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Controllability of Kinematic Control Systems on
Stratified Configuration Spaces

Bill Goodwine and Joel W. Burdick

Abstract—This paper considers nonlinear kinematic controlla-
bility of a class of systems calledtratified. Roughly speaking, such
stratified systems have a configuration space which can be decom-
posed into submanifolds upon which the system has different sets of
equations of motion. For such systems, considering controllability
is difficult because of the discontinuous form of the equations of
motion. The main result in this paper is a controllability test, anal-
ogous to Chow’s theorem, is based upon a construction involving
distributions, and the extension thereof to robotic gaits.

. . Fig. 1. Schematic of a simple hexapod robot.
Index Terms—Controllability, legged locomotion, robot control,

stratified systems.

. INTRODUCTION

ANY interesting and important control systems evolve

on stratified configuration spaces. Roughly speaking,
we will call a configuration manifold stratified if it contains sub-
manifolds upon which the system has different equations of mo-
tion. Certain robotic systems, in particular, are of this nature. For
such systems, the equations of motion on each submanifold may
change in a nonsmooth, or even discontinuous manner, when the
system moves from one submanifold to another. A legged robot
has discontinuous equations of motion near points in the cqfy. 2. Definition of kinematic variables.
figuration space where each of its “feet” come into contact with

the ground, but it is precisely the ability of the robot to lift itynjsticated control theory. Note that for this model, it is not im-
feet off of the ground that enables it to move about. SimiIarIy,,.',a\edi(.]ltmy clear whether the robot can move “sideways,” and if
robotic hand grasping an object often cannot reorient the obj@ttannot move sideways, then it is not controllable. In this, and
without lifting its fingers off of the object. Despite the obviousyther stratified cases, traditional nonlinear controllability ana-
utility of such systems, however, a comprehensive means 1o ffyes are inapplicable because they rely upon differentiation in
alyze their controllability properties, to our knowledge, has n@jne form or another. Yet it is precisely the discontinuous nature
appeared in the literature. _ . of such systems that is often their most important characteristic
For example, consider the six-legged hexapod robot illugacayse the system must cycle through different contact states
trated in Figs. 1 and 2. This model will be fully explored ing effectively be controlled. Therefore, it is necessary to incor-

complete detail in Section V. Note that each leg has only Wy ate explicitly into a controllability analysis the nonsmooth or
degrees of freedom. In particular, the robot can only lift its legfiscontinuous nature of these systems.

up and down and move them forward and backward. In contrastrhjs paper first considers some basic issues regarding the ap-

to most mechanical designs in the robotics literature, such a g priate definition of controllability for stratified systems and
can not be extended outward from its body. Such limited conti@lepy extends standard controllability tests for smooth driftless
authority may be desirable in practical situations because it 4gspjinear systems to the case where the configuration manifold
creases the mechanical complexity of the robot; however, syghstratified. Although Brockett [5] illustrated some of the as-
decreased complexity comes at the cost of requiring more $Rects of the problem of discontinuous or impacting systems,

and there is quite a bit written concerning so-called “hybrid sys-
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M Neither Foot

[27]), and the issue of controllability is an implicitly assumed
<in Contact

property. Less effort has been devoted to uncovering principles
that span all morphologies and assumptions. Our goal is to gen- /
erategeneralresults, i.e., results formulated in sufficient gener-
ality so that they are independent, in robotics applications, of a Left Foot ’\
particular morphology. in Contact Right Foot
Some recent works have attempted to uncover some of the in Contact
fundamental structure underlying locomotion mechanics. Kelly "
and Murray [18] showed that a number of kinematic locomotive
systems can be modeled using connections on principal fiber
bundles. They also provide results on controllability, as well as Both Feet
an interpretation of movement in terms of geometric phases. in Contact
Ostrowski [24], [25] developed analogous results for a class of
dynamic nonholonomic locomotion systems. Also, Tsakiris anfdp- 3. Schematic view of the configuration manifold structure of a biped
Krishnaprasad [19] have used methods from nonlinear control’”
theory to develop motion planning schemes for “G”-snakes, a
class of kinematic undulatory mechanisms. These approache®ot is off of the ground to one where a foot contacts the
are limited tosmoothsystems, however, and thus are not directlground, the equations of motion for the system are smooth. In
applicable to stratified systems. other words, restricted to each stratum, the equations of motion
Section |l defines a stratified configuration space and diare smooth.
cusses its generic geometric structure. Section Il reviews con\We will refer to the configuration space for the biped
trollability for smooth systems and the associated mathematigabot in Example 2.1 astratified which will be specifi-
concepts. Section 1V first motivates and develops our COI’]tI’QiaIIy defined subsequently. To avoid confusion regarding
lability theory in detail for a simplified subset of stratified probthe terminology, we note that the terms “stratification” and
lems, illustrates its application with a simple example and thestrata” have been used previously for different mathematical
presents the controllability test. Section V presents the hexapgelictures. In particular, the ternegularly stratified set has
robot example problem in full detail. Section VI presents comeen used to describe a finite union of disjoint smooth
trollability results for a more general stratified case, and agaivanifolds, also called strata, which satisfy the Whitney
illustrates its application with a simple example. Additionallygondition (see [14] for details on such stratifications). Ad-
Section VI defines and presents a testdait controllability, ditionally, the terms “strata” and “stratification” have been
particularly useful for and motivated by legged robotic systemgsed in yet another different context; namely, describing the
and also returns to the hexapod example to analyze its gait c@pology of orbit spaces of Lie group actions, and are a
trollability. slight generalization of the notion of a foliation [1].
By considering legged robot systems that are more general
than the biped in Example 2.1, we can develop a general defini-
II. STRATIFIED CONEIGURATION SPACES tion of stratified configuration spaces. L&f denote the legged
robot’s entire configuration manifold (it will often be convenient
We will motivate our definition of a stratified configurationto denote this space &4). Let.S; € M denote the codimen-
space with a simple example. sion one submanifold a#/ that corresponds to all configura-
Example 2.1:Consider a biped robot. The configuratiortions where only thé&th foot contacts the terrain. Denote, the
manifold for the robot describes the spatial position andtersection ofS; andsS;, by S;; = 5; N S;. The setS;; phys-
orientation of a reference frame rigidly attached to the body @fally corresponds to states where both ttkeand;th feet are
the robot mechanism as well as variables such as joint angbesthe ground. Further intersections can be similarly defined in
which describe the mechanism’s internal geometry. The setecursive fashiors;;;, = S; N.S; NS, = S; N S;x, etc. Note
of configurations corresponding to one of the feet in contatiat the ordering of the indices is irrelevant, i.8;; = S;;. We
with the ground is a codimension one regular submanifolgill term the lowest dimension stratum containing the paint
of the configuration space. The same is true when the otlresthebottom stratumand any other submanifolds containing
foot contacts the ground. Similarly, when both feet are iashigher strata When making relative comparisons among dif-
contact with the ground, the system is on a codimension tf&rent strata, we will refer to lower dimensional stratdager
regular submanifold of the configuration space formed by ttsrata, and higher dimensional stratalsigher strata
intersection of the single contact submanifolds. The structureDefinition 2.2 (Stratified Configuration Manifold)iet
of the configuration manifold for such a biped is schematically/ be a manifold (possibly with boundary), amdfunctions
illustrated in Fig. 3. The goal in this paper is to exploit th&;: M +— R, i = 1,...,n be such that the level sets
geometric structure of such configuration spaces. Note thgt = <I>;1(0) C M are regular submanifolds of/, for
when a foot contacts the ground, because the robot is subje@adh:, and the intersection of any number of the level sets,
to additional constraints, it will have a different set of equations;,;, .., = ;,*(0) N ®;.*(0) N --- N ®; (0), m < n, is also
of motion than when the foot is not in contact with the groun@ regular submanifold of/. Then A and the functionsb;,
Also, except for when the robot transitions from a state whefe= 1, ..., n define astratified configuration space
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We consider driftless nonlinear systems defined on stratifiec M=S M=S
configuration manifolds and will write the equations of motion
for the system at € M = S, as

Allowable
&= go,1(x)uo, 1+ - 90, no (L)%0, ny

and the equations of motion for the system in one of the strat Ground

Ground
atx € S; as Penetration

Penetration
&= g 1(2)ui, 1+ Gin, ()i,

Ground
Penetration

wheren; may be different thamg. For an arbitrary stratum,
Sr=5; we have

180 3

r =491 1(.’1’)1147 U (a:)uL I Fig. 4. Stratified open neighborhoods.

where the vector fieldsy; ; are smooth and defined for all
points inS;. In the context of legged locomotion, the assumpan open neighborhood defined in the union of the two stfata
tion of driftless mechanisms on each strata limits us to quandS, (corresponding to each foot in contact with the ground)
sistatic locomotion. as illustrated in Fig. 4.

Finally, we assume that the only discontinuities present in theFrom basic topology [1], we have that.if is a subset of a
equations of motion are due to transitions on and off of the stratgological space with topologyO , therelative topologyon
S; or their intersections. We also assume the control vector fieldsis defined byO,, = {U N A|U € O}. Thus, in the biped ex-
restricted to any stratum are smooth away from points contair@tple, as illustrated on the leftin Fig. 4, the dotted regions illus-
in intersections with other strata. When a system has the ab@vge an open set in the unish U S,. The dotted regions repre-

properties, we will refer to it as stratified control system. sent the intersection of an open ballpwith S, US,. Stratified
controllability now is defined as the reachable set containing a
[Il. M ATHEMATICAL PRELIMINARIES neighborhood of the starting point, where the neighborhood is

This section addresses some basic topological propertieSOBFn inS; U 5. The second modification is a result of the fact

stratified configuration spaces and the implications thereof wi Hat, until now, we hgve considered a S”."’?t”m to be a Smea.n"
old of the configuration space for a stratified system. In fact, it

respect to the definition of controllability. First, we must defin . e
the term “controllable” as it is usually considered for smoothay often be the case that the strata defining the stratification

systems. Given an open $étC M, defineRY (zo, T') to be the ?re bciundﬁm;{sof the por:1t1;|gL;]ratldon fspacg. tln S?C.h adgastcre], we
set of states:; such that there exisis [0, 7] — U that steers ave 1o redefine a neignborhood ot a pargicontained in the

the control system from(0) = z( to z(T") = =, and satisfies Eour?daorly t(?[hbe_ trt\e _unio][ltﬁf the p_(;r'ii(;)n (:rf_] ttrr]]e ;t?ndarci_neigfh-
z(t) € Vfor0 <t < T, wherel{ is the set of admissible orhood In the Interior ot th€ manito'd wi € intersection o

controls. Define the standard neighborhood with the boundar_y. For the biped ex-
ample, only one of the four “quadrants” defined by the inter-
RV (20, <T) = U RY (20, 7). (1) secting strata is “allowable” (the other three correspond to one
0r<T or both feet penetrating the ground). The right figure in Fig. 4
illustrates an open set for such a stratified configuration space
We will refer to RV (zo, < T) as the set of states reachable upvith boundary. The open sets illustrated by the dotted lines on
to timeT'. each stratum only exist on the “top” half of each stratum. Again,
Definition 3.1 (Small Time Local Controllability)A smooth stratified controllability amounts to reaching an open neighbor-
analytic system ismall time locally controllablSTLC), or hood of the starting point, where an open set is determined by
simply “controllable”, if RV (z¢, < T°) contains a neighbor- the natural topology of the problem.
hood ofz for all neighborhood$” of zo and7” > 0. Thus, for a stratified system, the stratum (or union of strata)
Forsmoothanalytic kinematic system, Chow’s Theorem [15]with respect to which controllability is desired to be determined,
[22], [23], [28], and related results from exterior differentiamust be specified. Additionally, since there are multiple equa-
system [1], [2], [12], and[21] provide necessary and sufficieions of motion corresponding to different strata, the set of ad-
conditions for controllability. For stratified systems, Definitiormissible controlsl/ depends upon the state of the system since,
3.1 must be modified for two topological reasons. First, in ternis general, the allowable inputs will be different for different
of controllability, it may not be desirable or possible to reach astrata. Furthermore, problem-specific constraints such as which
open neighborhood in the entire configuration space, but ratlssvitches between strata are allowable are accounted . by
an open set on a collection of the strata within the whole con-Definition 3.2 (Stratified Controllability): A stratified
figuration space. For example, for the biped, it may be desiralggstem isstratified controllable inS; from z, € Sy if
that the robot always has at least one foot in contact with t#&"(z, < 7°) contains a neighborhood afy in S; for all
ground, i.e., itis walking, as opposed to running. In such a casejghborhood$” C Sy of xo andT” > 0, whereRY (zq, < T)
itis most natural to consider controllability in terms of reaching defined by Equation (1) with” C S;.
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IV. STRATIFIED CONTROLLABILITY

In order to clarify the presentation and provide an intuitive
understanding of our approach, we first consider an extremely
simple example. In particular, we focus on the case where
the configuration manifold contains only one submanifold
(or stratum). By focusing on this situation, several basic
controllability results are rather straightforward to motivate
and obtain. Also, as will become clear, these simple results are
easily generalized. _

Example 4.1: Consider the kinematic leg illustrated in Fig. 5. T T T T I
The configuration spacé{, for the leg is parameterized by the
variablesqg = (z, I, 6), corresponding to the lateral positionFig- 5. Kinematic leg.
of the body, the length of the leg and the angular displacement
of the leg, respectively. We assume (unrealistically, but for the Foliation associated withA
purpose of a clear presentation) that the height of the body off “N
of the ground remains fixed, so when the leg is lifted off of the
ground, the body does not fall down. The two inputs for the
system are the joint velocities = I andu, = 6.

In this case, the bottom stratum (or boundary) is the set of
points

S={geM:lcost =h}

whereh is some fixed height. The equations of motion are given
by

N -
Foliation associated with A ¢

P 0 0
% l =1 ]ur+]0|u (2) Fig. 6. Controllability of a stratified system.
0 0 1
when the foot is off the ground, and by the lines inS. S_imilarly, if the system star_ts ata pointM,_
then the set of points that can be reachedfins represented in
! Fig. 6 by the vertical sheets i/, which represent the foliation
g [ — defined byA,,. Any arbitrary point inS' is contained in one
2] = cos ¢ s (3) leaf of the foliation ofA/ defined byA,; and one leaf of the
dt 9 Itand foliation of S defined byAs. By Chow’s TheoremA,; and

1 Ag are the directions in which the system can flow/drand.s,

IJHESpectively. Since any point #is also contained i/, and the
system can move frorfi to M arbitrarily, then the vector space
sum ofA |, andAg|,, represents all the directions in which
the system can flow. Thus, 4 ,; andA g intersectransversely
ie.,

when the foot is in contact with the ground (on the botto
stratum, i.e.g € S).

A. The Distribution Approach

Itis clear that if the leg needs to move laterally (in theli-
rection) while still retaining control over the joint variables, it Apt|eg + A5 |ag = Ty M
must cyclically move the leg in and out of contact with the
ground. Fig. 6 schematically illustrates the configuration spatiee system can then flow in any direction/h. This argument
for the simple kinematic leg example. It consists of the “ansuggests the following Proposition.
bient” spaceM, where the leg is off of the ground, and the sub- Proposition 4.2; If z € S and
manifold (or boundary)S, which represents the set of points
where the leg is in contact with the ground. Since we know the Aptlze + As|ey = TogM
equations of motion in each strata, we can calculate the associ-
ated involutive closures of the distributions associated With then the system is stratified controllable framin 3.
and also withs, denotedA 5, andA s, respectively. Note thatin  Since this proposition will follow trivially as a corollary of
Fig. 6, the symbols for the involutive distributions are pointing following more general result (Proposition 4.4), we will not
to the manifolds to which they are the tangent space. provide the proof.

If the system starts at a point i#\, then the set of points it Example 4.3 (Kinematic Leg—Continued)o show that the
can reach inS is the leaf of the foliation ofS defined byAs kinematic leg is controllable, we must show that its equations
which contains that point. In Fig. 6, such a leaf is representefimotion satisfy the requirement of Proposition 4.2. Since the
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vector fields in the equations of motion when the foot is not in Now, construct]\f]{ by induction. Assume that the collection

contact with the ground are constant, then of vector fields { Xy, ..., X;_1}, X; € Ag, is such that the
mappin
B 0 0 pping
Ay =span| 1 0 |. (1 ooy tj1) o §) 7 00 ¢ (o)
0 1 ’

XiGASP 0<t; <e¢g 4)
When the foot is in contact with the ground, there is only one
vector field. so as rankj — 1. Thus, by the immersion theorem (see, for ex-

, ample, [1, Th. 3.5.7], [23, Th. 2.19]), the set

- j—1 _ X1 X1
Bs=span| o0 | N =g e odlie)  0<ti<a
1 is a(j — 1)-dimensional manifold. Also, for the sufficiently
_ N small, NJ~t C V.
Clearly, away from singularities at(r/2) If (j — 1) < dim(Ag,), then there exists € N/~ and

X; € As, such thatX;(z) ¢ T.N;!. If this were not so,
thenAs, C T,N)~! for anyz in some open sei’ C V.
Thus, the kinematic leg is controllable. This cannot be true sinetim(As, ) > dim(N7™*). Thus, for
¢; sufficiently small, the mapping

Ay +As=TM.

B. Nested Sequence of Strata

. X Xj—1 ... X1
The central aspect of the above controllability discussion was (s s 8) oy 0y 7,0 00y, (o),
the transversal relationship between the foliations defined by Xi€As,, 0<ti<e¢ ()
the control vector fields o4 and S. This notion is easy to

generalize to a nested sequence of submanifolds has rankj. To see this, consider the tangent mapping

X; X, X4
Sp C Sip_1y C-+- C 81 C So=M. T(ff)tj op, T ooy (950))
Inthe nested sequence of submanifolds, the subscriptis the codi- = [Xj‘l’j(%) (¢t ) i—1®5(z0)
mension of the submanifold. Note that there may be multiple (¢Xj oo 2) B, )}
submanifolds with the same codimension at a point. If there ts (1®;(o

are multiple submanifolds with the same codimension, this se- X,

here®; i(xo) = ¢p” o ¢ o -0 Pt (o). We use the
quence contains onlgneof them Also, denote the d|str|but|onW 0 t; t t
A, and its associated involutive closure By. The result for notationg. X = T'¢ o X o ¢~". If the rank of this matrix is not

such nested sequences is as follows. J, then we can write
Proposition 4.4: If there exists a nested sequence of subman- -1
. Xj Xit1
ffolds X5(@5(20) = Y s (60 0+ 0 i) Xa(®;(x0))

=1

xoespCS(p_l) cC---CS5 CSp
for some coefficientse;. However, if we pull this back along

such that the associated involutive distributions satisfy the flow of X;, we have
p
_ 7Xj -

S Aslny =T M (% )*AJ(‘PJ(%))

=0 i1
and eachs, has constant rank for some neighborhoBdC => ((/ijil %fll)* i(®j-1(z0))
S; of g, then the system is stratified controllable fram in =
M. _ o =X <<1>j_1<xo>>

Proof: Let V,, be a neighborhood of the point in the

submanifoldS,,, which is the bottom stratum, i.e., the mani- _ i Xip1 .
fold of smallest dimension in the nested sequenag athoose Z @i (d)t ot )* Xi®j1(zo)

X € Ag,. Fore; sufficiently small

which contradicts the fact tha; ¢ TN/~ '. Thus
NJ} = { 51(1(370): 0<t1 < 61}
. . _ _ _ ;:{¢fjﬂ'o...o¢§?(w0):o<ti<ei,z’:1,...,j}

is a smooth manifold of dimension one. This follows from, for

example, the Flow-Box theorem ([23, Th. 2.26]), the Straights a j dimensional manifold. Since can be made arbitrarily
ening Out Theorem ([1, Th. 4.1.14]) or the Orbit Theorem ([1&mall, we can assum&; C V,. If k = n, = dim(As,),
Th. 1, Ch. 2]). N}y C 'V, is ann,,-dimensional manifold.
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Now, if we let(sy, ..., s,,) satisfy0 < s; < ¢; and consider By continuity, there exists a neighborhoolfy, < S
the map in which dim(Ag,) is constant. Sincedim(Ny4i) <
dim(3_Y_, As,|z,), there exits a vector fieldX € As,, and

(trs oo tn,) — @5 o ---o¢;f:”1’ o¢fi”1’ oo gt a point,z € Vi, such thatX(z) ¢ T,Ny. If this were not
? possible, thenX (z) € T,Nyy1 VX € Ag, andz € V4.

0<ti<e (6)  However, this implies thals, C 7'Ny.41. Since, by construc-

) , ] ] _tion,As, CTN; CTNyyifori=(k+1),...,
sincep;* = ¢, it follows that the image of this map is S i ( ) P

an open set ofV,, containing the pointo. Hence,RY (z, ¢) P
containseo and an open set in the manifold whose tangent space Z Zsj leo | € Too Nit1
is ZSP. By restricting eacl < T'/(2n,,), we can then find such j=k
an open set for any’” > 0. L
Thus far, we have constructed the reachable set for the sysf@mCh implies that
restricted to the bottom stratuifi,. The process is to extend the »
reachable set by using vector fields defined on the next higher dim Z As |z | < dim (Nyy1)
stratum,5,_1, and then proceed to each higher stratum in order.
We will proceed by induction. Assume that we have constructed
the reachable set up to and including stratsym,, and denote Which is a contradiction.
this reachable set hi¥;.;. Without loss of generality, assume By exactly the same argument as before, then, the set

i=k

that x
) =Xy 41 — X0, Xy, -X
Np* = o e o0 gy X0k 0 X 6o X
r r . .
dim Z As,|z, | > dim Z As; |z o ogs, o (j)tn’:ﬂ 0---0 (/)il (z0)
=k i=(k+1)

is an n;-dimensional manifold containing the point, and

(otherwise, the control distributior) s, would not contribute byfconstructionN;; C RY(zo, < & + o+ + €n,). Hence,
any “new directions” to the reachable set, in which case we c& (o, €) containszo and an open set in the manifold whose

proceed to the next higher stratusf,_1). tangent space 14, . By restricting each < 77/(2n,,), we can
Now, let n;, = 3*_ dim(As,), let the vector fields then find such an open set for aity> 0. u
X1, ..., X,, be defined onS,, let the vector fields Note that it is not necessary that the nested sequence actually
X 41, ... Xn, , be defined onS,_;, etc. We will be include the full configuration spadd . It may, in fact, terminate
considering compositions of flows of the following type: at some stratumg,,. In such a case, however, controllability
amounts to reaching an open neighborhood of the starting point
(/)f(w 6.0 ¢fw+1+1 o in the highest stratung,,. Also, note that if the configuration
N NP o space has a boundary, Proposition 4.4 still applies with a simple
on S, Ok T modification of the proof. In a manner similar to that in the
—x, X, Xn, X, proof, when extending the reachable set from the submanifold
0Pyt o ops, T oy T o0y (20) boundary into the manifold in which it is contained, we can
onS, always choose the first vector field along which the system flows

to be the one that violates the constraidt;(x)z = 0, in the
where the construction starts on the bottom stratSppusing “allowable” direction. However, in the constructed “reversed”
vector fields defined there, and proceeds to the higher stratdlow (6), we do not include this reversed flow corresponding to

order. this vector field which moves the system off of the boundary.
We also assume (as part of the induction hypothesis) that thethis manner, the final constructed manifold contaigsand
mapping will be an open neighborhood af, defined in the appropriate
relative topology, i.e., the topology of a manifold with boundary.
(t1s ooy Ergy oo v Brgyy) Proposition 4.4 only directly applies to a single nested se-
Xy h x X, quence of strata;. howev_er, repeatedly applying th_e test to muI_—
= </>t,,,k+1 oo o0, tiple sequences is possible. The usefulness of this approach is
X, . that if the top stratum in each sequence is different, then the test
°© ‘/)tn,f o---0¢; " (20) determines controllability for thenionof the top strata. For ex-
ample, for the configuration space shown in Fig. 4, Proposition
has rankn,.41, so the set 4.4 applied to the sequenSg; C S, will tell if the system can
X, X reach an open set )y, and applied te;> C So will tell if it can
Nt = d)tnk":l o-r0¢p X100 bs, " reach an open set ith, and taken together, gives controllability
< in the relative topology of the uniafi; U S». This is useful be-
o d)tn’:’ o0 pit(wo) cause, for problems like the biped from Example 2.1, reaching

open sets in the relative topology of the union of strata is often
is a(n+1)-dimensional manifold. the most natural way to define controllability.
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V. AN EXAMPLE whereus andu. are constrained to be 0. Note thaf ifepresents

) _ _ _ the first column, and represents the second column, then
Because the kinematic leg example was so simple, it is in-

structive to include a more complicated example. The following —2lsin 6 2% cos 6
is adapted from [18]. Consider the six-legged robot shown in 21 cos 212 5in 6
Figs. 1 and 2. It will be clear from the equations of motion for

the system that each leg has only two degrees of freedom. M’ 91 = 0 and [[f, g], /1= 0
particular, the leg can move “up and down” and “forward and 0 0
backward,” butnhot “side to side” (in a direction outward from 0 0
the body). In such a case it is not obvious how the robot can (8)

move in any direction.

Assume that the robot walks withtepod gait, alternating Clearly, with all the legs in contact with the ground, these vector
movements of legs 1-4-5 with movements of legs 2-3-6. Hendiglds span thgz, v, 6) directions. However, at this point we
we are considering motions in only a subset of all possible stralfi@ve not generated enough directions to simultaneously control
Suppose that the shapeof the robot as well.

Iflegs 1, 4 and 5 are in contact with the ground, but legs 2, 3
and 6 are not in contact, the equations of motion are

z = cosB(alh)ur + B(ha)us) z cos¢ 0 0 O

gy = sinf(alhy)ug + Blhe)us) 7 sinf 0 0 0 Uy

Q‘ = lo(h)uy — I3(ha)usa 9 |t 000w ©)
$1 = Uy ) 1 0 0 0 Us

pr = s b 0 10 0 \uy

hy = us3 hy 0 00 1

hy = U4 whereus is constrained to be 0.

If legs 2, 3 and 6 are in contact with the ground and legs 1, 4

where and 5 are not, then the equations of motion are

(z,y, 8) planar position of the robot’s center;

b; front to back angular deflection of the legs; t 0 cosf 0 0
h; height of the legs off the ground. y 0 siné 0 0 “
The tripod gait assumption requires that all the legs in a tripod 9 = 0 oo 2 (10)
move with the same anglg. The inputsy; andu, control the 1 10 00 U3
leg swing velocities, while the inpuig; anduw, control the leg b2 0 1 00 Uy
lifting velocif[ies. _ by 0 0 1 0
The functionsx(y) and3(h2) are defined by
wherew, is constrained to be 0.
If none of the legs are in contact with the ground
a(hy) = {1 ?f hi =0 Blha) = {1 ff ho =0 a: 0 0 0 O
0 ifhi >0 0 if he > 0. Yy 0 0 0 0
. U1
Denote the stratum when all the feet are in confact 5 = 1) 9 0000 Uy
by S12 (short forS123456), the stratum when leg one is in contact o1 =11 0 0 0 (11)
(e = 1, 8 = 0), by Sy (short forS,4;5), the stratum when leg $o 010 0 u3
two is in contacf{«« = 0, 3 = 1), by S, (short for Sz36). and . U4
the stratum when no legs are in contéet= 3 = 0), by Sy. {” 0010
If all legs are in contact with the ground, the equations of ho 0 0 01
motion are If we consider either the distributions associated with the se-
quenceSi;s C 51 C Sp or S C Sy C Sy, the distributions
spanned by the vector fields comprising (7)-(9) and (11), or the
& cosf costf 0 0 distributions spanned by the vector fields comprising (7), (8),
o sin® sin® 0 0O Uy (10), and (11), respectively, the hypotheses of Proposition 4.4
il = I 7 0 0 U2 ) are satisfied. Note that this example has the somewhat unreal-
. U3 istic requirement of considering the equations of motion when
P1 1 0 00 n none of the feet are in contact with the ground. In fact, thisis
bo 0 1 0 0 quiredfor controllability in the entire configuration space since
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Fig. 7. Four-level stratification.

both leg heights are variables. Since it is undesirable to lift all If there aren codimension one strata, then the total number
the feet of the robot out of contact with the ground at once,dod strata is

better notion of controllability may be to ask that the system n

reach an open set in the uniéh U S,. Thus, we need to con- Z <Z> =97 _1

sider the nested sequencgs C S; andSi2 C 52 simulta- P

neously. From (7)—(9), the sum of the associated dlstrlbutlo\rl1\n§]ich clearly increases quickly with. The corresponding

Is six dimensional, as is the sum from (7), (8), and (10). Thustha_ph structure also grows similarly in complexity. Even with

the system is controllable because it can reach an open ne'ﬁmis simplistic pictorial view, it is evident that the a general

borhood of a starting point in the bottom strata defined in th% e . : . . . .
. . Stratified configuration space is characterized by an interesting
relative topology of the unio; U Ss.

algebraic structure. Specifically, as illustrated by the dotted
lines connecting the strata, there is an naturally defined graph
structure in which to consider the problem. Note that one way
to consider agait is simply a choice of a cyclic path through
This section extends the previous results to overcome tH¥és graph structure, denoted
limitation in Proposition 4.4 which considered only the geom-
etry of a nestedpsequence of submanifolds, thus),/ posgibly ex- G ={Sn: Sy s Sty St = Sn}- (12)
cluding the effect of cycling through multiple submanifolds with |, this ordered sequence, the first and last element are iden-
the same codimension. Assume that at paigt, the stratum tjcq) indicating that the gait is a closed loop. Clearly, in order
Sp = Sii,...i, IS the bottom stratum. We will refer to thevel o the gait to be meaningful, it must be possible for the system
of the stratum as its codimension. Thus, the bottom stratumyss\itch from stratuns; toS;. , foreachi. InFig. 7, this cor-
on thenth level, the(n — 1)th level contains all the strata with responds to each stratilﬁ}. ir;+the sequence being connected
codirr_lensior(n —1),and so forth. Fig.. 7 illustrates the cqmbiTO Sy, andsS;, being connected t67, . Limitations on gaits,
natorial structure of a stratification with four [evels. InFig. 7gychas stability requirements, could be expressed as limitations
the nodes of the graph correspond to the different strata. Th@ssibly as a function of configuration) on the cyclic gait paths.
edges connecting the nodes indicate whether itis possible for the ssume that we know the physical constraints on the
system to move from one stratum to another, i.e., if the n0d§fstem and the manner by which these constraints are man-
are connected by an edge, then the system can move betwgefleq as constraints in its graph representation. In other
the strata, if there is no edge, then the system cannot move Rgrqs assume that there is a collection of strata (or nodes),
tween the strata. Note that, while the figure simply illustrates _ {S1., St ..., Sz.} which are deemed “permissible,”

edges between nodes only one level apart, it may be the cgag similarly a collection of “permissible” edges connecting
that multilevel jumps are possible, in which case there would B§s odes. denoted by

an edge connecting strata of two levels that are more than one
level apart. C= {(5117 SJ1)7 (szv SJ2)7 EERE (anv SJn)} .

VI. STRATIFIED SYSTEMS AND GAIT LOCOMOTION
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strata in the configuration space. In Fig. 7, this corresponds
’ ' Level 3 to stratumsSi.34. FOr a locomotion system, such as a legged
robot, this bottom stratum corresponds to the set of points in
the configuration space where all the feet are in contact with
the ground. Now, for gait controllability, the reachable set,
RY(z¢, < T), is defined as before, but is restricted to control
‘ Level 6 inputs consistent with the gait, i.e., the reachable set must be

S
145 236

S consistent with the ordering of the strata that define the gait.
123456 Definition 6.3 (Gait Controllability): A gait, ¢ =
Fig. 8. The simplified hexapod graph. {5, 50, ..., 5,, 8} Is fgait controllable from the
point z, if the reachable sek" (zq, < 7T') (defined in (1) and
onsistent with the gait) contains a neighborhood:gfor all

. o C
Which strata and edges are permissible may, of course, bﬁe?ghborhoodﬁ/ of o andZ’ > 0, where the neighborhood is

funcnoq of_the configuration of the system. Whether a stratuaweﬁned by the topology of the lowest strat .
is permissible depends upon whether the equations of motio . : : .UHB .
L : ; . xample 6.4 (Kinematic Leg—Revisitedjt the simple
for the system can be expressed in kinematic form in a neigh- ; : -
Inematic leg example, Example 4.1, illustrated in Fig. 5, the

borhood of the point of interest. For example, for a biped rob : o
clearly if it lifts both feet off of the ground, it is not a kinematic bttom stratum s the set of poings= (, I, ¢) such that

system because the fact that gravity will make it fall back to the
ground.

Example 6.1 (Hexapod—Revisitedgecall that the hexapod ﬁo& some fixed heighth. This is most naturally parameterized

example in Section V, assumed that the hexapod walked wit . i
P P % the variables: and@, and so an open set ficorresponds to

tripod gait. That assumption reduced the high dimensional a _ . . :
complex graph structure of the system to a very low dimensior; rachmg an open neighborhoodioéind®, wherel is subject to
e constraint expressed by (14).

and simple one, as illustrated in Fig. 8. The arrows in the figu Let A denote the involuti | fth trol distrib

represent the tripod gait. Note that, for this problem, it will al- € SI er;]o € the mvg u |\_/etcdo_sudre of& € contro '; r![ u-
ways be possible for the system to move from a higher stratfj O °1, where the subscripted index fa; corresponds to
onto the bottom stratum. This is manifested in the fact that t € subscripted index for the stratufpto which itis associated.

robot can always put its feet on the ground regardless of its cQR~ o1 & gaitg, thegait distributionis constructed as follows.
figuration. a ’ J irst, letDy = Ag, . If S;, C Sp,, then letDy = D1 + Ag,

The gait controllability result in the next subsection mak mplicitly assuming the appropriate inclusion B into 55);

particular assumptions regarding transversality of manifoldg>% ifS, C Sp, then letDy = (D, mCT”Z?) :nﬁ%. In
I P —

Recall that two submanifolds intersecinsversallyif general, thenD; = Di_; + As, if S1_, ) .
Y (D;-1NTS;)+ As, if S5, C Sy,_, . Following this procedure

T,81 +T,Sy = T, M (13) for each stratum in the gait (in the order of the gait)gives the gait
distribution.
whereS; andS; are submanifolds af/ andz € S; N S,. If S; Proposition 6.5: If
and S, are transversal, then following theorem ( [1, Corollary

lcos@=h (14)

3.5.13]) is useful. dim(D,, 1) = dim 77, Sr,
Lemma6.2:If S; andS, are transversal and have finite codi-
mension inM, then then the system is gait controllable frarp.
Proof: The proof relies on one corollary to Proposition 4.4
codim (51 N S2) = codim (S1) + codim (S-) . and one lemma.

Corollary 6.6: In the construction of the gait distribution, if
. . Sy, C Sr.,,,then the dimension of the reachable set increases
A. Gait Controllability by the same amount as the increase in dimension bet®@gen
This section considers the problem of whether a particulandDy, ., and contains the point,.
gait is controllable. In this section, we will limit our attentionto Lemma 6.7:In the construction of the gait distribution, if
a particular form of controllability; namelgait controllability. Sy, . C S7,, then the dimension of the reachable set increases
Assume that ifS;, . C Sy, then the reachable set of points irby the same amount as the increase in dimension bet®gen
Sy, is transversal to the substratufiy, . This will always be andDj, ., minusthe difference between the dimensionSof
the case itlim(Sy,, ,) = dim(Sy,) — 1 because, since the gaitand Sy, .
must be allowable, then there must be at least one vector field Proof: This follows from the transversality assumption
in As, along which the systems can flow on or off 6f,_,. and the codimension result of Lemma 6.2. v
Switches between strata with dimensions which vary by morelt follows that in the construction of the gait distribution that
than one are allowable as long as this transversality assumptibba dimension of the reachable set will be the dimension of
is satisfied. D,+41. If the first and last strata in the gaft is the bottom
In the complete stratified structure, there is one bottostratum, then the result follows since the reachable set it con-

stratum, defined by the intersection of all the codimensiontéined inS;, and has dimension equal to the dimensiof gim
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B. Gait Controllability of the Hexapod Robot Example

This section returns to the hexapod robot example conside
in Section V, but considers gait controllability, as opposed to
regular controllability. The first step is to construct the gait dis-
tribution. Take as the gait the following sequence of strata:

367

of paramount importance. In fact, the authors have some pre-
Jicginary results in this area [13].
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G= {51234()67 51457 51234567 52367 5123456}

as illustrated in Fig. 8. To simplify notation, 18> = S123456,
S1 = Si145 and S; = Sz36. The equations of motion for the

system restricted to the bottom stratufi, are given in (7). s
Also, a Lie bracket is necessary to constrii¢s, as givenin (8).  [2]
By inspectionA;, = D; has a dimension of three. Next extend 3]
the construction t&;. SinceS1> C S1, D2 = Dy + Ay, where
A is determined from (9). By inspection, theim(D,) = 5. [4]
The construction next returns to the bottom stratum,
S12. Note thatSi2 is a codimension-1 submanifold df;. [5]
Also, sinceD, contains the basis vectd@/dh,, it is clear
that the transversality assumption is satisfied. Therefore,[G]
dim(D3) = dim(D2) — 1 = 4. The construction is next
extended to straturf,. As with S, S, increases the dimension
of D, by two, so thatdim(D,) = 6. “Projecting” this back 1]
down to S;» as before gives the dimension of the reachable
set to be five, which is the dimension 6f,. Therefore, the
hexapod example is gait controllable. (8]
VII. CONCLUSION (9]

In this paper, we have formulated a controllability test for
systems with stratified configuration spaces. Such a stratiﬁeﬁL ol
structure provides a means to model many physical systems with
governing equations which are discontinuous across subsets Gt
the state space. The general philosophy underlying these extehy
sions was to exploit the particular structure of stratified config-
uration spaces, which, loosely speaking, allowed us to simultd?3]
neously consider the equations of motion for the system on each
strata. The examples contained herein illustrated both the steps]
involved in applying the tests as well as their ease of use.

Several avenues of potentially fruitful further work could be
based upon the results in this paper. First, throughout this papéts]
we have restricted our attention to driftless control systems. Al-

. 17]
though a much harder problem, controllability tests for smootﬁ
systems with drift exist [29], and could potentially be extended18]
to stratified configuration spaces. One difficulty with simply ex-
tending the test in [29] is that the test only provides a sufficien{lgl
condition for controllability. In the case where there is a large
number of strata, one is faced with the prospect of the need t8°!
satisfy a sufficient condition a large number of times. This is
problematic to the extent that sufficient conditions are, gener1]
ally, too restrictive, in which case, if the test needs to be satisfied
multiple times, the restrictive nature of the sufficient conditionsy,,,
are similarly multiplied.

Another possible extension of this work is the trajectory gen{23]
eration, or motion planning problem. While controllability is an [24
important issue from the point of view of establishing a logical
framework in which to consider problems in nonlinear control

. . S . [25]
theory, from a practical point of view it is of limited usefulness.
At least in the robaotics context, the motion planning problem is

[15]

and remarks from an anonymous reviewer.
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