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Controllability of Kinematic Control Systems on
Stratified Configuration Spaces

Bill Goodwine and Joel W. Burdick

Abstract—This paper considers nonlinear kinematic controlla-
bility of a class of systems calledstratified. Roughly speaking, such
stratified systems have a configuration space which can be decom-
posed into submanifolds upon which the system has different sets of
equations of motion. For such systems, considering controllability
is difficult because of the discontinuous form of the equations of
motion. The main result in this paper is a controllability test, anal-
ogous to Chow’s theorem, is based upon a construction involving
distributions, and the extension thereof to robotic gaits.

Index Terms—Controllability, legged locomotion, robot control,
stratified systems.

I. INTRODUCTION

M ANY interesting and important control systems evolve
on stratified configuration spaces. Roughly speaking,

we will call a configuration manifold stratified if it contains sub-
manifolds upon which the system has different equations of mo-
tion. Certain robotic systems, in particular, are of this nature. For
such systems, the equations of motion on each submanifold may
change in a nonsmooth, or even discontinuous manner, when the
system moves from one submanifold to another. A legged robot
has discontinuous equations of motion near points in the con-
figuration space where each of its “feet” come into contact with
the ground, but it is precisely the ability of the robot to lift its
feet off of the ground that enables it to move about. Similarly, a
robotic hand grasping an object often cannot reorient the object
without lifting its fingers off of the object. Despite the obvious
utility of such systems, however, a comprehensive means to an-
alyze their controllability properties, to our knowledge, has not
appeared in the literature.

For example, consider the six-legged hexapod robot illus-
trated in Figs. 1 and 2. This model will be fully explored in
complete detail in Section V. Note that each leg has only two
degrees of freedom. In particular, the robot can only lift its legs
up and down and move them forward and backward. In contrast
to most mechanical designs in the robotics literature, such a leg
can not be extended outward from its body. Such limited control
authority may be desirable in practical situations because it de-
creases the mechanical complexity of the robot; however, such
decreased complexity comes at the cost of requiring more so-
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Fig. 1. Schematic of a simple hexapod robot.

Fig. 2. Definition of kinematic variables.

phisticated control theory. Note that for this model, it is not im-
mediately clear whether the robot can move “sideways,” and if
it cannot move sideways, then it is not controllable. In this, and
other stratified cases, traditional nonlinear controllability ana-
lyzes are inapplicable because they rely upon differentiation in
one form or another. Yet it is precisely the discontinuous nature
of such systems that is often their most important characteristic
because the system must cycle through different contact states
to effectively be controlled. Therefore, it is necessary to incor-
porate explicitly into a controllability analysis the nonsmooth or
discontinuous nature of these systems.

This paper first considers some basic issues regarding the ap-
propriate definition of controllability for stratified systems and
then extends standard controllability tests for smooth driftless
nonlinear systems to the case where the configuration manifold
is stratified. Although Brockett [5] illustrated some of the as-
pects of the problem of discontinuous or impacting systems,
and there is quite a bit written concerning so-called “hybrid sys-
tems,” (see, e.g., [3], [4], and [6]–[11]) none of these has ex-
ploited the particular geometry of stratified systems to develop
a controllability test. Additionally, there is a vast literature on
the particular problem of legged robotic locomotion. However,
prior efforts have focused either on a particular morphology,
(e.g., biped [17], quadruped [20], or hexapod [27]), or a partic-
ular locomotion assumption, (e.g., hopping [26] or quasistatic
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[27]), and the issue of controllability is an implicitly assumed
property. Less effort has been devoted to uncovering principles
that span all morphologies and assumptions. Our goal is to gen-
erategeneralresults, i.e., results formulated in sufficient gener-
ality so that they are independent, in robotics applications, of a
particular morphology.

Some recent works have attempted to uncover some of the
fundamental structure underlying locomotion mechanics. Kelly
and Murray [18] showed that a number of kinematic locomotive
systems can be modeled using connections on principal fiber
bundles. They also provide results on controllability, as well as
an interpretation of movement in terms of geometric phases.
Ostrowski [24], [25] developed analogous results for a class of
dynamic nonholonomic locomotion systems. Also, Tsakiris and
Krishnaprasad [19] have used methods from nonlinear control
theory to develop motion planning schemes for “G”-snakes, a
class of kinematic undulatory mechanisms. These approaches
are limited tosmoothsystems, however, and thus are not directly
applicable to stratified systems.

Section II defines a stratified configuration space and dis-
cusses its generic geometric structure. Section III reviews con-
trollability for smooth systems and the associated mathematical
concepts. Section IV first motivates and develops our control-
lability theory in detail for a simplified subset of stratified prob-
lems, illustrates its application with a simple example and then
presents the controllability test. Section V presents the hexapod
robot example problem in full detail. Section VI presents con-
trollability results for a more general stratified case, and again
illustrates its application with a simple example. Additionally,
Section VI defines and presents a test forgait controllability,
particularly useful for and motivated by legged robotic systems,
and also returns to the hexapod example to analyze its gait con-
trollability.

II. STRATIFIED CONFIGURATION SPACES

We will motivate our definition of a stratified configuration
space with a simple example.

Example 2.1:Consider a biped robot. The configuration
manifold for the robot describes the spatial position and
orientation of a reference frame rigidly attached to the body of
the robot mechanism as well as variables such as joint angles
which describe the mechanism’s internal geometry. The set
of configurations corresponding to one of the feet in contact
with the ground is a codimension one regular submanifold
of the configuration space. The same is true when the other
foot contacts the ground. Similarly, when both feet are in
contact with the ground, the system is on a codimension two
regular submanifold of the configuration space formed by the
intersection of the single contact submanifolds. The structure
of the configuration manifold for such a biped is schematically
illustrated in Fig. 3. The goal in this paper is to exploit the
geometric structure of such configuration spaces. Note that
when a foot contacts the ground, because the robot is subjected
to additional constraints, it will have a different set of equations
of motion than when the foot is not in contact with the ground.
Also, except for when the robot transitions from a state where

Fig. 3. Schematic view of the configuration manifold structure of a biped
robot.

a foot is off of the ground to one where a foot contacts the
ground, the equations of motion for the system are smooth. In
other words, restricted to each stratum, the equations of motion
are smooth.

We will refer to the configuration space for the biped
robot in Example 2.1 asstratified, which will be specifi-
cally defined subsequently. To avoid confusion regarding
the terminology, we note that the terms “stratification” and
“strata” have been used previously for different mathematical
structures. In particular, the termregularly stratified set has
been used to describe a finite union of disjoint smooth
manifolds, also called strata, which satisfy the Whitney
condition (see [14] for details on such stratifications). Ad-
ditionally, the terms “strata” and “stratification” have been
used in yet another different context; namely, describing the
topology of orbit spaces of Lie group actions, and are a
slight generalization of the notion of a foliation [1].

By considering legged robot systems that are more general
than the biped in Example 2.1, we can develop a general defini-
tion of stratified configuration spaces. Let denote the legged
robot’s entire configuration manifold (it will often be convenient
to denote this space as ). Let denote the codimen-
sion one submanifold of that corresponds to all configura-
tions where only theth foot contacts the terrain. Denote, the
intersection of and , by . The set phys-
ically corresponds to states where both theth and th feet are
on the ground. Further intersections can be similarly defined in
a recursive fashion: , etc. Note
that the ordering of the indices is irrelevant, i.e., . We
will term the lowest dimension stratum containing the point
as thebottom stratum, and any other submanifolds containing
ashigher strata. When making relative comparisons among dif-
ferent strata, we will refer to lower dimensional strata aslower
strata, and higher dimensional strata ashigher strata.

Definition 2.2 (Stratified Configuration Manifold):Let
be a manifold (possibly with boundary), andfunctions

, be such that the level sets
are regular submanifolds of , for

each , and the intersection of any number of the level sets,
, , is also

a regular submanifold of . Then and the functions ,
define astratified configuration space.
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We consider driftless nonlinear systems defined on stratified
configuration manifolds and will write the equations of motion
for the system at as

and the equations of motion for the system in one of the strata
at as

where may be different than . For an arbitrary stratum,
, we have

where the vector fields, are smooth and defined for all
points in . In the context of legged locomotion, the assump-
tion of driftless mechanisms on each strata limits us to qua-
sistatic locomotion.

Finally, we assume that the only discontinuities present in the
equations of motion are due to transitions on and off of the strata

or their intersections. We also assume the control vector fields
restricted to any stratum are smooth away from points contained
in intersections with other strata. When a system has the above
properties, we will refer to it as astratified control system.

III. M ATHEMATICAL PRELIMINARIES

This section addresses some basic topological properties of
stratified configuration spaces and the implications thereof with
respect to the definition of controllability. First, we must define
the term “controllable” as it is usually considered for smooth
systems. Given an open set , define to be the
set of states such that there exists that steers
the control system from to and satisfies

for , where is the set of admissible
controls. Define

(1)

We will refer to as the set of states reachable up
to time .

Definition 3.1 (Small Time Local Controllability):A smooth
analytic system issmall time locally controllable(STLC), or
simply “controllable”, if contains a neighbor-
hood of for all neighborhoods of and .

Forsmoothanalytic kinematic system, Chow’s Theorem [15],
[22], [23], [28], and related results from exterior differential
system [1], [2], [12], and[21] provide necessary and sufficient
conditions for controllability. For stratified systems, Definition
3.1 must be modified for two topological reasons. First, in terms
of controllability, it may not be desirable or possible to reach an
open neighborhood in the entire configuration space, but rather
an open set on a collection of the strata within the whole con-
figuration space. For example, for the biped, it may be desirable
that the robot always has at least one foot in contact with the
ground, i.e., it is walking, as opposed to running. In such a case,
it is most natural to consider controllability in terms of reaching

Fig. 4. Stratified open neighborhoods.

an open neighborhood defined in the union of the two strata
and (corresponding to each foot in contact with the ground)
as illustrated in Fig. 4.

From basic topology [1], we have that if is a subset of a
topological space with topology , therelative topologyon

is defined by . Thus, in the biped ex-
ample, as illustrated on the left in Fig. 4, the dotted regions illus-
trate an open set in the union . The dotted regions repre-
sent the intersection of an open ball inwith . Stratified
controllability now is defined as the reachable set containing a
neighborhood of the starting point, where the neighborhood is
open in . The second modification is a result of the fact
that, until now, we have considered a stratum to be a submani-
fold of the configuration space for a stratified system. In fact, it
may often be the case that the strata defining the stratification
areboundariesof the configuration space. In such a case, we
have to redefine a neighborhood of a pointcontained in the
boundary to be the union of the portion of the standard neigh-
borhood in the interior of the manifold with the intersection of
the standard neighborhood with the boundary. For the biped ex-
ample, only one of the four “quadrants” defined by the inter-
secting strata is “allowable” (the other three correspond to one
or both feet penetrating the ground). The right figure in Fig. 4
illustrates an open set for such a stratified configuration space
with boundary. The open sets illustrated by the dotted lines on
each stratum only exist on the “top” half of each stratum. Again,
stratified controllability amounts to reaching an open neighbor-
hood of the starting point, where an open set is determined by
the natural topology of the problem.

Thus, for a stratified system, the stratum (or union of strata)
with respect to which controllability is desired to be determined,
must be specified. Additionally, since there are multiple equa-
tions of motion corresponding to different strata, the set of ad-
missible controls, depends upon the state of the system since,
in general, the allowable inputs will be different for different
strata. Furthermore, problem-specific constraints such as which
switches between strata are allowable are accounted for by.

Definition 3.2 (Stratified Controllability):A stratified
system isstratified controllable in from if

contains a neighborhood of in for all
neighborhoods of and , where
is defined by Equation (1) with .
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IV. STRATIFIED CONTROLLABILITY

In order to clarify the presentation and provide an intuitive
understanding of our approach, we first consider an extremely
simple example. In particular, we focus on the case where
the configuration manifold contains only one submanifold
(or stratum). By focusing on this situation, several basic
controllability results are rather straightforward to motivate
and obtain. Also, as will become clear, these simple results are
easily generalized.

Example 4.1:Consider the kinematic leg illustrated in Fig. 5.
The configuration space, , for the leg is parameterized by the
variables , corresponding to the lateral position
of the body, the length of the leg and the angular displacement
of the leg, respectively. We assume (unrealistically, but for the
purpose of a clear presentation) that the height of the body off
of the ground remains fixed, so when the leg is lifted off of the
ground, the body does not fall down. The two inputs for the
system are the joint velocities and .

In this case, the bottom stratum (or boundary) is the set of
points

where is some fixed height. The equations of motion are given
by

(2)

when the foot is off the ground, and

(3)

when the foot is in contact with the ground (on the bottom
stratum, i.e., ).

A. The Distribution Approach

It is clear that if the leg needs to move laterally (in the-di-
rection) while still retaining control over the joint variables, it
must cyclically move the leg in and out of contact with the
ground. Fig. 6 schematically illustrates the configuration space
for the simple kinematic leg example. It consists of the “am-
bient” space, , where the leg is off of the ground, and the sub-
manifold (or boundary), , which represents the set of points
where the leg is in contact with the ground. Since we know the
equations of motion in each strata, we can calculate the associ-
ated involutive closures of the distributions associated with
and also with , denoted and , respectively. Note that in
Fig. 6, the symbols for the involutive distributions are pointing
to the manifolds to which they are the tangent space.

If the system starts at a point in, then the set of points it
can reach in is the leaf of the foliation of defined by
which contains that point. In Fig. 6, such a leaf is represented

Fig. 5. Kinematic leg.

Fig. 6. Controllability of a stratified system.

by the lines in . Similarly, if the system starts at a point in ,
then the set of points that can be reached inis represented in
Fig. 6 by the vertical sheets in , which represent the foliation
defined by . Any arbitrary point in is contained in one
leaf of the foliation of defined by and one leaf of the
foliation of defined by . By Chow’s Theorem, and

are the directions in which the system can flow onand ,
respectively. Since any point inis also contained in , and the
system can move from to arbitrarily, then the vector space
sum of and represents all the directions in which
the system can flow. Thus, if and intersecttransversely,
i.e.,

the system can then flow in any direction in. This argument
suggests the following Proposition.

Proposition 4.2: If and

then the system is stratified controllable fromin .
Since this proposition will follow trivially as a corollary of

a following more general result (Proposition 4.4), we will not
provide the proof.

Example 4.3 (Kinematic Leg—Continued):To show that the
kinematic leg is controllable, we must show that its equations
of motion satisfy the requirement of Proposition 4.2. Since the
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vector fields in the equations of motion when the foot is not in
contact with the ground are constant, then

span

When the foot is in contact with the ground, there is only one
vector field, so

span

Clearly, away from singularities at

Thus, the kinematic leg is controllable.

B. Nested Sequence of Strata

The central aspect of the above controllability discussion was
the transversal relationship between the foliations defined by
the control vector fields on and . This notion is easy to
generalize to a nested sequence of submanifolds

In the nested sequence of submanifolds, the subscript is the codi-
mension of the submanifold. Note that there may be multiple
submanifolds with the same codimension at a point. If there
are multiple submanifolds with the same codimension, this se-
quence contains onlyoneof them. Also, denote the distribution
defined by the control vector fields defined on a stratumby

, and its associated involutive closure by. The result for
such nested sequences is as follows.

Proposition 4.4: If there exists a nested sequence of subman-
ifolds

such that the associated involutive distributions satisfy

and each has constant rank for some neighborhood,
of , then the system is stratified controllable from in

.
Proof: Let be a neighborhood of the point in the

submanifold , which is the bottom stratum, i.e., the mani-
fold of smallest dimension in the nested sequence at. Choose

. For sufficiently small

is a smooth manifold of dimension one. This follows from, for
example, the Flow-Box theorem ([23, Th. 2.26]), the Straight-
ening Out Theorem ([1, Th. 4.1.14]) or the Orbit Theorem ([16,
Th. 1, Ch. 2]).

Now, construct by induction. Assume that the collection
of vector fields, , is such that the
mapping

(4)

has rank . Thus, by the immersion theorem (see, for ex-
ample, [1, Th. 3.5.7], [23, Th. 2.19]), the set

is a -dimensional manifold. Also, for the sufficiently
small, .

If , then there exists and
such that . If this were not so,

then for any in some open set .
This cannot be true since . Thus, for

sufficiently small, the mapping

(5)

has rank . To see this, consider the tangent mapping

where . We use the
notation that for a diffeomorphism,, and a vector field, , the
notation . If the rank of this matrix is not
, then we can write

for some coefficients, . However, if we pull this back along
the flow of , we have

which contradicts the fact that . Thus

is a dimensional manifold. Since can be made arbitrarily
small, we can assume . If ,

is an -dimensional manifold.
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Now, if we let satisfy and consider
the map

(6)

since , it follows that the image of this map is
an open set of containing the point . Hence,
contains and an open set in the manifold whose tangent space
is . By restricting each , we can then find such
an open set for any .

Thus far, we have constructed the reachable set for the system
restricted to the bottom stratum,. The process is to extend the
reachable set by using vector fields defined on the next higher
stratum, , and then proceed to each higher stratum in order.
We will proceed by induction. Assume that we have constructed
the reachable set up to and including stratum , and denote
this reachable set by . Without loss of generality, assume
that

(otherwise, the control distribution, would not contribute
any “new directions” to the reachable set, in which case we can
proceed to the next higher stratum, ).

Now, let , let the vector fields
be defined on , let the vector fields

be defined on , etc. We will be
considering compositions of flows of the following type:

where the construction starts on the bottom stratum,, using
vector fields defined there, and proceeds to the higher strata in
order.

We also assume (as part of the induction hypothesis) that the
mapping

has rank , so the set

is a -dimensional manifold.

By continuity, there exists a neighborhood,
in which is constant. Since

, there exits a vector field, , and
a point, , such that . If this were not
possible, then and .
However, this implies that . Since, by construc-
tion, for

which implies that

which is a contradiction.
By exactly the same argument as before, then, the set

is an -dimensional manifold containing the point , and
by construction . Hence,

contains and an open set in the manifold whose
tangent space is . By restricting each , we can
then find such an open set for any .

Note that it is not necessary that the nested sequence actually
include the full configuration space . It may, in fact, terminate
at some stratum, . In such a case, however, controllability
amounts to reaching an open neighborhood of the starting point
in the highest stratum, . Also, note that if the configuration
space has a boundary, Proposition 4.4 still applies with a simple
modification of the proof. In a manner similar to that in the
proof, when extending the reachable set from the submanifold
boundary into the manifold in which it is contained, we can
always choose the first vector field along which the system flows
to be the one that violates the constraint , in the
“allowable” direction. However, in the constructed “reversed”
flow (6), we do not include this reversed flow corresponding to
this vector field which moves the system off of the boundary.
In this manner, the final constructed manifold containsand
will be an open neighborhood of defined in the appropriate
relative topology, i.e., the topology of a manifold with boundary.

Proposition 4.4 only directly applies to a single nested se-
quence of strata; however, repeatedly applying the test to mul-
tiple sequences is possible. The usefulness of this approach is
that if the top stratum in each sequence is different, then the test
determines controllability for theunionof the top strata. For ex-
ample, for the configuration space shown in Fig. 4, Proposition
4.4 applied to the sequence will tell if the system can
reach an open set in and applied to will tell if it can
reach an open set in , and taken together, gives controllability
in the relative topology of the union . This is useful be-
cause, for problems like the biped from Example 2.1, reaching
open sets in the relative topology of the union of strata is often
the most natural way to define controllability.
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V. AN EXAMPLE

Because the kinematic leg example was so simple, it is in-
structive to include a more complicated example. The following
is adapted from [18]. Consider the six-legged robot shown in
Figs. 1 and 2. It will be clear from the equations of motion for
the system that each leg has only two degrees of freedom. In
particular, the leg can move “up and down” and “forward and
backward,” butnot “side to side” (in a direction outward from
the body). In such a case it is not obvious how the robot can
move in any direction.

Assume that the robot walks with atripod gait, alternating
movements of legs 1-4-5 with movements of legs 2-3-6. Hence,
we are considering motions in only a subset of all possible strata.
Suppose that

where
planar position of the robot’s center;

front to back angular deflection of the legs;

height of the legs off the ground.

The tripod gait assumption requires that all the legs in a tripod
move with the same angle . The inputs and control the
leg swing velocities, while the inputs and control the leg
lifting velocities.

The functions and are defined by

if

if

if

if .

Denote the stratum when all the feet are in contact
by (short for ), the stratum when leg one is in contact

, by (short for ), the stratum when leg
two is in contact , by (short for ). and
the stratum when no legs are in contact , by .

If all legs are in contact with the ground, the equations of
motion are

(7)

where and are constrained to be 0. Note that ifrepresents
the first column, and represents the second column, then

and

(8)

Clearly, with all the legs in contact with the ground, these vector
fields span the directions. However, at this point we
have not generated enough directions to simultaneously control
theshapeof the robot as well.

If legs 1, 4 and 5 are in contact with the ground, but legs 2, 3
and 6 are not in contact, the equations of motion are

(9)

where is constrained to be 0.
If legs 2, 3 and 6 are in contact with the ground and legs 1, 4

and 5 are not, then the equations of motion are

(10)

where is constrained to be 0.
If none of the legs are in contact with the ground

(11)

If we consider either the distributions associated with the se-
quence or , the distributions
spanned by the vector fields comprising (7)–(9) and (11), or the
distributions spanned by the vector fields comprising (7), (8),
(10), and (11), respectively, the hypotheses of Proposition 4.4
are satisfied. Note that this example has the somewhat unreal-
istic requirement of considering the equations of motion when
none of the feet are in contact with the ground. In fact, this isre-
quiredfor controllability in the entire configuration space since



GOODWINE AND BURDICK: CONTROLLABILITY OF KINEMATIC CONTROL SYSTEMS 365

Fig. 7. Four-level stratification.

both leg heights are variables. Since it is undesirable to lift all
the feet of the robot out of contact with the ground at once, a
better notion of controllability may be to ask that the system
reach an open set in the union . Thus, we need to con-
sider the nested sequences and simulta-
neously. From (7)–(9), the sum of the associated distributions
is six dimensional, as is the sum from (7), (8), and (10). Thus,
the system is controllable because it can reach an open neigh-
borhood of a starting point in the bottom strata defined in the
relative topology of the union .

VI. STRATIFIED SYSTEMS AND GAIT LOCOMOTION

This section extends the previous results to overcome the
limitation in Proposition 4.4 which considered only the geom-
etry of a nested sequence of submanifolds, thus, possibly ex-
cluding the effect of cycling through multiple submanifolds with
the same codimension. Assume that at point,, the stratum

is the bottom stratum. We will refer to thelevel
of the stratum as its codimension. Thus, the bottom stratum is
on the th level, the th level contains all the strata with
codimension , and so forth. Fig. 7 illustrates the combi-
natorial structure of a stratification with four levels. In Fig. 7,
the nodes of the graph correspond to the different strata. The
edges connecting the nodes indicate whether it is possible for the
system to move from one stratum to another, i.e., if the nodes
are connected by an edge, then the system can move between
the strata, if there is no edge, then the system cannot move be-
tween the strata. Note that, while the figure simply illustrates
edges between nodes only one level apart, it may be the case
that multilevel jumps are possible, in which case there would be
an edge connecting strata of two levels that are more than one
level apart.

If there are codimension one strata, then the total number
of strata is

which clearly increases quickly with . The corresponding
graph structure also grows similarly in complexity. Even with
this simplistic pictorial view, it is evident that the a general
stratified configuration space is characterized by an interesting
algebraic structure. Specifically, as illustrated by the dotted
lines connecting the strata, there is an naturally defined graph
structure in which to consider the problem. Note that one way
to consider agait is simply a choice of a cyclic path through
this graph structure, denoted

(12)

In this ordered sequence, the first and last element are iden-
tical, indicating that the gait is a closed loop. Clearly, in order
for the gait to be meaningful, it must be possible for the system
to switch from stratum to for each . In Fig. 7, this cor-
responds to each stratum in the sequence being connected
to and being connected to . Limitations on gaits,
such as stability requirements, could be expressed as limitations
(possibly as a function of configuration) on the cyclic gait paths.

Assume that we know the physical constraints on the
system and the manner by which these constraints are man-
ifested as constraints in its graph representation. In other
words, assume that there is a collection of strata (or nodes),

which are deemed “permissible,”
and similarly a collection of “permissible” edges connecting
the nodes, denoted by



366 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 3, MARCH 2001

Fig. 8. The simplified hexapod graph.

Which strata and edges are permissible may, of course, be a
function of the configuration of the system. Whether a stratum
is permissible depends upon whether the equations of motion
for the system can be expressed in kinematic form in a neigh-
borhood of the point of interest. For example, for a biped robot,
clearly if it lifts both feet off of the ground, it is not a kinematic
system because the fact that gravity will make it fall back to the
ground.

Example 6.1 (Hexapod—Revisited):Recall that the hexapod
example in Section V, assumed that the hexapod walked with a
tripod gait. That assumption reduced the high dimensional and
complex graph structure of the system to a very low dimensional
and simple one, as illustrated in Fig. 8. The arrows in the figure
represent the tripod gait. Note that, for this problem, it will al-
ways be possible for the system to move from a higher stratum
onto the bottom stratum. This is manifested in the fact that the
robot can always put its feet on the ground regardless of its con-
figuration.

The gait controllability result in the next subsection makes
particular assumptions regarding transversality of manifolds.
Recall that two submanifolds intersecttransversallyif

(13)

where and are submanifolds of and . If
and are transversal, then following theorem ( [1, Corollary
3.5.13]) is useful.

Lemma 6.2: If and are transversal and have finite codi-
mension in , then

A. Gait Controllability

This section considers the problem of whether a particular
gait is controllable. In this section, we will limit our attention to
a particular form of controllability; namely,gait controllability.
Assume that if , then the reachable set of points in

is transversal to the substratum, . This will always be
the case if because, since the gait
must be allowable, then there must be at least one vector field
in along which the systems can flow on or off of .
Switches between strata with dimensions which vary by more
than one are allowable as long as this transversality assumption
is satisfied.

In the complete stratified structure, there is one bottom
stratum, defined by the intersection of all the codimension-1

strata in the configuration space. In Fig. 7, this corresponds
to stratum . For a locomotion system, such as a legged
robot, this bottom stratum corresponds to the set of points in
the configuration space where all the feet are in contact with
the ground. Now, for gait controllability, the reachable set,

, is defined as before, but is restricted to control
inputs consistent with the gait, i.e., the reachable set must be
consistent with the ordering of the strata that define the gait.

Definition 6.3 (Gait Controllability): A gait,
is gait controllable from the

point if the reachable set (defined in (1) and
consistent with the gait) contains a neighborhood offor all
neighborhoods of and , where the neighborhood is
defined by the topology of the lowest stratum,.

Example 6.4 (Kinematic Leg—Revisited):In the simple
kinematic leg example, Example 4.1, illustrated in Fig. 5, the
bottom stratum is the set of points such that

(14)

for some fixed height, . This is most naturally parameterized
by the variables and , and so an open set incorresponds to
reaching an open neighborhood ofand , where is subject to
the constraint expressed by (14).

Let denote the involutive closure of the control distribu-
tion on , where the subscripted index for corresponds to
the subscripted index for the stratumto which it is associated.
Given a gait, , thegait distributionis constructed as follows.
First, let . If , then let
(implicitly assuming the appropriate inclusion of into );
else, if , then let . In
general, then, if , and

if . Following this procedure
for each stratum in the gait (in the order of the gait)gives the gait
distribution.

Proposition 6.5: If

then the system is gait controllable from.
Proof: The proof relies on one corollary to Proposition 4.4

and one lemma.
Corollary 6.6: In the construction of the gait distribution, if

, then the dimension of the reachable set increases
by the same amount as the increase in dimension between
and and contains the point .

Lemma 6.7: In the construction of the gait distribution, if
, then the dimension of the reachable set increases

by the same amount as the increase in dimension between
and minus the difference between the dimensions of
and .

Proof: This follows from the transversality assumption
and the codimension result of Lemma 6.2.

It follows that in the construction of the gait distribution that
the dimension of the reachable set will be the dimension of

. If the first and last strata in the gait is the bottom
stratum, then the result follows since the reachable set it con-
tained in and has dimension equal to the dimension of.
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B. Gait Controllability of the Hexapod Robot Example

This section returns to the hexapod robot example considered
in Section V, but considers gait controllability, as opposed to
regular controllability. The first step is to construct the gait dis-
tribution. Take as the gait the following sequence of strata:

as illustrated in Fig. 8. To simplify notation, let ,
and . The equations of motion for the

system restricted to the bottom stratum, are given in (7).
Also, a Lie bracket is necessary to construct , as given in (8).
By inspection, has a dimension of three. Next extend
the construction to . Since , , where

is determined from (9). By inspection, then, .
The construction next returns to the bottom stratum,
. Note that is a codimension-1 submanifold of .

Also, since contains the basis vector , it is clear
that the transversality assumption is satisfied. Therefore,

. The construction is next
extended to stratum . As with , increases the dimension
of by two, so that . “Projecting” this back
down to as before gives the dimension of the reachable
set to be five, which is the dimension of . Therefore, the
hexapod example is gait controllable.

VII. CONCLUSION

In this paper, we have formulated a controllability test for
systems with stratified configuration spaces. Such a stratified
structure provides a means to model many physical systems with
governing equations which are discontinuous across subsets of
the state space. The general philosophy underlying these exten-
sions was to exploit the particular structure of stratified config-
uration spaces, which, loosely speaking, allowed us to simulta-
neously consider the equations of motion for the system on each
strata. The examples contained herein illustrated both the steps
involved in applying the tests as well as their ease of use.

Several avenues of potentially fruitful further work could be
based upon the results in this paper. First, throughout this paper,
we have restricted our attention to driftless control systems. Al-
though a much harder problem, controllability tests for smooth
systems with drift exist [29], and could potentially be extended
to stratified configuration spaces. One difficulty with simply ex-
tending the test in [29] is that the test only provides a sufficient
condition for controllability. In the case where there is a large
number of strata, one is faced with the prospect of the need to
satisfy a sufficient condition a large number of times. This is
problematic to the extent that sufficient conditions are, gener-
ally, too restrictive, in which case, if the test needs to be satisfied
multiple times, the restrictive nature of the sufficient conditions
are similarly multiplied.

Another possible extension of this work is the trajectory gen-
eration, or motion planning problem. While controllability is an
important issue from the point of view of establishing a logical
framework in which to consider problems in nonlinear control
theory, from a practical point of view it is of limited usefulness.
At least in the robotics context, the motion planning problem is

of paramount importance. In fact, the authors have some pre-
liminary results in this area [13].
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