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It therrifore remains ,hell eUhe.r Ptolemy committedfraud wilh 
fabricated obs~rvalions. or from a kind 0/ awe and ~erenu 
for lhe ancitnts preferr~d 10 qmfinn rozMr than refuTe them. 
miJhu of which is liktly in lhe philosopher PlOte-my, a 
ckfetuhr of candor and uuth, as is wirn.essed by tnt:IIrY 
judgments: e.fpeciaUy"Smce he could apeCl no advantage or 
famefrom thir, but ramu grealer ndvGnrnge andfame/rom 
c:tJ"tcling the ancieN,f. But thaI he was not ob,fjUJuiou.r /0 the 
ancients. he left wttiU!.ui!d in many' ways .. refuting Hipparchu.r 
where it was required. . 

lohannes Kepler (1937-, 21.1.324). 

It is well known that there are errors in Ptolemy's observatioris of the Sun with 
consequences for his own astronomy and for later'astronomy up to some time in the 
seventeenth _century. The principal problems and their consequences in Ptolemy's 
astronomy are the following: 

(I) Th~ latitude of Alexandria is taken to be 9' = 30;58' whencoiTectly itjs 31; 13', 
an error of -0;15'_ In AimagesI25 Ptolemy. describes, aJtho.ugh does notrec
ommend, a method of finding the latitude from the length of the Sun's shadow 
at both solstices or a solstice and equinox, which would make the latitude an 
error in measurement of the Sun's zenith distance. Indeed,for 9' = 30;58', 
Ian 9' = 0;36,0 = 3/5, so that where the length of a gnomon is QQ, in the 
equator the length of the shadow is 36, which does suggest us~ of or adjustment 
·to a rounded shadow length. The consequence is that the I)leridian altitude of 
the celestial equator is too high, odts·zenith distance too low, by 0,1.5', about 
15 hour.; in the motion of the Sun in declination and 0;37' in longitude near the 

N.M. Swerdlow . . 
. Humanities and Social Scic'Qces., California l.nstitute ~fTechnology. Pasadena. CA, USA -
e-mail: swerdlow@caltech.~du 

A. Jones (cd.), Ptolemy in Pmpective, An:himedes 23, t51 
001 lO.tOO7/978-9O-481-2788-7_7, <0 Springer Science+Buslness Media B_V. 2010 



152 N.M. Swerdlow 

, ' ' 

equinoxes, and the error of 0;15° in meridian altitude and zenith distanGe .ffeels 
the entire ecliptic. 

, (2) The obliquity of the eCliptic is taken to be e = 23;51,200 when by modern: com
puu,.-tion in [40 it was 23;40,39° an error of nearly +0;11°. From measurements 
of the zenith distance of the Sun at summer and, winter solstice, Ptolemy found 
the 'are'between the tropics 28 to lie between 47~o and 4710 t and ·converted the 

lower Iimitto a ratio by 47~/360 = 143/1080 = (11 . 13)/1080 = 1l/83~ "" 
11{83, that is; the arc 'between the tropics is about II (paris) of which the 
meridian is'S3. He notes that he derives nearly the same ratio as Eratosthenes, 
which Hlpparchus also retained, a cryptic remark that has provoked a great deal 

' of fanciful speculation. The derivation given here is by Delambre, although he 
attributes itio Eratosthenes rather than Ptolemy, which is scarcely ,possible. 
Before considering 'any .other explanation of the ratio, it is filSt necessary to 
show that Delambre's i',notcorrect In any case, 2e = 11/83.360° "" 47;42,400 
and e = 23;51,200. 

3) The dates of Ptolemy's Qbservations·of three equinoxes and one summer solstice 
are from about 21 to 36hours late.-The consequences are to confirm exactly 
Hipparchus's length of the tropical years, 365t - :J,. days = 365;14,48d = 
365d 5;55,12., too long by +0;6,26h, and to establish an epoch of the mean 
longitude of the Sun too low by _1;5° in 132, which indirectly affects the longi
tudes of the Moon, planets, and fixed stars. Because of the error in the length of 
the year, the error in the times of equinoxes accumulates at the rate of + 1O;43h 

per century and the error in the mean longitude of the Sun at -0;26,25" per 
century, and this too affects the.longitudes of the Moon, planets, and fixed stars. 
The equinoxes and solstices cited by Ptolemy with specific dates 'and times are . 
compared with modem computation in the Appendix and cited here by number. 

4) Ptolemy uses the same intervals as Hipparchus between the equinoxes and sum
mer solstice, tQ one-half day, and derives the same eccentricity and direction 
of the apsidal line. Thus, from the vernal equinox to summer solstice .941', 
summer solstice to autumnal equinox 921', vernal to autumnal equinox 187d, 

he finds that where the radius of the Sun's eccentric R ,= 60, the eccentricity 
e = 2;29,30"" 2;30 so that e/ R = 1/24, the maximum equation Cm = 2;23°, 
and the direction of the apogee AA = 65;30". He concludes that the eccentricity 
has not changed and the apogee is tropically fixed. Taking twice the modem 
eccentricity, in -145, the time of Hipparchus, e = 2;6,22, Cm = 2;1°, and 
AA = 66;16°; in 140, the time of Ptolemy, e = 2;5,37, Cm = 2;go, and 
AA = 71;6°. Hence, e is in error by +0;24 anil Cm by +0;23° and have barely 
changed, but AA is in error by -0;46° in - [45 and -5;36° in 140, and its ion
gitude has increased +4;500 in 285 yealS, of which about 4° is the precession , 
of the equinoxes and 0;50° the proper or sidereal motion of the apsidalline. 
AB a result of the error in the mean longitude of the Sun, Ptolemy's measure
ments of longitudes of fundamental stars have a systematic error of just over 
-1 0. He therefore finds a difference in longitude of stars in the 265 years since 
Hipparchus of 2;40° when it should be just over 3;400, and corresponding dif
ferences are found from other early observations. These confirm Hipparchus's 
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low estimate of the motion of the fixed stars, or precession of the equinoxes, of 
10 per century or 36" per year, less by about -14" than the correct 50" per year 
or \" in 72 years. The error in the tfopicallongitude of stars accuniulates al the 
ra'te of -0;23,20(> -per century. 

So much for the errors and their consequences in Ptolemy's astronomy. The 
more interesting story begins several hundred years later when Arabic astronomers 
derived parameters from their own observations of the Sun and stars, and used 
Ptolemy's observations for finding motions over the intervening period. Without 
exception, compared to Ptolemy'S parameters, it was found that the obliquity of the 
ecliptic is smaller, the tropical year shorter, the eccentricity of the Sun smaller, the 
solar apogee advanced in longitude, and the motion of the fixed stars faster. What is 
to be done?One solution, for example by al-Battiinl, was to accept the new parame
ters as correct and Ptolemy's, by impliCation," as erroneous. I And it wa"s concluded, 
for example in De anno solis attributed to Thabit ibn QUITa, thai Hipparchus's obser
vations of equinoxes and longitudes of stars were preferable to Ptolemy's for finding 
the length of the sidereal and tropical year and the motion of the fixed stars, which 
accounts for their difference. But another. more complex solution was to assume that 
the parameters had changed over the intervening centuries and develop models and 
parameters for these long-period variations. Among those that came to be known 
in Europe are a model for a nonunifonn motion of the "eighth sphere," of the fixed 
stars, in De motu oclavae sphaerae attributed (incorrectly) to Thabit, included in 
the Toleden Tables, a model for a variation of the solar eccentricity by az-Zarqal, 
not included in the Toletlan Tables, and a very well-known nonuniform motion of 
the eight sphere in the Alfonsine Tables, for which there are tables but no model. 
The apogees of the Sun and planets were taken to be sidereally fixed, and thus to 
follow the motion of the eight sphere, and the apogee of the Sun was sometimes 
given its own proper sidereal motion. Implicit in models fQr the motion of the eight 
sphere is a variation of the obliquity of the ecliptic, although this was, it appears, 
not tabulated as a variable parameter, nor was nn implied variation in the length of 
the tropical or sidereal year tabulated. The last thing iIl"se theories can be called is 
consistent. In the Theoricae novae planetarum, Peurbach described hIS understand
ing of the model in De motu octavae sphaerae and explained what m~y be his own 
model for the Alfonsine motion. Regiomontanus considered both theories to be false 
(mendacem), which was his opinion of the Alfonsine Tables in general. 

All of these attempts to include long-period variation of parameters were super
seded by Copernicus,who developed more or less consistent models ·of some com
plexity, based upon motions of the Earth rather than the sphere of the fixed stars 
and the Sun, for nonuniform variations of the obliquity of the ecliptic, rate of the 
"precession of the equinoxes" (Copernicus's own term), length of the tropical year, 
solar eccentricity, and sidereal and tropical motion of the solar apogee. Copernicl:ls's 
models were described and the parameters derived, with some wishful thinking, in 
De revolutionibus (1543), and nIl the long-period motions were included in Erasmus 
Reinhold's Prutenic Tabies (1551), which became the basis for the computation of 
ephemerides in. the later sixteenth and early seventeenth centuries. And Copernicus's 
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models were carried over into geocentric theory, as by Giovanni Magini, by trans-· 
ferring the various motions of the Earth to the sphere of the fixed stars and the 
Sun. Hence, the complex legacy of the errors in 'Ptolemy's solar observations was 
fundamental to the astronomy in this period in both theory and tables. But already 
questions were being raised about. the reliability of the observations. Copernicus 
told Rheticus of his fear that very many of the observations of the ancients were 
not genuine but were accommodated to their theory, as Rheticus reports in his 
Ephemerides novae (1550), although these doubts may have come after Copernicus 
erected' much of his astronomy upon these very observations. Girolamo Cardano, in 
De restitutione temporum et motuum eoelestium (1543), attempted, aft.r a fashion, 
to find the cause of error and correct some of Ptolemy's observations and parJll)l- .. 
eters, although he was more critical of Thiibit's motion of the eighth sphere and 
the Alfonsine Tables. A more expert examination did not come until the ancient 
observations and parameters were considered by 'JYcho, who intended more than 
he aIXomplished, 1}Icho's fanner assistant Christian Longomontanus, who set out 
the most radical criticism and correction, and Kepler, who had his own reasons for 
carrying out such an investigation. In this paper, we shall consider all three.1 

TychoBrahe 

It is commonly said tbat 'JYcho did away with all the long-period variation of 
parameters that had so concerned Copernicus and established new and improved 
parameters for the obliquity, solar theory, and precession on the basis of his own 
obserVati ons, more accurate than any that came before. There is some truth in this, 
as he did all of these things, but in the Progymnasmata he explains several times 
that the parameters established here are only for his own time. and he intends to' 
investigate their variation over a long period in a complete restoration of astronomy, 
which was never written. In fact, 'JYcho always believed with Cope~icus 'that the 
Obliquity of the ecliptic and the solar eccentricity had decreased and the apsidalline 
advanced from antiquity to his own time, meaning that he took the observations 
and theory of Hipparchus and Ptolemy seriously, although he never worked out a ' 
hypothesis, model, of his own for long-period variation. Initially, he accepted Coper
nicus's hypothesis for the Sun, but because Copernicus's eccentricity was smaller 
than he found, he concluded that it must be erroneous. In .a letter of 4 November 
1580 (7.59-60) he tells Thadaeus Hagecius of a restoration of the motion of the 
Sun, which he investigated in preceding years, so careful that it agrees with daily 
observations, as (paul) Wittich often tested with me, from which the computation 
of Alfonso and Copernicus deviates sometimes by half a degree, sometimes by a 
little more. For the motion of the center of the ·eccentric of the Sun in its small 
circle is far different than our predecessors found, or even Copernicus himself estab
lished, SO that the eccentricity of the Sun is now 2;5 parts (where the radius of the 
eccentric is (0), 0; 13 greater than the opinion of Copernicus, but the apogee of 
the Sun is near Cancer 5·, far before (west of) the hypotheses of Copernicus.3 For 
otherwise the soJar appearances do not agree, as I have demonstrated from many 
observations and will soon, God willing, communicate to t1ie learned. Tycho thus 
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. accepts Copernicus's hypoihesis with variable eccentricity and apsidaJ line, but is 
attempting to correct the parameters, and the same is true of ihe vari~ble precession. 
For I have also discovered, he reports, ihat the motion of ihe eighih spbere (of the 
fixed Slars) is now so much faster than Copernicus established that lIle equinox has 
precessed about one-quarter degree faster (in the period since Copernicus), which, 
by observation of Spica made in the same way as Copernicus, I have observed and 

. demonstrated many times. 
In ihe Progymnasmata, Tycho establishes a solar theory from his own observa

tions in the years 1584-1588, which he consid~rs more accurate than any earlier· 
observations because he corrects for solar parallax, which he believes reaches 3' in 
ihe horizon, the standard value since Ptolemy, and refraction, reaching 34' in the 
horizon. In 1584 he found his definitive value of the obliquity, 23;31,30°, which he 
continued to check in the following years. For his derivation of the·solar eccentricilY 

. and direction of the apogee (2. I 9-23), he uses the two equinoxeS and Taurus 15° 
or Leo 15°, following the method described by Regiomontanus in the Epitome of 
th.e Almagest 3.14. Copernicus had done something like this in De revolutionibus 
3.16 using Scorpio 15°, which, 1Ycho pOints out, led to errors due to neglect of 
refraction at a low altitude although he believes ·that Copernicus did correct for par- . 
a1lax. From two derivations for 1588, he finds that where R = 100,000, e = 3584, 
orwhere R '" 60, • ., 2;9, Cm ., 2;3,ISo, and AA = Cancer·S;30°, which he 
says are confirmed by yet other derivations. But he does not believe the parameters 

·are permanem, indeed, with Copernicus, he had reason to believe lIlat the solar 
eccentricity decreased and the longitude of the apogee increased since antiquity, 
as he explains (2.28). Hipparchus and Ptolemy found by observation at their times 
AA ;i. Gemini 5;30° and e = 415 where R = 10,000, so Cm = 2;23°, and since 
Ptolemy found these again in the same way as Hipparchus, before him by an inter
val of 260 years, he believed lIle apogee entirely immovable and the eccentricity to 
remain for ever the same. It may, however, be suspected that some error is concealed 
in the observations of both or at least one of them, which could ",\sily happen in 
so sensitive an undertaking, especially because they began their·derponstration in 
this investigation through equinoxes combined with transits of the solstice, Which 
are observed with great difficulty. And it is likely ihat Ptolemy, because he did not 
find so great a difference, did not wish to disagree with the recoids of Hipparchus, 
but instead assigned to his own age.the same eccentricity of the Sun and'the same 
apogee, affirming [00 confidently for this reason that both are immovable. He goes 
on to review briefly, ·following the Epitome of the Almagest aneY De revolutionwlIs, 
the solar theories of al-Bauani and az-Zarqiil, and then carries out a detailed anal
ysis of the errors in Copernicus's solar theory because Copernicus found a smaller 
eccentricity and a more advanced apsidalline,for ISI5 than he found for ,1588, 
co~tradicting in a ·mere 73 years the record of ~early 1450 years since Ptolemy. 
Thus,1Ycho still'believes"that a notable variation of the eccentricity and advance of 
'the apsidalline have occurred, that the theory of Hipparchus and Ptolemy, although .' 
open to question, must still be t;lken seriously,but thalCopernicus's own hypothesiS 
and parameters are incorrect. 

ADd there is more,· for 1Ycho also believes, with Copernicus, that the length of 
the tropical year has varied froma_nY9":i!L~'?~is~2'!al.Jl!1l~.jI.!U'."i~.nc,e for which _._ --_._- -.. __ .. . . 
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he presents lhe following comparisons in days and hours to which we have added 
sexagesimal fractions of days (2.33): . 

From Hipparchus to Ptolemy 
From Ptolemy to al-BattanI 
From al-Bauani to our observations 
From Ptolemy to our .observations 

365d 5;55,12' 
365 5;46;20 
365 5;49,29 
365 5;47,52 

365;14,48d 

365;14,26 
365;14,34 
365;14,29,40 

That the year is nonunifonn and has become shorter since antiquity is apparent, 
although it is also apparent that the values cited here are not consistent and some
rhing is wro.ng, as 1Ycho recognizes. What could cause such a variation? lYcho 

. . expiains that the inequality of the tropical year is the result of the variation' of the
apogee and eccentricity of the Sun producing a motion of the ecliptic, on account of 
which the equinoctial points recede along the equator with respect to the fixed stars. 
Thus, the inequality of the year is the result of inequalities in th~ motion of the Sun 
affecting the location of the equinoxes, the precession of the equinoxes is a part of 
solar theory, and there is no motion of the sphere of the fixed stars, which he consid
ers at rest except-for the diurnal rotation of the heavens. This is a difficult subject, 
the interpretation and cause of precession, the theory of which lYcho never fully 
worked out although he later suggested something like his model for the regression 
of the nodes in the lunar latitude theory, and we shall return to it below. 

Also with Copernicus, Tycho believes the sidereal year invariable, and this is of 
some interest as it is in finding the length of the sidereal year that he makes the 
most direct use of Ptolemy's observations and theory (2.33-37). That earlie.r values 
differ. he says, is because of eimrs in observation. failure to take account of solar 
parallax and refraction, insufficiently accurate locations of fixed stars, or from all 
of these causes coming together, as could easily happen in so sensitive an investi
gation. Of earlier values, he cites, from the ·Latin version of al-Battani, .. the most 

ancieni Egyptians and Babylonians:' 365t + -dod = 365; 15,27,30d = 365d 6;11 h; 

Thabi! ibn Qurra, 365;15,23d = 365d 6;9,12'; and Copernicus, 365;15,24,10" = 
365d 6; 9,40'. Then, in order that we may find the length of the sidereal year more 
accurately, we have carefully compared Ptolemy's observations of the Sun arid fixed 
stars with our own. for I am convinced that his observations are more accurate and 
secure than those of Hipparchus; (Delambre calls this a "choix singulier.") What 
lYcho does is use Ptolemy'S solar theory and tropical longitude of fixed stars as 
correct for Ptolemy's time, and his own solar theory and longitude"of fixed stars as 
correct for his own time, to find the sidereal longitude of the Sun at each time. He 
also assumes that Ptolemy's rate of precession, 36" per year, is correct for Ptolemy'S 
rime and his own rate. 51" per year, not yet set out, is correct,for his own time. 
And like Copernicus, he takes the longitude of the first star of Aries in Ptolemy's 
catalogue, y Arietis, as the measure of precession. 

Thus, at Ptolemy's autumnal equinox (11) of 25 September 132 at 2' after noon 
in Alexandria, the true longitude of the Sun A, = 180· and the mean longitude 
X, = 180· + 2;10" = 182;10". Taking Ptolemy's longitude of Regulus on .23 
February 139 of 122;30· and the interval to y Arietis of -115;50·, the longitude 
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ofy Arietis is 6;40°, as in Ptolemy's star catalogue. Since for 6 years and 7 months 
(carr. 5 months) earlier Llll = -4', II = 6;36° nnd the mean sidereal longitude 
of the Sun X: = . 182;\()0 - 6;36° = 175;34°. At Tycho's autumnal equinox of 12 
September 1588 at 15;15" after noon (13 Sep 3;15 AM) at Uraniborg. A, = 1800 
and X. = 1800 + 2;2f = 182;2,30'. From our observations, he says, allhis lime 
the precession of the equinoxes 1r = 28~St 0 

-as we shall show in the follow
ing chapter from accurate observations made earlier-so the mean sidereal lon
gitude of the Sun X: '= 182;2,30' - 28;5,30' = 153;57'.' The difference in 
sidereal longitude LlX; = 153;57' - 175;34' = -21 ;37° = +338;23'. Next, 'in 
his list of longitudes and latitudes of places (5.309-10), the difference in longi
tude of Alexandria and Uraniborg is 60;300 - 36;45' = 23;45° = 1;35" (carr. 
29;55' - ' 12;42' = 17;13' = 1;9h). Hence, at the meridian ofUraniborg, the time 
of Ptolemy's equinox is 2" - ' I ;35" = 0;25" after noon. No\v, between the two 
autumnal equinoxes. including complete revolutions and years, the differenc~ of 
mean sidereal longitude LlX: = 1455' + 338;23' and, the difference of time in Julian 
years LIt = 1459' +355d 14;50h• Thus"the mean sidereal motion of the Sun u: and 
the length of the sidereal year oJ are' 

_. 524138;23° ' Id 
v, = d = 0;59,8,11,27.14.26,54 , 

531791;37,5 

sy = 360' /v; = 365d 6;9,26,43t 

The correct length of the sidereal year is 365d 6;9.IOb, about 17" less, which 
accumulates to I h in 212 years and nearly 7b in the 1456 years since Ptolemy's 
equinox, The principal cause of the difference is an error of about - 30b in LIt, 
from Ptolemy's equinox, which is 33b I.te, compeusated slightly by Tycho's, about 
3h late. ' 

Tycho does better with the tropical year, for which his ,goal is more modest bUI 
the required work greater (2,37-45). He explains that he does not here attempt a 
complete restitution of the solar motion for all ages. which he decided to reserve for 
his complete work of restored as·tro~omy. but only as suffices fo~ the nearest periods, 
within 300 or 400 years, for in that time an inequality in the tropical year that dis- ' 
turbs what we propose to do cannot occur. Therefore, instead of using the sidereal 
year-and separating out the precession of the equinoxes, whicQ, would here be very 
lengthy (because over long periods the precession is variable). we shall instead be 
satisfied with the equinoctial or tropical year confirmed for this verY period. We 
shall investigate this from observations of meridian altitudes of the Sun a hundred 
years ~go in Nuremberg by the learned Bernhard Walther, of lasting memory and 
especially worthy of praise, !he distinguished student of Regiomontanus. What he 
then does is derive the parameters of solar theory for the year 1488 using Walther's 
observations of chords of meridian 'zenith distances of the Sun to locate the Sun at 
the equinoxes and at Taurus 15' and Leo 15°, and from two derivations settles on 
e = 0.035481, em = 2;2', and AA = Cancer 4;15°. Note that e and em are slightly 
smaller than Tycho's for 1588, and he also finds an obliquity of 23;31 0, slightly 
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less than his own 23;31,30°. He takes these differences seriously and remarks that 
it seems consistent that from that time the obliquity of the ecliptic has increased 
slightly, because meanwhile the eccentricity of the Sun has also increased some
what, and not (as the Copernican reasoning erroneously maintains) decreased. Then, 
from the difference in time between the equinoxes, both vernal and autumnal, of 
1488 and l588-with smal1 errors in the differences in longitude of Nuremberg and 
Uraniborg and in the mean longitudes of the Sun-he derives for the length of the 
tropical year 365d 5;48,45h exactly, an excel1ent value. The mean daily motion is 
computed to no less than seven places, of which the first four are 0;59,8,19,49o/ d• 

The epoch for noon of I Jan 1588 is 290;4,50°. 
Since 1:ycho considers the tropical year variable over longer periods, the mean 

motion is intended for a limited time, and he tabulates epochs only for the period 
1400-1800, that is, 1600 ± 200 years. The rate of precession is later found (2.253) 
from the difference between the sidereal and tropical year, 365d 6;9,27b-365d 5;48, 
4Sh = 0;20,42h• Since the Sun moves about 0;2,28o/ h, the precession 7C = 
0;2,28olh • 0;20,42h ~ 51" per year, 1° in 70 years and 7 months, which will be 
confirmed for longer periods from observations of fixed stars. It was found that in 
1488 AA = 94;15° and in 1588 AA = 95;30°, a change of 1;150 in 100 years, from 
which the motion of the apogee is 45" per year. Since the precession is 51" per 
year, the sidereal motion of the solar apogee is -6" per year, that is, retrograde, 
which Tycho does not mention. But since it may not be uniform over longer peri
ods, perhaps at some other time it is direct. This then is the solar theory Tycho 
established for his own time and two centuries before and after. Although doubts 
have been raised about Ptolemy's solar observations and theory and observations of 
fixed stars, they have not been rejected, but in fact accepted for the determination of 
the sidereal year. 

1:ycho has more doubts about the observations of fixed stars used to confirm the 
rate of precession. He has no confidence in any earlier determination of precession: 
Ptolemy's I ° in 1.00 years is too slow, al-Battan,'s lOin 66 years is too fast, and 
Copernicus's variable precession is defective, as we shall see below. Nor does he 
consider earlier coordinates of stars reliable, although he does use some to confirm 
his own rate of precession. And he believes that Ptolemy's catalogue of stars is 
that of Hipparchus corrected for precession (2.151). "After these (fimocharis and 
Hipparchus), Claudius Ptolemy also, about the year 140 after the birth of Christ, and 
at Alexandria in Egypt, attempted to observe and commit to writing some amount in 
the advancement of these (stars, nonnulla in harum progressione), yet concerning 
the placement of them with respect to each other in longitude and latitude com
pletely preserving the Hipparchan table." And the same is true of the catalogues 
of Battani, Alfonso, and Copernicus, so in this sense, there has been only one star 
catalogue, that of Hipparchus, successively adjusted for precession. 

We have seen that 1:ycho accepts long-period variation of parameters of solar 
theory, the eccentricity, direction of the apogee, length of the tropical year, and also, 
as we shall see, the obliquity of the ecliptic and the precession of the equinoxes, 
to which the variation in the length of the tropical year is related. Several times 
he states that the parameters derived here are only for the closest periods, and he 
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also says that their definitive examination for all ages is deferred to his complete 
restoration of astronomy, which he never wrote. Although he admits the possibility 
of smaller errors,. nowhere does he say that Hipparchus and Ptolemy were abso
lutely wrong about the eccentricity of the Sun, the direction of the apsidal line, 
the length of the tropical year, and the obliquity of the ecliptic, which thus have 
changed notably since antiquity. But the most important problem is the precession 
of the equinoxes or, as 1)icho prefers, the (apparent) motion of the fixed stars: is 
it uniform or nonuniform over long periods and what is its cause? We begin with 
1)icho's treatment in the Progymnasmnta, which comes after the establishment of 
locations of fundamental stars for the star catalogue and the explanation of how 
locations of other stars are found. The section is called "On the proper motion of 
the fixed stars corresponding to this age" (2-253-57). He begins with the derivation 
of the rate of precession from the difference of the sidereal and tropical years we 
have just shown_ The length of the sidereal year is 36Sd 6;9,26,43h, the length of 
the tropical year "in this age" is 36Sd S;48,45h, less than the sidereal year by about 
O;20,42h. In so much time the Sun, after traversing an entire circle, again overtakes 
a fixed star which has advanced slightly, meanwhile passing over exactly 51 " in its 
motion, and therefore such a small amount is the annual advancement of the fixed 
stars uin our age." 

He then sets out confirmations of this rate using pairs .of locations of Spica and 
Regulus from observations of his own, Copernicus, Battan!, Ptolemy, Hipparchus, 
and TImocharis. We summarize these in the following table giving the observers, 
star, earlier and later longitudes AI and A2, difference in longitude LlA = A2 -
AI, difference in time LIt in years, and the annual rate of precession 1f = LlAj LIt 
computed by 1)icho. 

Observers Star AI A2 LlA .LIt 1f 

Cop.-Tycho Spica 197; 3,30° 198;3° 0;59,30° 70Y 0;O,51°fy 

Hip.-Tycho Regulus 119;50 144;5 24;IS 1713 0;0,50,59,47 
Hip.-Bat. Regulus 119;50 134;5 14;15 1006 0;0.51 
Bat.-Tycho Regulus 134; 5 144;S 10; 0 70S 0;0,51,4 
Tim.-Tycho Spica 172;20 198;3 25;43 1879 0;0,49,15 
Ptol.-Tycho Spica 176;40 198;3 22;23 .1446 0;O,S3,15 

The resullS are not quite straightforward and most of the values of rr have 
small errors of little consequence.5 To explain the discrepancies of about ±2" in 
the compaPisons with Timocharis and Ptolemy, he notes that the comparison with 
Hipparchus in between them is correct, which is confirmed by al-Battan', that the 
mean of their values is about 51", and that their observations are not sufficiently 
accurate for this purpose. For this reason, it is useless to give direct comparisons 
between Timocharis, Hipparchus, and Ptolemy, which would be close to Ptolemy'S 
36" per year. Hence, it appears that 51" per year is confirmed for nearly 1900 years. 
But Tycho is more cautious, for he writes that assuming that the annual motion of 
the fixed slats is exactly 51", in no way shall we depart from the required goal in 
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any experiences that can occur in the nearest three or four centuries (as concerning 
more I shall not speak). Like the epochs of the Sun's mean mation, the epochs af 
the motion of the fixed stars are tabulated only for 1400-1800, as they are in the 
Restoration Of the Fixed Stars with the catalogue of 1,000 stars completed in 1598 
(3.343,374). He goes on to say, and this seems to be his main point, that Coperni
cus's theory of the inequality of the precession of the equinoxes, to reconcile and 
preserve all the discoveries of his predecessors. is in no way correct, as in the motion 
of the seventy years from his first observation of Spica, which is much faster than he 
believed it would be, not one degree in about one hundred years but in seventy, and 
in the length of the tropical year, which is not as long as he believed, for according to 
Copernicus the two are connected such that the motion of the fixed stars is slowest 
when the year is longest But the accurate observations of recent years refute this 
since they do not correspond in their periodic returns, meaning that the precession 
is not as slow or the tropical year as long as in Copernicus's theory.6 He concludes 
(2.255-56): 

It is not now our intention to set out the universal motion of the eighth 
sphere (as it is ·called) and also corresponding to all periods in the age of 
the world, so that the inequality discovered by first some and then other prac
titioners will, as far as possible, be justified, leaving aside the undertaking 
of such labor to a special restoring of astronomy. Nevertheless, convinced 
in this matter by good reasons, I do not hesitate to affirm that so immense 
an anomaly is hardly concealed in the motion of the fixed stars as is come 
upon from the observations of Timocharis and Ptolemy compared with Hip
parchus and al-Battani. For it is not likely that sometimes they pass over 10 

in 100 years, as Ptolemy reckoned, but sometimes in 66 years, as al-Baltani 
believed, but rather without doubt some error has escaped detection in the 
actual observations of the practitioners, which appears clearly enough from 
the fact that the longitudes of the very stars they report specifically to have 
observed are not distant from each other in heaven itself by the amount 
their record claims, so much so that a deviation from the arrangement of 
heaven is found of a third and even half a degree, which will be clear to 
anyone by comparing our intervals of longitude with their records regarding 
the same stars. We also see how little of more refined accuracy the mod
erns have shown in these matters, as is clear from the published observa
tions of Regiomontanus and his student Bernhard Walther, and of Werner. 
Nevertheless, I shall not suppose that the observations of the ancients of the 
fixed stars were so erroneous that it cannot be gathered from them that some 
kind of inequality of motion is concealed in them, although I believe this 
takes place from some external cause and indirectly. and with good reason 
is not to be attributed to the stars themselves. Still, it is not yet suitable to 
make known a final judgment on this matter, considering more deliberately to 
reserve it to the comprehensive study of astronomy to be published in several 
years. 
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Although the comprehensive study of astronomy was never written, Tycho does 
say more on the question in his correspondence with Joseph Scaliger. The cor
respondence, of considerable interest on both sides, has been treated in delail by 
Anthony Grafton (1993) concerning Tycho's correction, or attempted correction, of 
Scaliger's notions about the sidereal year and precession, and our own e~amination 
of this curious subject owes much to Grafton's. 'JYcho knew Scaliger's work well. In 
1584 he asked his friend Heinrich Brucaeus, Professor of Medicine at Rostock, for 
a copy of the recently published De emendatione temporum, the first of Scaliger's 
two great works on chronology, which Brucaeus promptly sent. In 1595, through 
his former assistant Johann Isaac Ponlanus, then in Amsterdam, he sent Scaliger 
in Leiden several printed qualernions of the solar theory in the Progymnasmata so 
that he could compare his equino~es with ancient equinoxes to find a more correct 
measure of the relation of the tropical and Julian year. He hoped that in this way 
the length of the tropical year, which he had established for the recent period from 
Walther's observations, could be found more accurately by extending the interval 
back to antiquity and in so doing refute Copernicus's theory of the variation of 
the tropical year and precession, which he says is not as great or as important 
as astronomers suspect (7.373-74). He seemed to think that Scaliger had original 
reports of ancient observations of equinoxes, by Hipparchus in particular, other than 
the citations in the Almagest, which of course he did not. In a letter of 14 March 
1598 written from Wandesburg (8.31-33), he asks Scaliger to send him all Hip
parchu.'. observations he has of vernal and autumnal equinoxes, perhaps from the 
Commentary on Arallls which contains no such equinoxes, set out in a table so that 
he could compare them with his equinoxes; if he has other very old observations 
of equinoxes, he would wish them, and also the most ancient epoch of the Jews, 
when it is believed the equinox took place on 21 April at 6 hours after noon. This 
would have been about 3800 BC, close to the date of Creation. Scaliger included 
Tycho's equinoxes in the second edition of De emendatione temporum (1598), 
and concluded from a comparison of Hipparchus's and Tycho's equinoxes that the 
Alfonsine tropical year of 365d 5 ;49 ,16h is correct and preferable to the year of 
"Gelalaeus."7 

Now on 9 July 1598 Scaliger sent Tycho the second edition of De emendatione 
tempo rum with a letter setting out his ideas about the tropical and sidereal years and 
the precession (8.83-87). He believes that the sidereal year is not longer than, but 
equal to, the Julian year, because the same star always rises in the evening and sets 
in the morning on the same Julian date, which in truth the judgment of the Egyptians 
that decrees that Sirius always rises on the same Julian date proved to us, the evi
dence for which is that what we call the Julian year the Egyptians called "Canicular" 
because for more than 1500 years Sirius (Canicula) rose on the same date of the 
Julian year. This observation, as I hope, he tells Tycho, will not be unwelcome to 
you. He did not reach this conclusion from a record of Egyptian observations of 
the rising of Sirius, which does not exist, but, it appears, by interpreting the Sothic 
Cycle, 1461 Egyptian years = 1460 Julian years, in which I Thoth in the Egyptian 
calendar returns to the same date in the Julian calendar, plus an additional 44 Julian 
years for the effect of the precession of the equinoxes, advancing the equinox by II 
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days in 1460 Julian years, as a period of more than 1500 Julian years in which Sirius 
rose on the same date.8 Further, he continues, there is no trepidation nor motion of 
the eighth sphere, of the fixed stars, from west to east because it is the equinoctial 
points in the ecliptic that move from east to west, for the equinoctial circles (of the 
equator) are described as a consequence of them. These points are surely movable, 
and therefore the circles described as a consequence of their motion are movable and 
consequently the pole of the equator is movable. And thus in the time of Hipparchus, 
the pole of the equator was distant from the tail ofCynosura (Polaris) by 12;24°; now 
it is distant by less than 3°.9 

Scaliger's theory is this: the pole of the world, meaning of the sphere of the fixed 
stars, passes through the Pole Star itself or is not far removed from it, and the pole 
of the world, the arctic and antarctic circles, and the fixed stars do not move at" 
all-aside from the daily rotation-there is no motion of the eighth sphere. Instead, 
the pole of the equator is movable, and has never been the pole of the world although 
at some time it will be as it is approaching closer to the Pole Star. As a consequence 
of the motion of the pole of the equator, the equator moves along the ecliptic and 
the tropic circles also move parallel to the equator-these circles are not parallel to 
the arctic and antarctic circles-and it is this motion that produces the precession 
of the equinoxes and solstices. Just how Scaliger came up with this explanation of 
precession, which he regarded as eliminating the motion of the fixed stars, is not 
certain. He was no Copernican in the sense of holding the heliocentric theory and 
the motion of the Earth, but it may have been an attempt to adapt Copernicus's 
theory of precession, which is a motion of the equator along the ecliptic while the 
fixed stars and the ecliptic do not move, to an unmoving central Earth and unmoving 
sphere of the fixed stars, although without Copernicus's inequalities which Scaliger 
definitely rejects. 

Tycho wrote a long, detailed, and patient answer from Wandesburg between 17 
and 23 August 1598 (8.1 ()(H)9). He had his work cut out for him. He says he cannot 
support Scaliger in his proposal concerning the equator and its movable poles and 
that they differ from the poles of the world as his experience from instruments is 
otherwise (8.102-02). 

For I have found from the change in latitude of fixed stars in accordance 
with the proportion of the change in the obliquity of the ecliptic from the 
times of TImocharis, Hipparchus, and Ptolemy up to the present (if only what 
they observed in the angle of the maximum obliquity and the rest are free 
of any error, concerning which, not without reasons I am in doubt) that it is 
the ecliptic that is unstable rather than the equator with its poles, the Sun not 
always describing the same ecliptic through a great interval of centuries, and 
at the same time successively anticipating the places at which it crosses the 
equator. Hence, it happens that the fixed stars appear to progress as much as 
the Sun returns earlier to these points. And since what fits the deficit of the 
tropical year from the Julian year is clearly not equal to that motion. it is 
not possible that the fixed stars rise or set with the Sun on the same days of 
the Julian year through intervals of several centuries, and likewise from other 
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concurrent causes which will give rise to a discrepancy. And although it (the 
rising of stars) can somehow coincide (with the same days of the Julian year) 
for some few .stars for a long interval of years, nevertheless not always or for 
all stars. Also, there is no difference at all between the pole of the equator and 
of the world, as you infer both in your book and here, for they are one and 
the same. And the last star in the tail of Ursa Minor, called Polaris because 
it is near the pole, is not the pole of the world or the closest to it unless you 
understand that to mean the pole of the equator, which, as I said, does not 
differ from the pole of the world. This star was distant from the pole of the · 
equator by 12f in the time of Hipparchus, but in this year according to our 
discoveries it has approached it within 2;51 ~ 0, as 25 years earlier we found it 
removed from the pole by precisely 3° with a quadrant 14 cubits in radius in 
the garden near the estate of Councillor Heinzel in Augsburg. The approach 
to the pole of the equator or of the world takes place, not because this star is 
the pole or near (the pole) of any. sphere, but through its change of longitude 
about the poles of the ecliptic, by which its declination increases, since it is 
now near the end of Gemini but at the time of Hipparchus was near the end 
of Taurus, in the intervening time having covered a little more than 24° in 
longitude, but in latitude altered not more than the decrease of the Obliquity 
of the ecliptic produces, through a third part of a degree (if it is even that 
much), for the (latitude) which the table of Ptolemy places at 66° exactly is 
approximately confirmed. And if this star is referred to the equator in our own 
age, it will not fall in the equinoctial colure, as perhaps you believe, but will 
be removed from it by 5 r of the equator, as has itself been demonstrated 
by certain experience. But it can never be exactly united with the pole of the 
equator, for after about 500 years, when the beginning of Cancer reaches the 
solstitial colure, it will be distant from the pole . toward the equator or eclip
tic by 27 r For although the inclination of the ecliptic will perhaps then be 
intreased a little (which, however, I scarcely think will· come about), yet this 
will alter only the latitude of the star and not on account of that move it closer 
to the pole, as the stars definitely look to the fixed poles of the ecliptic while 
the Sun describes somewhat movable poles through the ages (i.e. a movable 
ecliptic with movable poles), in so far as the records ofth, ancients are worthy 
to be trusted. 

Tycho goes on to explain that the heliacal rising of Sirius changed, according to 
his computation, by only one day in the Julian year for 1500 years before Ptolemy, 
which would have been difficult to detect, not because the sidereal year is equal to 
the Julian year, but by chance in that particular star because in the interval of so 
many ·centuries its declination changed by 2f such that this alteration of declina
tion corrects and nearly eliminates the change that could occur from the difference 
between the Julian and sidereal year. This explanation. which Tycho was surely 
the first to formulate, is correct. 10 But our concern here is not so much Tycho's 
correction of ScaJiger, as his own ideas concerning the precession, which he says is 

. a result, not of the motion of the fixed stars, but of the ecliptic. He enlarges on this 
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in correcting Scaliger's dismissal of the sidereal year and its relation to precession 
(8.103-04). 

The calculation of the sidereal year, introduced by the Babylonians and Egyp
tians and after that improved by Thabit, but restored in our age by Copernicus, 
is not so empty and useless as you think, if only it is determined exactly. We 
have corrected it still more accurately in our ProgymnasmaJa astron(Jmica 
in so far as Ptolemaic observations are compared with our own. But when 
through you I receive the Hipparchan observations in some quantity, I will 
examine ttiis more ·precisely. For with you, I also consider it preferable to 
depend upon Hipparchus than Ptolemy. However, I believe no less than Coper
nicus that with respect to themselves the fixed stars remain forever unmoved. 
But I do not allow that progression, which they appear to make, through the 
precession and libration of the axis of the Earth, as he (Copernicus) preferred, 
since in truth nothing of the kind is suitable to the Earth. But if the reports 
of the ancients are worthy to be considered in every way certain, it will be 
very likely that the Sun itself describes one and another ecli ptic in different 
ages. And however small the inequality concealed in it could be, in so far as 
it will be permitted to explain from past observations of the practitioners, we 
shall, God willing, save it through 'the universal hypothesis of the Sun. And, 
the calculation of the sidereal year will also be of use for this purpose, as also 
for finding the simple motion of the planets from a fixed and immovable point 
and establishing it more accurately than up to now. 

The "Hipparchan observations" refer to the original reports or additional obser
vations, especially of equinoxes, Tycho requested earlier-the next year Scaliger 
sent him a copy of the Commentary on Aratus, in which he would have seen that it 
contained nothing of the kind-and again he asks, for the most ancient equinox of the 
Jews. The meaning of the sentence about believing with Copernicus that the fixed 
stars are forever unmoved is, not that they do not move among themselves, which 
everyone believes, but that the fixed stars as a whole, the sphere of the fixed stars 
itself, is unmoved, as Copernicus alone believed and as Scaliger and Tycho now also 
believe, which is confirmed by the statement that the simple (sidereal) motion of the 
planets be found from a fixed, immovable point, as Copernicus also held. The only 
motion of the sphere of the fixed stars is the diurnal rotation about the pole of the 
equator, which Tycho considers the pole of the world and absolutely fixed. Instead, 
the precession is due, not to the motion of the stars, but to the motion of the Sun, 
describing different eCliptics in different ages, possibly with a small inequality. This 
agrees with his statement that the Sun does not always describe the same ecliptic 
through a great interval of centuries, and at the same time successively anticipates 
the places at which it crosses the equator, so that the fixed stars appear to progress 
as much as the Sun returns earlier to these points. 

The discussion, the issue, between Tycho and Scaliger is this: Both believe with 
Copernicus that the fixed stars do not move at all, that there is no motion of the 
eighth sphere, although they also believe, differing from Copernicus, that the diur
nal rotation is of the entire universe, including the sphere of the fixed stars, about 



Tycho. Longomontanus, and Kepler on Ptolemy's Solar Observations and Theory 165 

an unmoving, central Earth. But again with Copernicus both believe there is a pre
cession of the equinoxes with respect to the fixed stars which is not caused by any 
motion of the stars. Scaliger believes the precession is caused by a motion of the 
pole of the equator with respect to the pole of the world, of the sphere of the fixed 
stars, al or very near Polaris, shifting the equator and thus the intersections of the 
equator with the ecliptic, the equinoxes, with respect 10 the stars and the ecliptic, 
which is also fixed with respect to the stars. This appears to be an adaptation to a 
fixed, central Earth of Copernicus's theory, in which the equator moves with respect 
to the ecliptic and the fixed stars, although without the inequality in the motion of 
the equinoxes. Scaliger also believes that the sidereal year is equal to the lulian 
year, as shown by the constant lulian date of the riSing of Sirius, and those who say 
it is longer are simply wrong. Tycho believes instead that the pole of the equator 
is the fixed pole of the world and that the precession is the result of the motion of 
the Sun, describing successively different ecIiptics, that is, an ecliptic that moves, 
rotates, along the equator so that the Sun crosses the equator at successively different 
points, causing the equinoxes to precess with respect to the fixed stars and fixed 
equator. There is probably also some small inequality concealed in this motion of 
the equinoxes, which accounts for the variation of the length of the tropical year, but 
the sidereal year, the Sun's return with respect to the fixed stars, is constant, as the 
fixed stars do not move, and is longer than a luI ian year. The nearly fixed Julian date 
of the rising of Sirius is fortuitous, because the star's change in declination nearly 
compensates the difference between the sidereal and Julian year, which is not true 
of most stars. TYcho believes that he has established the length of the constant side
real year correctly for all times and the length of the variable tropical year for 100 
years since Walther and probably for 200 years before and after his own time; more 
than that and a complete explanation of the precession is reserved for his universal 
hypothesis of the Sun. 

Scaliger was not convinced by Tycho's arguments, indeed, he became more cer
tain than ever that he, the philologist with a profound knowledge of antiquity, was 
correct, and TYcho, the astronomer, and all other astronomers, who know noth
ing of antiquity, were wrong. He was writing a Diatribe on the precession of the 
equinoxes (De aequinoctiorum anticipatione diatriba), completed in 1601 but prob
a.bly never seen by Tycho, and only published posthumously in 1613.11 On (NS) 10 
March 1600, he wrote to Tycho in Willenberg (8.2614), referring to a letter he 
had received recently, and summarizing what he planned to write in his Diatribe. 
The word "diatribe" then meant a critical dissertation, not necessarily an invec
tive, although that is hardly lacking in Scaliger's Diatribe or his leller to Tycho 
(8.262-63). 

For I intend to send you my diatribe on the precession of the equinoxes and 
refutation of the motion of the eighth sphere, in which we have both dili
gently assembled innumerable testimonies of the ancients and shall demon
strate by five clear testimonies of the most ancient authors that the star called 
Polaris has remained for 1966 years in the place where it is today. Further, 
we shall adduce so many incongruities and absurdities which follow from the 
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hypothesis of the motion of the eighth sphere that there will be no one except 
the ignorant or envious who will dare speak to the contrary. I add also, because 
it has thus far been entirely unknown, that the precession of the equinoxes had 
been accepted from Thales and Anaximander up to the time of Hipparchus, 
and that Hipparchus was the first of all to reject it, having introduced the 
eastward motion of the eighth sphere, so that against the evidence of sight, 
he recorded the last star in the tail of Cynosura, or Polaris as it is commonly 
called, to be. the most southern of all seven stars in that constellation, which 
nevertheleSS was before him, and is today, and will always be the most north
ern of all. See how the authority of such a man has misled posterity! For 
from him up to the present day, you believe such things, and for no reason 
other than that "the Master spoke" (a.UtO~ E'Pa), which should never have 
a place in mathematics. For to no sort of men has more harm been done 
by ignorance of antiquity than to the race of astrologers. Nothing occurs to 
me to be more surprising than that not one astrologer has had even a clue 
of the error of that hypothesis and how many and great are the absurdities 
necessarily born of it, if you except only Copernicus, who also recognized 
the precession of the equinoxes and the obliquity of the equinoctial circle (the 
equator), but through ignorance of antiquity took refuge in absurd hypotheses. 
In fact, the regular and uniform decrease of the maximum declination of the 
Sun necessarily follows from the precession of the equinoxes alone, which 
we have demonstrated completely, for otherwise it is not possible except by 
false hypotheses. Therefore it follows that the pole of the world differs from 
the pole of the equator, and that the meridian lines move and do not always 
remain in the same place, which we shall demonstrate perfectly from ancient 
authors. 

Scaliger's history of precession may seem bizarre, but far more preposterous 
things have been written in our own time; indeed, precession always seems to inspire 
both learned and ignorant nonsense. The period of 1966 years during which the 
Pole Star has been in the same place is since Eudoxus as cited by Hipparchus, 
critically in fact, although Scaliger considers Eudoxus, with the likes of Thales and 
Anaximander, preferable to Hipparchus, the originator of the false understanding 
of precession as a motion of the fixed stars. This curious history, and there is far 
more of it in the Diatribe, has been treated at length by Grafton. It is clear that 
Tycho's attempt at correction had no effect, for Scaliger has changed his mind on 
nothing, and is certain that the testimony of some ancien IS correctly understood is 
of greater value to understanding precession than a sound knowledge of astronomy. 
Yet it can be said in Scaliger's defense that in the basic principle of moving the 
equator with respect to a fixed ecliptic and unmoving sphere of the fixed stars, in 
which he follows Copernicus, he is doing the right thing. Tycho answered in a letter 
written from Prague on (NS) 23 July 1600 (8.328-29), in which it appears that the 
great astronomer is not doing the right thing; the essential part is this: 

I eagerly await your thoughts, which you promised, about saving the equinoxes 
and the motion of the eighth sphere in another way. I readily grant you that 
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the Pole Star, just as all the other stars of the eighth sphere (as it is called), 
remains in the same place in heaven, if only you acknowledge in this star, as in 
the others, changes in declination and right ascension, as well as in longitude 
and even some change in latitude. I also agree with you that this will take 
place, not by the advance of the eighth sphere, but by the precession of the 
equinoxes, as the great Copernicus likewise seems to have apprehended. But 
the critical point in this matter turns upon how this precession is to be under
stood and accomplished. That it takes place, as Copernicus theOrized, through 
a motion of the axis of Ihe Earth, reciprocated and librated and not entirely· 
coincident with the annual revolution, is in error; rather, the assumption is 
utterly absurd and does not satisfy the appearances in this age, much less in 
all other ages. I am convinced that the Sun itself causes this variation as it 
describes one and another ecliptic in different ages, and moreover draws the 
intersections of the ecliptic with the equator backwards, and in fact not at all 
uniformly, as I intend to show more fully, God willing, in its proper place. For 
I have discovered that the lowest Moon also varies its orbit in single months in 
a way not much different such that, not only does its maximum latitude vary 
up to a third part of a degree (in fact just as much as the difference thus far 
discovered in the obliquity of the ecliptic), but I also learned that the nodes and 
intersections with the ecliptic, although they move westward with a uniform 
motion, yet this takes place reciprocally and by a nonuniform quantity and 
a fairly notable difference which can reach I t, as will be explained more 
completely, God willing, in publishing before long the restoration of the lunar 
motion in our Progymllasmata. Ifby chance there has become known to you a 
way different from ours by which these things can be explained properly, and 
it can be ascertained from ancient records and certain observations, I wish you 
to impart it to me. For the present, the matter is as I say, that I cannot compre
hend what you have made known both in your letter and elsewhere: Ihat the 
pole of the world is undoubtedly different from the pole of the equator and 
that meridian lines move. For it appears not quite suitable, unless perhaps I do 
nol yet understand your meaning, which is ralher obscure, so that concerning 
this matter I wish to be more fully instructed by you. 

1Ycho's answer is a lesson in gentle irony to a vain man who has nothing but 
abuse for those who do not submit to his teachings and acknowledge his genius. 
Since Scaliger's diatribe on precession has been considered by Grafton, we shall 
go on to our principal subject, Tycho's own explanation of precession in thi s leller, 
which appears to be the most complete statement of what he had in mind. The essen
tial clue is the comparison to the model for lunar latitude, in which the inclination 
of the lunar orbit to the ecliptic is variable and the regression of Ihe nodes along 
the ecliptic nonuniform. This model is to be transferred to the precession of the 
equinoxes, which, as we shall see, leads to problems. 

Scaliger's and Tycho's hypotheses for precession are shown in Fig. I. We are 
not concerned with ScaJiger's ideas that the sidereal year is equal to the Julian year 
and that the pole of the equator will eventually reach Polaris, only that a motion of 
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Fig. 1 Hypotheses for precession of the equinoxes according to (8) Sc.Jiger. (b) Tycho. (c) cor· 
·rection ofTycho 

the equator accounts for precession. which is shown in Fig. I a. The Sun S moves 
on the ecliptic in the direction of increasing longitude +A and initially crosses the 
equator at the vernal equinox 'Y't; a northern star Sn and southern star s, are shown 
with longitude A, = 'Y',I. latitudes Pn = snl and p, = s,l. and declinations On = snd, 
and 0, = s,d, . Now after some time the pole of the equator has moved. shifting the 
equator so that the Sun crosses it at the vernal equinox 'Y'2. and the precession of the 
equinox along the ecliptic is IT = 'Y', 'Y'2 in the direction of decreasing longitude -A. 
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The longitude .of the stars has increased to),2 = 'Y'21 = 'Y'tl + rr, the latitudes have 
remained unchanged, and the declinations have changed, Sn increasing to On = sodz 
and s, decreasing to 0, = s,d2. And if the pole of the equator has moved closer to 
the pole of the ecliptic-this motion is not shown in the figure-the inclination of 
the equator to the ecliptic has decreased, which also affects the declination but not 
the latitude of stars. All of this is just as it should be, and is essentially Copernicus'S 
model but without the inequality and without the motion of the Earth. But if the 
axis of the Earth does not move, how is the equator shifted? Scaliger seems to think 
that the equator and its poles are located on a sphere. which moves in relation to the 
unmoving sphere of the fixed stars. This does raise a problem. If the sphere is inside 
the sphere of the fixed stars, it may move in this way, but a sphere with identical 
equator and poles, and with the identical motion, must still be located oUlside the 
sphere of the fixed stars to produce the diurnal rotation of the heavens parallel to the 
equator. If the sphere is only outside the sphere of the fixed stars and also produces 
the diurnal rotation, Ihen it is difficult to consider the poles of the sphere of the fixed 
stars as nOI moving wilh respect to the poles of this outer sphere moving the equator. 
There is nothing wrong with that, and it is a way of transferring Copernicus's model 
for precession to the heavens, but one can hardly then say that the sphere of the fixed 
stars is absolutely al rest, of course aside from the daily rotation, which strictly, or 
usually, is required to have yet another sphere of its own. 

Tycho's model for lunar latitude produces both a variation of the inclination of the 
lunar orbit to the ecliptic and a nonuniform regression of the nodes, and he believes 
that both can be applied to the Sun to produce the variation of the obliquity of 
the ecliptic and the nonuniform precession of the equinoxes. Tycho's model for the 
precession is shown in Fig. I b, in which the Sun S moves on the ecliptic, crossing the 
equator at 'Y't. and stars Sn and s, have the longitude ),1 = 'Y'tlt. latitudes p" = Snll 
and p, = s,lt , and declinations 0" = s"dt and <l, = s,dt . The Sun, as Tycho says, 
"describes one and another ecliptic in different ages, and moreover draws the inter
sections of the ecliptic with the equator backwards, and in fact nol al all uniformly:' 
so that after some time the Sun crosses the equator at 'Y'2, which is projected on to 
the previous position of the ecliptic at 'Y"2 in the direction of decreasing longitude 
-)., by the precession rr = 'Y'1'Y"2' which may be nonuniform, as the regression of 

_ the nodes in the lunar model, and thus the period of the Sun's return to the equinox. 
the tropical year, may be nonuniform. Along with this nonuniform motion of the 
equinoxes, as in the lunar model. there is a variation in the inclination of the ecliptic 
to the equator, that is, a variation of the Obliquity, which is nol shown in the figure. 
So far, so good, but when we consider the effect on stars. there are problems. If the 
ecliptic moves and the sphere of the fixed stars does not move, then the longitude 
of stars increases to )"Z = 'Y'212 = 'Y'III + If, which is correct. But the latitudes of 
stars also change. Sn reduced to f3n = Snl2 and s, increased to p, = S,12, which is not 
correct and distinct from the change-in latitude from the variation of the obliquity 
that Tycho has in mind; and the declinations do not change, which is also not correct. 
The solution to these difficulties, shown in Fig. Ic, is to make the fixed stars move 
with the ecliptic. so the latitudes Pn = sozlz = snll t and f3, = s,212 = S,III are 
unchanged, aside from the change produced by the variation of the obliquity, and 
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the declinations are changed, from 8n = Snldl to 8n = sn2d 2 and from 8, = s,ldl to 
8, = S,2d2 . But that contradicts JYcho's belief that the fixed stars do not move and 
that the precession takes place, not by the advance of the eighth sphere, but by the 
precession of the equinoxes, which is the reason for applying his model for lunar 
latitude to the precession. JYcho would surely have discovered these difficulties had 
he worked out his model for the precession more carefully, but he did not do so, and 
all we have is this suggestion of applying the model for lunar latitude to account for 
a nonuniform precession and change of obliquity, which clearly fails. 

JYcho's solar and precession theories, like so much he intended to do, were left 
unfinished. Both were established for about two hundred years before and after his 
own time, as shown by the tables in the Progymnasmara, and he clearly stated in 
that work and the letters to Scaliger that the consideration of long-period varia~ 
tions is deferred for his universal hypothesis of the Sun and complete restoration of 
astronomy. We have seen that in finding the length of the sidereal year, he applies 
Ptolemy'S precession of 36" per year to Ptolemy'S observations even though in 
establishing his own rate of 51" per year he shows that it applies not only to his 
own time, but is supported, more or less, by observations since antiquity. There 
would appear to be a contradiction, but Tycho does not see it that way, instead, 
perhaps, taking 51" per year as close to a mean value over a long period, subject 
to an inequality of magnitude and period not yet known. He also accepts, at least 
as more or less correct, Ptolemy's eccentricity and direction of the apogee, also 
used to find the length of the sidereal year, and length of the tropical year for the 
period between Hipparchus and Ptolemy, and he believes the obliquity varies over 
a range of about 20', meaning that he accepts something close to Ptolemy's large 
Obliquity of 23;51,20" in antiquity, nearly 20' greater than his own 23;31,30°. He 
was cautious about doubting the observations and parameters of his predecessors, 
except for Copernicus close to his own time, and while admitting the possibility 

. of errors by Hipparchus and Ptolemy, did not consider their errors as large as his 
own parameters would suggest, believing instead that their observations could not 
be seriously inaccurate and there had to be changes of some kind in parameters over 
so long a period. 

Scaliger had pointed out (8.85), correctly, that some of Hipparchus's equinoxes 
were in error by a quarter of a day, as shown in Almagest 3.1, and accused Ptolemy 
of errors of an entire day, which we know also to be true. Tycho's answer is more 
cautious (8.101-02). He admits that because Hipparchus's instruments were not 
graduated to single minutes, but only to twelfths of a degree, and because of neglect 
of solar parallax and refraction, errors of six hours in times of equinoxes were possi
ble, and further, that Ptolemy'S observations have even less certainty. But he will not 
say that there was an error of an entire day in the entries into Ptolemy's equinoxes, 
for this would require admitting an error in the declination of the Sun of about five
twelfths of a degree, which the size and precision of the instruments, by which the 
interval between the tropics or the obliquity of the ecliptic was investigated within 
one-third of a minute (unless he also borrowed this from Hipparchus), does not 
allow. The reasoning here is that since Ptolemy states the obliquity as 23;51,20", 

to a precision of r. he could not possibly be in error by 25', the daily change in 
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declination of the Sun around equinox, so the equinoxes could not be in error by a 
full day. He also points 6ut that the maximum latitude of the Moon of 5°, found by 
Ptolemy with parallactic rulers, does not show so great an error of the inslrument, 
meaning close 'to 25'. Since so much depends upon the times of these equinoxes, as 
they are used to find the length of the tropical year, the eccentricity and direction of 
the apsidal line, the mean motion in longitude and epoch, and indirectly the longi
tudes of starS from which the rate of precession is found, that is, all the parameters 
which show long-period variation except the obliquity of the ecliptic, which depends 
upon altitudes of solstices, the absence of serious errors in the observations shows 
an absence of serious errors in the parameters. And a variation of20' in the obliquity 
is also accepted. Thus a variation of parameters over a long period must be taken 
seriously and accounted for by the universal hypothesis of the Sun in the complete 
restoration of astronomy, and that is what Tycho intended to do. Of course he did not 
do it, and it is not possible to know how or whether he would have changed his mind 
in attempting to do so. He, or an assistant to whom he assigned the work, would pre
sumably have caught the error of applying the lunar latitude model to account for the 
nonuniform precession, at least as described in the letter to Scaliger, but more than 
this we cannot say. We may only conclude that he took the long-period variation 
of parameters in solar theory following from Ptolemy's observations, including the 
precession and obliquity as part of solar theory, as seriously as Copernicus did in his 
theory of the motions of the Earth. So although Tycho did not believe Copernicus 
had described these variations correctly or accurately, he was of the same mind as 
Copernicus with regard to the effects, although not the cause. 

Christian Longomontanus 

Christian Severinus Longomontanus (1562-1647) was Tycho's loyal and capable 
assistant for nearly ten years at Uraniborg, and was with, him for part of his travels 
in Germany and then in Benatky and Prague. His last contribution while with Tycho 
was the final form ofTycho's lunar theory published in the Progymnasmata, most of 
which was Longomontanus's work, not always with Tycho's complete approval. He 
later became professor of mathematics at Copenhagen. His principal work, Astrotlo
mia Danica, published in 1622, was intended as a complete exposition of astronomy 
based upon Tycho's methods and observations, including the theory of the planets 
that Tycho did not live to complete, or even begin. Although no longer well known 
or much studied, since the contemporary work of Kepler made nearly everything 
in it obsolete, or about to be obsolete, it was regarded well enough in its day to 
be reprinted in 1640. The work is in two parts, the 'first on spherical astronomy. 
the second, of concern here, on the Sun, Moon, planets, and staTS, and there is an 
appendix on temporary phenomena of the heavens, new stars and comets. The title 
of the second part is ''Theories of the motions of the planets in accordance with the 
observations of Tycho Brabe, and in fact his very own, re-established in a three
fold form." The "three-fold form" means that everything is set out in Ptolemaic, 
Copernican, and Tychonic form, which Longomontanus prefers although giving 
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the diurnal rotation, precession, and variation of obliquity to the Earth rather than 
the heavens, which are absolutely at rest In making use of ancient observations, 
he does not take them as recorded by Ptolemy, as Copernicus did, but subjects them 
to. examination and correction, as Tycho intended to do, and he considers his work to 
apply to all times, again as Tycho intended in his complete restoration of astronomy. 
This is specifically stated in the separate title page of Part Two, which is worth quot
ing: "The second part of Danish Astronomy, including the theories of the planets 
restored in two books, of which the former, after a description and comparison of the 
three-fold hypothesis of the world, namely, the ancient Ptolemaic, the astonishing 
Copernican, the modern of Tycho Brahe, treats the apparent motions of the fixed 
stars, likewise of the Sun and Moon ill the same way, re-established and adapted to 
all ages of the world, together with the entire theory of eclipses and besides this a 
special treatment of the Moon; the latter treats the motions of the other five planets, 
on the basis of the three-fold hypothesis, similarly restored to the appearances ofthe 
heavens in the same way." 

Although Tyeho did not carry out his intended investigation of the motion of the 
Sun for all times, that is just what Longomontanus does in a lengthy history of solar 
observations and theory from antiquity to Tycho (28-49). Much of it does not meet 
with his approval, but he is also interested in explaining why things went wrong. He 
is, to say the least, direct in his evaluation (29). 

For although the proof of the perpetual constancy of the celestial phenomena 
of the single motion of the Sun is evident, yet if the observations and likewise 
theories of each of the astronomers are to be believed, in none other do I find 
more disgraceful inconstancy, and ihis not only concerning the measure of the 
annual revolution of the Sun, but also the change of its eccentricity (as it is 
called) and the location of its apogee. Thus, it was determined by Ptolemy in 
his demonstration of the hypothesis of the Sun, and proved by observations 
of sorne kind, that in the nearly 300 years between Hipparchus and Ptolemy 
they were without any change, but soon after in the course of the follow
ing centuries they appear to be subject to inordinate change. Considering the 
causes of this more carefully, I perceive that none belong to the absolutely 
simple motion of the divine star, but all fault is deservedly to be ascribed to 
the astronomers, whose records of the motion of the Sun in different ages, as 
they maintain derived from the heavens, have been transmitted to posterity, 
in which records the motion of the Sun is more or less erroneous in one way 
or another from rather obvious causes. This disgraceful situation continued 
until the beginning of the more accurate restoring of astronomy was divinely 
granted to our age and to our Atlas, Tycho Brahe, the celestial observations 
of whom alone, both because of the correct and careful preparation of instru
mentS as well as skill in observing, exclude all sensible error, as I, who was 
a student of Brahe's astronomy for ten continuous years, can perhaps be the 
best witness. But since, as we know, equal care had by no means been shown 
by his predecessors, therefore it is no wonder that with the progress of time, 
very abundant error emerged, in other bodies, but especially in the Sun. 
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Longomontanus is suspicious of all early observations taken from declinations 
of the Sun, of equinoxes, where the daily change in declination is greatest, because 
of the insufficient size or skill in manufacture of instruments, incorrectly assumed 
latitude of the observer, and the effects of parallax and refraction. And the problems 
are worse for intermediate places where the daily change of declination is sensibly 
smaller, until the solstitial points where the location of the Sun cannot be obtained 
from observations because its declination remains invariable for many days. He 
believes that the length of the tropical year was obtained, not from such observa
tions, but from cycles and syzygies of the luminaries, the Sun and Moon (30). All 
before Hipparchus believed the year to be 365;\: days, as appears in the institution 
of the Olympiad, beginning anew in the fourth year near the rising of Sirius, and 
likewise other times of the year were recognized by the rising and setting of fixed 
stars, the custom of the most ancient Hesiod and later the Greeks and Romans. 
While all the observations of the Sun, which without doubt existed in Babylon 
and Egypt during the rule of the Assyrians, have perished, first a certain Meton 
of Athens, who flourished 430 years before the birth of Chris~ also by use of the 
common length of the year 365i days, a Julian year, estimated the mean periods 
(simplices cursus) of"the luminaries, not so much with respect to the equinoctial 
and solstitial points, as to new Moons in his interval of 19 years, with a notable 
error which in the course of time to Hipparchus was found to be 5 days by the same 
Hipparchus---hut to the correction of Callippus, instituted six years before the death 
of Alexander, within four of his (Meton's) periods, which contained 76 single years, 
an anticipation of one day was observed in the new Moon-that is, in an interval 
of 304 years, or somewhat shorter, 300 years, as Sc.liger says, just as the following 
words ascribed by Ptolemy to Hipparchus make clear. He then quotes Scaliger's 
quotation of Ptolemy's paraphrase and quotation in Almagest 3.1 from Hipparchus's 
book "On intercalary months and days" that according to Meton and Euctemon the 
years is 365 ~ days, t2 and that Hipparchus says he finds as many months in 19 years 
as they did, but the year less than the quarter day by 1/300 day, and thus in 300 
years lacking five days from the years of Meton but only one day from the years of 
Callippus. He next paraphrases Copernicus's account in De revolutionibus 4.4, and 
explains everything at rather great length. Thus, Meton took the length of the year 
in the cycle of 19 years equal to 235 months to be 365 ~ days, as did Callippus, who 
deducted one day in four cycles of76 years equal to 940 months from observing an 
eclipse of the Moon six years before the death of Alexander. (There is obviously a 
contradiction if both took the year to be 365i days.) Hipparchus then corrected four 
cycles of Cal lip pus, 304 years equal to 3760 months, by removing one day, and thus 
five days from Meton, so that, subtracting one day in 304 years, Or shorter, in 300 
years, he made the tropical year 365i days reduced by 1/300 day, that is 0;4,48h

, 

so the time is judged to be 365d 5;55,12h. His conclusion is striking (31). 

And thus Hipparchus, together with his predecessors, attempted to hunt two 
hares with one leap, that is, to restore the new Moons within a certain inter
val of years and determine the individual periods from the mean motions of 
the luminaries, and at the same time to measure the annual revolution. Since, 
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however, one does not at all depend upon the other in this way, he obtained 
a measure of the solar year, not, as it appears, from heaven or the Sun itself, 
but from certain syzygies of the luminaries, incorrect and in fact excessive in 
length. Unfortunately, Ptolemy chose to copy this error of Hipparchus rather 
than repudiate his opinion, so that this lunar cycle was also pleasing to him. 
What other evidence Ptolemy presents from Hipparchus for this assertion 
proves nothing since, as we proved earlier, the tropical or solstitial points 
were unobservable by the ancients, and moreover, the Hipparchan equinoxes 
notably oppose this opinion of Ptolemy (ipsius), as we shall soon demon
strate from Hipparchus's (ipsius) very observations. And we have treated these 
things at length so that men of our time will finally learn that the ancien.!. _ 
astronomers, Hipparchus especially and Ptolemy, have been exposed in errors 
by reason of fairly obvious causes in assigning the period of the Sun. 

This is, to say the least, strong language. Yet, although Ihere is some confu
sion in Longomontanus's account, as the length of the year according to Meton, his 
principal point, that the tropical year of Hipparchus and Ptolemy was derived from 
a luni-soJar cycle rather than from observations of the Sun aJone is undoubtedly 
correct. 13 Very briefly, the length of the Callippic Cycle of 76 years = 940 months 
is 76 . 365td = 27, 759d. But Hipparchus had himself confirmed the Babylo
nian System B mean synodic month of 29;31,50,8,2Qd, from which 940 months 
are equal ta 940· 29;31,50,8,2Qd = 27,758;45,30,33,20d, less than the Callip
pic Cycle by about 0;15d, one-quarter day. Hence, in four Callippic Cycles, 304 
years = 3760 months, called the Hipparchan Cycle, one day must be subtracted, 
and the length of the cycle is 4 . 27,759d - Id = Ill,035d. The length of the 
tropical year is thus 111,035d/304 = 365;14,48,9,28 ... d, which was rounded to 
365;14,48d = 365td - ~d. Hipparchus can firmed this year as well as he could 
from earlier observations of solstices, which is all he had, of which Ptolemy gives 
one example: the summer solstice observed by Aristarchus at the end of the fifti
eth year of the first Callippic Periad (-279) and by Hipparchus at the end of the 
farty-third year of the third Callippic Period (-134), an interval of 145 years in 
which the number of days was less than 145 . 365~d by one-half day, or one day 
in 290 years, close enough to 300 years to confirm a tropical year of 365id _ ~ d. 
Ptolemy'S confirmation uses pairs of equinoxes of Hipparchus and his own, autum
nal (5) and (12), vernal (6) and (13), each pair separated by 285years = 15·19 
years, surely no coincidence, which Longomontanus may have noticed although 
he does not mention it. The tropical year of Hipparchus, and later of Ptolemy, 
thus rests upon the application of the Babylonian System B month to the cycle 
19 years = 235 months, or 76 years = 940months, multiplied to an integer number 
of days, 304 years = 3760 months "" 11 I ,035 days, and an approximate confirma
tion from independent observation of the Sun. 

What Longomantanus does next is to set out nine Df Hipparchus's equinoxes, 
six autumnal and three vernal, dated to the Era Df the Death of Alexander (-323 
Nov 12, here EA, alsD called Era Phillip), and subject them to an "examination," 
or rather criticism (32). He believes the Dbservations were made in Alexandria, not 
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Rhodes, and that the equinoxes were found, not by interpolating between meridian 
altitudes of the Sun, but by an equatorial ring, so the stated times were directly 
observed-this is curious since two of the times are midnight-and it is no wonder, 
he says, that Hipparchus reached a precision of only one-quarter day. Further, the 
reported times of most cannot be accepted because they were at sunrise or sunset 
where the effect of refraction in the horizon makes the autumnal later and the vernal 
earlier by over half a day at the least, although in part reduced by neglect of the 
parallax of the Sun. Thus, as we shall see, when using two equinoxes observed at 
dawn, 6 AM, he corrects for refraction: from the autumnal equinox (7) of -145 Sep 
27 he subtracts five hours, and to the vernal equinox (6) of -145 Mar 24 he adds five 
hours, from dawn to one hour before noon, the time Ptolemy reports the equinox 
was observed by a ring in Alexandria He then computes that the year derived 
directly from various intervals between the equinoxes does not exceed 365 days 
by 5;55,12h, but from the autumnal equinoxes by not more than 5;4h and from the 
vernal equinoxes by not more than 5;43b, with a mean of only 5;24h, deficient from 
5;55h by 0;31 h. He notes that the parallax of the Sun in the equator at Alexandria, 
at an altitude of 59°, is 1 &', but does not use it to correct the times of the equinoxes 
near noon (by about I &h). Instead, he uses a curious computation for finding the 
intervals between equinoxes equivalent to the following: The interval between the 
autumnal equinox (4) of EA 167 Epagomenal I (-157 Sep 27) at noon and the 
vernal equinox (6) ofEA 178 Mechir27 (-i45 Mar 24), with the correction of +5h 

from dawn to one hour before noon, is 4195d 23h. But eleven years of 365d 5;24h 

are 4017d II ;40h. The difference of 178d II ;2cr is the interval from the autumnal to 
the vernal equinox, which, subtracted from the year of 365d 5;24b gives 186d 18;4h 

from the vernal to the autumnal equinox. He makes one small mistake and finds the 
intervals 178d 11;25h and 186d 17;59h, and riotes that they differ, by several hours, 
from Ptolemy's intervals of 178d 6h and 187d cr. We have carried out everything 
precisely in accordance with the' observations of Hipparchus, he says, not to show 
in them the truth itself, for neither the length of the tropical year nor the interval 
between the equinoxes which results is the truth, but so that it becomes clear how 
great are the errors in the observations of the ancients, lest we be so devoted and so 
bound to them that it will not be acceptable to change anything in them by applying 
the fair weighing of comparison. 

Longomontanus is hard on Hipparchus, but he is harder'still on Ptolemy (33). 

We explained earlier what the intention of Ptolemy was concerning the mea
sure of the tropical year, and, unless I am very mistaken in this conjecture, he 
observed both autumnal equinoxes at the very limit of the horizon-provided 
tnat they differ (as without doubt they do) from the number of those which 
oCcurred twice in one day due to the instrument, although in fact the instru
ment rested on one side or the other with respect to the horizons-which 
remarkably led to what he intended. And it is certainly wortby of notice tliat 
in these observations Ptolemy has so far adapted himself to the Hipparchan 
demonstration and hypothesis (conslilurioni) , of the measure of the tropical 
year as well as of the immutable eccentricity of the Sun, that for this very 
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reason he did not assign his observations to the exact cardinal points of the 
days (i.e. sunrise, noon, sunset), but a little later, at one hour etc., so that you 
would judge (he did this) to give satisfaction to the Ptolemaic computation 

·rather than to heaven. But lest some astronomers to whom I write these things 
become indignant at our candor in investigating Ptolemy, prevailed upon by 
his ancient and exceedingly great authority, I ask that they consider what he 
relates elsewhere concerning the parallax of the Moon observed by him, and 
carefully compare (it) with our restoration which, to the best of my knowl
edge, in the lunar motion and distance corresponds exactly to the standard 
of heaven. And finally, let them notice in that passage (as I ·pass over others 
like it) Ptolemy reported from bis observation the parallax of the Moon half 
a degree and more above the true parallax, for no other reason (as I believe) 
than tbat he pass off (obtruderet) upon posterity as genuine (pro legitima) that 
hypothesis of the Moon he previously established himself or, if you prefer, 
received from his predecessors, and only once confirmed by bis computation. 
But now, I ask, what will be the prohibition (religio) from suspecting that bere 
he was of the s:ame intention, and relied upon those equinoctial observations 
of the Sun which served his purpose, but the others, of which it is very likely 
he made many more, he entirely concealed? 

The remark about the instrument that showed two equinoxes in one day because it 
was out of alignment refers to Ptolemy's criticism of two bronze equatorial rings in 
Alexandria. So Ptolemy too, according to Longomontanus, followed Hipparchus in 
accepting the tropical year derived from the luni-solar cycle, as well as Hipparchus's 
eccentricity of the Sun, and adjusted his observations of equinoxes accordingly "to 
give satisfaction to the Ptolemaic computation rather than to heaven." This may be 
true, or one may say that like Hipparchus he took the year derived from the cycle 
to be correct in principle and confirmed it from observations of equinoxes, although 
we know not well since his own equinoxes are late by from 21 to 36 hours. In any 
case, it is evident that Longomontanus does not trust Ptolemy at all, as shown by the 
observation of lunar parallax he reported (Almagest 5.13), more than half a degree 
too large, and he. suggests that Ptolemy's reason for this was pass off on posterity 
the defective hypothesis of the Moon that he invented or even received from his 
predecessors. Clearly, he does not approve of Ptolemy. 

The examination of Ptolemy'S equinoxes considers only one, the autumnal 
equinox (12) of EA 463 Athyr 9 at one hour after sunrise (139 Sep 26, 7 AM), 
which he believes was observed with an equatorial ring. Since the Sun was nearly 
in the horizon, the refraction in altitude was 32', which in the horizon in Alexandria 
corresponds to about 32' of longitude and 13 hours in time, all of which is about 
correct. And since refraction makes the autumnal equinox later, with correction 
for refraction the equinox occurred 13 hours earlier on Athyr8 at 6 hours after 
noon (139 Sep 25, 6 PM). Then, the interval to the following vernal equinox (13), 
Pachon 7 at one hour after noon (140 Mar 22, 1 PM), taken here as exactly noon, 
is 17Sd ISh-without the rounding, 178d 19h-which Ptolemy and Hipparchus took 
as 178d 6h and the earlier correction of Hipparchus's interval I7Sd 11;2Sh. From the 
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corrected time of Ptolemy's equinox, he computes the length of the tropical year 
between Hipparchus and Ptolemy (35). He takes Hipparchus's autumnal equinox 
(4) of EA 167 Epagomenal I at noon (-157 Sep 27, 12 PM) and Ptolemy's equinox 
(12) ofEA 463, corrected by _13h to Athyr 8 at six hours after noon (139 Sep 25, 
6 PM), and finds an interval in Egyptian years of 296eY72d 6h

• In 296 Julian years, 
the addition of one-quarter day is 296· ~d = 74d, exceeding nd 6h by Id ISh = 42h 

The deficit in one year from 365td is thus 42h/296 = 0;8,30~h and the length of 

the year 365d5;51,29th, and from three pairs of equinoxes he finds it not greater 
and even a little smaller. Then the interval from the vernal to the autumnal equinox 
is 365d 5;51,30" - 17Sd ISh = 186d 11;51 ,30h . 

In addition to the equinoxes of Hipparchus and Ptolemy, Longomontanus also 
considers the equinoxes in the calendar of Julius Caesar, which he believes, follow
'ing Pliny, was the work of Sosigenes, and which he finds in the agricultural calendar 
in Hook 18 of Pliny's Natural History. These are definitely schematic, but so too are 
the intervals of Hipparchus and Ptolemy, from which they differ by one day, and the 
year of 365d 6h used for deriving the eccentricity, which is not the exact length of 
the year. In all, he now has four sets of intervals between the equinoxes, which we 
give with the length of the year in the following table. 

Source Year Vern. to Aut. Aut. to Vern. 
Hipparchus-Ptolemy 365d 6h 187d Oh 178d 6h 

Sosigenes 365 6 186 0 179 6 
Hipparchus corrected 365 5;24 186 17;59 178 11;25 
Ptolemy corrected 365 5;51,30 186 11;51,30 178 IS 

For deriving a corrected eccentricity for the time of Hipparchus (36), since it 
is not possible to find the lime of the solstice accurately, he uses the corrected 
interval between Ptolemy'S vernal and autumnal equinoxes and an assumed lon
gitude of the apogee near that found by Hipparchus, which makes for a very 
simple demonstration although it is set out a great length and computed to no 
less than seven places. We need not go through the steps, which have only the 
smallest inconsistencies. The interval from the vernal to the autumnal equinox of 
186d 11;51,30h gives a mean motion of 183;49,12°, and taking the longitude of the 
apogee AA = Gemini 6°, where the radius of the eccentric R = 1, the eccentricity 
e = 0.0364837, and the maximum equation Cm = 2;5,26°. Hipparchus and Ptolemy 
found AA = Gemini 5;30°, e = 0.0417, and Cm = 2;23°. It then follows that the 
mean motion from the vernal equinox to the summer solstice is 93;43.36° and the 
interval of time 94d 2;40\ which he nOles is about midway between Hipparchus 
and Ptolemy, 94d 12h, and Sosigenes reported by Pliny, 93d 12h, although somewhat 
closer to Hipparchus. 

He then examines (37-47) the solar theories derived from the observations of 
al-Battanl, Walther, Copernicus, whose theory he corrects as he corrected Hip
parchus and Ptolemy-Tycho had also corrected Copernicus's solar theory-and 
finally Tycho, finding that the maximum equations are all nearly the same, within 
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±3' of his own derivation of em = 2;4,48°, from e = 0.035714 = 1/28, based 
upon his own small correction of Tycho's observations, so the eccenlricity has 
remained constant, which shows that the eccenlricity of Hipparchus and Ptolemy is 
erroneous and Copernicus's model for the variation of the eccentricity is incorrect. 
And that the eccentricity is equal to 1128, the divine unalterable proportion of the 
second number in the order of perfect numbers, equal to the sum of their factors, 
he takes as more evidence that Copernicus's variation of the eccenlricity should 
be ignored. He also believes that the solar apogee has advanced with a unifonn 
(sidereal) motion, from the beginning of Aries, with the Sun at the perigee at the 
beginning of Libra, at the Creation of the world-5554 years before 1588, thus 
3967 BC at the autumnal equinox~to 95;30° in 158g at the time of Tycho. We 
shall take up his chronology below. He sets out a table comparing locations of the 
apogee from Hipparchus to Tycho with his own corrected locations, which depend 
upon his theory of precession yet to be explained, omitting Ptolemy as just plain 
wrong and correcting Copernicus, in which the greatest differences are +37' for 
Battiini and -45' for Copernicus, and concludes that Copernicus's variation of the 
direction of the apogee, which reaches ± 7 r, is also incorrect. Indeed, he here cites 
the opinion of his friend Holger Rosenkrantz (48) that a variation of eccentricity 
of the Sun and the planets of the kind introduced by Copernicus is clearly contrary 
to the perpetual nature of the heavenly revolutions and is only derived from false 
principles. that is, from useless observations. 14 Finally (48-49), from Hipparchus's 
vernal equinox (6) of -145 Mar 24 corrected by +5 hours, and Tycho's equinox 
of 1587 Mar 10, with a preliminary correction for the inequality of precession, 
he finds the length of the tropical year 365d 5;49,20h but prefers 365d 5;49,3oh 
based upon his correction of observations of ancient lunar eclipses. However, this 
is not the final length of the tropical year that underlies his tables of the m~ 
motion of the Sun, which requires a more careful investigation, including of the 
precession. 

The precession is taken up in the section on the fixed stars (53-56), and it is 
not uniform, so neither is the Iropical year. Tycho had derived a rate of precession of 
51 /1 per year for bis own time directly from the difference of the Iropica[ and sidereal 
year, and then showed that it is mostly confirmed by observations of stars extending 
as far back as Timocharis, although he left open the question of whether it is in fact 
variable. Longomontanus instead begins with the observations, but he first corrects 
them: Timocharis's of occultations f3 Sco, 1/ Tau, and Spica by the Moon corrected 
by Tycho's and Longomontanus's lunar theory; Hipparchus's of Spica in finding its 
longitude from its declination (and some unspecified coordinate); Ptolemy's lon
gilOde of Regulus measured from the Moon on an armillary by Longomontanus's 
solar theory; Batmni's longitude of Regulus by its distance from f3 SeQ in Tycho's 
catalogue. These corrections are not consistent, and all are also corrected to [ongi
lOde from the mean equinox using the equation of the nonuniform precession yet to 
be explained. The corrections for Timocharis, Hipparchus, and BatmnI are less than 
0;300, but Ptolemy's longitude of Regulus is advanced by + 1 ;23 0 from Leo 2;300 
to 3;53°, of which +1 ° is from correcting Ptolemy's longitude of the Sun from 
the mean equinox and +0;20° from solar refraction reduced by parallax. Tycho's 
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longitudes of Regulus and Spica are corrected only by the equation of precession of 
-0;8°. From all these, and a number of computational errors, he finds motions of 
from 44/1 to 57/1 per year, and settles on 0;0,49,45°/Y as the mean rate of precession, 
close to 0;O,49,46°/Y between Hipparchus and Tycho (which correctly computed 
is 0;0,49,300) . For the obliquity of the ecliptic, he says he has corrected what his 
predecessors found for solar parallax and finds it to vary from 23;53° in about the 
year 3600 of the Creation of the world (-366) to about 23;31 ° in the year 5400 of 
the world (1434), with the mean of 23;42°, although the exact range is subject to a 
"perfect" criterion, as we shall see. Still, he is close to Copernicus, whose range is 
23;52° to 23;28° with a mean of 23;40°. 

Before considering the precession, we must say something of Longomontanus's 
chronology and epochs (47, 57-58). He says that earlier astronomers have used vari
ous epochs for mean motions, as the Olympiad, Nabonassar, Alexander, Caesar, and 
the Incarnation, but for we Christians, two beginnings ought to be especially distin
guished before the others: first when this most beautiful theater of the world began 
to exist by the word of omnipotent God, second when the only-begotten Son of God 
himself took on our human flesh and deigned to be born to restore the fallen world 
and liberate us from the power of the devil and eternal death. He acknowledges that 
the years and the time of year of both epochs are disputed by chronologers, but 
this dissension does not involve the celestial motions in any difficulty since they can 
properly be derived from other intervals securely confirmed by celestial observation. 
The point is that astronomical chronology can correct historical chronology. From 
the Creation of the world to the passion of the Son of God on the cross, and through 
him the salvation of the world, there elapsed 4000 solar years less one-half year. 
Since the age of Christ was then about 334 years, the crucifixion was in AD 34 near 

the time of the vernal equinox and the Creation in 34 - (4000 - 4) = -3966 near 
the time of the autumnal equinox, that is, 3967 BC at the autumnal equinox. At this 
time, the apogee of the Sun was at the beginning of Aries and the Sun at perigee at 
the beginning of Libra. Further, the Obliquity of the ecliptic was then greatest, the 
precession of the equinoxes zero, and the inequality of the precession zero. In the 
tables of mean motion, however, the Era of the World is set later to -3963 Jan I 
at noon at Copenhagen. The reason is that this is the first year of a Julian cycle of 
four years with the leap year as the fourth year, as is the Era of Christ, AD I Jan 
I at noon, the other epoch of the tables, so both can be used with the same tables 
of collected and single Julian years. Although the date of the autumnal equinox of 
-3966 is not given, it can be computed from the solar tables and is -3966 Oct 24 
at about II AM in Copenhagen. IS 

There is a fine study of Longomontanus's model for the variable precession and 
obliquity Ol5-93) by Moesgaard (1975), and we have found it very helpful for our 
own e~position. In Fig, 2, the Earth is at 0 and the pole of the mean ecliptic is 
at E, about which the pole of the equator N rotates, carrying with it the equator 
of the Earth and thus the celestial equator, which intersects the mean ecliptic with 
the mean obliquity e. This is a conical motion of the axis of the Earth, causing 
the mean vernal equino)'. .yo to precess along the mean ecliptic opposite to the order 
of the signs, from east to west, through the mean precession of O;0,49,45°/Y in a 
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Fig. 2 Longomonranus. Hypothesis for precession of the equinoxes and vruiation of obliquity of 
the ecliptic 

period of 26,050 years. Next, the pole of the true ecliptic E rotates in the same 
direction measured from A in a small circle about E, causing a similar small cir
cular motion of every point of the true ecliptic, the true path of the Sun around 
th~ Earth.16 The result is that the intersection of the equator and the true ecliptic, 
the true vernal equinox 'Y', oscillates along the equator on either side of the mean 
equinox 'i', and on the mean ecliptic there is a small inequality in the precession 
cp = "M', which is zero when the pole of the true ecliptic is at A. The motion 
of the true ecliptic also causes the true obliquity of the ecliptic e to vary on either 
side of the mean obliquity E, with the maximum obliquity when the pole is at A, 
and the variation of the obliquity in turn causes the latitudes of stars to vary; the 
sphere of the fixed stars itself is absolutely at rest. The correction table gives the 
inequality of precession, variation of obliquity, and a proportional coefficient for 
the variation of latitude of stars, with the greatest variation at solstices, equal to the 
total range of the obliquity, decreasing to zero at equinoxes. The parameters are only 
slightly empirical. The range of the obliquity was given earlier as 23;42° ± 0; II 0, 

but is now changed to 23;42° ± 0;10,53°. Why? Because 0;10,53° ~ 90" /496, and 
496 is the third in the order of perfect numbers. The maximum equation of pre
cession, cpm = sin-I (sin 0;10,53° / sin 23;42°) = 0;27,5°, is merely derived from 
the variation of obliquity in the model. The period of the anomaly of precession 
and obliquity, of the motion of E, is 3600 years = 1,0,0 years, a period considered 
significant since antiquity, so the anomaly is exactly 6' per year, the first in the 
order of perfect numbers, although Longomontanus does not mention it. (These 
are JUlian, not tropical or sidereal, years, which means that the model "knows" 
the Julian calendar. Copernicus's period of the anomaly of the obliquity is 3434 
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Egyptian years and of precession half of that. 1717 Egyptian years.) At the Creation 
of the world. the mean precession is taken to be zero and the anomaly is zero. at A. 
so the inequality is zero and the obliquity is maximum. That all the parameters are 
determined by such criteria explains how Longomontanus can apply the equation of 
precession to longitudes of stars in order to find the mean rate of precession as he 
earlier did. 

Longomontanus says that his model agrees well with the variation of obliquity. 
if Ptolemy is corrected to 23;49° for the effect of solar parallax at the solstices and 
Copernicus's 23;28° is in error as Tycho already showed. The only examples of 
precession. obliquity. and slellar longitude and lalirude he computes are for the year 
3000 of the world. 967 BC. 82 years after Hesiod flourished. and for the year 6000 
of the world. sometimes taken as the year of the Second Coming. AD 2034. neither 
particularly helpful for empirical confirmation. But it is easy enough to compute 
the range of the variation of precession. which is minute. 0;0,49.45° ± 0;0,2.48° 
per year or 1;22.55° ± 0;4.40° per Julian century. Compare this with the Prutenic 
Tables. 0;0.50. 12° ± 0;0.15.41° per year or 1 ;23,43° ± 0;25,33° perlulian century. 
Thus. the wide range of Copernicus's precession and the slow rate of Hipparchus 
and Ptolemy have been rejected entirely. 

The determination of the refined length of the tropical year (94-96) is. to say 
the least. interesting. It is done by finding the intervals between pairs of vernal and 
autumnal equinoxes observed by Hipparchus and Tycho. taking the arithmetic mean 
of the deficits from integral Julian years. doing the same for equinoxes observed 
by Ptolemy and Tycho. again taking the mean of the deficits, and then taking the 
mean of both means. The result of the procedure is called limitata. which means 
bounded. placed within limits or accurately examined; the same term is used in 
Tycho's observational records for taking means and small adjustments. and it is pos
sible that these too are the work of Longomontanus. 17 He first corrects for the solar 
inequality and the inequality of precession to find the time of the mean equinoxes 
unaffected by either. 

The solar inequality is shown in Fig. 3. in which (a) is the configuration at the 
time of Hipparchus or Ptolemy and (b) at the time of Tycho; the difference is only 
in lIle longitude of the apogee AA as the eccentricity found by Longomontanus is 

. invariable. The Earth is at O. from which .the directions of the true equinoxes are 
'Y' and ,fl, • when the true longitudes are 0° and 180°. and the center of the eccentric 
at C, from which the directions of the mean equinoxes are if and ;<2; • when the 
mean longitudes are 0° and 1800. This may be Longomontanus's own definition of 
mean equinox. The difference in direction is given by the solar equation c. which 
is the same at both equinoxes since the true distance of'Y' from apogee is AA and 
of,fl, is 180° - AA. for which the equations are equal and of opposite sign. The 
equations are computed from the true distance of the vernal equinox from apogee 
by c = sin-l(sinesinAA) where e=I/28 and AA is specific to the date of each 
observer; c is positive at the vernal equinox. mean equinox after true equinox. and 
negative at the autumnal equinox. mean equinox before true equinox. He next adds 
the inequality of precession cp to the solar equation c and converts the sum c + cpo 
which is not given. to the interval of time Llt between the mean and true equinox by 
dividing by the true hourly velocity of the Sun "s. which is also not given. that is. 
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Fig. 3 Longomontanus.. Determination of me"an equinoxes at times ofCa) Hipparchus and Ptolemy~ . 
(b) Tycho 

Llt = (c +cp)/v,. The following table gives the observer, year of the equinoxes, AA, 
c, cp' and for each equinox, vernal and autumnal, C + cp and Llt. 

Observer Year J..A C cp Verc+cfI Ver Lit Aut c + cp AucLlI 
Hipparchus -145 65;30" 
Ptolemy 139140 70; 0 
Tycho 1587188 95;30 

±1;5I,44° -0;10.12° +1;42.32° 
±1;55. 2 -0;21, 0 +1;34,2 
±2; 2,14 +0; 7,12 +2; 9,26 

+Id 17;50' - 2; 1,56° _2" 0;50' 
+1 14;45 -2;16, 2 -2 6;45 
+ 2 4;30 -I ;55, 2 -I 22;50 

The interval Llt is then added to the time of the true equinox to give time of the mean 
equinox. The equinoxes are paired such that each is the same year of a four-year 
Julian cycle, so the number of days in the interval of years is an integer. Hence, 
'the difference LlT of the calendar dates and times of the equinoxes is the deficit 
of the tropical years from an integral number of Julian years. The stated dates and 
times are from noon preceding by 12 hours the next Julian calendar date beginning 
at midnight. Hipparchus's vernal equinox (6) of -145 Mar 23 at dawn is corrected 
for refraction by +5 hours, from Igh to 23h, the time Ptolemy reports the ring in 
Alexandria showed this equinox, and his autumnal equinox (7) of -145 Sep 26 at 
dawn by -5 hours, from ISh to 13h. Tycho's equinoxes were found by interpolation 
between meridian altitudes already corrected for parallax and refraction. The merid
ian of Alexandria CA) is adjusted to Uraniborg (U) by -1;35h , as did 'JYcho. Here is 
a tabulation of the steps for the equinoxes of Hipparchus and 'JYcho: 

Observer True Equinox tCA) t(U) Llt(c + cp) Mean Equinox 
Hipparchus -14523 Mar 23h 21 ;25h +ld 17;50h 25 Mar 15;15h 

Tycho 158710 Mar 14;56 +2 4;30 12 Mar 19;26 
flT 1732Y-12d 19;49h 

Hipparchus -14526 Sep 13 II ;25 _2d 0;50h 24 Sep 10;35" 
Tycho 158713 Sep 9;26 -122;50 11 Sep 10;36 

LlT 1732Y-12d 23;59h 

The arithmetic mean of the two deficits of Ll T from 1732 years is 12d 2 [;54h, and 
thus the deficit of the tropical year from the Julian year is 12d 21;54h/1732 = 
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O;JO,44,&h. Now we do the same with equinoxes observed by Ptolemy and Tycho. 
Ptolemy's autumnal equinox (12) of 139-Sep 25 at one hour after Sunrise is cor
rected for refraction by -13 hours, as Longomontanus showed earlier, from 19h [0 

6h, but no correction is applied to the vernal equinox (13) of 140 Mar 22 since it is 
close-to the meridian at an altitude where refraction is negligible. 

Observer True Equinox teA) t(U) Llt(c + c~) Mean Equillox 
Ptolemy 139 25 Sep 6' 4;25' _2d 6;45 22 Sep 21 ;40h 

1)rcho 1587 13 Sep 9;26 -122;50 I I Sep 10;36 
LIT 1448Y -lId 11;4h 

Ptolemy 140 22 Mar 21 Mar +1 14;45h 23 Mar 14;10' 
23;25' 

Tycho 158& 9 Mar 20;45 +2 4;30 12 Mar 1;15 
LIT 1448Y _lId 12;55h 

Here the arithmetic mean of the two deficits of LIT from 1448 years is lId 11;59, 
30h "" 11 d 12;Oh, so the deficit of the tropical year from the Julian year is l id 12;oh / 
1448 = 0;1 1,26,llh , Now we take the arithmetic mean of the two means just found: 

Hipparch us-Tycho 
Ptolemy-Tycho 
Arithmetic mean 

0;10,44, 8h 

0;11 ,26, Jlh 
0;11, 5, 9,30' "" 0;11,5, JOh 

And 'since there is no sensible motion of the Sun in 0;0,0,1 Oh, we round to 0; I I ,5h. 
The length of the tropical year is therefore 365d6h - ' 0;Jl,5h = 365d5;48, 
55h, This exceeds Tycho's tropical year by ten seconds, and, for all of Long om on
tanus's trouble, is less accurate. 

Since the mean precession is 0;O,49,45°/Y, the difference between the side
real and tropical year, the time for the mean Sun to move through this arc, is 

0;0,49,45° /0;2,28o/ h = 0;20,1<Y', although Longomonninus gives 0;20, 18 * h, fo l
lowing very nearly from 0;0,49,45° /O;2,27o/h and not consistenl'with his ow~ mean 

motion of the Sun; but the length of the sidereal year, 365d 5;48,55h + 0;20,18~ h = 

365d 6;9;I3~ '. is, by luck, much better than Tycho's sidereal year, The variation 
in the length of the tropical year, determined by the annual change of the inequal
ity of precession, is quite small. Since the greatest annual change is ±0;0,2,48°, 
which the mean Sun covers in 0;0,2,48% ;2,28o

/ h = 0;1,8", the greatest vari
ation of the tropical year is 365d 5;48,55h ± 0; 1 ,8h, that is, the excess over 
365 days is from 5;47,47" to 5;50,3h; this contains 5;49,16' of the Alfonsille and 
Prutenic Tables, but is far short; of Ptolemy'S 5;55,l2h. Finally, in the tables of 
the mean motion of the Sun, from the difference of the mean motions in longi- -
tude and anomaly; the apogee has a tropical motion of I ;42,59° per Julian cen
tury or 0; 1, I ,47°/Y, Subtracting the mean precession of 0;0,49,45o/Y , the sidereal 
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motion of the apogee is about + 12"/y direct, differing notably from Tycho's -6"/Y 
retrograde . 

. Longomontanus. as noted, attempted 10 do what Copernicus earlier attempted 
and Tycho intended, to derive a theory of the Sun, precession, and obliquity correct 
for all times. He believed himself to be highly critical of ancient observations and 
theory, and he was, which Copernicus was not, but he too had no choice but to use 
at least the observations, with corrections if necessary, in order to achieve his goal. 
His work is· characterized by acute insights, as that Hipparchus '5 tropical year was 
derived from a luni-solar cycle rather than from observations of the Sun alone, which 
at best served for confirmation of the year derived from the cycle. But also wishful 
thinking, as the "perfect" parameters for solar theory, precession, and obliquity, even 
the model for precession itself, and carelessness, as his· corrections and even selec
tions of ancient observations; and his computations are all too often at least slightly 
inaccurate, as is also true in other parts of his work. Nevertheless, he does show that 
one can be aware of the problems of ancient observations, but attempt to correct and 
make· use of them, and ·in this way he goes beyond what Copernicus did and what 
Tycho was willing to do. Had Tycho carried through his reform of astronomy for all 
ages, he too may have done much the same thing, but it is more likely that he would 
have done nothing and left the work to an assistant, Longomontanus if he returned 
to Tycho's service, or Kepler if he were willing to follow Tycho's orders. But when 
Kepler did address these problems, Tycho was long gone, and thus he pursued them 
in his own way, more ingeniously than Tycho but more cautiously than Longomon
tanus. It is to Kepler's investigations over a period of twenty years to which we 
now turn. 

Johannes Kepler 

Kepler Was already · concerned about the reliability of Ptolemy's observations when 
he wrote the Astronomia nova, the last two chapters of which (69- 70) are devoted 
to attempting to correct them in order to establish accurate ancient positions of 
Mars for determining its mean motion and the motions of its aphelion and nodes. 
He assumes, reasonably, that Ptolemy observed Mars by measuring its distance 
from fixed stars with the armillary, although Ptolemy gives no details for the three 
oppositions, and only for his one observation outside of opposition does he give 
the distance from a star and the Moon. Since the armillary is aligned by set
ting it on the Sun or on a star, the longitude of which depends upon an earlier 
alignment on the Sun, it is necessary to investigate Ptolemy's solar theory. He is 
suspicious of Ptolemy's procedures for establishing solar theory, and is uncertain 
whether Ptolemy found the equinoxes using an equatOrial ring or, as he would 
prefer, meridian altitudes. But he has determined that Ptolemy's equinoxes do not 
agree within a day and a half in comparison with earlier observations of Hip parch us 
and later observations of al-Battanl and Tycho, which all agree in the same uni
formity from which Ptolemy's equinoxes alone depart. Thus, he has isolated the 
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errors in Ptolemy's equinoxes by comparison with observations consistent with a 
uniform tropical year, and -he specifically rejects models for a nonunifonn preces
sion, which would produce a nonuniform tropical year. But then he notes that if 
instrumental error made the vernal equinox late, meaning !Iiat the equator is placed 
too high, it would mnke the autumnal equinox early, and if two days were sub
tracted from the interval between the equinoxes, the eccentricity of the Sun would 
change greatly. And since Ptolemy left the eccentricity as great as Hipparchus found, 
we must believe that he correctly observed the time the Sun was at the beginning 
of Aries. 

However, the constancy of the solar equations found in our age by Tycho, and 
about the same several centuries earlier by al-Battani and az-Zarqal, 20' smaller than 
Hipparchus seems to have demonstrated for himself and Ptolemy retained, argues 
that the equations were the same in Ptolemy'S age and his own equation in error. 
Since the equation is sensitive to small changes in the times of the observations, and 
the ancient observations, especially of the solstices, were not sufficiently accurate, 
we may use the modern equations to correct Ptolemy'S equinoxes, not by over a day, 
but by correcting the time of day, mnking the vernal 8 (text: 3) hours later and the 
autumnal as many hours earlier, so that in both there was an error of 8' in the dec
lination of the Sun, for Ptolemy's instruments were surely graduated only to 10'.'8 
And a change of a quarter of a day in the time of the solstice, which is easily possible 
because of its uncertainty, would produce a large change of 8° in the direction of the 
apsidalline. Thus, we see that while Kepler recognizes the possibility of large errors 
in Ptolemy'S equinoxes. like Tycho, he is not willing to believe that he could go so 
wrong, and instead makes smaller corrections by applying the modem eccentricity, 
which does show that he considers the eccentricity, as well as the tropical year, to 
be constant. He then attempts to correct Ptolemy 'S longitudes of Mars by making 
a variety of assumptions about the eccentricity and apsidal longitude of the Sun 
and the longitudes of the fixed stars, by which he means the observed longitude of 
Mars since its longitude was measured by setting the armillary on some star. The 
investigation of seven different cases is, to say the least, bewildering, and he finds 
that changes in the longitude of stars, that is, of Mars, mnke a greater difference 
than changes in the solar theory. He also examines, critically, Ptolemy'S report of 

- - an occultation, or contact, of fJ Scorpii by Mars on -271 18 Jan at dawn, which he 
decides applies better to v Scorpii, and the report by Aristotle in De caelo 2.12 of 
an occultation of Mars by the dark part of the half-Moon, which he dates to -356 
4 May (the text reads 4 April).19 

Although the investigation of Ptolemy'S solar observations and theory is incon
clusive, Kepler does take seriously the decrease of the obliquity of the ecliptic and 
the variation of the latitude of fixed stars. Tycho had found that, compared to the 
time of Ptolemy, for stars located near the solstices, near summer solstice latitudes 
of northern stars increased and of southern stars decreased. near winter solstice lat
itudes of northern stars decreased and of southern stars increased, and these varia
tions diminished approaching the equinoxes, where there were no changes. In the 
correSpondence with Scaliger, he accounted for both the decrease of the obliquity 
and the variation of the latitude of stars by a variation of the obliquity of the ecliptic 
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over a range of about 20' with respect to a fixed celestial equator and sphere of 
fixed SlarS, like the variation of the inclination of the Moon's orbit to the ecliptic 
in his lunar theory of about the same range and by essentially the same hypothesis. 
This would indeed produce both effects although, as we have noted, the shift of the 
equinoxes as the Sun crosses the equator at points moving successively westward, 
producing a rotation of the ecliptic along the equator corresponding to Ihe regression 
of the nodes in the lunar theory, would also cause a second, unwanted and incorrect, 
variation in the latitude of stars. 

Kepler's hypothesis to account for both the decrease of obliquity and the variation 
of latitude of SlarS is entirely different, and avoids the problems of Tycho's. It is part 
of his theory of planetary latitude, and also accounts for the change ·of eXII"!'!11e 
latitudes and regression of the nodes of Mars and, in principle, the other planets 
since Ptolemy (68).20 It consists of a rotation of the "true ecliptic," defined by the 
motion of the Earth about the Sun, not along the celeslial equator, which causes 
the problems of Tycho's hypothesis, but along the "mean ecliptic," also called the 
"roya!" road" and "·royal circle," defined by the plane of the equator of the rotating 
Sun. Although either direction is possible, he believes it more likely that the rotation 
takes place to the west, that is, the nodes and limits of the true ecliptic regress in 
longitude as do the lunar nodes and limits, but very slowly, with a period of many 
thousands of years. The effect on the latitude of SlarS is shown in Fig. 4, in which the 
mean ecliptic is in the equatorial plane of the Sun S and the true ecliptic shifts from 
the position "ecl I" to "eel 2", shown by the westward shift of the nodal line U " 
from I to 2. The nodal line is directed to the vicinity of the summer solstice § and 
winter solstice "1)" the limits are near the vernal equinox 'Y' and autumnal equinox~, 

Fig.4 Kepler. Rotation of true ecliptic to account for variation in latitude of stars 



Tycho, Longomontanus, and Kepler on Ptolemy's Solar Observations and Theory 187 

although these locations will change slowly with time. As shown in the figure, the 
latitudes of northern stars +fJ and southern stars -fJ change as Tycho found near 
the solstices, the nodes, where the true ecliptic is most inclined to the mean ecliptic, 
and the changes are small or zero near the equinoxes, the limits, where the true 
ecliptic is parallel to the mean ecliptic. The very same motion of the true ecliptic 
accounts for the variation of the obliquity. According to Kepler, the reason for the 
decrease of the obliquity from 23;51 ~ 0 in antiquity to 23;31 to at present, the range 
of 20' recognized by Tycho, is that the Earth's equator holds a fixed inclination, not 
to ihe true, but to the mean ecliptic; consequently the inclination varies with respect 
to the moving true ecliptic, and this motion of the true ecliptic is also the cause of 
an inequality in the precession of the equinoxes. In Fig. 5, the initial intersections 
of the equator and true ecliptic, the equinoxes, are 'Y', and ~I, and the solstices are 
!!P, and "i):". As the nodal line U n of the true ecliptic shifts westward from I to 2, 
so do the true equinoxes to 'Y'2 and ~2 and the true solstices to ~ and "1):", although 
nonuniformly because of the obliquity of the true ecliptic, which the same motion 
causes to decrease from 8, to 82. 

The theory is not worked out quantitatively or in detail, but it is clear that only 
an inequality of the precession could result, not the mean precession itself, which 
must be due to a motion of the Earth's axis, because, compared to the precession, 
the motion of the true ecliptic is very slow, according to Kepler's speculation, none 
other than the sidereal motion of the Earth's apsidal line, although he later decided 
that it is independent but still of very long period. Nevertheless, Kepler is on to 
something important and entirely original. Attributing the change in latitude of fixed 
stars and the decrease of the obliquity of the ecliptic to a rotation of the ecliptic, 
of. the Earth's orbit around the Sun, is essentially correct, although the rotation, 
produced by planetary perturbations, does not take place in a fixed plane of the 
solar equator and is more irregular. So while the (Newtonian) celestial mechanics 
of these motions is more complicated, Kepler here devised the first even remotely 

eel I 

eel, 

Fig.S Kepler. Rot.tion of true ecliptic to account for variation of obliquity of the ecliptic 
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correct model for secular changes in the orbit of the Earth, and likewise of the other 
planets since such motions are not unique to the Earth. 

In the Epitome of Copernican Astronomy 7, Kepler quantifies this model. In 
Fig. 6a, E is the pole of the mean ecliptic, and thus of the solar equator, E the 
pole of the true ecliptic, which moves about E in a small circle through iJ, and 
N the pole of the celestial equator, which moves about E through the mean pre
cession, both motions in the direction of decreasing longirude, from eaSt to west. 
The motion of E about B corresponds to the rotation of the true ecliptic in Figs. 4 
and 5, which show great circles a quadrant from the poles, and is a geometrical 
result of the physical causes moving the Earth about the Sun just as the motion of N 
is a ·geometrical result of the precessional motion of the Earth's axis. NOIe that this 
differs from Longomontanus's model in Fig. 2, in which the motion of the pole of 
the true ecliptic E in ·the small circle about the pole of the mean ecliptic B produces, 
not a rotation of the true ecliptic with respect to the mean ecliptic, but a motion of 
each point of the true ecliptic in a circle equal to the radius of the small circle. The 
mean obliquity 8= EN ·= 24;17,40° and the radius r = BE = 1;47,400; hence 
the true obliquity e = EN varies from 22;300 to 26;5,20°, a very wide range. This 
implies an inclination of the solar equator to the ecliptic of 1;47,40°; correctly, as 
later found from the motion of Sunspots, it is 7;ISO. And the maximum equation 
of precession, where EN and EN extended meet the true ecliptic (not shown); is 
sin-1 (cotesinr) = 3;58,45° (corr. 3;58,40°). But, Kepler says, half the period is 
more than 36,000 years, and E was at Eo, with the obliquity at its mean value, "at 
the beginning of the world." When would this be? Although no date is given in the 
Epitome, in the 1621 edition of the Mysterium Cosmographicum (23) he takes the 
evening of 24 July 3993 BC in Chaldea as the beginning of the second day, when 
God created the firmament. Thus, only about 5600 years have elapsed, and the pole 
of the true ecliptic has not moved all that far; in the Rudo/phille Tables, from the 
Creation to 1600 the motion is less than 26° and tne entire period just over 77,758 
years, far longer than the precession with a period of about 25,412 years. He notes 
that the ratio of the motion of the pole of the ecliptic iJ to the motion of the pole of 
the world, the mean precession it, is fairly precisely as 4/3, a perfect fourth, although 
that is not mentioned, In fact it is the sum (it + iJ))/it ,., 4/3.01 ,., 4/3. 

The model described here is the second, "entirely archetypal," of no less than five 
for the variation of the obliquity and the inequality of precession in the Rudolphine 
Tables. Three are "mixed," partly archetypal and partly observational, for Ii and r 
and. the periods and epochs of (}. The first, based "entirely upon trust of the ancient 
observations," has a smaller range of the obliquity of 23;28,28° to 23;53,16°, close 
to Copernicus 's 23;28° to 23;52°-from e = 23;40,55° and r = 0;12,24°-a max
imum equation of precession of 0;30,31 0, and a period of just 2665 years. These 
numbers are not consistent, and there are other inconsistencies among the different 
methods, as computing the obliquity for motion of E on the small circle, which 
is strictly correct, or for a libration on the diameter, as in Copernicus's model, in 
which it is the pole of the equator that librates. The libration, however, is intended 
only as a simpler, approximate computation as it would not produce the rotation of 
the true ecliptic that is essential to the model. Nevertheless, all the models show that 
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(a) 

(b) 

Fig. 6 Kepler. (a) Motions of the poles of the true ecliptic and equator about the pole of the meiln 
ecliptic. (b) Climate zones of (he earth a[ me minimum obliquity of the ecliptic 

a variation of the obliquity and an inequality of precession are still a part of Kepler's 
astronomy. 

In fact, Kepler established the "archetypal" variation of the obliquity from its 
consequences for climate zones of the Earth (Epitome 3.4), shown in Fig. 6b. With 
the minimum obliquity E = 22;30", the Earth is divided by sides of an oclagon sub
lending 2& = 45°, lhat is, the lorrid zone between the tropics subtends two sides, the 
two frigid zones beyond the arctic circles sublend two sides, and the IWO temperate 

'zones in between sublend four sides, making eight sides of 45°. And at Creation, 
with the mean Obliquity E = 24; 17,40", the sum of the surface areas of the torrid and 
frigid zones equals the surface areas of the temperate zones. Considering a hemi
sphere on one side of the equator, the area of the torrid zone is as sin s = 0041 14, of 
the frigid zone as I - cos E = 0.0886; their sum is 0.5 and the remaining 0.5 from 
I is as the equal area of the temperate zone. Since the same relation holds for the 
other hemisphere, just as Kepler says, the sum of the areas of the torrid zone and two 
frigid zones equals the sum of the areas of the two temperate zones. Interestingly, 
this clever idea follows from Pappus's theorem (Collection 5.36), which Kepler also 
uses for summing the increments of Iibration in his physical planetary theory. 

We have digressed from our principal subject of examinations of Ptolemy's solar 
observations and theory. In the Astronomia nova, Kepler recognized the possibility 
of large errors in the observations, but made only small corrections and substi-
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tuted the modem eccentricity and equation in the solar theory. Some years later, 
he decided that Ptolemy's equinoxes could not be corrected so easily, but remained 
uncertain about the cause of the errors. In a series of manuscript notes concerning 
the obliquity of the ecliptic, dates of equinoxes and solstices, and length of the 
tropical year, he considered evidence and reports from antiquity, in fact from Her
cules, the founder of the Olympiads, who observed the solstices and equinoxes at 
eight degrees of their signs 1260 years before Christ, through Meton and Euctemon, 
Hipparchus and Ptolemy, al-Battan! and az-Zarqal, to Regiomontanus, Walther, 
Copernicus, and Tycho.21 Like Longomontanus, he believes that Hipparchus and 
also Ptolemy observed the equinoxes with an armillary, so the stated times are those 
observed, not interpolated, and could be affected by refraction and misalignment of 
the instrument. There are two remarks we shall quote here. The first is (21 .1.316): 
"Since Hipparchus varied so much (by quarter days) in the autumnal equinoxes, is it 
believable that Ptolemy found nothing clearly which differed from the Hipparchan 
computation? Or did Hipparchus reach his goal unknowing (caecus, blind), with 
fortune as his guide? Or should we rather believe Ptolemy favorable to Hipparchus 
through trust in the observations, namely, (because) something of Pythagorean phi
losophy lay hidden in the mystic numbers 94;30, 92;30, 178;15 (in margin: 378, 
370, 713)? I note also that the year does not so precisely fill this number of hours." 
That the intervals in days between the equinoxes and solstices, mUltiplied to integers 
(of quarter-days) in the margin, are based upon Pythagorean philosophy can hardly 
be taken seriously, and Kepler poses it only as a question (to which the answer is 
surely no). The second remark is one that has defined the problem of Ptolemy's 
equinoxes to this day (21.1.324): "It therefore remains that either Ptolemy commit
ted fraud with fabricated observations, or from a kind of awe and reverence for the 
ancients preferred to confirm rather than refute them, neither of which is likely in 
the philosopher PtOlemy, a defender of candor and truth, as is witnessed by many 
judgments (gnomis), especially since he could expect no advantage or fame from 
this, but rather greater advantage and fame from correcting the ancients. But that 
he was not obsequious to the ancients, he left witnessed in many ways, refuting 
Hipparchus'where it was required. Therefore in fact the year was longer." This last 
appears to hold that the observations were correct and the year in fact longer, but is 
probably just speculation and not an opinion Kepler held. 

In the Epitome of Copernican Astronomy 7, he is more certain of the error in 
the equinoxes, He notes (7.523) that in the eleven or twelve centuries since Proclus, 
the equinoctial points have precessed at a uniform rate, in which the observations 
of Hipparchus and Timocharis also agree for eighteen centuries "if you disregard 
Ptolemy alone." ''Therefore, if something happened to the axis of the Earth by which 
it moved irregularly away from its proper position, it occurred between Hipparchus 
and Ptolemy, in an interval shorter than 300 years, and it was restored to its for
mer state between Ptolemy and Proclus, again in an interval of three centuries. 
Therefore, not unjustly can there be doubt concerning Ptolemy's observations of 
the equinoxes." He also notes (7.527) that Hippanchus determined the length of 
300 years by omitting one day in four Callippic Cycles of 304 years, the same 
explanation given by Longomontanus and, as it appears here, perhaps originally by 
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Tycho. "Ptolemy retained this opinion of Hipparchus, much too carelessly, as was 
evident to Tycho Brahe, even though Ptolemy himself appeared to prove it with his 
observations. For immediately after Ptolemy, it (the length of the year) was found to 
lose one day far more rapidly (than in 300 years). And thus if we disregard Ptolemy 
alone, a uniform reckoning (of the year) will be consistent from Hipparchus, through 
Proclus, al-Battan!, Persians, Arabs, Jews, Germans, up to our own time, which 
makes the equinoxes earlier by one day in 134 years, 3 days in 400 years, as the 
regulation of the Gregorian civil year represents very nearl),." 

He now has a new speculation for the cause of Ptolemy's errors, which we give 
in the question and answer form of the Epitome (J .523-24). 

·Is it possible that Ptolemy was in error concerning the observation of the 
correct day of the equinox, and in what way? 

He was not in error in the altitude of the pole, as this is confirmed by many 
proofs, nor in the altitude of the Sun as this depends upon the altitude of 
the pole. Perhaps, therefore, what follows happened to him, that since under 
Augustus the observation of the Egyptian year was abolished, Ptolemy sought 
the day of the Egyptian year through the Moon if he was concerned with the 
Moon, or through the Sun and its calculation handed down by Hipparchus 
if he was concerned with observation of the Sun; then neglecting agreement 
with observations of the Moon and trusting too much in the calculation of 
Hipparchus, he thought to himself that it was only necessary to be concerned 
about the hour of the entry into Aries. For Ptolemy could not trust the Roman 
calendar, which was necessarily observed in Egypt, because even after the 
.correction of Augustus, at some time on the authority of the priests one day 
was omitted from the year and restored in the following year. 

The point here is that because of arbitrary omissions and restorations by the priests 
in the Roman calendar, in use in Egypt since introduced by Augustus, and even 
after Augustus's correction of the initial errors of intercalation following the Julian 
reform (three incorrect additional leap years, compensated by making three follow
ing leap years common years), Ptolemy would use the computation of the Moon or 
Hipparchus 's computation of the Sun to determine the date of an observation in the 
Egyptian year. Thus, he would determine only the hour of an equinox by observation 
and trust Hipparchus's solar theory to determine the day, since he could not believe 
it to be in error by a full day, and then fail to check the position of the Moon, which 
would immediately show the error of one day since the Moon moves about 13° per 
day. This ingenious explanation would then account for the errors in the dates of 
Ptolemy'S equinoxes without accusing him of fabricating observations, although it 
is evident that he should have been more careful. 

But is there evidence for the omission or addition of days in the Roman cale'l' 
dar, and could the Roman calendar in fact be the cause of Ptolemy'S errors wilhout 
considering computation from Hipparchus's theory? This is what Kepler believed 
he found by 1622, the year after the publication of Epitome 7, as he explains in a 
memoir called "Against the nonuniform precession of the equinoxes" addressed to 
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Emperor Ferdinand II.22 He enlarges upon, and indeed contradicts, his speculation 
in the Epitome, and is now more specific (20.1.134-35). 

I reasoned that Ptolemy, an inhabitant of Egypt, was deceived by the Roman 
calendar and by the license of the priestS and impetuosity of the rul,ers of 
Egypt, who intercalated at Rome, not as heaven required, but just as they 
were incited (to do), this way and that, in accordance with some national 
superst,ition; indeed those (priests and rulers) entirely annulled the perfectly 
equal Egyptian months and introduced the Roman calendar into public use. 
And thus the ailOual calendars were not computed locally, but were sent from 
Rome. not the least instance of servitude, Of this not unsuitable conjecture, 
there was lacking only historical testimony. by which it would be confirmed, 
that in the year 139 after Christ or the previous year, one day had been 
removed out of order. But behold the very thing, ' unless all sound reason 
deserts me. For in the year 139 after Christ, Antoninus Pius nand Bruttius 
Praesens Consuls, Censorinus, the most scrupulous and careful reckoner of 

, chronology, attributes the first of the Egyptian month Thoth to the twelfth day 
before the' Kalendsof August or 21 July, which observed in regular order. as 
elsewhere Censorinus preserves. ought to be attributed to the thirteenth day 
before the Kalends of August or 20 July, unless a day was removed out of 
order and the days of the Roman year occurred earlier. 

One may not doubt that Ptolemy. since he had not given aaention to what 
Censorinus gave attention to. that an omission (of one day) had been made out 
of order. believed that with the twelfth day before the Kalends of August (21 
July). which day was then observed in Rome. there still coincided. as before. 
the second day of Thoth. which nevertheless was (because of the omission 
of one day) the first day of Thoth, and that it (the first day of Thoth) ought 
from the 'perpetual reckoning of years be, called the thirteenth day before the 
Kalends or 20 July. In this way a superfluous day insinuated itself into his 
calculation between Hipparchus and his own age and produced a longer year 
and a slower motion of the Sun than are correct. 

What Kepler 'is referring to is one of the most famous passages in ancient 
chronology, the pertinence of which he appears to have discovered only, recently, 
Censorinus, De die natali 21.10: "But of these (Egyptian years), the beginnings are 
always taken from the first day of its month the name of which among the Egyptians 
'is Thoth. and which in this year (238) was the seventh day before the Kalends of 
July (25 Jun) although one hundred years ago (139). Emperor Antoninus Pius II and 
Brultius Praesens consuls at Rome, the same day was the twelfth (corr. thirteenth) 
day before the Kalends of August (21 July, corr. 20 July). at which time Canicula is 
accustomed to make its rising in Egypt." Censorinus here gives the Roman calendar 
date of the beginning of a Sothic Cycle. when the (nominal) heliacal rising of Sirius 
in Lower Egypt occurs on I Thoth in the Egyptian calendar, in the year of the consul
ship of Emperor Antoninus Pius for the second time and ofCaius Brultius Praesens, 
139. which date appears as ante diem XII Kat. Aug. (21 July). This I Thoth was the 
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beginning of Antoninus 3, the year in which Ptolemy observed both equinoxes and 
the summer solstice about one day late, as Kepler knows. Now, correctly I Thoth 
was on a1lte diem XlIl Kal. Aug. (20 July), a simple enough emendation of XII to 
XIII in the text of Censorinus, which was made by Scaliger, as Kepler soon learned 
or perhaps already knew. But here he takes Xli as the correct reading and explains 
that in the year 139 the priests in Rome omitted one day "out of order" (extra 
ordiJtem) so I Thoth occurred on XII Kal. Aug. inslead of XIII Kal. Aug., which 
Ptolemy in Egypt had not nOliced, not "given attention to" (attenderet), meaning 
that he did n"ol know it. How this affects the conversion between the Roman and 
Egyptian calendars will be taken up after reviewing Kepler's later consideration of 
this subject. 

For it comes up again in a letter of 8118 February 1624 to Paul Cruger as part 
of a description of the configuration of the heavens at Creation, which we shall 
also consider below. Kepler notes that the observations cited in the Almagest in 
the calendar of Dionysius appear Ihree or four days early, and suggests that it was 
difficult for Hipparchus 10 convert those dates to the Egyptian calendar without error. 
He then continues (18.157): 

"But also in the case of Ptolemy, I think that the three cardinal points, two 
observations of Venus, and one of Mercury all correspond to the preceding 
days. Unless there were observations of the Moon, which do not allow a day 
to pass unnoticed, I believe that many of the preceding (observations) are to 
be placed back to earlier days on account of what Censorinus observes, that 
in the first (corr. third) year of Antoninus, the first day of Thoth was not on 
20 July but on 21 July, from which you will gather that a displacement of the 
Roman year was made for the sake of superstition or flattery, as was sometime 
done earlier by the testimony of Dio, with a restitution made in the following 
year. Therefore, if this displacement was announced in Egypt and received in 
use there" after the last obs~rvation of the Moon, since already the use of the 
Egyptian year was abolished, Ptolemy could be deceived. 

Now Kepler does not specify whether a day had been removed from or added to 
the Roman calendar, only that there had been a displacement (luxatio), and the single 

. example he cites, from Cassius Dio (48.33), of one day added and later subtracted, 
was around 41 BC, when intercalation was irregUlar, nowhere near the age of the 
Antonines. Cruger must have pointed out to Kepler that the text of Censorinus is in 
error and need only be emended from Xli to xm for the correct correspondence of 
the Roman and Egyptian calendars, a conclusion Cruger seems to have reached on 
his own. Kepler's reply, in a letter of I May 1626 (18.264), shows that he already 
knew this, but would prefer not to accept it as the alternatives are either accusing 
Ptolemy of fraud or proposing a long-period inequality of the Sun not supported by 
observation. 

Joseph Scaliger warned me of the passage from Censorinus, and he, as 
you, identifies it as an error.23 If I could excuse Ptolemy so that I were 
not compelled to accuse him of fraud, I would congratulate myself. But if 
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the probability of error in Censorinus will melt this buttery support for me 
(colloquabit mihi hoc fulcrum butyraceum), I shall have recourse to secular 
equations, to similar proofs (experimenta) in all the planets; in the Sun itself, 
which, through eclipses of the Moon, is found to progress nonuniformly with 
respect to the fixed stars (only) in minutes of arc, which I prove by four or five 
eclipses of the Moon. 

The "buttery support" is the text of Censorinus, but only if XII be considered cor
rect. And this Kepler does not give up, although he does change his interpretation of 
just what happened to the Roman calendar that led Ptolemy astray. His latest expla
nation, which may have been written before the preceding letter, is in the Rudol
phine Tables, in the rule (188) for finding the day of any year on which the equinox ' 
occurs. After explaining the rule and giving a computed example for what he calIs 
Hipparchus's vernal equinox of l47BC, that is, -146 Mar 24--Ptolemy does not 
record that equinox although he does record Hipparchus's autumnal equinox (5) of 
-146 Sep 26127 and vernal equinox (6) of -145 Mar 24--he continues (10.238): 

Caution: The days of the equinoxes are not in every case shown by this rule, as 
for example those Ptolemy asserts were observed by himself. Consequently, in 
this case, however much the equinoxes differ, either in time among themselves 
or from the uniform precession, we should in no way be influenced by the 
authority of Ptolemy, who appears to have been altogether mistaken in reck
oning the days of the Egyptian year, perhaps mislead either by Hipparchus's 
calculation of the motion of the Sun or by the calendar and the Roman inter
calation. This conjecture is confirmed by one passage of Censorinus, who--in 
that very year (139) in which Ptolemy last observed the Moon, and after that, 
when an extraordinary Roman intercalation had just been announced in Egypt, 
observed both equinoxes-refers the first day of the first Bgyptian month 
Thoth to the twelfth day before the Kalends of August (21 July) although 
it should be assigned to the thirteenth day (20 July) if the same uniformity of 
Julian intercalation was observed then as now and no extraordinary intercala
tion was revealed that year by the Priests. 

But if the opinion of Ptolemy's care is higher than (allows) that he could 
be deluded by either calculation or the Roman year, . one will have to have 
recourse to the desperate measure of saying that around the time of Ptolemy 
the equinoxes made a leap (forward in time), which they compensated in the 
next centuries up to the time of Proclus. And in fact, I prove from the most 
secure examples of observations of eclipses that the progress of the Sun with 
respect to the fixed stars themselves is near the least degree nonuniform. If 
God wills, I will publish one book on this subject. 

An additional inequality in the motion of the Sun, also referred to in the letter 
to Criiger, must be very small, for if it were large enough to change the time of the 
equinox by one day, about I 0 in longitude, it would affect the times of lunar eclipses 
by about 2 hours. which is ruled out by the records of ancient eclipses, induding 
those observed by Ptolemy. Hence the motion of the Sun is "near the least degree 
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nonunifonn" (circa minima inaequalem), that is, very nearly uniform. Since any 
additional inequality in the motion of the Sun, if present at all, is too small to affect 
the times of equinoxes by one day, Kepler here offers two explanations for what can 
now only be Ptolemy's errors. The first is that he was misled (seductus) by Hip
parchus's solar theory, as he had suggested in the Epitome and as Longomontanus 
also said although more strongly. In fact, Kepler notes in the margin: "Longomon
tanus (Theor. Ast. 1.33) said that he (Ptolemy) was not only mistaken in observing, 

. but also clearly fabricated (finxisse) the observed (equinox), which he computed 
from Hipparchus." The other explanation is Censorinus's correspondence of I Thoth . 
of Antoninus 3 in the Egyptian calendar to XII Kal. Aug. (21 July) instead of the 
correet XIII Kal. Aug. (20 July), but he now attributes the correspondence, not to the 
omission of one day, but to an "extraordinary Roman intercalation" (intercalatione 
Romana extraordinaria), an intercalation out of order, which would appear to be 
an addition of one day, made by the Priests (Po1ltificibus) in Rome, which was 
then announced in Egypt. The intercalation occurred after Ptolemy's latest dated 
lunar observation, on 25 Phamenoth (139 9 February) of the Moon near quadrature 
(Almagest 5.3), since the pOSition of the Moon in that observation corresponds to the 
correct date in the Egyptian calendar. The point in either case, omission or addition, 
is that Ptolemy did not know that there had been a displacement in the Roman 
calendar, which was announced in Egypt in an annual fasti, a calendar, sent from 
Rome, and thus made errors in converting Roman to Egyptian dates in the year 
Antoninus 3 in which he observed the equinoxes and solstice. 

So which is it, an omission or an addition of one day? Kepler assumes, as noted, 
that Ptolemy dated his observations in the Roman calendar and then converted to 
the Egyptian calendar without knowing that a displacement had occurred in the 
Roman calendar. The Egyptian calendar runs continuously with no displacement. 
Kepler is not concerned with the different beginning of the day in each calendar. 
the Julian day at midnight, the Egyptian day at the following sunrise, just with a 
difference of one day. Figure 7 shows the effect of the conversion in three ways. 
The first line is the Egyptian calendar in 139 beginning with the date of Ptolemy's 
latest lunar observation, 25 Phamenoth of Antoninus 2, and th~ next date shown 

25 Phamenoth Antoninus 2 1 Thotll Anloninus 3 

I I 
9 Feb AD 139 20 lui Dates correct 

I I 
9 Feb _I d 20 21 lui Dales 1 day lale 

I I I 
9 Feb +ld 19 201ul Dates 1 day early 

! I I 

XIIII Kal. Aug. " 19 Iuly; xm Kal. Aug." 20 July; XII KaJ. Aug." 21 July 

Fig. 7 Kepler and Censorinus. Conversions ~f Roman 10 Egyptian calendar in 139 for 1 Tholh 
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is I Thoth of Antoninus 3. The second line shows the correct corresponding dates 
in the Roman calendar, 9 February and 20 July (XIII Kal. Aug.); the conversion of 
20 July to 1 Thoth is correct for the undisplaced Roman calendar. The third line with 
-.} d, as .in the memoir to Ferdinand II, shows the effect of the omission of one day 
after 9 February, by which 20 July (XIII Kal. Aug.) occurs one day before .I Thoth, 
which thus OCcurs on 21 July (XII Kal. Aug.), as in the text of Censorinus, and all 
following dates in the Egyptian calendar correspond to one day later ill the Roman 
calendar. Hence, if Ptolemy did not know this, he would convert Roman dates to 
Egyptian dates one day later than the undisplaced conversion, and this would have 
the result of making the equinoxes and solstice observed in Antoninus 3 one day late 
in the Egyptian caleQdar. For example, the autumnal equinox (12) in 139 actually 
observed on VII Kal. Oct. (25 Sep) would, because ·of the omission of one day 
in the Roman calendar, be dated VI KaI. Oct. (26 Sep) and converted to 9 Athyr 
instead of 8 Athyr corresponding to VII Kal. Oct., thus one day late in the Egyptian 
calendar.24 Finally, the fourth line with + 1 d shows the effect of the "extraordinary 
Roman intercalation" in the Rudolphine Tables, which appears to be an addition 
of one day after 9February. Now 20 July (XlII Kal. Aug.) occurs after Thoth I, 
which occurs on 19 July (XlIII Kal. Aug.), so this cannot account for Censorinus's 
conversion of 1 Thoth to XII Kal. Aug., and the conversion of all subsequent dates 
from the Roman to the Egyptian calendar would be one day early, not one day late. 
Thus, if Ptolemy were not aware of the intercalation of one day, his conversion of the 
dates of the equinoxes and solstice in Antoninus 3 from the Roman to the Egyptian 
calendar would be one day early, which is clearly not so as they are all late. The 
equinox observed on VII Kal. Oct. (25 Sep) would, because of the addition of one 
day, be dated VIII Kal. Oct. (24 Sep) and converted to 7 Athyr instead of 8 Athyr, 
which did not happen as the equinox is dated 9 Athyr. Hence, Kepler's explanation 
in the earlier memoir of an omission of one day can, in principle, explain the late 
dates of the equinoxes and solstice in the Almagest, but the addition of one day in the 
Rudolphine Tables cannot. Why he should have changed his mind about this I do not 
know, and it does not seem likely that by "extraordinary Roman intercalation" he 
still means an omission; but I can say from the effort of working it out and explaining 
it that, as simple as it appears, it can be confusing, and it is easy to think that adding 
one. day to the Roman calendar will advance the. date in the Egyptian calendar by 
one day. 

Without invoking an extraordinary omission or addition of a day, it might be 
suggested that there was a systematic error of one day in the conversion between 
the Roman and Egyptian calendars for Antoninus 3, and perhaps other years, com
mon to Censorinus and Ptolemy, as unlikely and inexplicable as that might appear, 
especialJy since they lived a hundred years apart. But even then there would be 
the problem that the autumnal equinox (\ I) of 25 September 132, used to establish 
the Sun's epoch (Almagest 3.7), which correctly occurred on 24 September and is 
thus also one day late, is several years before, not only the presumed extraordi
nary omission or addition of a day, but also five correctly dated observations of the 
Moon, including three eclipses. Thus, any error would have to occur intermittently. 
And the very idea that Ptolemy would date observations in the Roman calendar in 
Alexandria, which had its own Alexandrian calendar, is hardly possible.25 So as 
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clever as Kepler's explanation may be, and it is clever, it cannot be correct. Still, 
he has no doubt that Ptolemy's equinoxes are late by one day, and he later says 
(10.242) that all of Ptolemy's longitudes of planets are reduced by about -1;3°, 
which is very nearly correct since the error in the mean longitude of the Sun at the 
autumnal equinox (11) of 25 September 132 is -1;5°, 

Kepler had a yet more ambitious reason for correcting Ptolemy's equinoxes than 
finding a correct and consistent solar theory. From the time of the Mysterium Cos· 
mographicum (1596), and doubtless before that, he reasoned that God would nOI 
create the world with the various bodies in arbitrary positions, but must have chosen 
some rational initial configuration. He set out such a configuration in the Mysterium 
(23) for 27 April 3978 BC, but later changed his mind, and in a note in the 1621 
edition gives the date 24 July 3993 BC, with the Sun and Moon at the beginning of 
Cancer near Regulus and the planets in the direction of solstices or equinoxes. Afler 
finding that Longomontanus had done something similar in Astronomia Danica, the 
Sun at apogee at the autumnal equinox in 3967 BC, he gives more details in the 
letter to Paul Criiger of 8/18 February 1624, without the date, but with the loca
tions near or at the solstices and equinoxes, together with a diagram in which the 
locations are heliocentric (18.155-57). As we saw earlier, he notes possible errors 
in the conversion of dates from the Dionysian to the Egyptian calendar in ancient 
observations cited by Ptolemy and errors in Ptolemy'S observations of equinoxes 
and the solstice, two observations of Mercury and one of Venus, and to explain them 
refers to the displacement in the Roman calendar shown by Censorinus's conversion 
of 1 Thoth. This shows clearly that Kepler's investigation of errors in Ptolemy'S 
observations is related to the configuration of the heavens at Creation and thus to the 
date of Creation. The locations at Creation, that is, the evening of the second day 
(feria secunda, Monday) in Chaldea, when God created the firmament, 24 July 3993 
BC at 0;33,26 hours after noon at Uraniborg, are finally set out in the Rudolphine 
Tables. As examples of summing mean motions, he computes the mean heliocentric 
longitude of each planet, the longitude of its aphelion and ascending node, and the 
equivalent geocentric longitudes of the Sun and Moon (10.121-23), which he then 
places in the tables of epochs. And for each, he asks "What if?" (Quid si), and gives 
the locations exactly at the equinoxes and solstices according to God's plan. The 
computed and intended locations are as follows: 

Computed What jf? (Quid si) 

Planet ~. ~A .0. ~ ~A .0. 

Saturn ~ 5;29,57" d/. 28;24,6' 'Y' O· ~ o· ~ o· 'Y' O· 

Jupiter "P 7; 3,21 § 23;34,18 § 0 "PO !!D 0 !!DO 
Mars § 10;43,52 Cl 15 H 15 !!DO "{'I!!D 0 ,,{,O 
Sun (Earth) § 0 'Y' 0; 0, §O "{' 0 
Venus !!D 0 ~ 0 "{' 0 !!DO ~ 0 ,,{,O 
Mercury "{' 0; 0, 1 !!D 0 "P 0 ,,{,O !!DO "PO 
Moon IT 22;57, 2 A 0 !!D 0;0,1 !!DO ~ 0 !!DO 
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What Kepler wishes to find is the mean longitude of every body and the longi
tude of aphelia (apogees for Sun and Moon) and nodes at an equinox or solstice 
at some date close to Creation according to scriptural chronology. Since there are 
four possible locations, all mean longitudes near, if not exactly at, equinoxes and 
solstices must occur periodically, and over a period of thousan·ds of years very small 
changes in mean motion in longitude can place each body exactly where required. 
But the aphelia and nodes move so slowly that these locations occur very infre
quently, although a surprisingly large number of the computed positions are already 
at them. Presumably the exact date and time are determined by the Sun at the sum
mer solstice, Cancer 0°; by remarkable luck, Venus at Cancer 00 and Mercury within 
I" of Aries 0° would seem to determine the year (in fact these are jn error by several 
degrees). The time required for the Moon to move to Cancer 0° is half a day, Mars· 
was at Cancer 00 20 days, Jupiter at Capricorn 0° 85 days, and Saturn at Libra 0° 164 
days earlier, so these could easily be adjusted over so long a period. But Jupiter's 
aphelion was at Cancer 00, if ever, 1800 years earlier, and Saturn's aphelion will 
not be at Libra 00 for 1500 years. Since the aphelion of Mars is at Taurus 15°, it is 
uncertain whether it should be at Aries 0° or Cancer 0°; one way or the other, the 
motion would take 2400 years. (That the nodes are, except for Mars, at the required 
locations is the result of errors in their motions in the tables. For Saturn and Mercury 
the differences are over 60°, although Mars happens to be close to Aries 0°.) 

It is here that an investigation of Ptolemy'S observations is essential because 
errors of, in fact, many degrees in the longitudes of apsides and nodes found by 
Ptolemy when corrected could bring these where they belong at the date of Cre
ation, or so Kepler could hope. And this investigation he intends to take up, for 
after the examples of computing the positions at Creation, he remarks (10.123): 
"Concerning this situation and disposition of the initial positions from which all 
the motions come forth, there is a large subject for philosophizing, if the proposed 
material is accessible. But this speculation is to be deferred until another treatise 
where the reasons and foundations will be set out from which the positions at the 
time of Ptolemy have been brought to light." Kepler is here referring to two works. 
The first may be one, not completed but surviving among Kepler's manuscripts, 
known as the "Examination of the Observations of Regiomontanus and Walther," 
which also considers ancient observations reported by Ptolemy, with the object of 
finding secular equations such that, perhaps, the bodies all could be at their required 
positions at Creation.26 The second is a separate treatise on the positions at the time 
of Ptolemy, perhaps also on Ptolemy's observations in general with an analysis of 
the errors and their causes and any applicable secular equations. This would have 
been of interest, and with more detail than he had offered thus far. But it does not 
appear that the treatise was ever written, although notes in Kepler's manuscripts 
may have been intended or useful for it. So it is evident that, just as for 1)rcho 
and Longomontanus, Ptolemy's observations were of serious concern, presenting 
problems that had not been solved. And the literature of the last two hundred years 
shows that they are still subject to discussion and speculation, much of it merely 
repeating what was already written long ago, although not nearly so interesting or 

ingenious. 
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Appendix: Equinoxes and Solstices in the Almagest 

Ptolemy cites twelve equinoxes and two solstices with specific dates and times and 
several others with implied dates. For those with dates and times. here numbered in 
chronological order. we give the observer, year, date, and time in the Almagesl along 
with the date and apparent time by modern computation, the difference in time 41. 
cited time minus computed time, and for the cited time the differences in declination 
48 and longitude 4}' from the declination and longitude at the computed time. 
Thus, 41. 40, and 4}' are the errors in time, declination. and longitude at the cited 
times. Ptolemy's times of earlier observations are approximate, midnight, dawn, 
noon, sunset, evening, but he interprets them as occurring at quarter days, even for 
the solstice of Meton at dawn, which we give here as 0, 6, 12, and 18 hours. Since 
the cited times are approximate, the errors are also approximate. The computations. 
of apparent (not mean) local time for the meridians of Athens (1), Rhodes (2-10), 
and Alexandria (11-14), are geocentric, may have an uncertainty of a few minutes, 
and small inequalities cause the intervals between equinoxes and the tropical year 
to vary slightly from year to year. Reduced to the meridian of Alexandria, (\) is 
+D;25h and (2-10) +0;7h later. We have used the Aleyone Ephemeris for these 
calculations. 

No. A Obs. Year Dnre TIme Mod. Dale Tune LlI LlS LlA 

I CanOe Met -431 27 Jun 6h 28 Jun 1O;29h -28;29h -0; 0,18° -I; ge 
2 Lib 0 Hip. -161 27 Sep 18 27 Sep 2;29. +15;31 -0;15,36 +0;38,49 
3 LibO Hip. -158 27 Sep 6 26Sep 19;57 +10; 3 -0;10, 7 +0;25,8 
4 . Lib 0 Hip. -157 27 Sep 6 27 Sep 1;43 +4;17 -0; 4, 19 +0;10,41 
5 Lib 0 Hip. -146 27 Sep 0 26 Sep . 17;49 +6;4 -0; 6,13 +0;15,26 
6 Ari 0 Hip. -145 24Mor 6 24 Mar 15; I -9; I -0; 8,47 -0;21,52 
7 LibO Hip. -145 27 Sep 6 26Sep 23;41 +6;19 . -0; 6,21 +0;15,46 
8 LibO Hip. -142 26Sep 18 26Sep 17;9 +0;51 -0; 0,51 +0; 2.7 
9 AriO Hip. - 134 24 Mar 0 24 Mar 6;59 -7;'6 -0; 6,50 -0;16,58 

10 Ari 0 Hip. -127 23 Mar 18 23 Mar 23;23 -5;23 -0; 5,15 -0;13, 5 
II Lib 0 Ptol. 132 25 Sep 14 24Sep 4;58 +33; 2 -0;33. 6 + 1;22.25 
12 Lib 0 POOl. \39 26Sep 7 24Sep 21;44 +33;16 -0;33, 18 +1;22.55 
13 Ari 0 Ptol. 140 22 Mar J3 21 Mar 16;15 +20;45 +0;20, 18 +0;50,31 
14 Can 0 Ptol. 140 25 Jun 2 23 Jun 14;9 +35;51 -0; 0.28 +1;25,31 

Observations (2--4) were perhaps only reported by Hipparchus and not made by 
him at Rhodes. The time of (8), with its very smalI 41, is given as "evening," which 
could be tater than 18\ but before if at which 41 = +6;5 I". The negative L11l in 
(2-10) implies that the equator was set too low, in most by about 6' ± 2', and, aside 
from (2-3), are consistent enough to show that they must be from interpolation 
between measurements of meridian altitude, and not observed with an equatorial 
ring close tD the horizon where refraction would produce a larger range or even posi
tive values of 4/J~ Using meridian altitudes, refraction would change the times of the 
equinoxes by less than ±O;45h , a small fraction of LIt. Ptolemy's observations were 
probably of meridian altitudes even though LIt is so large, since he criticizes the UStl 
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of rings. Longomontanus assumes that both Hipparchus and Ptolemy observed with 
a ring, and attempts to correct for refraction the times of equinoxes believed to be 
observed close to the horizon. In fact, (6) was also observed in Alexandria with an 
equatorial ring, which showed the time about 5 hours later, at 11 h, reducing l1t to 
-4;lh,110 to -0;3,55°, and LlJ.. to -0;9,44°. 

Notes 

I. This is the way Balmni was understood_ in Europe, by the writers we are considering. but in 
Chapter 52 he suggests. and appears to favor, a variable precession and tropical year although 
he proposes no modeJ or pa~meters. There is a detailed stUdy of this subject by Ragep (1996) 
and further reference in his paper in tbis volume. 

"2. In the section on each. references in parentheses are to volume and page numbers in: Brahe 
(1913-1929). Longomontanus (1622), and Kepler (1937- and 1858-1871). Full descriptions 
of these are in the bibliography. . 

3. The text reads CapriCorn 5°. There is another error here as by Copernicus's tables in 1580 the 
eccentricity is about 0.03214 or 1;55,42, less than 2;5 by 0;9,18, and is never less than 0.0321 
or I ;55,34; but the longitude of the apogee is 98;42', about 3f to the east of Cancer 5°, and 
the Prulenic Tables are nearly the same. 

4. How did Tycho find]f = 28;.St °1 From his star catalogue, for the end of 1600 the longitude 
of Spica is 198;16°, and from the table of precession, for 12 Sep 1588 4rr = -0;10.28", so 
the longitude of Spica is 198;5,32°, Then, taking Ptolemy's interval from Spica to y Anetis. 
-170;00, the longitude ofy Arietis and the precession" ;", 198;5,32' -170;0' = 28;5,32" '" 
28;5,300. Tycho explains tnat from his own interval from Spica [0 y Arietis, -110;3~. 7C = 
27;26° (strictly 27;26.32:) , but since the fixed stars do not move in relation to each other, it 
does not matter which interval he applies to find the difference of precession as long as he 

. applies it at bOlh equinoxes, and Ptolemy's interval from Spica is consistent with the interval 
from Regulus. This.is correct since what Tycho filJ,ds is .61; = Llx's - Ltrr. 

5. Copernicus's longitude of Spica in 1515 is 197;14°-in fac~ computed from his precession 
theory and altered from his original computation of 197; IO"-and Tycho's 197;3,30' is his 
recompuiation based upon the corrected latitude of Frauenburg (2.223). In 1586 he corrected 
Copernicus's 1525 longitude of 197;21" in the same way to 197;13,55" (10.125, text by error 
53 for 13; 2.223 hasI97;14°), and paired it with his own longitude of 198;4,24° for 1586, from 
which" = 1!.),,/41 = 0;50.29°/6IY = 0;0.49,39'/Y 01 1° in about 72t years. By modern 
computation, the longitude of Spica in ISIS is 197;5' and in 1525 197;14', close enough to 
Tycho's corrections. 

6. This is correct, for in the late six.teenth century by Copernicus's theory the rate of preces
. sian is about 36" per year and the tropical year 365;14,4Sd• the snme as Ptolemy found, very 
nearly the slowest precession and longest year, while Tycho found 51" per year, faster by 
15", and 365;14,31.52,30", shorter by 0;6,27h, which refutes Copernicus's theory. However, 
Tycho does note that Copernicus's mean precession ofO;O.50,12.5:J/Y differs from his by only 
-0;0,0,48'. 

7. This is the year of Jam ad-DIn Malik Shah of 1079, which Scaliger earlier favored and had 
Jearned of from Ignatius Na'matallah, Jacobite Patriarch of Antioch, then a refugee in Rome, 
his source for much information on eastern calendars. The year is staled in various ronns, but 
Scaliger gives it as 365d Sh 88CJd', where I hour = 1080 chalakim. a division of the hour in the 
Hebrew calendar; the tropical year is thus 365d 5;48,53,20h , in fact superior to the Alfonsine 
nnd differing from Tycho's by +0;O,8,20h 

8. Cited by Grafton (1993, 201), from De emendnlioM temporuln (1583,128). 
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9. Cynosurn, literally "dog's tail," is a name for Ursa Minor, used notably by Aratus. Copernicus 
also uses it in his star catalogue. That Hipparchus's found Polaris 12;24' from the pole is cited 
by Ptolemy from Marinus in Geography 1.7.4. Since it was then the most distant of the stilrs in 
Ursa Minor in declination from the pole, it is called the "southernmost." which Scaliger later 
criticizes as an error because he believes the pole of the world is always at or neilr Polaris. 
Grafton (1993, 487), notes that "southern" was sometimes emended to "northern" in transla
tions of the Geography since by the sixteenth century Polaris had become Ihe nonhernmost 
star. He also notes (464) that in the second edition of De emendntione lemporum. Scaliger 
gives the least distance as 3j24° and concludes that the pole of the equator has approached the 
pole star by about 9'. The present distance of less than 3' he perhaps received from Tvcho, 
who also mentions it in his letter below. . 

10. It appears from examples for Regulus and T} Gem that he was computing true risings, when the 
Sun and star cross the horizon at the same time, rather than apparent risings.. which are more 
difficult and uncertain to compute. Nevertheless, his conclusion is correct, for by modern com
putation at lOG-year intervals. the apparent heliaea! rising of Sirius in Alexandria for - J 800 to 
900 is on 20 July and 1000 to 1600 on 21 July (Julian), although different methods ofeompu· 
tation can differ slightly. Scaliger refers to acronychaJ risings, although perhaps not explicitly 
for Sirius. but these are not as constant. for -1800 to 1600 advancing from 25 December to 1 
January. Tycho's statement that after about 500 years Polaris will be 27 ~ J from {he pole is very 
accurate, for its minimum distance (without nutation), wilt be 0;27.15° in 2102-03. 

11. Scaliger's objections to the precession. including in the Diatn·be. are treated by Grafton (1993. 
459-488). The Diatribe was already much criticized in its day; a detailed analysis and very 
sharp criticism by Kepler is published by Frisch (Kepler 1858-1871,8.273-93). 

12. The Greek text bas 365t + ~ days, but the fraction :k seems to be omitted in earlier para
phrases of this passage and accounts of the Metonic cycle. [t was commonly thought that the 
cycle was 19 Julian years of 365* days. 6939i days. as in the ecclesiastical calendar, rather 
than Meton's 6940 days. It should be noted that a luni-solar calendrical cycle as applied to 
months must be nn integral number of days since new Moons appear only in the evening 
separaled by (nearly) inlegral days. 

13. Longomontanus's explanation was later proposed, surely independently. by Tobias Meyer in a 
letter to Euler. Of course, neilher knew the Babylonian origin of Hipparchus's mean synodic 
month. There is a rather detailed discussion of Hipparchus's tropical year and precession by 
Swerdlow (1980). 

14. Holger Rosenkrantz (1574-1642), a friend and correspondenl of Tycho's, was married 10 

Tycho's niece. supported Tycho's claims in Denmark after he had left Hvcn. and doubdess 
knew Longomontnnus well. The correspondence is published in Dreyer's edition and there is a 
biography by Christianson (2000, 344-346). He assembled a great librory and was particularly 
concerned with theology, although sufficiently unorthodox and fanatical to be charged with 
heresy in his later years. 

15. For -3963 Jan I noon, X., = 248;33,54', for -3966 Jan I noon, X, = 248;11,45'. Since Ihe 
equinoxes were then in the apsidaJ line where the equations are zero, the difference in longitude 
to the following vernal equinox is 1I1 ;42, 15° and to the autumnal equinox 291 ;42, 15c

, for 
which the difference in time is 291;42, t5'jO;59,8, 19,4yid = 295" 22;50,50", Ihat is, 23 Ocl 
at 22;50,50" from noon or 24 Oct al about t I AM Curiously, if one lakes the true longitude 
for -3966 Jan 1 noon, A. = 248;17,45' + 1;55,32' = 250;13.17', the difference in longitude 
to the autumnal equinox is 289;46.43°. If one then uses the mean motion of the Sun, the 
difference in time is 293" 23;57,39". Ihat is, 21 Oct at 23;57,39" from noon or22 OCI al about 
noon. This is not strictly correct, but the result would be that God created the world at about 
noon in Copenhagen. 

16. Pole E is described as "in the surface of the globe of the Earth," but that must be only a geo
metrical direction as it makes no sense to give the motion of £ to the Earth. and Moesgaard is 
surely correct in describing it as the pole of the true orbit of the Sun around the Earth. that is, of 
me true ecliptic itself. And the motion in the small circle produces only a motion of each point 
of the true ecliptic, as the true vernal equinox, in a small circle centered on the mean ecliptic, 
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unlike Kepler's model. described later, which produces a rotation of the entire true ecliptic with 
respect to the mean ecliptic. Moesgaard also notes inconsistencies in Longomontanus's table 
of the inequality of precession and suggests that the table was computed for an earlier model in 
which the inequality of precession and variation of obliquity were produced by motions of the 
pole of the Earth, thus of the equator with no modon of the ecliptic, as in Copernicus's model. 
The model does seem inconsisten~ or hard to follow, and my description is only of what is 
supposed to result from it 

17. There is a recent study by Buchwald (2006,635-643) of this procedure applied to Tycho's 
observations along with other early methods of refining measurements or computations. 

18. The.text, three hours, is incorrect since at the equinoxes lh of time corresponds to 11 of decli
nation. If the maximum equation is reduced by 20'. then with Ptolemy's' apogee, the reduction 
at equinox is 20' sin 65;30° ;:::;:: 18' of longitude, corresponding to 0;24 . 18' ~ 71 of declination 
and seven hours of time. Kepler must have computed 0;24.20' = 8' of dccUnatlon and. thus 
eight hours of time, which would apply at 90° from apogee, not at the equinoxes. 

19. By modern computation, the closest approach of Mars to fl Sea was under 37' on 19 Jan 2h and 
to v SeQ over 2' on 16 Jan 15h, whi.ch is much c1oser. There CQuId be an error in converting the 
date from the Dionysian to the Egyptian calendar, but there was no occultation of either star and 
nothing even close at dawn in Alexandria on any nearby date. An occultation of Mars by Ihe 
Moon approaching first quarter was visible in Athens the evening of -356 4 May-from about 
20h to 21 ;15h apparent time although the exact time varies by a few minutes depending upon 
the value of the secular acceleration-as Kepler surely determined correcdy, and "April" must 
be only a transcription error since on 4 April the Moon was about 20e from Mars, which he 
could not have missed. In manuscript notes on the occultation (Kepler 1937-, 20.2.497-505), 
with 25 computations of the Sun, Moon, and Mars dated to the Foundation of Rome, AUC 
38(}..431, the one for -356 is a fragment for AVe 395 (504--505), April completed, hence 
May, plus day 5, but the occultation is not noted there. 

20. Here we consider the theory only geometrically; there is an explanation of the underlying 
physical theory oflatitude by Stephenson (1987, 130-137), which we have found very helpful. 

21. First published by Frisch (Kepler 1858-1871, 6.lOl~9) and more completely by Bialas 
(Kepler 1937-,21.1.314-29), who dates the notes to ca. 1616 and December 1621. The param
eters for the variation of obliquity in the Epilome and Rudolphine Tables are found in the latter 
part of the notes. There are related note, published by Frisch (Kepler 1858-1871, 6.78-S7; 
593-596) and Bialas (Kepler 1937-, 20.1.115-33), from both before and after the publication 
of Epitome 7. PlaCing the equinoxes and solstices at eight degrees of their signs is Babylonian 
and found in a number of Greek. sources. That Hercules did it first is more surprising. 

22. Pirst published by Frisch (Kepler 1858- 1871, 6.87-89) and then by Bialas (Kepler 1937-, 
20.1.134-36), who provides the date 1622. 

23. Loci ex CelLrormo admonuit me Jos. Scalige!; agno.fcitque pm sphalmate, ut lu; 'admonuit me' 
also means 'reminded me' or 'advised me'. A. Grafton, in considering the passage, believes it 
refers only to Kepler's seeing the correction in De emeIJdatiofle temporum, not to a persona] 
communication from Scaliger since tllere is no evidence that Scaliger ever wrote to Kepler 
following Kepler's letter of May/June 1605, and Scaliger died in 1609, seventeen years before 
this letter to Cruger. 

24. In fac~ equinox (12) occurred on 24 Sep at about 22h, earlier than the recorded 26 Sep 13' by 
I d 9', as in the Appendix. 

25. The Alexandrian calendar, introduced under Augustus in -24, uses Egyptian month names. 
and equal months of thirty days numbered consecutively forward, with five epagomenal days 
in common years and a sixth in a leap year. Ptolemy uses it in the Pluues of the Fixed Stars, 
and nowhere. does he give 3. date in the Roman calendar, even when Citing observations made 
in Rome by Menelaus. In 139, I Thoth of Antoninus 3 in the Egyptian calendar corresponds 
to 26 Epiphi of Antoninus 2, or Augustus 168, in the Alexandrian calendar. 

26: First published by Frisch (Kepler 1858-1871, 6.725-74) and more recently by Bialas (Kepler 
1937-, 20.1.395-455). This work is also referred to in the preface to the Rudolphille Tables 
(10.44). 


