A Caltech Library Service

The Universal Composable Security of Quantum Key Distribution

Ben-Or, Michael and Horodecki, Michał and Leung, Debbie W. and Mayers, Dominic and Oppenheim, Jonathan (2005) The Universal Composable Security of Quantum Key Distribution. In: Theory of Cryptography : Second Theory of Cryptography Conference. Lecture Notes in Computer Science. No.3378. Springer , pp. 386-406. ISBN 3-540-24573-1

Full text is not posted in this repository. Consult Related URLs below.

Use this Persistent URL to link to this item:


The existing unconditional security definitions of quantum key distribution (QKD) do not apply to joint attacks over QKD and the subsequent use of the resulting key. In this paper, we close this potential security gap by using a universal composability theorem for the quantum setting. We first derive a composable security definition for QKD. We then prove that the usual security definition of QKD still implies the composable security definition. Thus, a key produced in any QKD protocol that is unconditionally secure in the usual definition can indeed be safely used, a property of QKD that is hitherto unproven. We propose two other useful sufficient conditions for composability. As a simple application of our result, we show that keys generated by repeated runs of QKD degrade slowly.

Item Type:Book Section
Related URLs:
Additional Information:© 2005 Springer-Verlag Berlin Heidelberg. We thank Charles Bennett, Daniel Gottesman, Aram Harrow, and John Smolin for interesting discussions on the security concerns of using a key obtained from QKD. We also thank Dominique Unruh and Jorn Muller-Quade for interesting discussions on their alternative framework of composability. Part of this work was completed while MH and JO were visiting the MSRI program on quantum information, Berkeley, 2002. MB acknowledges the support of the Israel Science Foundation and a research grant from the Israeli Ministry of Defense. lVIH is supported by EU grants RESQ (IST-2001-37559) and QUPRODIS (IST-2001-38877). DL acknowledges the support from the Tolman Foundation and the Croucher Foundation. DL and DM acknowledge support from the US NSF under grant no. EIA-0086038. JO is supported by an ED grant PROSECCO (IST-2001-39227) and a grant from the Cambridge-MIT Institute.
Funding AgencyGrant Number
European Union (EU)RESQ (IST-2001-37559)
European Union (EU)QUPRODIS (IST-2001-38877)
Tolman FoundationUNSPECIFIED
Croucher FoundationUNSPECIFIED
European Union (EU)PROSECCO (IST-2001-39227)
Cambridge-MIT InstituteUNSPECIFIED
Israel Science Foundation UNSPECIFIED
Israeli Ministry of DefenseUNSPECIFIED
Record Number:CaltechAUTHORS:20110217-075107992
Persistent URL:
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:22339
Deposited By: Ruth Sustaita
Deposited On:17 Feb 2011 19:49
Last Modified:17 Feb 2011 19:49

Repository Staff Only: item control page