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A theory of the variation of conduction electron density with the temperature for various impurity

concentrations is presented. In addition to previously noted effects of condcution band edge lowering
and screening of the impurity potential by the conduction electrons, the influence of a finite energy

transfer integral and spatial fluctuation in the potential are included. The results show that for Ny > 10"
cm™? in silicon one must not view the activation as occurring between a single impurity level and a
well-defined conduction band edge, but must include the broadening of the impurity level and tailing
of the conduction-band density of states. Calculations for the shallow donors P, Sb, and As in Si are

found to be in satisfactory agreement with experiment.

I. INTRODUCTION

Since the work of Pearson and Bardeen,! it has been
well known that the impurity-to-band activation energy
in semiconductors decreases with increasing impurity
concentrations. At low impurity concentrations (for
example, less than 10! P/cm?® in silicon), the variation
of activation energy with impurity concentrations is
small. At high impurity concentrations, the activation
energy is strongly dependent upon the impurity concen-
trations. A number of different suggestions have been
put forward to account for this phenomenon theoretically.
Pearson and Bardeen, ! and Castellan and Seitz’® sug-
gested that the decrease of impurity-to-band activation
energy with impurity concentrations was due to attrac-
tion between the conduction electrons and ionized donors.
Calculations based upon this physical phenomenon
yielded qualitative but not quantitative agreement with
the experimental results. Pincherle® proposed that free
carriers screen the field of the impurity center and
hence decrease the binding energy of a carrier electron
to an impurity center. Calculation based on this proposal
alone did not give satisfactory results. A self-consistent
calculation which combined the two models was given by
Lehman and James. * While this calculation was in good
agreement with experiment for low impurity concentra-
tions, at high impurity concentrations (10'® cm™ shallow
donors in Ge), their calculations underestimate the
experimentally observed decrease of activation energy.
A more systematic treatment proposed by Debye and
Conwell® suggested that a correct description would in-
clude three effects: (i) lowering of the conduction band
edge due to attraction of the conduction electrons by the
ionized donors; (ii) the shift of the donor ground-state
energy due to free-electron screening; and (iii) the in-
crease in the dielectric constant due to the presence of
the polarizable neutral donors. As in the case of Lehman
and James, they obtain good agreement. However, none
of these authors have considered the influence of effects
which broaden the impurity level and, hence, lead to an
additional effective shift in the observed activation
energy.

In this paper we consider the change in the observed
activation energy due to the influence of those effects
which both broaden and shift the impurity level. We con-
sider the same phenomenon which tend to shift the level
as considered by Debye and Conwell.® We have included
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two effects which tend to broaden the level. First, the
impurity-level wave function at a given impurity has
finite Hamiltonian matrix elements with impurity-level
wave functions centered at nearby impurities. This leads
to broadening of impurity levels when the impurities are
at finite density to produce a band of levels. Second, the
presence of charged impurities distributed in a random
way throughout the solid generates potential fluctuations.
These potential fluctuations produce tailing of conduc-
tion- and valence-band density of states® and spreading
of impurity levels.” For simplicity, we will confine our
attention to shallow donor levels with compensating
acceptors in silicon.

This paper is organized in the following fashion. In
Sec. II, we consider those phenomena which shift the
energy level. In this section, we review the results of
Lehman and James and put the formulas in a form
suitable for our use. In Sec. III, we consider the tailing
of the conduction band edge due to potential fluctuations.
In Sec. IV, the phenomena which broaden the impurity
level are investigated. Section V contains the calcula-
tions of conduction electron concentration n vs tem-
perature T for various donor and compensating acceptor
concentrations and compare the calculated results with
the known experimental results. Section VI contains a
brief discussion and conclusions.

). IMPURITY-LEVEL SHIFT WITH RESPECT TO
CONDUCTION BAND EDGE

In the effective mass approximation, the Hamiltonian
for the conduction electrons consists of the kinetic ener-
gy of the electrons, electron-impurity Coulomb inter-
actions, and the electron-electron interactions. Once an
electron is bound to a donor ion, then the donor ion plus
electron becomes a neutral system and has little effect
on the motion of conduction electrons. Hence, the un-
bound electron motion can be accurately described by a
Hamiltonian which does not include any interaction with
these neutral systems. The motion of conduction elec-
trons can be approximately described by a series of one-
electron Hamiltonian®-®

H= zpa +Z> Zquexp[—(lr—Ral)/\,,] s (2. 1)

m* g 4rmee, Ir ~ Ryl

where r and p are the position and momentum,
tively, of the electron; R, is the position of the Ath im-

Copyright © 1975 American Institute of Physics 373

Downloaded 21 Dec 2005 to 131.215.225.171. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



purity which has signed charge Z;; the prime above the
summation indicates that the sum runs over ionized im-
purities only. The semiconductor is described by an
isotropic effective mass m* and dielectric constant .
The electron screening length is A,. For the nondegen-
erate case, the electron screening length is given by!®

A, = (e, K T /g®n)t /2, (2.2)

where # is conduction electron concentration, K, is the
Boltzmann constant, and T is absolute temperature. For
silicon, \, ranges typically between 40 and 10* A for
n=10" cm™ and T =300 °K, and for # =102 cm™ and

T =50°K, respectively., We will use the Hamiltonian in
Eq. (2.1) to describe the unbound conduction electrons.

There are several effects which are thought to be
related to the shift of impurity levels with respect to the
conduction band edge. They are (i) the change of dielec-
tric constant due to the presence of neutral donors, (ii)
the influence of conduction electron screening on donor
ground-state energy, and (iii) the conduction band edge
lowering due to attraction between conduction electrons
and ionized donors. In the following, we are going to
examine these three effects.

A. Neutral donor polarization

In Eq. (2.1), there is some question about what di-
electric constant we should use. As pointed out by
Castellan and Seitz, ? we should include the contribution
to € due to the presence of polarizable neutral donors.
However, this produces a small change in ¢. For donor
concentrations up to 10'® neutral donors/cm?, the con-
comitant shift of impurity energy level relative to the
conduction band edge is less than 1 meV. Hence, we
will assume that the dielectric constant is independent
of impurity concentrations.

B. Shift of impurity level due to screening

The presence of the conduction electrons should
screen the attractive interaction between the donor ion
and the bound electron in a donor level. This screening
will shift the energy of the ground state toward the con~-
duction band. Using the Hartree approximation, Lehman
and James® treated this effect in their self-consistent
calculation. For the purpose of estimating the size of
this effect and to separate it from the shift of the con-
duction band edge, we made a simple first-order per-
turbation calculation of the influence of screening this
effect. We approximate the donor ground-state wave
function by a single 1s Slater orbital with an exponent of
£. The potential due to the conduction electrons is ob-
tained by computing the change in local electron density
due to the presence of the donor ion and the bound elec-
tron in a linearized Hartree approximation.

Since the electron screening length is larger than the
size of the donor-level wave function, i.e., £, >1, the
difference between the screened ion potential and the
unscreened ion potential is small. First-order perturba-
tion theory of this difference potential can be used to
estimate the shift. The result of the calculation is
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sB, ¢k (g _ 2£>\esin[(1/2£>\e)+2tan"(1/8£7\e)J>'

4mee, \ 8 4+1/16£%032

(2. 3)

The calculations leading to this result are presented in
the Appendix. Since AE, is a monotonically decreasing
function of the screening length A,, we can obtain an
upper bound to AE ; by taking the smallest value of A,
that we encountered under the present experimental
conditions (about 40 A). Taking £ to be the reciprocal of
the Bohr radius for the donor (£=1/19 A) in Si, we have

AE, <1 meV

for conduction electron concentrations less than 10'® ¢cm™
in Si. This result agrees with the calculations of Lehman
and James which indicated that screening produced a
small impurity-level shift. Therefore, we can neglect
the effect of screening on the donor ground-state energy
level.

C. Average shift of conduction band edge

The presence of ionized donors and compensating ac-
ceptors changes the position of the conduction band edge.
The random spatial distribution of the ionized centers
leads to not only an average shift of the conduction band
edge but also spatial fluctuations in the position of the
conduction band edge. In this section we concentrate on
the average shift of the conduction band edge and leave
to a later section the discussion of fluctuations.

To make an estimate of the average shift, we should,
in principle, calculate the energy levels associated with
the potentials due to the ionized impurities, then devise
some method of defining the bottom of the conduction
band, and finally average this over all the possible
spatial configurations of ionized impurities. While this
is, in principle, the way to proceed, in practice we can
not carry out such a calculation in anything but the most
idealized models. Thus, we proceed by first obtaining
a potential which should approximate the potential due
to the ionized impurities. In obtaining the potential due
to a single ionized donor, the principal dopant, we must
note that the Coulomb potential of a donor is modified
by the presence of the conduction electrons and also by
the increased probability of finding an ionized acceptor
near an ionized donor. These two effects are taken into
account by screening the Coulomb potential of the donor.
The screening length is made up of two parts—that due
to the electrons and that due to the ionized impurities.
The screening length for the electrons is the same as
that given before in Eq. (2.2). The screening length for
ionized impurities is given by a standard Debye
screening length form (x,)}'*'*? modified by the addition
of a length which is the average spacing between im-
purities. ” That is,

;=0 4, (2.4)
where
— eEOkBI‘/q2 172 9
)\“’_((NA+n)(1-NA Ta/Ny)) (2.5)
and
a=T($[$r (N, +N)]?/3, (2.6)
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FIG. 1. The shift of conduction-band edge due to overlap of
ionized donor potentials, The lowering of barrier height is
AE,, and the total shift of conduction-band edge is AE;,+AE,,.

which is the average distance under Poisson distribution.
The total screening length ) is given by

2.7

With this screening length the potential about a donor
becomes

V(r)=[~ ¢° exp(= 7/\)/4nee,7]. (2.8)

To estimate the average lowering of the conduction
band edge, we concentrate our attention on the potential
between two impurities which are separated by the aver-
age distance between donors. The average shift can be
divided into two parts. First, the conduction electron
barrier height is lowered due to the overlap of the po-
tential of ionized donors as illustrated in Fig. 1. Second,
the conduction band edge actually occurs somewhat be-
low the maximum of the potential due to electron tun-
neling. We first calculate the maximum of the potential.
If only the nearest neighbor is considered, the lowering
of the barrier height as shown in Fig. 1 is approximate-
ly equal to

AE. = 20°exp(=d/B) g exp(~d/A)
le dree,(3d) 4mee,d ’

-2 - =
ATE =24+

(2.9)

with d=(N3)'/3, where N} is the ionized donor con-
centration. The first term in (2. 9) corresponds to the
potential lowering at the middle point of the two nearby
ionized donors. The second term corresponds to the
potential lowering at the ionized donor site due to the
presence of the nearby ionized donor.

As we have mentioned above, because of electron
tunneling the conduction band edge occurs below the
maximum in the potential. The location of the average
conduction band edge depends upon the shape of the
ionized donor potential. We have made a rough estimate
about the location of the conduction band edge measured
with respect to the maximum in the potential (- AE, ),
and found that it is small for the cases considered here.
Therefore, we can use the result of the rough estimate
and it will not introduce significant error in our calcu-
lation. The estimate proceeds as follows. We assume
that the excited donor state is an extended state if the
average radius of the electron wave function of the
excited state is half the distance between ionized donors.
We also assume that as » becomes large the electron
wave function of the excited state approaches
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¢ ,(r) x exp(— ar),

where a =(2m*AE,,/i?)'/? and (- AE,,) is the bottom of
the conduction band measured with respect to the top
of the potential barrier. Hence, the average radius of
the electron wave function is approximately equal to
a!. Setting the average radius of the electron wave
function to equal to the half distance between ionized
donors, i.e., a"!=34d we have

AE, =21*/m*d®. (2.10)

The total downward shift of the conduction band edge
is thus

AE,=AE, +AE,_. (2.11)

For the donor concentrations and temperatures we are
interested in, AE, gives significant contribution to the
decrease of activation energy, as will be shown in
Sec. V.

111. CONDUCTION BAND EDGE TAILING

Donors and acceptors are approximately randomly
distributed in the semiconductors. The random distri-
bution of ionized donors and acceptors generates spatial
fluctuations in the potential. The potential fluctuation
smear out the conduction band edge and thus produce a
tail on the conduction-band density of states, ¢

The work of Kane® and Morgan’ indicates that the
distribution of potential p(V) is approximately Gaussian,

1 Ve
V)= GniTes ©XP _<2_o§> , (3.1)
with a standard deviation o given by
(Np+ Ny L \U2
0—< 8W262€§ q A ’ (3- 2)

where ) is the screening length which is given by Eq.
(2. 7). This distribution of potential fluctuations gen-
erates a tail on the conduction-band density of states
which extends to minus infinity in energy. However, the
mobility of electrons in the density-of-states tail is a
function of energy, approaching zero for energies below
a certain energy in the tail. For simplicity, we will as-
sume that the mobility is constant for energies greater
than -~ 20 and that the mobility is zero for energies less
than — 20. Hence, states with energy less than — 20 do
not contribute to the conduction since their mobility is
Zero.

For slowly varying potential fluctuations, the local
density of states at a point with potential V is given by

6V2 (m *)3/2

DC(E)=—7T’2"53—-“- (E - V), (3.3)

The average conduction-band density of states is given
by
I
NJ(EY= [_ pLE-VIp(V)aV,
=0,

E==20

E<-20. (3. 4)

The magnitude and extent of the conduction-band density
of states depends upon the value of ¢, For typical values
of the parameters, o can attain values of as large as
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10 meV (see discussion in Sec. V). Hence, the
broadening of the conduction band edge can lead to
significant effects on the observed activation energy.

IV. BROADENING OF DONOR LEVEL

There are two effects which tend to broaden the level.
First, the localized wave function of the impurity level
at a given impurity has a finite Hamiltonian matrix
element with localized wave functions centered at near-
by impurities. At finite densities, this leads to broaden-
ing of impurity levels into a band of levels. Second, the
potential fluctuations due to random distribution of
charge impurities lead to changes in the energy of the
various localized impurity states.

A. Level broadening due to donor wave-function overlap

For one single isolated shallow donor, such as P, As,
or Sb in Si, the hydrogenic model can be applied to de-
fine the donor energy state. For semiconductors with
shallow donor concentration N, the donor ground-state
level is discrete but has N -fold degeneracy if there is
no interaction between the donor impurities, However,
if there are finite Hamiltonian matrix elements between
the donor ground-state wave functions on different sites,
the degeneracy is lifted and the single donor ground
energy is broadened into a band. If the overlaps between
the donor ground-state wave functions at different sites
are small, we can use a tight binding model o estimate
the donor level broadening. In this model, the donor
level broadening is proportional to the energy transfer
integral, **

2
J(fR,-—le):f Tm—()‘f—rw o(r = R),(r - R, d°r,

(4.1)

where ¢,(r) is the donor ground-state wave function.
Using a scaled hydrogenic model for the donor ground-
state wave function, we have

¢o(r =R, =(£/7)* 2 exp(~ £ |r - R,|)

with £ =(1/a,)(E,/E,)*/?, where (- E ) is the donor
jonization energy for the low donor concentration case
and E = -~ ¢°/8nee,a, is the ground-state energy calcu-
lated from effective mass theory.!* With ¢,(r) given in
Eq. (4.2), the integration in Eq. (4.1) can be carried
out and leads to

(4.2)

J(R) = Z"—zﬁ— (1+ ER) exp(~ ER), (4. 3)

TEE,

where R is the distance between nearest donor neighbors.

As shown in Eq. (4.3), the energy transfer integral
J(R) depends exponentially on the nearest donor neighbor
distance R. Since the donors are randomly distributed
in space, the distance R to the nearest donor neighbor
and the energy transfer integral J(R) varies from one
donor site to the next. If the donors are absolutely ran-
domly distributed in semiconductors, they should follow
a Poisson distribution. In a Poisson distribution, the
probability that the nearest donor neighbor lies at a
distance R in a spherical shell between R and R +dR is
given by

47N, exp(~ $7 N R*)R*dR.
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Therefore, the average energy transfer integral between
a donor and its nearest donor neighbor is equal to

(J(R)) = [ J(R)47N jR? exp(~ 47N, R®)dR. (4.4)

In the tight binding model, the total bandwidth B is equal
to 221 (J(R))|, where z is the number of nearest neigh-
bors. With a Poisson distribufion, there is only one
nearest neighbor to every donor and, therefore, z is
equal to unity. Hence, the total bandwidth B is given by

B=2[(JR)]. (4.5)

The quantity of importance in our calculation is the
impurity-band density of states p,(E). In general, this
is a very complicated function of energy. However, for
purposes here it suffices to take p,(E) to be a constant
over the bandwidth B, That is, if we take midband to
occur at zero energy, then

po(E):ND/By
:0‘

-iB<E<}B
(4. 6)

We found for example, that for 10'®* em? shallow donors
the donor bandwidth is about 30 meV. Thus, this
broadening of the impurity energy level is one of the
important effects which have to be included when con-
sidering the variation of activation energies as a func-
tion of impurity concentration and temperature,.

otherwise.

B. Level spreading due to potential fluctuation

As we have mentioned in Sec. III, the random dis-
tribution of ionized donors and acceptors generates
spatial fluctuations in the potential. If the local potential
varies slowly over the size of the wave function, an
assumption which is true for the cases considered here,
then the donor ground states vary along with the poten-
tial fluctuations. Therefore, the impurity states are
spread in energy.”

The donor-level density of states pi(E), which is ap-
propriate to our calculation, should include both the
fluctuation-induced broadening and the broadening due to
the energy transfer integral. These two effects can be
combined by averaging p,(E) given in Eq. (4. 6) over the
value of the local potential. That is,

piE)= [ py(E = VIp(V)aV,
where p(V) is given by Eq. (3.1).

(4.7

V. CALCULATIONS AND COMPARISON WITH
EXPERIMENTAL RESULTS

One way to obtain the impurity activation energy in a
semiconductor is to study the conduction electron con-
centration as a function of temperature (Arrehnus plot).
Therefore, in this section we are going to use the re-
sults of previous sections and calculate the conduction
electron concentrations as a function of temperature.

The conduction electron concentration is given by the
standard expression

«
n= |
-0

where N (E) has been defined in Eq, (3.4) and E, is the

N/(E)dE

1+expl(E ~E,)/K,T] (5.1)
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FIG. 2. The conduction electron concentration vs reciprocal
temperature for different phosphorus concentrations in silicon.
The compensation ratio is 0.5%.

Fermi energy. Similarly, the concentration of ionized
donors is defined as

Nie f* p{E -E,)dE

1+ gexp[(E, - E)/K,T]’
where p,(E) is defined in Eq. (4. 7) and g is a degeneracy
factor; E} is the center of the impurity band and is
related to the donor ionization energy of a very dilute
system (— E ) by

(5.2)

Ej,=E_+AE, (5.3)

with AE _ defined in Eq. (2.11). Charge neutrality leads
to

n+N, =N}, (5.4)

which determines the Fermi level E, and, in turn, the
electron concentration can be obtained from Eq. (5.1).
1t should be noted that p,(E) and N (E) are functions of
oand 0 is a function of » and Nj. Hence, n and N7 have
to be solved self-consistently.

To illustrate these analytical results, we have made
numerical calculations of n vs T for shallow donor in

TABLE 1. Values for AE,, B, and o for different donor concen-
trations and temperatures. The compensation ratio is 0.5%.

N, and Np T n AE, B o
cm™d) K)  (em™) (meV) (meV) (meV)
Ny=5x104 25  5.17x10!! 1.36 5.58 2,47
Np=10'7 200  9,06x10!6 8.14 5,58 9,59
Ny=2.5x10 25 1,52 x10% 1.93 19.3 3.79
Np=5x10"7 200  3.73x10'T 11,3 19.3  13.6
N,=5x10!° 25  2.47x10" 2,17 29.8 4.48
Np=10'8 200  6.59x10'7 13,1 29.8  15.7
377 J. Appl. Phys., Vol. 46, No. 1, January 1975

silicon (for example, P, As, and Sb). The values of ¢
and m* were taken to 11. 8 and 0. 33m,, respectively.
The degeneracy factor was taken to be 2. In Fig. 2, the
calculated # versus the reciprocial of T is plotted for
different P concentrations. The compensation ratios K,
ratio of acceptors to donors, is fixed at 0.5% and the
ionization energy of P in Si at low concentrations is
taken to be 44 meV.® At this rather small value of com-
pensation ratio the presence of compensation centers
is relatively unimportant. The activation energy is
proportional to the slope of the Arrehnus plot. We see
that as P concentration increases the slope and, hence,
the activation energy decreases as expected.

To gauge the relative importance of the various
phenomena in this case, we have calculated the values
of the AE , B, and o at two different temperatures,

200 and 25°K. These results are given in Table 1. From
this table, we note that AE  varies by a factor of 4 to 7
between 200 and 25°K. (This is due to the variation in
the number of unoccupied donors and, hence, the po-
tential a free electron in the conduction band sees.) The
value of B varies from 5.6 meV at the low concentra-
tion of 10'" ¢m™? to 29. 8 meV at the high concentration
of 10'® cm™. This variation is due to the increase in
the energy transfer integral with increasing donor con-
centrations. The value of ¢ also shows a considerable
variation with temperature and a small variation with
donor concentration. The large variation with tempera-
ture is due to freeze out of the conduction electrons to
the ionized donors.

To investigate the effect of compensation centers on
the activation energy, we have calculated conduction
electron concentrations vs 1/T for fixed P concentration
with different compensation ratios. The results for P

|OI9 T T T L T T T T

CONDUCTION ELECTRON CONCENTRATION
VS TEMPERATURE

10'8
|O|7
|OIG

1'%

14

CONDUCTION ELECTRONS (cm?d)
)

10'2
Phosphorus in Silicon
o't Ny=5x10"7 cm™3 i
0ok J
|09 L ( L s 1 I 1 1
S 10 15 20 25 30 35 40 45 50
103/7 k™

FIG. 3, The conduction electron concentration vs reciprocal
temperature for different compensation ratios. The phosphorus
concentration is 5x10!7 cm3,
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TABLE II. Values for AE,, B, and o for different compensation
ratios and temperatures. The donor concentration is
5x10!7 em™?,

N4 and Np K T n AE, B o

em) (Ny/Np) CK) (em) (meV) (meV) (meV)
Ny=2,5x%10% 0. 5% 25 1,52x10% 1,93 19.3  3.79
Np=5x107 <% 200 3.73x107 11,3 19.3 13,6
Ny =5x10 10% 25 1.44x10'" 5.83 19.3 10.43
Np=5x10!7 ¢ 200 3.42x107 12,1 19.3 15,0

concentrations of 5X10" c¢m™ are given in Fig. 3. This
figure shows that as K increases, the slope and, hence,
the activation energy decrease. To show the relative
importance of the various phenomena in this case, we
have calculated the values of AE_, B, and o at two dif-
ferent temperatures, 25 and 200 °K, and listed the
results in Table II. Since AE, is primarily a function of
N, we note little variation in AE, with changes in K in
this range. Again AE_ shows a rather large variation
with temperature because of the “freeze out” of the
conduction electrons. As expected B shows no variation
with K since it is a function of the donor concentration
only. The values of ¢ show a small increase with K at
fixed T since the magnitude of the fluctuations in the
potential increase with increasing compensation. The
variation of o with T is again due to the freeze out of
the conduction electrons. As K increases, the conduc-
tion band edge lowering AE and potential fluctuation o
are increased. Therefore, the increase of compensation
ratio leads to decrease of activation energy.

These results may be compared with the experimental
results of Penin ef al.'® and the thorough experimental
study of Swartz. '’
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FIG. 4. The experimental and calculated conduction electron
concentrations vs reciprocal temperature for phosphorus in
silicon. The calculated results for a single fixed level theory
is included for comparison.
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FIG. 5. The experimental and calculated conduction electron
concentrations vs reciprocal temperature for antimony in
silicon.

The experimental results of Penin e/ al.'® indicate
that the impurity-to-band activation energy depends
upon the compensating impurity concentration and de-
creases as compensating impurity concentrations in Si
increase. Thus, the result of our calculation is in
qualitative agreement with Penin’s experimental result.

T T T T T L T
CONDUCTION ELECTRON CONCENTRATION
VS TEMPERATURE

a Arsenic in Silicon
»

B {N[,: 4x10'8cm™3]
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o 104 1
z . 7. -3 /
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|O9 $ ! L L L I
5 10 15 20 25 30 35 40 45 50
103/7 (k™)

FIG. 6. The experimental and calculated conduction electron
concentrations vs reciprocal temperature for arsenic in
silicon.
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Swartz’s!” results of Hall measurements on Si samples
doped with P, As, and Sb provide a rather rigorous
check of the theory. Because of a lack of any informa-
tion about what is the correct value of the Hall coef-
ficient required to convert Hall coefficients to conduc-
tion electron concentrations, we take it to be the value
appropriate for phonon scattering, $7. The experimental
results for conduction electron concentration for P in
Si along with calculated electron concentrations are
plotted versus 1/T in Fig. 4. In this numerical calcu-
lation, the donor concentration N, has been taken to be
1.6Xx10' P/cm?®, a value which produced the best agree-
ment between experiment and theory. The density of
compensating centers was determined from the kink in
the experimental n-vs-T plot to be 10*® em™3. As we
can see from Fig. 4, the agreement between the theory
with all the corrections and experiment is very satisfac-
tory. For comparison, we also plotted in Fig. 4 the
calculated conduction electron concentration for a system
with fixed activation energy of 44 meV and all the same
donor and acceptor concentrations. From Fig. 4 we
note that at low temperatures the decrease of activation
energy produces a significant increase in the conduction
electron concentration.

To compare our calculation with Swartz's experi-
mental results on other dopants, we plotted the calcu-
lated electron concentrations vs 1/7T along with experi-
mental results for Si doped with Sb and As in Figs. 5
and 6, respectively. In these calculations, the ionization
energies have been taken to be 39 meV for a very low
density of Sb in Si and 49 meV for a very low density of
As in Si. In Fig. 5, the compensating acceptor con-
centrations have been determined in the same way as in
the case of P in Si. The Sb concentrations have been
chosen to give the best agreement between theory and
experiment. As we can see, the agreement is quite good
for the case of Sb in Si. In Fig. 6, we compare the
experimental and theoretical results for As in Si. The
theoretical calculation for the cases N,=4X 107 em™
and N, =10'®* em™, and N,=7%10"" cm™ and
N,=10% cm™ are in satisfactory agreement with the
experimental results. However, for samples doped with
more than 10'® As/cm®, we can only obtain qualitative
agreement between theory and experiment,

V1. DISCUSSION AND CONCLUSIONS

The self-consistent calculation by Lehman and James?
essentially include two effects: the lowering of the con-
duction band edge and the shift of the ground-state level
of the donor due to conduction electron screening. While
their results are successful at accounting for experi-
mental results at small donor concentrations and with
small amounts of compensation, they are inadequate at
higher impurity concentrations. In this paper, we have
introduced two additional effects; the broadening of the
impurity level due to a finite energy transfer integral
between wave functions localized on neighboring sites
and poiential fluctuations, and the tail on the conduction
band edge due to potential fluctuations. The addition of
these effects was shown to bring about good agreement
between experimental results and theory for moderate
impurity concentrations. However, at even higher im-
purity concentrations (N n2 4Xx10" ¢cm™), even these
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effects are incapable of explaining the experimental re-
sults. This suggests that the problem is more
complicated in this range.

The importance of broadening of the impurity level
and band tailing on the conduction band edge found in
these calculations suggest that one may not think of the
single activation energy for N, 2 10" ¢cm™. Interpreta-
tion of the Arrehnus plot in terms of single activation
energy would then require a temperature-dependent
activation energy.
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APPENDIX

In this Appendix, we calculate the shift of donor
ground-state level due to the conduction electron
screening. We first calculate the potential due to a donor
atom, i.e., one ionized donor plus one trapped electron.
In response to the potential of the donor atom, the con-
duction electrons readjust themselves to screen the
potential. We calculate the screening conduction elec-
tron distribution by using the linearized Hartree ap-
proximation. Since the potential due to the screening
conduction electrons is small, we then calculated the
donor ground-state level by using first-order perturba-
tion theory.

To obtain the potential due to the donor ion and trapped
electron, we assume that the trapped donor electron
has a 1s ground-state wave function with Slater
coefficient, i.e.,

do(r) = (£%/7) exp(- £7), (A1)

where = |r|. The potential of the neutral donor atom
is thus

V(r)= 8 (l

T dmee, \v

+ ‘é) exp(- 2£7). (A2)

Subject to the neutral donor atom potential V (r) the con-
duction electrons readjust themselves and try to screen
the potential. Under the Hartree approximation and

linear response theory, the screened potential is given
by

V,(r)=(2m)2 [ V_(K)exp(iK- r)d’K,
with

(A3)

VAK)
1+ V (K) ee,/q\Z

where A, is the conduction electron screening length
and V (K) is the Fourier transformation of V (r), i.e.,

V(K= [ V (r)exp(-iK-r)dr
- (Mi_)
T e, \(KZ+ 4% )

with K = |K|. In view of Eqs. (A4) and (A5), the integral
can be carried out and, for £\, > i, leads to

V, (K)= (A4)

(A5)
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2
Vv, (r)= 1:%307 A2 £2 f exp(— 2gE7) sin(2 tan™ £+ 2hE),

with (A6)

f=(16£22 - 1)"/2

[1 . 1 (1 14 1 1/2]1/2
=13 T 16 2 25%\5‘) ’

and
[1 L1\ 1 e
= = + - .
h=3 ( _z?_xﬁ> > 16£2>\§]
For the case we are interested in, the conduction elec-
tron screening length is larger than the trapped elec-

tron average radius 1/¢, i.e., X £>1. The series ex-
pansion of V_(r) to the first order of 1/, gives

v, (02 L8 gun e sin(1 & ) , (A7)

2meeyy 2Ex,

with the residual terms of the order of (1/&x,)?. There-
fore, the potential due to a donor ion and screening
electrons only is given by

VD)=V (1) + 72 [1 -(% +£)exp(—2é"r)]

dmee, Lv
2 2
_ 4 _dexp(=28n[1 28 , 1+ E)
47eeyr 47ee, 7 v A

(A8)
The potential seen by the trapped electron is different
from the Coulomb potential by

¢ exp(— 2£7) [1 200, <1+EV\]
T dmee, y TEo o s 280, /]

(A9)

V’(r):

and the ground-state energy shift in first-order
perturbation theory is given by

380 J. Appl. Phys., Vol. 46, No. 1, January 1975

AL 5=V, = (0| V7| )

Y (g _ 2£>\esin[(1/2£>\e)+2tan"(1/8£)\e)])
" 47ec, \8 4+ 1/16£%\2 '

(A10)
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