Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at $\sqrt{s} = 7$ TeV

V. Khachatryan et al.Ệ
(CMS Collaboration)

(Received 21 October 2010; published 20 December 2010)

A search for quark compositeness in the form of quark contact interactions, based on hadronic jet pairs (dijets) produced in proton-proton collisions at $\sqrt{s} = 7$ TeV, is described. The data sample of the study corresponds to an integrated luminosity of 2.9 pb$^{-1}$ collected with the CMS detector at the LHC. The dijet centrality ratio, which quantifies the angular distribution of the dijets, is measured as a function of the invariant mass of the dijet system and is found to agree with the predictions of the standard model. A statistical analysis of the data provides a lower limit on the energy scale of quark contact interactions. The sensitivity of the analysis is such that the expected limit is 2.9 TeV; because the observed value of the centrality ratio at high invariant mass is below the expectation, the observed limit is 4.0 TeV at the 95% confidence level.

DOI: 10.1103/PhysRevLett.105.262001
PACS numbers: 13.85.Hd, 12.60.Rc, 14.65.Jk

In the standard model (SM), most high energy proton-proton collisions are described by the scattering of partons (quarks or gluons) in the framework of quantum chromodynamics (QCD). The outgoing partons manifest themselves as two or more jets of hadrons, with the pseudorapidity η of the jets depending on the parton scattering angle. In QCD, the jet production rate peaks at large $|\eta|$ because the scattering is dominated by t-channel processes. Several new physics scenarios, including models of quark compositeness, produce a more isotropic angular distribution leading to enhanced jet production at smaller values of $|\eta|$ [1–6]. Other models of new physics predict the opposite: a decrease in jet production at small $|\eta|$ compared with the SM [7].

The dijet system consists of the two jets with the highest transverse momenta p_T in an event (the leading jets) with invariant mass m_{jj}. The dijet centrality ratio R_η is defined as the number of events with the two leading jets in the region $|\eta| < 0.7$ (inner events) divided by the number of events with the two jets in the region $0.7 < |\eta| < 1.3$ (outer events). Because many systematic effects cancel in this ratio, R_η provides an accurate test of QCD and is sensitive to new physics.

In this Letter we report a measurement of R_η in proton-proton collisions at $\sqrt{s} = 7$ TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 2.9 ± 0.3 pb$^{-1}$ collected with the Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider.

The dijet centrality ratio is measured as a function of m_{jj} and is compared with predictions from perturbative QCD calculations performed at next-to-leading order (NLO) accuracy with the NLOJET++ program [8,9] in the FASTNLO framework [10]. We also compare the measured R_η with a QCD prediction obtained from the PYTHIA 6.420 event generator [11] with the D6T set of parameters [12]. We use CTEQ6.6 parton distribution functions (PDFs) [13] for the NLO calculation and CTEQ6LL [14] for the PYTHIA6 prediction. The effect of the CMS detector simulation [15] on the predictions for R_η is negligible.

We use R_η to search for evidence that quarks are composite particles. Quark compositeness at an energy scale Λ would appear at lower energies as a contact interaction, yielding an η distribution different from that predicted by QCD. We consider a model of contact interactions between left-handed quarks in the process $qq \rightarrow qq$ described by the effective Lagrangian $L_{qq} = \pm (2\pi/\Lambda^2)(\bar{q}_L\gamma^\mu q_L) \times (\bar{q}_L\gamma_\mu q_L)$ [1]. We choose the positive sign of L_{qq} because it yields a more conservative exclusion limit on Λ (by about 5%) than the negative sign. In QCD, R_η is nearly independent of m_{jj}, with a value near 0.5. The presence of quark contact interactions described by L_{qq} would cause R_η to increase rapidly above a value of m_{jj} that depends on Λ. Previous searches for quark compositeness described by the interaction L_{qq} exclude $\Lambda < 3.4$ TeV at the 95% confidence level (C.L.) [16–21].

A detailed description of the CMS detector can be found elsewhere [22]. The CMS coordinate system is right-handed with the origin at the center of the detector, the x axis directed toward the center of the LHC ring, and the y axis directed upward; ϕ is the azimuthal angle, θ the polar angle, and $\eta = -\ln(\tan(\theta/2))$ the pseudorapidity. The central feature of the CMS apparatus is a superconducting solenoid that surrounds the silicon pixel and strip tracker as well as the barrel and end cap calorimeters.

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
(covering the region $|\eta| < 3$): a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL). The ECAL barrel extends to $|\eta| = 1.479$ and the HCAL barrel to $|\eta| = 1.305$. The HCAL and ECAL cells are grouped into towers projecting radially outward from the origin. In the region $|\eta| < 1.74$ these calorimeter towers have width $\Delta \eta = \Delta \phi = 0.087$. ECAL and HCAL cell energies above noise suppression thresholds are summed within each projective tower to define the calorimeter tower energy.

We reconstruct jets by applying the anti-k_T clustering algorithm [23] to the calorimeter towers with the distance parameter $R = 0.7$. The energy E and momentum \vec{p} of a jet are defined as the scalar and vector sums, respectively, of the calorimeter cell energies associated with the jet. We apply p_T- and η-dependent scales to E and \vec{p} to correct for the nonlinearity and nonuniformity of the calorimeter response. The jet energy corrections and resolutions are determined and validated using simulated, test beam, and collision data [24].

A set of independent single-jet triggers with varying thresholds on uncorrected jet p_T is employed in the online trigger system. We use data from three of these triggers, with thresholds of 15, 30, and 50 GeV, in the m_{jj} ranges where the triggers have efficiency greater than 99.5% for both inner and outer events. By studying the relative efficiency of parallel triggers in the collision data, we determine that these three triggers meet this efficiency requirement for m_{jj} greater than 156, 244, and 354 GeV, respectively, where these values are three of the predefined bin edges for m_{jj}. The requirement of $m_{jj} > 156$ GeV results in a minimum jet p_T of 25 GeV.

To remove potential instrumental and noncollision backgrounds we impose the following requirements: events must have a primary vertex reconstructed with $|z| < 24$ cm [25]; jets must have at least 1% of their total energy detected in the ECAL, no more than 98% of their energy detected in a single HCAL photodetector, and no more than 90% of their energy in a single calorimeter cell (ECAL or HCAL). These jet identification criteria remove less than 0.1% of the selected events at all values of m_{jj}.

In Fig. 1 we show the observed numbers of inner and outer dijet events and R_η in bins of m_{jj}; the bin widths roughly correspond to the m_{jj} resolution. The event counts, which are corrected for the trigger reduction factors (prescales), fall steeply with increasing m_{jj}. We compare R_η with NLO and PYTHIA6 predictions for m_{jj} values up to 1120 GeV. The error bars represent the combination of statistical and experimental systematic uncertainties (described in detail later). The horizontal lines near the end of the error bars denote the statistical uncertainty on this ratio of Poisson-distributed variables computed with Clopper-Pearson intervals [26].

We apply an m_{jj}-dependent correction to the NLO prediction to account for nonperturbative effects of hadronization and multiple parton interactions. This correction, which is approximately 10% at low m_{jj} and 2% for m_{jj} greater than 400 GeV, is obtained from PYTHIA6. The predictions of PYTHIA6 and HERWIG++ [27] for this correction agree to within a few percent.

The NLO prediction is shown as a band that accounts for uncertainties related to the choices of the renormalization scale μ_R, the factorization scale μ_F, and the PDFs used in the calculation. The scale uncertainties, which are approximately 3%–4% depending on m_{jj}, are evaluated by varying the scales from the default choice of $\mu_R = \mu_F = p_T$ to $p_T/2$, p_T, and $2p_T$ in the following six combinations: $(\mu_R, \mu_F) = (p_T/2, p_T/2)$, $(2p_T, 2p_T)$, $(p_T, 2p_T)$, $(p_T/2, 2p_T)$, $(2p_T, p_T/2)$, and $(2p_T, 2p_T)$. The PDF uncertainties are estimated with repeated evaluations of the NLO-predicted R_η for the PDFs in the CTEQ6.6, MSTW2008 [28], and NNPDF2.0 [29] sets and are found to be less than 1%. The band also includes the uncertainty arising from the correction for nonperturbative effects, which we conservatively take to be 20% of the correction factor.

![Figure 1](image-url)
The measured R_η is nearly flat with a value of about 0.5 as predicted by both the corrected NLO calculation and PYTHIA6. The observed average ratio is about 7% lower than that of the corrected NLO prediction, and about 7% higher than that of the PYTHIA6 prediction. The data are in better agreement with the corrected NLO prediction at low m_{jj}, where the significant nonperturbative corrections improve the agreement, and with the PYTHIA6 prediction at intermediate and high m_{jj}.

To test for the presence of quark compositeness with R_η, we employ a log-likelihood-ratio statistic that compares the likelihood of the null (QCD only) hypothesis L_{QCD} with that of the alternative hypothesis that quark contact interactions are present in addition to QCD L_{alt}:

$$ R_{\text{LL}} = \ln L_{\text{alt}} - \ln L_{\text{QCD}}. $$

The total likelihood is the product of the individual bin likelihoods, which for m_{jj} bin i is

$$ L_i = \mathcal{P}(n_{\text{tot},i}|\mu_{\text{tot},i})\mathcal{B}(n_{\text{alt},i}|n_{\text{tot},i}, \rho_i), $$

where the first factor is the Poisson probability to observe $n_{\text{tot},i}$ events when expecting $\mu_{\text{tot},i}$, and the second is the binomial probability to observe $n_{\text{alt},i}$ inner events given $n_{\text{tot},i}$ and a predicted probability to be inner of ρ_i [where $\rho = R_\eta/(1 + R_\eta)$]. Since the first factor in Eq. (2) contains no information on R_η, we remove it from the statistical inference by conditioning the probabilities by the observed values of $n_{\text{tot},i}$ [30,31]. We compare the value of R_{LL} in the data with distributions of the expected values for both hypotheses, obtained from ensembles of pseudoexperiments, to either claim the discovery of quark compositeness or to set exclusion bounds on the compositeness scale Λ with the frequentist-inspired CL$_s$ method [32]. In this method, R_{LL} values for which $CL_s = CL_{s+b}/CL_b < 0.05$ are excluded at the 95% C.L., where CL$_{s+b}$ and CL$_b$ are the probabilities for R_{LL} to have a lower value than that observed, given the alternative and null hypotheses, respectively. This protects against an exclusion claim when the data have little sensitivity to the new physics.

We use the NLO prediction corrected for nonperturbative effects to describe the shape of R_η for the null hypothesis. To minimize the effect of potential discrepancies between the NLO prediction and actual QCD dijet production, we include an overall offset of R_η in the null hypothesis. This offset is determined with the data in the m_{jj} range between 490 and 790 GeV. (The lower bound is chosen to avoid the region where nonperturbative corrections are significant, and the upper bound is chosen to avoid the signal region for compositeness.) As noted above, the data lie below the NLO prediction, yielding an offset of $\Delta R_\eta = -0.050 \pm 0.021\text{stat.} \pm 0.039\text{syst.}$. Using ensembles of simulated data, we determine that the probability (p value) for observing $|\Delta R_\eta| > 0.050$, given the NLO prediction, is 0.29.

PYTHIA6 is used to describe R_η for the alternative hypothesis. We apply an m_{jj}-dependent correction that accounts for NLO contributions to the QCD part of this prediction. We do not apply this correction, which is derived for t-channel QCD processes, to the contact interaction part of the prediction because it is not physically motivated and yields less conservative exclusion limits on Λ. Since the contact interaction model is not valid for m_{jj} near the compositeness scale, we exclude data above a Λ-dependent m_{jj} threshold for the testing of each Λ value hypothesis.

In Table I we report the systematic uncertainties related to the measurement of R_η and the NLO QCD model. The dominant source of uncertainty on the measurement is the 1% uncertainty in the relative jet energy scale (JES) between the inner and outer η regions, which results in a 5%–13% uncertainty on R_η depending on m_{jj}. This relative uncertainty has a much larger impact than a 10% uncertainty on the JES common to both regions. The simulation of jet energy reconstruction is verified by examination of transverse momentum conservation for selected events and for events where the dijet system consists of an inner and an outer jet.

For the QCD model, the sources of uncertainty include the choice of scale and PDFs in the NLO calculation and the nonperturbative corrections described above. In addition, we take the statistical uncertainty on the offset described above and the difference between the PYTHIA6 and m_{jj} = 1.6 TeV

<table>
<thead>
<tr>
<th>Source</th>
<th>Full range</th>
<th>$m_{jj} = 1.6$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative JES</td>
<td>0.02–0.05</td>
<td>0.032</td>
</tr>
<tr>
<td>Absolute JES</td>
<td>0.00–0.03</td>
<td>0.003</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Other</td>
<td>0.01</td>
<td>0.010</td>
</tr>
<tr>
<td>Total detector</td>
<td>0.02–0.05</td>
<td>0.034</td>
</tr>
<tr>
<td>Model uncertainty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PYTHIA6–NLO</td>
<td>0.00–0.05</td>
<td>0.032</td>
</tr>
<tr>
<td>Offset</td>
<td>0.021</td>
<td>0.021</td>
</tr>
<tr>
<td>Scale</td>
<td>+0.01–0.05</td>
<td>+0.029</td>
</tr>
<tr>
<td>PDF</td>
<td>+0.002–0.004</td>
<td>+0.002</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Nonpert. corr.</td>
<td>0.002–0.014</td>
<td>0.002</td>
</tr>
<tr>
<td>Total model</td>
<td>+0.02–0.07</td>
<td>+0.044</td>
</tr>
<tr>
<td>Total</td>
<td>+0.03–0.09</td>
<td>+0.055</td>
</tr>
</tbody>
</table>

TABLE I. Systematic uncertainties on R_η related to the measurement of R_η (detector uncertainties) and to the QCD model (model uncertainties). For each source of uncertainty, we show the range of values over the entire m_{jj} range and at a representative point in the signal region.
hypothesis, we determine 95% C.L. limits on the contact interaction scale \(\Lambda \). We show \(R_{LL} \) versus \(\Lambda \) for the data (solid line), the 95% CLs (dashed line), and the SM expectation (dotted line) with 1\(\sigma \) (dark) and 2\(\sigma \) (light) bands.

The observed dijet centrality ratio as a function of \(m_{jj} \) compared with the null (QCD) hypothesis (solid line), including the total systematic uncertainty (band), and to hypotheses of quark contact interactions with \(\Lambda = 3 \) TeV (dotted line) and 4 TeV (dashed line). NLO predictions as systematic uncertainties related to our choice of model. For the compositeness hypothesis, \(R_q \) increases steeply with \(m_{jj} \), and the 10% uncertainty on the absolute JES dominates the uncertainty on the \(\Lambda \) scale being probed.

Figure 2 shows our data in comparison with the null hypothesis. Alternative hypotheses with contact interaction scales of \(\Lambda = 3 \) and 4 TeV are also shown. In this figure, the data from the 15 sparsely populated \(m_{jj} \) bins in the range 1530–3020 GeV are combined into a single bin for presentation purposes. The band indicates the total systematic uncertainty, which is included in the ensembles of pseudoexperiments with the method of Ref. [33]; i.e., the uncertainties enter the ensembles as nuisance parameters that affect the expected numbers of inner and outer events.

To quantify the agreement of the data with the SM expectation, we determine the offset of the data with respect to the NLO model for the full \(m_{jj} \) range, finding \(-0.037 \pm 0.007\text{(stat.)} \pm 0.039\text{(syst.)}\) with a \(p \) value of 0.34. Given this consistency of the data with the QCD hypothesis, we determine 95% C.L. limits on the contact interaction scale \(\Lambda \).

We summarize the determination of the limit in Fig. 3. We show \(R_{LL} \) versus \(\Lambda \) for the data and for the SM expectation (with 1\(\sigma \) and 2\(\sigma \) bands) along with the highest value of \(R_{LL} \) excluded at the 95% C.L. with the CLs method. High \(R_{LL} \) values indicate new physics. The expected exclusion region comprises those values of \(\Lambda \) for which the SM-expected \(R_{LL} \) (conditioned by the observed numbers of events \(n_{\text{obs}} \)) is less than the 95% CLs contour, and is seen to be \(\Lambda < 2.9 \) TeV. The observed exclusion region comprises values for which the measured \(R_{LL} \) is less than the 95% CLs contour, and is seen to be \(\Lambda < 4.0 \) TeV. The observed limit is higher than expected because for \(m_{jj} > 1.4 \) TeV the measured \(R_q \) is lower than its expectation under the SM.

In summary, we present a measurement of the dijet centrality ratio in 7 TeV proton-proton collisions. The dijet centrality ratio is found to exhibit little dependence on the dijet invariant mass and to agree with the expectation of the standard model. We exclude quark compositeness described by a contact interaction between left-handed quark fields at energy scales of \(\Lambda < 4.0 \) TeV at the 95% C.L. This is the most stringent limit to date.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

PRL 105, 262001 (2010) PHYSICAL REVIEW LETTERS week ending 31 DECEMBER 2010

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
37Deutsches Elektronen-Synchrotron, Hamburg, Germany
38University of Hamburg, Hamburg, Germany
39Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40Institute of Nuclear Physics “Demokritos,” Aghia Paraskevi, Greece
41University of Athens, Athens, Greece
42University of Ioánnina, Ioánnina, Greece
43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
44Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45University of Debrecen, Debrecen, Hungary
46Panjab University, Chandigarh, India
47University of Delhi, Delhi, India
48Bhabha Atomic Research Centre, Mumbai, India
49Tata Institute of Fundamental Research–EHEP, Mumbai, India
50Tata Institute of Fundamental Research–HECR, Mumbai, India
51Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran
52aINFN Sezione di Bari, Bari, Italy
52bUniversità di Bari, Bari, Italy
52cPolitecnico di Bari, Bari, Italy
53aINFN Sezione di Bologna, Bologna, Italy
53bUniversità di Bologna, Bologna, Italy
54aINFN Sezione di Catania, Catania, Italy
54bUniversità di Catania, Catania, Italy
55aINFN Sezione di Firenze, Firenze, Italy
55bUniversità di Firenze, Firenze, Italy
56aINFN Laboratori Nazionali di Frascati, Frascati, Italy
57aINFN Sezione di Genova, Genova, Italy
58aINFN Sezione di Milano-Bicocca, Milano, Italy
58bUniversità di Milano-Bicocca, Milano, Italy
59aINFN Sezione di Napoli, Napoli, Italy
59bUniversità di Napoli “Federico II,” Napoli, Italy
60aINFN Sezione di Padova, Padova, Italy
60bUniversità di Padova, Padova, Italy
60cUniversità di Trento (Trento), Padova, Italy
61aINFN Sezione di Pavia, Pavia, Italy
61bUniversità di Pavia, Pavia, Italy
62aINFN Sezione di Perugia, Perugia, Italy
62bUniversità di Perugia, Perugia, Italy
63aINFN Sezione di Pisa, Pisa, Italy
63bUniversità di Pisa, Pisa, Italy
64aScuola Normale Superiore di Pisa, Pisa, Italy
64bINFN Sezione di Roma, Roma, Italy
64cUniversità di Roma “La Sapienza,” Roma, Italy
65aINFN Sezione di Torino, Torino, Italy
65bUniversità di Torino, Torino, Italy
65cUniversità del Piemonte Orientale (Novara), Torino, Italy
66aINFN Sezione di Trieste, Trieste, Italy
66bUniversità di Trieste, Trieste, Italy
54Kangwon National University, Chunchon, Korea
55Kyungpook National University, Daegu, Korea
56Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
57Korea University, Seoul, Korea
58University of Seoul, Seoul, Korea
59Sungkyunkwan University, Suwon, Korea
60aVilnius University, Vilnius, Lithuania
60bVilnius University, Vilnius, Lithuania
61Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
62Universidad Iberoamericana, Mexico City, Mexico
63Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
64Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
65University of Auckland, Auckland, New Zealand
66University of Canterbury, Christchurch, New Zealand

262001-12
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
Institute of Experimental Physics, Warsaw, Poland
Soltan Institute for Nuclear Studies, Warsaw, Poland
Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Joint Institute for Nuclear Research, Dubna, Russia
University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
University Autónoma de Madrid, Madrid, Spain
Universidad de Oviedo, Oviedo, Spain
Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
CERN, European Organization for Nuclear Research, Geneva, Switzerland
Paul Scherrer Institut, Villigen, Switzerland
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
Universität Zürich, Zurich, Switzerland
National Central University, Chung-Li, Taiwan
National Taiwan University (NTU), Taipei, Taiwan
Cukurova University, Adana, Turkey
Middle East Technical University, Physics Department, Ankara, Turkey
National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
University of Bristol, Bristol, United Kingdom
Rutherford Appleton Laboratory, Didcot, United Kingdom
Imperial College, London, United Kingdom
Brunel University, Uxbridge, United Kingdom
Baylor University, Waco, Texas 76798, USA
Boston University, Boston, Massachusetts 02215, USA
Brown University, Providence, Rhode Island 02912, USA
University of California, Davis, Davis, California 95616, USA
University of California, Los Angeles, Los Angeles, California 90095, USA
University of California, Riverside, Riverside, California 92521, USA
University of California, San Diego, La Jolla, California 92093, USA
University of California, Santa Barbara, Santa Barbara, California 93106, USA
California Institute of Technology, Pasadena, California 91125, USA
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
University of Colorado at Boulder, Boulder, Colorado 80309, USA
Cornell University, Ithaca, New York 14853-5001, USA
Fairfield University, Fairfield, Connecticut 06824, USA
Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA
University of Florida, Gainesville, Florida 32611-8440, USA
Florida International University, Miami, Florida 33199, USA
Florida State University, Tallahassee, Florida 32306-4350, USA
Florida Institute of Technology, Melbourne, Florida 32901, USA
University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA
The University of Iowa, Iowa City, Iowa 52242-1479, USA
Johns Hopkins University, Baltimore, Maryland 21218, USA
The University of Kansas, Lawrence, Kansas 66045, USA
Kansas State University, Manhattan, Kansas 66506, USA
Lawrence Livermore National Laboratory, Livermore, California 94720, USA
University of Maryland, College Park, Maryland 20742, USA
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
University of Minnesota, Minneapolis, Minnesota 55455, USA
University of Mississippi, University, Mississippi 38677, USA
University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0111, USA
State University of New York at Buffalo, Buffalo, New York 14260-1500, USA
Northeastern University, Boston, Massachusetts 02115, USA
Northwestern University, Evanston, Illinois 60208-3112, USA
University of Notre Dame, Notre Dame, Indiana 46556, USA
The Ohio State University, Columbus, Ohio 43210, USA
Princeton University, Princeton, New Jersey 08544-0708, USA
University of Puerto Rico, Mayaguez, Puerto Rico 00680
Purdue University, West Lafayette, Indiana 47907-1396, USA
Purdue University Calumet, Hammond, Indiana 46323, USA
Rice University, Houston, Texas 77251-1892, USA
University of Rochester, Rochester, New York 14627-0171, USA
The Rockefeller University, New York 10021-6399, USA
University of Rochester, Rochester, New York 14627-0171, USA
University of Tennessee, Knoxville, Tennessee 37996-1200, USA
Texas A&M University, College Station, Texas 77843-4242, USA
Texas Tech University, Lubbock, Texas 79409-1051, USA
Vanderbilt University, Nashville, Tennessee 37235, USA
University of Virginia, Charlottesville, Virginia 22901, USA
Wayne State University, Detroit, Michigan 48202, USA
University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.
bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
cAlso at Universidade Federal do ABC, Santo Andre, Brazil.
dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
eAlso at Cairo University, Cairo, Egypt.
fAlso at Suez Canal University, Suez, Egypt.
gAlso at Fayoum University, El-Fayoum, Egypt.
hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.
iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA.
jAlso at Université de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany.
lAlso at Moscow State University, Moscow, Russia.
mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
nAlso at Eötvös Loránd University, Budapest, Hungary.
oAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India.
pAlso at University of Visva-Bharati, Santiniketan, India.
qAlso at Facoltà Ingegneria Università di Roma “La Sapienza,” Roma, Italy.
rAlso at Università della Basilicata, Potenza, Italy.
sAlso at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy.

iAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

uAlso at University of California, Los Angeles, CA, USA.

vAlso at University of Florida, Gainesville, FL, USA.

wAlso at University of Florida, Gainesville, FL, USA.

xAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.
yAlso at INFN Sezione di Roma; Università di Roma “La Sapienza,” Roma, Italy.
zAlso at University of Athens, Athens, Greece.
aaAlso at California Institute of Technology, Pasadena, CA, USA.

bbAlso at The University of Kansas, Lawrence, KS, USA.

ccAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.

ddAlso at Paul Scherrer Institut, Villigen, Switzerland.

eeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.

ffAlso at Adiyaman University, Adiyaman, Turkey.

ggAlso at Mersin University, Mersin, Turkey.

hhAlso at Izmir Institute of Technology, Izmir, Turkey.

iiAlso at Kafkas University, Kars, Turkey.

jjAlso at Suleyman Demirel University, Isparta, Turkey.

kkAlso at Ege University, Izmir, Turkey.

llAlso at Rutherford Appleton Laboratory, Didcot, U.K.