Near-field propagation of tsunamis from megathrust earthquakes

John McCloskey,¹ Andrea Antonioli,¹ Alessio Piatanesi,² Kerry Sieh,³ Sandy Steacy,¹ Suleyman S. Nalbant,¹ Massimo Cocco,² Carlo Giunchi,² Jian Dong Huang,¹ and Paul Dunlop¹

Received 25 April 2007; revised 15 June 2007; accepted 25 June 2007; published 27 July 2007.

[1] We investigate controls on tsunami generation and propagation in the near-field of great megathrust earthquakes using a series of numerical simulations of subduction and tsunami generation on the Sumatran forearc. The Sunda megathrust here is advanced in its seismic cycle and may be ready for another great earthquake. We calculate the seafloor displacements and tsunami wave heights for about 100 complex earthquake ruptures whose synthesis was informed by reference to geodetic and stress accumulation studies. Remarkably, results show that, for any near-field location: (1) the timing of tsunami inundation is independent of slip-distribution on the earthquake or even of its magnitude, and (2) the maximum wave height is directly proportional to the vertical coseismic displacement experienced at that location. Both observations are explained by the dominance of long wavelength crustal flexure in near-field tsunami generation. The results show, for the first time, that a single estimate of vertical coseismic displacement might provide a reliable short-term forecast of the maximum height of tsunami waves.


1. Introduction

[2] The great magnitude 9.2 Sumatra-Andaman earthquake of 26 December 2004 produced vertical seafloor displacements approaching 5 m above the Sunda trench southwest of the Nicobar Islands and offshore Aceh [Subarya et al., 2006; Vigny et al., 2005; Piatanesi and Lorito, 2007; Chlieh et al., 2007] creating a large tsunami that propagated throughout the Indian Ocean, killing more than 250,000 people. Waves incident on western Aceh reached 30 m in height. On March 28 2005 the megathrust ruptured again in the magnitude 8.7 Simeulue-Nias earthquake but in this case the waves nowhere exceeded 4 m and few people were killed by them. The Simeulue-Nias earthquake nucleated in an area whose stress had been increased by the Sumatra-Andaman earthquake [McCloskey et al., 2005]. Follow-up studies [Nalbant et al., 2005; Pollitz et al., 2006] show that it has additionally perturbed the surrounding stress field and has, in particular, brought the megathrust under the Batu and Mentawai Islands closer to failure. Recent aseismic slip [Briggs et al., 2006] has further increased the stress (Figure 1). Paleogeodetic studies show that the megathrust under the Batu Islands is slipping at about the rate of plate convergence [Natawidjaja et al., 2004] while under Siberut Island it has been locked since the great 1797 earthquake and has recovered nearly all the strain released then [Natawidjaja et al., 2006].

[3] The contrasting 2004 and 2005 events highlight the difficulties attendant on preparing coastal communities for the impact of tsunamis from earthquakes whose slip-distributions and even magnitudes are essentially unknowable even where, as is the case on the Sunda megathrust to the west of Sumatra, there is clear evidence of an impending great earthquake. Cities on the west coast of Sumatra, notably Padang and Bengkulu with combined populations in excess of 1 million, lie on low coastal plains and are particularly threatened by tsunamis generated by Mentawai segment earthquakes. Here we attempt to understand these threats by simulating tsunamis which would result from a wide range of plausible earthquake sources.

2. Modelling Scheme

[4] Our simulations, which will be described in detail elsewhere, combine sophisticated numerical modelling with the best current geologically-constrained understanding of the state of the Sunda megathrust to forecast the range of possible tsunamis which might be experienced following the next great Mentawai Island earthquake. We define four likely fault segments which are suggested by the structural geology of the megathrust, by historical earthquakes and by long-term and recent stress accumulation. All simulated earthquakes are on the same 3D structure. The Sunda trench in the area of interest is approximately linear, strikes at about 140° and extends from the equator to about 6.5°S. The plate interface dips at about 15° resulting in a down-dip seismogenic width of about 180 km. We simulate about 100 or so complex slip distributions, around 25 for each fault segment length, which have been judged, by reference to paleoseismic and paleogeodetic data, to be likely candidates for the future event [see, e.g., Briggs et al., 2006; Prawirodirdjo et al., 1997]. We make no assumptions about the location of maximum slip on the fault, whether shallow near the trench or deep under the volcanic arc, but the slip models conform to the observed fractal distribution [Mai and Beroza, 2002] though our main results are not sensitive to a wide range of plausible slip distributions. We note that these slip distributions conform to constraints on the gradient of slip which are set by material and constitutive properties of the lithosphere and have been used elsewhere to model slip heterogeneity in tsunami generation [Geist, 2002].
Historical earthquakes and current interaction

L14316 MCCLOSKEY ET AL.: PROPAGATION OF MEGATHRUST TSUNAMIS

which experiences vertical co-seismic displacement which forms in the near-field, formally defined here as that region 3. Results

too shallow to 10 m depth and the interaction with the solid boundary. Coastal wave heights include both the effect of shoaling to scale details of the near-shore topography, our predicted complex processes of inundation which are controlled by fine

depth has everywhere been set to 10 m to avoid pure reflection boundary condition along the true coastline at 0.5

coseismic vertical displacement of the seafloor calculated initial sea-surface elevation is assumed to be equal to the difference scheme on a staggered grid [Okal and Synolakis, 2004]. The non-linear shallow water equations are solved numerically using a finite

ary conditions for the tsunami simulation. The non-linear

coupling to the Simeulue-Nias source region and aseismic slip under the Batu islands, shown in purple. Under and to the north west of Siberut Island where interaction stresses are large, the megathrust is advanced in its seismic cycle and all synthetic earthquakes nucleate here. South of Siberut, the subduction zone has not failed since 1833, implying the potential for a rupture to propagate more than 600 km south-eastward from about 0.5°S. White circles indicate locations of simulated tide gauges discussed in the text.

Using a finite-element model of the elastic structure of the lithosphere customised for the western Sumatran forearc and including the effects of topography, we calculate the seafloor displacements which would result from each selected slip distribution. These displacements define boundary conditions for the tsunami simulation. The non-linear shallow water equations are solved numerically using a finite difference scheme on a staggered grid [Mader, 2004]. The initial sea-surface elevation is assumed to be equal to the coseismic vertical displacement of the seafloor calculated using the elastic model, and the initial velocity field is assumed to be zero everywhere [Satake, 2002]. We apply a pure reflection boundary condition along the true coastline at which the depth has everywhere been set to 10 m to avoid numerical instabilities. This boundary condition ensures that all the tsunami kinetic energy is converted into potential energy at the coast and thus, while we do not simulate the complex processes of inundation which are controlled by fine scale details of the near-shore topography, our predicted coastal wave heights include both the effect of shoaling to 10 m depth and the interaction with the solid boundary.

3. Results

[5] We report on the systematic control of tsunami waveforms in the near-field, formally defined here as that region which experiences vertical co-seismic displacement which is measurable with current GPS technology. We find that the shape of the tsunami wave train recorded at any tide gauge is, to first order, independent of the slip-distribution or even of the magnitude of the earthquake that caused it. Figure 2 illustrates this independence with respect of two very different simulated Mentawai earthquakes. Event I is a 330 km long re-rupture of the 1797 segment and with magnitude 8.3 while Event II is a 630 km rupture of both the 1797 and 1833 segments with magnitude 9.0. Despite the great difference in both magnitude and location of high slip regions in the rupture with respect to the tide gauge, the shapes of the wave-height time-series are different only in detail; the timing of the main tsunami phases is constant. Conversely, the maximum height of the waves differs by an order of magnitude. This similarity, which is observed for all 100 simulations at all simulated tide gauges, allows the accurate prediction of the arrival time of flooding phases. The first wave crest, for example, arrives at Padang 33.5 ± 2.5 (2σ) minutes after the event origin. Similar predictions can be made for the other five near-field tide gauges in this study.

[6] Another feature of these curves is the visual similarity of the z-component of coseismic deformation experienced at the tide gauges, as indicated by the intercept on the height axes, despite the axes being scaled for the maximum height of the wave and not for the intercept; the ratio of coseismic displacement to maximum wave height is constant for these two events. Surprisingly, this observation is robust for all simulations and for all simulated tide gauges. Figure 3 shows the relationship between near-field vertical coseismic displacement and maximum observed tsunami height for three stations. This relationship holds for the other three tide gauges in the study though the scatter on the data is significantly higher for stations to seaward of the Islands. The coseismic displacement also predicts the depth of the deepest tsunami trough. Note that these results are not related to Plafker’s rule of thumb [Okal and Synolakis, 2004], which is, incidentally, reproduced in this study, relating the maximum slip on the fault to the maximum observed wave height. These results show that the local tsunami energy is controlled by the local coseismic deformation, rather than the maximum deformation which may occur at many hundreds of kilometres distance and which generally do not predict the local tsunami at any specific point.

4. Discussion and Conclusions

[7] The explanation for these relationships is straightforward. The entire near-field region experiences a well defined pattern of vertical coseismic deformation, upward under the forearc high and downward under the forearc basin and the Sumatran coast, which is controlled by the geometry of the subduction interface, and which is extended laterally along the length of the rupture (Figure 4a). Where-as the amplitude of this wave varies strongly with the earthquake, to first order, the wavelength is always about 300 km and its ends, where vertical coseismic deformation is zero, are fixed at the trench and just landward of the coast (Figure 4b). These features are largely independent of the slip-distribution or magnitude of the event, for the great (M > 8) earthquakes considered in this study. Since the initial tsunami waves are driven by the coseismic seafloor
displacement, their initial locations are controlled by this instantaneous long wavelength crustal flexing, no matter what its amplitude, and propagate perpendicularly to the strike of the megathrust in the near field. Wave phase velocities are controlled by bathymetry and the observed waveforms at every site are, therefore, also largely independent of the details of the causal event.

**Figure 3.** Vertical component of the coseismic displacement, $D$, at three locations against the height, $H_c$, of the highest wave experienced as would be recorded by a local tide gauge. Bengkulu is only in the near-field for 630 km and 840 km earthquakes. Coseismic uplift on the forearc islands evident here, for example, at Siberut Bay and its significant associated reduction in tsunami heights experienced there adequately explains the relatively low fatalities here during the 2004 and 2005. The opposite effect is evident at Padang and Bengkulu on the Sumatran coast. Lines show least squares fit to the data. The intercepts and slopes of these lines are controlled by the location of the station on the deformation profile and the local bathymetry.

**Figure 2.** Tsunamis simulated for two simulated Mentawai Islands earthquakes observed at Padang: Event I 330 km rupture with $M \approx 8.3$, and Event II 630 km rupture with $M \approx 9.0$. Note the widely different scales used for each pair of diagrams. (a) Slip distributions viewed looking vertically down on the slipping plane. Axes scales are in km. Maximum slip on Event I is 6.5 m and is located seaward of the forearc high, the maximum slip in Event II is 14.7 m and is located under the forearc basin near Padang. (b) Height of simulated waves for Padang. The heights are referenced to the geoid and start with a negative intercept corresponding to the coseismic deformation experienced at Padang. Vertical lines indicate the mean arrival time of the first peak for all 100 simulations.
both in wavelength and phase, an estimate of its amplitude
at any point, ideally some distance from a node of the
flexure, is a good first order predictor of the entire potential
energy line integral and thus the amplitude of the resulting
waves. Given the generality of this explanation we expect
that the relationships reported in this paper will be applica-
table to any subduction zone though their details will be
modified by local crustal geometry.

These results may assist planning of preparedness
strategies throughout the western Sumatran forearc com-
plex. They show that the travel times of damaging tsunami
phases in the near-field are subject to strong lower bounds,
of about 30 minutes for the Sumatran coast and somewhat
less for the off-shore islands, which are independent of the
nature of the seismic source. Validation of these results
using recent earthquakes is not straightforward. The ac-
urate measurement of phase arrival times requires the oper-
ation of tide gauges with high-frequency sampling and are
not available in western Sumatra for the recent earthquakes.
Travel times simulated here are, however, consistent with
field observations made after the 2004 tsunami (e.g., http://
io.unesco.org/iosurveys) and by the low-frequency tide
gauge in Sibolga following the 2005 event (P. Manurung,
personal communication, 2006). These short travel times
preclude the possibility of using ocean wide tsunami warn-
ings systems in preparedness planning for western Sumatra.
On the other hand, the strong correlations between coseis-
mic displacement and the height of the tsunami wave, which
have been demonstrated here for failure of the Sunda
megathrust under the Mentawai Islands, offer real hope of
producing accurate short-term forecasts of tsunami height
on the basis of a single GPS vertical coseismic displacement
estimate which could be made in a few minutes following
the earthquake origin [see also Blewitt et al., 2006]. These
correlations, of course, are valid only for tsunamigenesis by
dip-slip failure on the megathrust without significant con-
tributions from other processes such as submarine landslide
or normal fault rupture in the hanging wall block which
have been invoked to explain anomalous tsunami energy
following other earthquakes [Pelayo and Wiens, 1992;
Heinrich et al., 2000]. They also assume that slip on the
earthquake is rapid, unlike the slow 2006 Java earthquake
which efficiently generated a large tsunami in the absence of
strong shaking on shore. Recent and historical earthquakes
in western Sumatra would appear to satisfy these conditions.

Figure 4. Vertical component of coseismic deformation.
(a) Map view. Notice the similarity of the width and location
of the emergent and subsiding zones, though the small
difference in the location of maximum emergence, com-
bined with the location of Siberut Island, suppresses the
amplitude of the tsunami from the smaller event nonlinearly.
(b) Vertical deformation along a-a’ in Figure 4a. Distances,
r, are measured in km from the trench. Event I, diamonds;
Event II, triangles. Note different scales for the events. The
step at r = 0 represents the surface rupture of the event.
Deformation profiles are extremely smooth to landward
where high-spatial frequency components of the slip
distribution are filtered out by the 35 km or so of
intervening crust. The greater scatter of the data close to
the trench, for example for Siberut in Figure 3, is explained
by the reduction in quality factor of this filter as the
accretionary wedge thins toward the trench allowing more
surface expression of the slip-complexity there.
Acknowledgments. We thank Rory Quinn for assistance in the bathymetric modelling, Spina Cianetti for assistance in construction of the finite element model of subduction, and Chris Bean for constructive criticism of the manuscript. The Landsat ETM+ data is used courtesy of the Global Land Cover Facility (http://www.landcover.org). We acknowledge financial support from the Natural Environmental Research Council.

References


A. Antonioli, P. Dunlop, J. D. Huang, J. McCloskey, S. S. Nalbant, and S. Steacy, Geophysics Research Group, School of Environmental Sciences, University of Ulster, Cromore Road, Coleraine, County Derry BT52 1SA, Northern Ireland. (j.mccloskey@ulster.ac.uk)

M. Cocco, C. Giunchi, and A. Piatanesi, Seismology and Tectonophysics Department, Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, I-00143 Rome, Italy.

K. Sieh, Tectonics Observatory, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.