FIREBALL : Detector, data acquisition and reduction
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ABSTRACT

The Faint Intergalactic Redshifted Emission Balloon (FIREBALL) had its first scientific flight in June 2009.
The instrument combines microchannel plate detector technology with fiber-fed integral field spectroscopy on an
unstable stratospheric balloon gondola platform. This unique combination poses a series of calibration and data
reduction challenges that must be addressed and resolved to allow for accurate data analysis. We discuss our
approach and some of the methods we are employing to accomplish this task.

Keywords: Cosmology, Integral Field Spectroscopy, FIREBALL, Data Reduction, Instrument Calibration

1. INTRODUCTION

The Faint Intergalactic Redshifted Emission Balloon (FIREBALL) successfully completed its first science ob-
servation in June, 2009. FIREBALL is a balloon borne experiment designed to observe Lya emission from
the intergalactic medium; an overview of the project can be found in Martin® in this volume. FIREBALL is
a 1lm class telescope equipped with a fiber fed UV integral field spectrograph. The integral field unit is built
from 281 UV optimized fibers and covers a hexagonal field of view 2.3 arcmin across. It feeds into a R ~
5000 modified Offner design spectrograph. The details of the spectrograph design are discussed in Tuttle et
al.2 The FIREBALL detector is a legacy GALEX NUV microchannel plate (MCP) device.** The instrument
exploits a narrow stratospheric balloon altitude observational window from 1950 to 2300 A. The FIREBALL
pointing system, which compensates for environmental perturbations during the flight achieved 77 RMS track-
ing. Mechanical and thermal instabilities have an effect on the structure and pointing of the telescope. Careful
instrument calibration and significant post flight data reduction are necessary to extract the scientific signal
form the collected data. This paper discusses the instrument calibration methods and how they fit into the
FIREBALL data reduction pipeline.

2. DETECTOR HARDWARE AND DATA FORMATTING
2.1 Detector

The FIREBALL detector subsystem consists of a vacuum sealed, microchannel plate intensified, cross delay line
readout detector head (figure 1), associated power and readout electronics (figure 2) that were designed for the
GALEX satellite® and an interface computer that is responsible for data storage and communication with the
ground and other hardware on-board the gondola. The microchannel plates multiply each photoelectron (yield of
1) by a factor of approximately 10°. A dual-output high voltage power supply (HVPS) with one programmable
(~ 5200V") and one fixed (—900V) output powers the detector head. The resultant charge cloud lands on a delay
line anode inside the tube head, where it is split and directed to four detector outputs. Measuring the timing
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Figure 1. FIREBALL NUV Detector: Legacy GALEX NUV microchannel plate detector used by the FIREBALL spec-
trograph.

Figure 2. FIREBALL FEE and Detector PC: Left side of the image shows the FEE which does time-to-digital conversion
and generates 40 bit photon data stream captured by the PC104 stack Detector PC, which is shown on the on the right.
The top card in the computer stack is see the EDT data acquisition board which captures the stream from the FEE and
generates a 1 Mbit/s science data stream incorporating photon, housekeeping, and pointing data.

difference at the ends of each axis determines the position of the cloud on the detector. A design resolution
requirement of ~ 50 um coupled with 65 mm detector head results in an unique design combining a traditional
current source-capacitor timing measurement (time-to-amplitude converter, or TAC) with a running coarse clock
so that the TAC scale is effectively applied to a relatively small fraction of the anode for each measurement.
Information for each photon incident on the detector is stored as a 64 data structure. 40 bits contain location and
quality information for the collected signal, the remaining 24 bits carry timing data. Table 1 breaks down the
information format. Arcing is a concern for MCP detectors and their HVPS at the typical few mbar pressures at
balloon altitudes. To ameliorate this concern the FIREBALL detector is housed in the spectrograph enclosure
which is kept pressurized at 0.5 atm during the flight. The interface computer and detector front end electronics
(FEE) were in a separate pressurized enclosure to protect the hard disk used for data storage.

2.2 Science Telemetry

FIREBALL has three telemetry channels as shown in figure 3. These are: a 1200 baud general command
uplink, a 38400 baud downlink shared by four onboard instruments, including the detector subsystem, a video
downlink used by the guidance system, and a 1 Mbit/s bi-phased downlink used by the detector for science
and housekeeping data. . Central to the science telemetry system is the Detector PC, which is a PC 104 stack
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1D Bits Description

Xame 12 X-axis fine position
Yamc 12 Y-axis fine position
XB 3  Y-axis coarse position
Ys 3 Y-axis coarse position
Xa 5 Wiggle

Q 5 Pulse height

T 24 Time stamp

Table 1. Photon data formatting: Due to the legacy design from GALEX, FEE position data is measured by two clocks
(fine and coarse) for each axis. The coarse clock is free running and the photon positions are measured asynchronously
as they interact with the detector. The fine position data represents the fraction of coarse clock required to complete the
timing. ”Wiggle” is the actual position on each time-to-amplitude converter (TAC). Because there is non-linearity with
respect to fine position measurement the Wiggle knowledge is necessary for further correction. In addition to the wiggle
the pulse height (Q) of each photon is also used for correction. This is because the michrochannel plates are large and
the gain varies significantly (~ 40%) over the detector head. This is due to chemical impurity over the michrochannel
plates and variation in gap between the plates. Therefore, non-linear fine position correction is done by use of pulse height
distribution

(ADL855PC-370C) with a data acquisition board (EDT PCI-CDa) equipped with custom bitfile loaded on one
of the Xilinx FPGA, and an I/O board (ADL 104-AI012-8). This computer ingests two input streams from the
FEE, one contains 40 bit science data words, the other 32 bit housekeeping data. FIREBALL is an unstable
gondola platform, pointing stabilization and accurate pointing reconstruction are crucial.® The FIREBALL
multi-layered tracking system achieves target tracking to better than 7”7 (rms), furthermore, post-flight guider
camera image processing recovers pointing information to better than 3” for the flight. The guider control
computer notifies the detector PC when each guidance image is taken (every 33ms) . This data is incorporated
into the housekeeping stream which uses the same timing as the photon data. This way the astrometric solution
is known for every photon that is observed by the detector and celestial coordinates (RA, Dec) can be assigned
to it. Every count that is registered by the MCP generates a data stream from FEE that is captured by the
data acquisition board. Once the data acquisition board buffer is full, an interrupt is triggered and the buffer is
transferred to the relevant processes running on the Detector PC. In order to reduce the number of interrupts
at Detector PC and to prevent data loss a set of 10 photons are read out at a time with 10 millisec accuracy.
Each data stream are saved in separate data files on board on the hard disc.

Science telemetry consists of 256 word frame with 32 bit words. Each frame consists of 1 word start pattern,
1 word frame number, 6 word housekeeping data, 5 word guider data and rest are photon data. Guider data
includes time stamp of the frame, frame number, elevation and cross-elevation value, and exposure time. The 1
Mbit /s bi-phased science telemetry goes through Greco Decom provided by Columbia Scientific Balloon Facility
(CSBF) on ground. The decom generates 16 bit parallel data stream that is read into a standard desktop PC
using a data acquisition board (EDT PCI 16D). The science telemetry data is sorted in software and saved on
ground in separate files for each data stream. Also house keeping, photon data, and guider data are displayed
in real time to monitor and validate data and operation as seen in figure 4.

3. INSTRUMENT CALIBRATION AND DATA REDUCTION

Before meaningful results can be extracted from the FIREBALL data, the location of photon events on the
detector must be correlated with their location within the sky-wavelength data cube. This mapping changes
during the course of the flight, predominantly from thermal effects on the instrument optics and electronics. We
used a series of tools and methods to calibrate and characterize the instrument. These methods and their main
goals are summarized in Table 2.
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Figure 3. FIREBALL telemetry schematics: Blue is uplink/downlink shared by 4 instruments and red is video and 1
MB/s science downlink. Left half of the diagram are instruments on board on the FIREBALL gondola. Right hand side
of the diagram are instruments on ground. While the dotted lines represents radio link. FIREBALL used two channels
CIP” and SIP provided by CSBF /NASA for uplink and downlink. CSBF requires package formatting for the CIP (uplink)
commands. This was done by a PC on ground and an FPGA board on the gondola.
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Figure 4. FIREBALL Real Time Housekeeping display is used to display count rate (left hand side 2nd from bottom box),
voltages (lower left corner box), pulse height distribution (lower center box). etc. relevant to operating the detector.
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Method

Purpose

Calibration bundle illuminated by PtNe
arc-lamp

Fiber IFU illuminated by the PtNe arc-
lamp through a diffuser

Fiber IFU illuminated by the deuterium
lamp through a diffuser or off the inside
of the gondola door

Raster scan of a point source over the fo-
cal plane end of the fiber bundle

Movie of focal plane end of the IFU fiber
bundle while illuminating the spectro-
graph slit end with a point source

Observation of calibration stars
Detector dark

Twilight flats

Mapping of the changes in wavelength and fiber
location on the detector during the flight

Wavelength mapping for all science fibers

Spectral flat-fielding and locating the fiber images
on the detector

Mapping of the IFU fiber bundle in detector co-
ordinates; locating individual fiber images on the
detector

Mapping of the fiber bundle slit end onto the focal
plane end

Absolute throughput calibration

Subtraction of detector background from the sci-
ence data

Fiber flat-fielding

Table 2. A summary of the calibration data taken before and during flight. The application of this data is described in
section 3

3.1 Initial Processing

Data reduction starts with converting the raw bit data generated by the detector electronics into a FITS table
format that can be viewed using legacy GALEX data analysis software (DATOOL?®) and easily be manipulated
in IDL. As discussed in section 2.1, the position coordinates for individual detector events can be derived from
the coarse clock and a fine clock values via the expressions:

X:
Y:

XAmC + anB
Yame + 0, Yn (1)

The two integer parameters a, , are in the neighborhood of 2000 and are found empirically by comparing sizes
of focused spots on the detector as the values are changed. The best values found for the in-flight FIREBALL
data are a; = 2005 and a, = 1991. The FIREBALL detector was mounted inside the spectrograph enclosure so
as to align the detector Y axis with the dispersion direction of the spectrograph and the detector X axis parallel
to the slit direction. An inspection of the data revealed a 1 degree clockwise rotation between the two sets of
axes. The event coordinates were transformed to correct for this rotation. At this point four small defects on
the detector that exhibit greatly increased count rates were flagged as “hot-spots” to allow for masking.

3.2 Detector Coordinate System

The FIREBALL spectrograph has 37 calibration fibers that run from the calibration light source to the spec-
trograph entrance slit bypassing the focal plane (see Tuttle?). These fibers were used periodically during and
prior to the flight to illuminate the detector with a PtNe spectrum. The locations of fibers along the spatial
direction of the detector and the locations of PtNe peaks along the spectral direction yield a coordinate grid.
This coordinate grid is then found for all the calibration images taken. The first in-flight calibration image
was chosen as the reference and all prior and subsequent spectra were transformed to match the fiber and peak
locations. The coefficients of these transformations were then fitted with quadratic polynomials as a function of
time and the resultant corrections were applied to the full data-set.
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Figure 5. The left panel shows the FIREBALL detector illuminated by calibration fibers. The series of calibration images
like the one pictured were used to correct for thermal changes in the electronics and the optics. The flat-field image in
the right panel shows the nature of the fiber spacing within the bundle. The central regions of the spectrograph slit are
more densely populated with fibers, making use of the greater wavelength coverage. The dark spots visible in the right
panel are masked hot-spots.

3.3 IFU fiber locations on the detector

FIREBALL flew with 280 active science fibers. The fibers on the outer thirds of the spectrograph entrance slit
were more sparsely spread than those in the center (right panel of Figure 5). Two different methods were used
in establishing the location of the fiber images on the detector. The first method used full IFU fiber bundle
illumination via a diffuser. The positions of the detector counts were collapsed along the wavelength direction and
histogrammed. Gaussian profiles were fit to the resultant curves, deblending neighboring fibers when necessary.
The second method relied on sequential illumination of fibers during a raster scan of the IFU bundle (detailed
below). An inspection of the detector illumination during short time periods (1s) gave the location of each fiber
on the detector. The two methods yielded results that differed by under two detector pixels in most cases (a
fiber FWHM is ~18 pix), notable exceptions occurring in parts of the detector where the fibers were very closely
spaced.

3.4 Wavelength solution

Prior to flight the full IFU fiber bundle was illuminated with PtNe light through a diffuser. The spectrum for each
of the 280 fibers was then extracted and compared with a resolution-degraded PtNe spectrum from NIST? from
which all PtIT lines were removed, as they did not appear in the spectrum of the FIREBALL lamp. Anywhere
from 2 to 7 peaks were matched for the individual fiber spectra and linear, quadratic or cubic solutions were
found, depending on the available number of matched peaks.

3.5 IFU — optical guider mapping

Reconstructing the on-sky positions of observed objects requires that we have a mapping between the FIREBALL
guider® coordinates and the focal plane end of the fiber bundle. This mapping was obtained by making two
measurements and combining their results. The first was a movie that was created by filming the focal plane
end of the bundle while illuminating the slit end with a visible light pinhole source, picking out individual
fibers. Processing the resulting image gave an accurate set of coordinates for the fibers and a sequential mapping
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Figure 6. The layout of the FIREBALL IFU fiber bundle focal plane end. The symbols mark the fiber centers and the
values above each fiber correspond to the sequential number of each fiber on the spectrograph slit end of the bundle.
Some of the details of the bundle manufacture are given in Tuttle et al.? in these proceedings.

of these fibers from the hexagonal packing in the focal plane end to the linear array at the slit end. The
second measurement was a raster scan of the bundle installed in the spectrograph. A star-simulator (an inverted
telescope with a single fiber deuterium light source in its focal plane) output a collimated beam that was directed
at the FIREBALL telescope. This light formed a focused spot at the FIREBALL focal plane which was moved
in a snake-like raster pattern over the full fiber bundle by the FIREBALL guidance system. The recorded time-
stamped spot locations on the guider CCD were correlated with the illuminated regions on the detector. This
generated rough mapping of fiber locations in the guider coordinates. As the telescope and guider optics have
very little field curvature, linear regression was used to convert the linear-scan coordinates to the guider frame.
The resulting fiber bundle layout is shown in Figure 6.

3.6 Fiber assignment

Every detector count needs to be associated with one of the IFU fibers. The image of an individual fiber on the
detector forms an ~18 pixel FWHM gaussian when collapsed along the wavelength direction. As is visible in the
right panel of Figure 5 the fibers on the sides of the spectrograph entrance slit are sparsely spaced, and so are
their images on the detector (typically 30 pix apart). For photons that fall within this range fiber assignment is
simple as their footprints do not overlap. The central parts of the slit, however, contain fibers whose wings on the
detector do overlap (15 pix spacing). The algorithm used to mark which fiber a given detector count belongs to
differs depending on the nature of the source being observed. For strong continuum sources, such as calibration
stars, the observation is cut into short time slices (about 0.5 s). For each time sub-interval the coordinates of
the photon count events along the slit direction of the detector are histogrammed. The histogram is fit with
a linear combination of fiber gaussian profiles. This linear combination is used to generate a fiber probability
distribution function (PDF) for every location along the slit. The fiber for each detector event is then randomly
selected from this PDF. Faint sources do not accumulate enough counts on timescales comparable with a fiber
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Figure 7. An exposure cube for one of the targets from the FIREBALL flight. The three-dimensional array was collapsed
along the wavelength direction. The intensity in the plot is proportional to the exposure time FIREBALL spent on a
particular pixel (brighter regions indicate a longer time). Histogram equalization was applied to bring out the features in
the image.

crossing time during an on-sky dither. The fiber PDF is computed once, assuming all fibers contribute equally,
and used for all counts during an observation.

3.7 J2000 coordinate assignment

Each detector count is associated with a frame number from the optical guider. The procedures outlined above
yield a fiber number and a wavelength for each count. As every fiber has been identified with a guider pixel
coordinate, and an astrometric solution is known for each guider frame during an observation, J2000 coordinates
can be assigned to each detector event. At the end of this step every count is tagged with an (RA, Dec,
Wavelength) triplet.

3.8 Data Cube

Once the detector counts are associated with sky coordinates and wavelength a data cube (a three-dimensional
histogram) is created for every observation target. The binsize used for FIREBALL is 3” x 37 x 0.25A4. The
intensities encoded in the data cube must be corrected for instrument response and for non-uniform coverage
of the target region of the sky. The former is due to fiber-to-fiber throughput variations and different fiber
wavelength ranges because of the circular detector shape. The latter is caused predominantly by the dithering
that FIREBALL used to improve spatial sampling. A second three dimensional histrogram, an exposure cube,
takes these into account. It is of the same size as the data cube and every voxel contains the product of the
effective area and exposure time for the region of sky and wavelength range it represents. Figure 7 shows a one
of the exposure cubes for the second FIREBALL flight.
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4. CONCLUSION

The FIREBALL data from the first scientific flight has been reduced and data and exposure cubes have been
generated. Analysis efforts are now under way to extract scientific results from the collected data.
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