A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of 2.9 pb$^{-1}$ collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E_8 diquarks, in specific mass intervals. This extends previously published limits on these models.

DOI: 10.1103/PhysRevLett.105.211801

PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.-j

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

V. Khachatryan et al.*
(CMS Collaboration)

(Received 1 October 2010; published 17 November 2010)

Two or more energetic jets arise in proton-proton collisions when partons are scattered with large transverse momenta p_T. The invariant mass spectrum of the two jets with largest p_T (dijets) falls steeply and smoothly, as predicted by quantum chromodynamics (QCD). Many extensions of the standard model predict the existence of new massive objects that couple to quarks (q) and gluons (g), and result in resonant structures in the dijet mass. In this Letter we report a search for narrow resonances in the dijet mass spectrum, measured with the CMS detector [1] at the LHC, at a proton-proton collision energy of $\sqrt{s} = 7$ TeV.

In addition to this generic search, we search for narrow s-channel dijet resonances from eight specific models. First, string resonances (S), which are Regge excitations of quarks and gluons in string theory, with multiple mass-degenerate spin states and quantum numbers [2,3]; string resonances with mass ~ 2 TeV are expected to decay predominantly to qg (91%) with small amounts of gg (5.5%) and qq (3.5%). Second, mass-degenerate excited quarks (q^*), which decay to qg, predicted if quarks are composite [4]; the compositeness scale is set to be equal to the mass of the excited quark. Third, axial vector particles called axigluons (A), which decay to qg, predicted in a model where the symmetry group $SU(3)_C$ of QCD is replaced by the chiral symmetry $SU(3)_L \times SU(3)_R$ [5]. Fourth, color-octet colorons (C), also decaying to qg, predicted by the flavor-universal coloron model embedding the $SU(3)$ symmetry of QCD in a larger gauge group [6]. Fifth, scalar diquarks (D), which decay to qq and qg, predicted by a grand unified theory based on the E_8 gauge [7]. Sixth, Randall-Sundrum (RS) gravitons (G), which decay to qg and gg, predicted in the RS model of extra dimensions [8]; the value of the dimensionless coupling κM_P is chosen to be 0.1. Seventh and eighth, new gauge bosons (W' and Z'), which decay to qg, predicted by models that propose new gauge symmetries [9]; the W' and Z' resonances are assumed to have standard-model-like couplings.

A detailed description of the CMS experiment can be found elsewhere [1]. The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the counterclockwise beam, with the transverse plane perpendicular to the beam; ϕ is the azimuthal angle in radians, θ is the polar angle, and the pseudorapidity is $\eta = -\ln(\tan(\theta/2))$. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter. Within the field volume are the silicon pixel and strip tracker ($|\eta| < 2.4$), and the barrel and end cap calorimeters ($|\eta| < 3$): a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL). Outside the field volume, in the forward region, there is an iron-quartz fiber calorimeter ($3 < |\eta| < 5$). The ECAL and HCAL cells are grouped into towers, projecting radially outward from the origin, for triggering purposes and to facilitate jet reconstruction. In the region $|\eta| < 1.74$ these projective calorimeter towers have segmentation $\Delta \eta = \Delta \phi = 0.087$; the η and ϕ width increases at higher values of η. The energy depositions measured in the ECAL and the HCAL within each projective tower are summed to find the calorimeter tower energy.

The integrated luminosity of the data sample selected for this analysis is 2.9 ± 0.3 pb$^{-1}$ [10]. A single-jet trigger is used in both the online hardware-level (L1) and the software-level (HLT) of the trigger system [1] to select an unprescaled sample of events with a nominal jet transverse energy threshold at the HLT of 50 GeV. The trigger efficiency for this analysis is measured from the data to be larger than 99.5% for dijet masses above 220 GeV.

Jets are reconstructed using the anti-k_T algorithm [11] with a distance parameter $R = 0.7$. The reconstructed jet
energy E is defined as the scalar sum of the calorimeter tower energies inside the jet. The jet momentum p is the corresponding vector sum of the tower energies using the tower directions. The E and p of a reconstructed jet are corrected as a function of p_T and η for the nonlinearity and inhomogeneity of the calorimeter response. The correction is between 43% and 15% for jets with corrected p_T between 0.1 and 1.0 TeV in the region $|\eta| < 1.3$. The jet energy corrections were determined and validated using simulations, test beam data, and collision data [12].

The dijet system is composed of the two jets with the highest p_T in an event (leading jets). We require that the pseudorapidity separation of the two leading jets, $\Delta \eta = \eta_1 - \eta_2$, satisfies $|\Delta \eta| < 1.3$, and that both jets be in the region $|\eta| < 2.5$. These η cuts maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD background. The dijet mass is given by $m = \sqrt{(E_1 + E_2)^2 - (p_1 + p_2)^2}$. We select events with $m > 220$ GeV without any requirements on jet p_T.

To remove possible instrumental and noncollision backgrounds in the selected sample, the following selections are made. Events are required to have a reconstructed primary vertex within $|z| < 24$ cm. For jets, at least 1% of the jet energy must be detected in the ECAL, at most 98% can be measured in a single photodetection device of the HCAL readout, and at most 90% can be measured in a single cell. These criteria, which are fully efficient for dijets, remove 0.1% of the events passing the pseudorapidity constraints and the dijet mass threshold.

Figure 1 presents the inclusive dijet mass distribution for $pp \rightarrow 2$ leading jets + X, where X can be anything, including additional jets. We plot the measured differential cross section versus dijet mass in bins approximately equal to the dijet mass resolution. The data are compared to a QCD prediction from PYTHIA [13], which includes a full GEANT simulation [14] of the CMS detector and the jet energy corrections. The prediction uses a renormalization scale $\mu = p_T$ and CTEQ6L1 parton distribution functions [15]. The PYTHIA prediction agrees with the data within the jet energy scale uncertainty, which is the dominant systematic uncertainty. To test the smoothness of our measured cross section as a function of dijet mass, we fit the data with the parametrization

$$
\frac{d\sigma}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_2 \ln(m/\sqrt{s})}},
$$

with four free parameters P_0, P_1, P_2 and P_3. This functional form has been used by prior searches to describe both data and QCD predictions [16,17]. In Fig. 1 we show both the data and the fit, which has a $\chi^2 = 32$ for 31 degrees of freedom. In Fig. 2 we show the ratio between the data and the fit. The data are well described by the smooth parametrization.

We search for narrow resonances, for which the natural resonance width is negligible compared to the CMS dijet mass resolution. Figures 1 and 2 present the predicted dijet mass distribution for string resonances and excited quarks using the PYTHIA Monte Carlo and the CMS detector simulation. The predicted mass distributions exhibit a Gaussian core from jet energy resolution and a tail toward low masses from QCD radiation. This can be seen in Fig. 3, which shows examples of the predicted dijet mass distribution of resonances from three different parton pairings:
(10%), the jet energy scale (10%), the integrated luminosity (11%), and the background parametrization choice (included by using a different parametrization [19] that also describes the data). The jet energy scale and resolution uncertainties are conservative estimates, consistent with those measured using collision data [12]. To incorporate systematic uncertainties, we then use an approximate technique, which in our application is generally more conservative than a fully Bayesian treatment. The posterior probability density for the cross section is broadened by convoluting it, for each resonance mass, with a Gaussian systematic uncertainty [19]. As a result, the cross section limits including systematic uncertainties increase by 17%–49% depending on the resonance mass and type. Table I lists the generic upper limits at the 95% CL on \(\sigma \times BR \times A \), the product of cross section (\(\sigma \)), branching fraction (BR), and acceptance (A) for the kinematic range where both jets have pseudorapidity \(|\eta| < 1.3 \) and \(|\Delta\eta| < 2.5 \), for \(qq \), \(qg \), and \(gg \) resonances. The acceptance for isotropic decays is \(A = 0.6 \) independent of resonance mass.

In Fig. 4 we compare these upper limits to the model predictions as a function of resonance mass. The predictions are from lowest order calculations of the product \(\sigma \times BR \times A \) using the CTEQ6L1 parton distributions [15]. New particles are excluded at the 95% CL in mass regions for which the theory curve lies above our upper limit for the appropriate pair of partons. We also determine the expected lower limit on the mass of each new particle, for a smooth background in the absence of signal. For string resonances the expected mass limit is 2.40 TeV, and we use the limits on \(qg \) resonances to exclude the mass range 0.50 < \(M(S) \) < 2.50 TeV. For comparison, previous measurements [16] imply a limit on string resonances of about 1.4 TeV. For excited quarks the expected

TABLE I. Upper limits at the 95% CL on \(\sigma \times BR \times A \), as a function of the new particle mass, for narrow resonances decaying to dijets with partons of type quark-quark (\(qq \)), quark-gluon (\(qg \)), and gluon-gluon (\(gg \)). The limits apply to the kinematic range where both jets have pseudorapidity \(|\eta| < 2.5 \) and \(|\Delta\eta| < 1.3 \).

<table>
<thead>
<tr>
<th>Mass (TeV)</th>
<th>Upper limit ((pb))</th>
<th>Mass (TeV)</th>
<th>Upper limit ((pb))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(qq)</td>
<td>(qg)</td>
<td>(gg)</td>
</tr>
<tr>
<td>0.5</td>
<td>118</td>
<td>134</td>
<td>206</td>
</tr>
<tr>
<td>0.6</td>
<td>182</td>
<td>229</td>
<td>339</td>
</tr>
<tr>
<td>0.7</td>
<td>90.7</td>
<td>134</td>
<td>281</td>
</tr>
<tr>
<td>0.8</td>
<td>70.8</td>
<td>93.5</td>
<td>177</td>
</tr>
<tr>
<td>0.9</td>
<td>52.7</td>
<td>71.6</td>
<td>142</td>
</tr>
<tr>
<td>1.0</td>
<td>20.3</td>
<td>29.0</td>
<td>71.4</td>
</tr>
<tr>
<td>1.1</td>
<td>17.0</td>
<td>20.1</td>
<td>35.1</td>
</tr>
<tr>
<td>1.2</td>
<td>17.0</td>
<td>20.4</td>
<td>32.5</td>
</tr>
<tr>
<td>1.3</td>
<td>10.5</td>
<td>12.9</td>
<td>22.8</td>
</tr>
<tr>
<td>1.4</td>
<td>6.77</td>
<td>8.71</td>
<td>16.4</td>
</tr>
<tr>
<td>1.5</td>
<td>3.71</td>
<td>5.02</td>
<td>10.3</td>
</tr>
</tbody>
</table>
mass limit is 1.32 TeV, and we exclude the mass range $0.50 < M(q^*) < 1.58$ TeV, extending the previous exclusion of $M(q^*) < 1.26$ TeV [16,17,19–22]. For axigluons or colorons the expected mass limit is 1.23 TeV, and we use the limits on qg resonances to exclude the mass intervals $0.50 < M(A) < 1.17$ TeV and $1.47 < M(A) < 1.52$ TeV, extending the previous exclusion of $0.11 < M(A) < 1.25$ TeV [16,19,21,23–25]. For E_6 diquarks the expected mass limit is 1.05 TeV, and we exclude the mass intervals $0.50 < M(D) < 0.58$ TeV, and $0.97 < M(D) < 1.08$ TeV, and $1.45 < M(D) < 1.60$ TeV, extending the previous exclusion of $0.29 < M(D) < 0.63$ TeV [16,19]. For W', Z', and RS gravitons we do not expect any mass limit, and do not exclude any mass intervals with the present data. The systematic uncertainties included in this analysis reduce the excluded upper masses by roughly 0.1 TeV for each type of new particle.

In conclusion, the measured dijet mass spectrum is a smoothly falling distribution as expected within the standard model. We see no evidence for new particle production. Thus we present generic upper limits on $\sigma \times BR \times A$ that can be applied to any model of dijet resonances, and set specific mass limits on string resonances, excited quarks, axigluons, flavor-universal colorons, and E_6 diquarks, all of which extend previous exclusions.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); IJF (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MINECO, INFNI, DAS, and CERCA (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).
(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik der ÖAW, Wien, Austria
3National Centre for Particle and High Energy Physics, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Gent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Istituto di Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14University of Sofia, Sofia, Bulgaria
15Institute of High Energy Physics, Beijing, China
16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17Universidad de Los Andes, Bogota, Colombia
18Technical University of Split, Split, Croatia
19University of Split, Split, Croatia
20Institute Rudjer Boskovic, Zagreb, Croatia
21University of Cyprus, Nicosia, Cyprus
22Academy of Scientific Research and Technology of the Arab Republic of Egypt, Cairo, Egypt
23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
24Department of Physics, University of Helsinki, Helsinki, Finland
25Helsinki Institute of Physics, Helsinki, Finland
26Lappeenranta University of Technology, Lappeenranta, Finland
27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France
32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia
34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37Deutsches Elektronen-Synchrotron, Hamburg, Germany
38University of Hamburg, Hamburg, Germany
39Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40Institute of Nuclear Physics "Demokritos," Aghia Paraskevi, Greece
41University of Athens, Athens, Greece
42University of Ioannina, Ioannina, Greece
43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45University of Debrecen, Debrecen, Hungary
46Panjab University, Chandigarh, India
47University of Delhi, Delhi, India
48Bhabha Atomic Research Centre, Mumbai, India
49Tata Institute of Fundamental Research–EHEP, Mumbai, India
50Tata Institute of Fundamental Research–HECR, Mumbai, India
51Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran
52aINFN Sezione di Bari, Bari, Italy
52bUniversità di Bari, Bari, Italy
52cPolitecnico di Bari, Bari, Italy
53aINFN Sezione di Bologna, Bologna, Italy
Deceased.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

Also at Cairo University, Cairo, Egypt.

Also at Suez Canal University, Suez, Egypt.

Also at Fayoum University, El-Fayoum, Egypt.

Also at Soltan Institute for Nuclear Studies, Warsaw, Poland.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at Moscow State University, Moscow, Russia.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at Eötvös Loránd University, Budapest, Hungary.

Also at Tata Institute of Fundamental Research–HECR, Mumbai, India.

Also at Facoltà Ingegneria Università di Roma “La Sapienza,” Roma, Italy.

Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy.

Also at California Institute of Technology, Pasadena, CA, USA.

Also at University of California, Los Angeles, Los Angeles, CA, USA.

Also at University of Florida, Gainesville, FL, USA.

Also at the Université de Genève, Geneva, Switzerland.

Also at Scuola Normale e Sezione dell’ INFN, Pisa Italy.

Also at INFN Sezione di Roma, Università di Roma “La Sapienza,” Roma, Italy.

Also at University of Athens, Athens, Greece.

Also at The University of Kansas, Lawrence, KS, USA.

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

Also at Paul Scherrer Institut, Villigen, Switzerland.

Also at Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain.

Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

Also at Adiyaman University, Adiyaman, Turkey.

Also at Mersin University, Mersin, Turkey.

Also at Izmir Institute of Technology, Izmir, Turkey.

Also at Kafkas University, Kars, Turkey.

Also at Suleyman Demirel University, Isparta, Turkey.

Also at Ege University, Izmir, Turkey.

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.

Also at Institute for Nuclear Research, Moscow, Russia.

Also at Istanbul Technical University, Istanbul, Turkey.