CaltechAUTHORS
  A Caltech Library Service

Shock enhancement and control of hypersonic mixing and combustion

Marble, F. E. and Zukoski, E. E. and Jacobs, J. W. and Hendricks, G. J. and Waitz, I. A. (1990) Shock enhancement and control of hypersonic mixing and combustion. AIAA Papers, AIAA 90-1981. American Institute of Aeronautics and Astronautics . http://resolver.caltech.edu/CaltechAUTHORS:20101209-134118457

[img] PDF - Published Version
See Usage Policy.

600Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:20101209-134118457

Abstract

The possibility that shock enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air has been studied in experimental and computational investigations. Early numerical computations indicated that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be well approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. An experimental investigation of the latter process has been carned out in the Caltech 17 Inch Shock Tube in experiments in which the laser induced fluorescence of byacetyl dye is used as a tracer for the motion of the helium gas after shock waves have passed across the helium cylinder. The flow field has also been studied using an Euler code computation of the flow field. Both investigations show that the shock impinging process causes the light gas cylinder to split into two parts. One of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly; about 60% of the light gas mixes rapidly with the ambient fluid. The geometry of the flow field and the mixing process and scaling parameters are discussed here. The success of this program encouraged the exploration of a low drag injection system in which the basic concept of shock generated streamwise vorticity could be incorporated in an injector for a Scramjet combustor at Mach numbers between 5 and 8. The results of a substantial computational program and a description of the wind tunnel model and preliminary experimental results obtained in the High Reynolds Number Mach 6 Tunnel at NASA Langley Research Center are given here.


Item Type:Report or Paper (Report)
Additional Information:© 1990 American Institute of Aeronautics and Astronautics. This work was carried out under grants from URI and AFOSR with the support of Dr. Julian Tishkoff, and from NASA with the support of Mr. Dennis Bushnell. The computations have been carried out with code support from Dr.'s P. J. Boris and E. S. Oran at the Naval Research Laboratory, and the Computational Branch, NASA Langley RC. Computing support has been obtained from NAS Facility at NASA Ames RC, the JPL/Caltech Cray X-MP, and the San Diego Supercomputer Center, NSF.
Group:Guggenheim Jet Propulsion Center
Funders:
Funding AgencyGrant Number
URIUNSPECIFIED
Air Force Office of Scientific Research (AFOSR)UNSPECIFIED
NASAUNSPECIFIED
Other Numbering System:
Other Numbering System NameOther Numbering System ID
Guggenheim Jet Propulsion CenterUNSPECIFIED
AIAA90-1981
Record Number:CaltechAUTHORS:20101209-134118457
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:20101209-134118457
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:21280
Collection:CaltechAUTHORS
Deposited By: Ruth Sustaita
Deposited On:15 Dec 2010 18:20
Last Modified:26 Dec 2012 12:44

Repository Staff Only: item control page