Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2011 | public
Journal Article

Design and Performance of a 600–720-GHz Sideband-Separating Receiver Using AlO_x and AlN SIS Junctions

Abstract

We present the design, modeling, construction, and characterization of a sideband separating heterodyne receiver that covers the frequency range from 600 to 720 GHz. The receiver has been constructed using waveguide technology in the split-block technique. The core of the mixer consists of a quadrature hybrid, two directional couplers to inject the local oscillator signal, two superconductor–insulator–superconductor (SIS) junctions, three signal-termination loads, and two planar IF/bandpass-filter/dc-bias circuits. The instrument that we have constructed presents excellent performance as demonstrated by two important figures of merit: receiver noise temperature and sideband ratio. Across the entire band, the uncorrected single-sideband noise temperature is below 500 K and reaches 190 K at the best operating point. The sideband ratio is greater than 10 dB over most of the frequency operating range. Superconducting junctions containing AlO_x - and AlN-tunnel barriers were tested.

Additional Information

© 2010 IEEE. Manuscript received February 11, 2010; revised July 20, 2010; accepted September 03, 2010. Date of publication November 29, 2010; date of current version January 12, 2011. This work was supported by NOVA, by the Netherlands Research School for Astronomy, and by the European Community's Sixth Framework Programme under RadioNet R113CT 2003 5058187. The work of A. M. Baryshev was supported by the Netherlands Technology Foundation (STW) and The Netherlands Organisation for Scientific Research (NWO) VENI 08119. The authors wish to thank B. Jackson and C. Major, both with the Netherlands Institute for Space Research (SRON), Groningen, The Netherlands, for reading early versions of this paper's manuscript, M. Bekema, SRON, for her diligent help in soldering various components in the mixer and the cryostat, and K. Kaiser, SRON, for his help in machining the cryostat components.

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023