as the one operating in Japan, Taiwan or Italy. For Italy, a special effort is now demanded to upgrade the data communication infrastructure to enable the Italian accelerometer network to process and transmit data in real time in the whole territory.

The studied case displays a very good agreement between the rapidly predicted (within a few seconds from the first recorded P wave) and observed damage zone, the latter being mapped a few days after the event from detailed macroseismic surveys. Local measurements of peak displacement and characteristic period of early P waves from near-source and distant stations allow for a faster alert notification relative to an on-site system, by increasing the
led-time of a factor of about two depending on the epicentral distance and earthquake depth. The real-time mapping of alert levels at a set of near-source accelerometer stations can be used to predict the extent of PDZ, which is relevant information for efficient planning of the rescue operations in the immediate post-event emergency phase.

The potential use of the proposed method for early warning application within the damage zone, clearly depends on the magnitude and the extent of the damage zone itself. For the considered case of 2009 L’Aquila main shock, a moderate size earthquake, most of important damages are restricted to an area of 30–40 km around the epicentre, but earthquake strong shaking have been recorded and felt up to 100 km distance in the town of Rome. Even at short distances from the source, the true lead-time can be larger than expected from the one theoretically estimated from the first $S$ arrival, since rarely the peak motion is associated to the first $S$ arrival (Wu & Kanamori 2008). This is the case also for the L’Aquila event, where the time lag between the first $P$ and PGV arrival is around 10–13 s for stations FMG and CLN located at epicentral distances of 20 and 30 km, respectively.

The impact of the earthquake mitigation actions triggered by an early warning system can be low (e.g. stop elevators, turn off computers, protect children under the desk), moderate (e.g. shut-off gas/electric supply, stop or slow down train) or high (e.g. shut-off large industrial plants, as nuclear, electro-thermal, chemical) depending on the intensity of the risk mitigation action and the needed time for resilience of the protected infrastructure (Iervolino et al. 2007). One main advantage of the proposed integrated system is the availability of a local ground-motion measurement at a distant site (as for standard on-site systems), which allows to confirm or cancel the early alert notified by $P$-wave measurements at near-source stations. Following the approach currently operated in Japan by the Japan Meteorological Agency (Allen et al. 2009a,b), this feature enables the end user to receive the regional warning issued by near-source stations and to incorporate it into an automated control and response system installed at the target site, specifically designed for a given early warning application.

ACKNOWLEDGMENTS

We are grateful to the editor and reviewers Maren Böse and Holly Brown for their constructive and very helpful comments and remarks. Our work greatly benefited from discussions with Gaetano Festa, Giovanni Iamacone and Claudio Satriano. This work has been partially funded by project INGV-DPC-S5 (2007–2009).

REFERENCES


