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Numerical bifurcation diagram for the two-dimensional boundary-fed
chlorine-dioxide–iodine–malonic-acid system

S. Setayeshgar* and M. C. Cross
Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125

~Received 22 June 1998!

We present a numerical solution of the chlorine-dioxide–iodine–malonic-acid reaction-diffusion system in
two dimensions in a boundary-fed system using a realistic model. The bifurcation diagram for the transition
from nonsymmetry-breaking structures along boundary feed gradients to transverse symmetry-breaking pat-
terns in a single layer is numerically determined. We find this transition to be discontinuous. We make a
connection with earlier results and discuss prospects for future work.@S1063-651X~99!01104-6#

PACS number~s!: 82.20.Wt, 82.20.Mj, 47.54.1r
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I. INTRODUCTION

In 1952, Turing showed@1# that under certain conditions
reaction and diffusion processes alone could lead to
symmetry-breaking instability of a system from a homog
neous state to a stationary patterned state. The Turing in
bility is characterized by an intrinsic wavelength, in contra
to hydrodynamic instabilities, such as Rayleigh-Be´nard con-
vection where the wavelength depends on cell height.
this reason, this instability mechanism has particular
evance to pattern formation in biological systems@2,3#.
Given the difficulties of noninvasive experiments on biolo
cal systems, experimental studies of Turing pattern form
tion have been carried out primarily on chemical system
Even so, Turing patterns have been generated in the lab
tory only recently, specifically in the chlorite-iodide
malonic-acid ~CIMA ! chemical reaction-diffusion system
@4–7#.

Although Turing patterns have been extensively stud
theoretically and numerically in the context of abstract mo
els, the possibility of comparison with controlled and rep
ducible experiments provides motivation for quantitati
analyses based on realistic models of these systems. Len
Rabai, and Epstein~henceforth referred to as LRE! have pro-
posed a realistic model of the simpler chlorine dioxid
iodine-malonic acid ~CDIMA ! reaction-diffusion system
@8,9#. The chemistry of the CDIMA and CIMA systems a
related, and the two are similar in terms of their station
pattern forming and dynamical behavior. The potential
both experimental and theoretical work makes the CDIM
system well suited for the study of nonequilibrium patte
formation in general.

In practice, this has not been fully realized, and unlike
fluid systems@10#, experimental and theoretical efforts
chemical systems have not been closely coupled. First,
merical solution of reaction-diffusion equations using rea
tic chemical parameters is computationally demanding.
addition, the algebraic complexity of the realistic nonline
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reaction terms renders these models unsuitable for ana
by standard analytical tools. Furthermore, unlike the c
considered originally by Turing and subsequently by othe
the experimental system is not uniform. A continuous sup
of reactants is fed into the reactor from two separately n
reactive reservoirs to keep the system far from equilibriu
setting up gradients in the concentrations of these reser
species along the width of the reactor. In an earlier wo
@11#, we used the realistic LRE model to investigate the f
mation of one-dimensional stationary structures along
boundary feed gradients and their linear instability to tra
verse symmetry-breaking~Turing! patterns. Here, we exten
these results by numerically solving the fully nonline
reaction-diffusion equations in two dimensions.

Kadar, Lengyel, and Epstein@12# have also numerically
investigated two-dimensional Turing patterns within t
LRE model, but in a closed system~i.e., in the absence o
gradients! where the patterns are transient by nature. Tw
dimensional numerical simulations of Turing patterns
ramped systems have been performed using popular abs
models, such as the Schnakenberg model@13,14#, and the
Brusselator model@15–17#, as well as the generalized Swif
Hohenberg equation@18#. These models, which are easier
implement, produce patterns that possess similar feature
those observed in experimental systems. However, they
not allow quantitative comparison or prediction of new fe
tures at specific parameter values of a real chemical sys

In this article, we present a numerical solution of the LR
model in a boundary-fed system in two dimensions, cor
sponding to sustained patterns in thin-strip open reactors.
determine the branch of the bifurcation diagram correspo
ing to the transition to stripes in this system, a result that
be directly investigated in experiments based on the CDIM
system. In Sec. II, we present the model and parame
used. In Sec. III, we describe our numerical method. W
present our results in Sec. IV, and give conclusions and p
pects for future work in Sec. V.

II. CHEMICAL MODEL

The LRE model of the CDIMA reaction-diffusion system
has been discussed in detail elsewhere@12,11,19#. The result-
ing governing partial differential equations are given belo

ent
6
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]@ClO2
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2
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2#, ~5!

]@SI3
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]t
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The nonlinear reaction terms are given by

r 15
k1a@MA #@ I2#

k1b1@ I2#
, ~7!

r 25k2@ClO2#@ I2#, ~8!

r 35k3a@ClO2
2#@ I2#@H1#1

k3b@ClO2
2#@ I2#@ I2#

h1@ I2#2
, ~9!

r 45k1@S#@ I2#@ I2#2k2@SI3
2#. ~10!

The left/right reservoir species are malonic ac
(MA)/chlorine dioxide (ClO2) and iodine (I2), respectively.
As these species diffuse through and react in the gel rea
the dynamical iodide (I2) and chlorite (ClO2

2) species are
produced. The concentration of starch in excess~S! is as-
sumed to be uniform and constant, equal to its initial va
(S0). The starch triiodide complex (SI3

2) is the experimen-
tally observed species.

The rate and diffusion constants used in the numer
calculations here are taken from Refs.@12,19,20# and are
given in Table I. The value of the parameterh in Eq. ~9! is
not an experimentally determined quantity but rather cho
in an ad hocmanner@8,21# to preserve the validity of the
second term in the rate lawr 3 for very low @ I2#. This issue
is discussed in detail by Rudovicset al. @22#. In the two-
sided-feed geometry explored here, at the boundaries w
Dirichlet boundary conditions hold for the iodide specie
this rate law will not be strictly valid. However, our earlie
work @11# demonstrates its validity (@ I2#*Ah) in the rel-
evant interior of the gel ~and away from theboundaries!
where the localized front patterns form.

The experimental CIMA reaction is similar to the CDIM
reaction in terms of dynamics and stationary pattern form
tion @19,23,24#. However, a quantitative model of the CIMA
reaction does not exist. In particular, the role of chlorin
dioxide in this reaction is not well understood@19#. Further-
more, it has been pointed out that in the experimental CIM
system, use of chlorite and iodide along with acid as res
voir species could lead to reactive reservoirs@19#. In the
or,
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re
,

-

-

r-

CDIMA system, chlorine dioxide is nonreactive with bo
iodine and malonic acid, allowing for well controlled boun
ary concentrations of these species. It is known from ba
experiments and simulations of the CDIMA system that co
centrations of chlorine dioxide, iodine, and malonic ac
vary little on the scale of variations in the chlorite and iodi
concentrations@8#. This observation has formed the basis
the adiabatic elimination of the former reactants, resulting
a two-variable reduction of the full model@8,25#, and making
their identification as the background species a natural o
Hence, in the interest of aligning experiment with numeric
and theoretical work in this area, it appears reasonable
experiments to implement the CDIMA system.

III. NUMERICAL METHOD

A pseudospectral method was used to solve the gover
partial differential equation in two dimensions. The physic
boundary conditions are no flux in thex direction~transverse
to the gradients!, and fixed point boundary conditions in th
z direction~along the gradients!. In our numerical implemen-
tation, the governing equations are cosine Fourier tra
formed in thex direction, and each spectral mode is evolv
in time as a one-dimensional problem in thez direction. We
used a five-point finite-difference approximation with
variable-width spatial mesh to allow better resolution of t
sharp front patterns along the gradients. The time-stepp
scheme was Crank-Nicolson for the linear terms~implicit!
and Adams-Bashford for the nonlinear terms~explicit!, both
second-order accurate. After each time step, the updated
lutions were transformed back into real space to reconst
the nonlinear terms.

As Table I indicates, the large order-of-magnitude var
tions in the real chemical parameters of the LRE model m
numerical solution of this model less tractable than the afo

TABLE I. Kinetic constants for the CDIMA system.

Rate or diffusion constant Dimensions Value

k1a (s21) 931024 a

k1b ~M! 531025 a

k2 (M21 s21) 13103 a

k3a (M22 s21) 1.23102 a

k3b (s21) 1.531024 a

h (M2) 1.0310214 a

k1 (M22 s21) 6.03105 b

k2 (s21) 1.0b

D I2 (cm2 s21) 7.031026 c

DClO
2
2 (cm2 s21) 7.031026 c

D I2
(cm2 s21) 6.031026 a

DMA (cm2 s21) 4.031026 a

DClO2
(cm2 s21) 7.531026 a

DH1 (cm2 s21) 1.031025

K@S#o (M21) 6.253104 d

aFrom @20# at 7°C.
bFrom @12# at 4°C.
cFrom @23# at 4°C.
dFrom @19# at 4°C.
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FIG. 1. Two-dimensional solution for starch triiodide with@MA #L50.0115 M: The initial condition is shown in~a!. The numerical
solution afterT51000 s of evolution time is shown in~b!. Dark and light shadings correspond to low and high concentrations, respect
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mentioned abstract models. The stability restriction on
time stepDt due to explict treatment of the nonlinear term
is onerous. Hence, we parallelized the above numer
scheme, and the computations were performed on a 5
node Intel Paragon.

As initial conditions, we used the stationary solutio
uW s(z) alongz with a uniform profile inx, to which we added
a perturbation given by the most linearly unstable modek* :

uW ~x,z,t50!5uW s~z!1CduW k* ~z!cos~k* x!. ~11!

duW k* (z) is the eigenvector obtained from the linear stabil
analysis, andC is an overall scale factor to ensure th
the perturbation is small and lies in the linear regim
The concentration vectors correspond to the six variab
of the LRE model. The full six-variable linear stabilit
analysis was carried out using inverse iteration@26#.
The nonzero boundary conditions in thez direction
are @MA #L50.0115 M, @ClO2#L50.006 M, and @ I2#L
50.008 M, where (R,L) refer the right and left reservoirs
respectively. From the linear stability analysis ofuW s(z), the
growth rate for the instability atk* 5471.2 cm21 is l(k* )
50.004 65 s21, giving a characteristic saturation time oft
;1/l;215 s. The system size is 0.3 cm in thez direction
and 0.133 cm in thex direction, corresponding to exactly te
wavelengths in thex direction. The spatial resolution of th
system investigated here wasNx5129 andNz5914. One
thousand iterations at this resolution required approxima
12 node hours.
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The integration time step wasDt50.001 s, chosen to be
the same as that for the time evolution in one dimension
the one-dimensional time evolution, the restriction on t
time step due to the explicit treatment of the nonlinear ter
was explored empirically, by varyingDt and using a value
such that the algorithm was stable. We investigated usin
higher-order~third-order! Adams-Bashford scheme to verif
that the restriction onDt was limited by stability as oppose
to accuracy. The dynamically evolved stationary state w
compared with that obtained from direct solution using
Newton-Raphson root-finding algorithm. We determined
time step used in one dimension to be adequate for the
evolution in two dimensions as follows: By using initial con
ditions uniform in thex direction~and equal to 5310212 M
for all species!, thereby reducing the two-dimensional tim
evolution to be effectively one-dimensional, we verified th
the asymptotic solution was the same as that obtained in
dimension. It is possible that implementing a numerical
gorithm adapted to solving stiff partial differential equatio
~see Ref.@12# and references therein! will improve the total
execution time in the two-dimensional evolution.

IV. RESULTS

A. Two-dimensional stationary solution

In Fig. 1, we show density plots of the initial state, as w
as the numerical solution for the starch triiodide species a
a total integration time of approximatelyT51000 s, with
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FIG. 2. Time evolution of the most linearly unstable modek* and its higher-order harmonics:~a!–~d! show the values of the
k* , 2k* , 3k* , and 4k* modes for the starch triiodide species at the peak of the most linearly unstable eigenvector (z50.094 cm), as a
function of time;~e!–~h! show the logarithms of magnitudes of these amplitudes. The plots are shown for nondimensionalized qu
~The time and concentration conversion factors are 931024 s21 and 531025 M, respectively.! The slope of the linear segment~heavy
line! in plot ~e! for t,0.2 is 5.12960.012, and agrees well with the growth ratel(k* )55.172 from the linear stability analysis.
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dark and light shading representing low and high concen
tions, respectively. In Figs. 2~a!–~d!, we show the time evo-
lution of thek* mode and its higher-order harmonics at t
peak of the linear instability eigenvector (z50.094 cm) for
the starch triiodide species. In Figs. 2~e!–~h!, we plot the
logarithm of the magnitude of these quantities.~These plots
are shown for thenondimensionalizedquantities.! The slope
of the linear segment in Fig. 2~e!, for t,t;0.2 is 5.129
60.012 ~corresponding to 0.004 61660.000 011 s) agree
well ~to within one percent! with the linear growth rate, and
further verifies our linear stability results. In these plots, it
apparent that the saturated amplitudes of the higher-o
harmonics are much smaller than that ofk* .

To compare the size of the nonlinear perturbations in
x direction with the unperturbed profile in thez direction, we
have plotted thex andz dependence of the two-dimension
solution. In Fig. 3~a!, we show thex dependence at the pea
of the linear instability eigenvector (z50.094 cm), which
approximates a pure Fourier mode, verified by the relativ
small saturated amplitudes of the higher-order harmonic
Fig. 2. In Fig. 3~b!, the dashed and dotted lines denote
profiles in the z direction at x50.067 cm55l and x
50.073 cm55.5l, respectively. The solid line denotes th
profile of the unperturbed one-dimensional stationary st
We note that although the saturated amplitude of the tra
verse instability is comparable to the variation of the on
dimensional stationary state in thez direction, itsx depen-
dence is not strongly nonlinear.

The results presented in this section can be summar
by three points. First, we have presented a numerical solu
of two-dimensional patterns in theboundary-fedCDIMA
reaction-diffusion system using the LRE model. Second,
numerical solution agrees qualitatively with patterns o
served in thin-strip reactors in experiments on the CIM
system, for experimental conditions giving a single unsta
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front @27#. The wavelength of the solution presented here
0.133 mm, in agreement with the 0.13–0.33 mm experim
tally observed range@28#. Finally, the numerical evolution in
two dimensions confirms our result from the linear stabil
analysis of the one-dimensional stationary state along
gradients@11#.

B. Bifurcation diagram

The symmetry-breaking transition from Fig. 1~a! to Fig.
1~b! is effectively one dimensional, since only a single lay
is unstable over a range of values of@MA #L control param-
eter, as we showed in Ref.@11#. In this earlier work, we
demonstrated the existence of~three! disjoint unstable ranges
as the @MA #L control parameter was continuously varie
from 4.031023 M to 4.031022 M, consistent with ex-
perimental observations in thin-strip reactors showing the
pearance and subsequent vanishing of a transverse insta
as one of reservoir concentrations was increased. Here
numerically investigate the dependence of the saturated
plitude of the transverse instability on the@MA #L control
parameter in the vicinity of the~lower! bifurcation point for
one of these unstable ranges (9.7331023 M,@MA #L
,1.2531022 M). In the following, for convenience, we
report our results innondimensionalizedunits: the time con-
version factor isk1a5931024 s21, and the concentration
conversion factor isk1b5531025 M.

First, the critical control parameter was determined n
merically from a linear fit to the maximum linear growth ra
versus @MA #L . This value was found to be@MA #c
5194.5226. Linear stability analysis of the stationary state
this value of@MA #L yields a maximum growth rate ofl*
51.105431024. This value ofl* , which is expected to be
zero, gives a combined measure of the numerical uncert
ties in the determination of the stationary state at a partic
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value of @MA #L as well its linear stability. Hence, in prin
ciple, there would be error bars associated with values
@MA #L , equal toD@MA #L5aDl53.082631024, wherea
is the slope of the linear fit from which@MA #c is extracted.

Figure 4 shows the computed bifurcation diagram. St
ing in the supercritical regime, for each value of@MA #L , as
initial condition, we use the corresponding one-dimensio
stationary solution in thez direction seeded with the mos
linearly unstable eigenvector at approximately the satura
amplitude of the previous higher value of control parame
~adiabatic approach!. The final converged amplitudes we
obtained from a least squares fit of the dynamical evolut

FIG. 3. Spatial dependence of the two-dimensional solution
the x andz directions for SI3

2 species:~a! The system size in thex
direction is 0.133 mm, constructed to incorporate exactly ten wa
lengths of the most linearly unstable modek* . The profile in thex
direction is plotted atz50.094 cm.~b! The dashed and dotted line
denote the profiles in thez direction atx50.067 cm55l and x
50.073 cm55.5l, respectively. The solid line denotes the profi
of the unperturbed one-dimensional stationary state. We note
the saturated amplitude of the instability is comparable to the va
tion in the profile of the one-dimensional stationary state in thz
direction.
of

t-

l

d
r
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of the peak amplitude to an exponential plus a constant
set, excluding initial points until the converged value did n
depend on the number of excluded points.

Close to onset, the solution is given by

uW ~x,z,t !5duW k* ~z!@A~ t !exp~ ik* x!1A* ~ t !exp~2 ik* x!#,
~12!

wherek* is the most linearly unstable mode, andA(t),A* (t)
are complex conjugates. The amplitude equation, wh
gives a universal description of the weakly nonlinear beh
ior and depends only on the symmetries of the problem~in
this case, translational invariance in thex direction! is ~at
seventh order!:

]A

]t
5eA1g1uAu2A1g2uAu4A1g3uAu6A, ~13!

where the coefficients depend on the specific system un
investigation, ande[@MA #L2@MA #c is the distance from
onset. Our results, described below, reveal a subcritical~first
order! bifurcation.

Figure 4 shows a sixth order polynomial fit to the nume
cal data: @MA #L5@MA #c2g1uAu22g2uAu42g3uAu6. First,
@MA #c was held fixed at the linear threshold value, a
(g1 ,g2 ,g3) were fitted for. The goodness of the fit depend
on the number of points farthest from linear threshold
tained in the fit. We determined that excluding the last po
(@MA #L5230.0) gave the best fit. The fitted parameters

g151.7585, ~14!

g2524.0825, ~15!

g3520.82677. ~16!

Sinceg1.0, the instability does not saturate fore.0, and
the bifurcation is subcritical. We also investigated allowi

n

e-

at
a-

FIG. 4. Bifurcation diagram: The solid curve is the computed
the broken curve corresponds to the unstable branch. The
shows the vicinity of the saddle node bifurcation (@MA #SN

5194.34), and the dotted vertical line denotes linear thresh
(@MA #c5194.5229). The plots are shown for nondimensionaliz
quantities.
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all parameters, (@MA #c ,g1 ,g2 ,g3), to float. Again, exclud-
ing the last point produces a fit with an offset@MA #c , which
is closest to the linear threshold value. The values of
fitted parameters in this case are (@MA #c ,g1 ,g2 ,g3)
5(194.47,1.5548,23.8692,20.891 60).

Figure 5 shows the convergence of the peak amplitud
the fastest growing linear mode for@MA #L5194.4 in the
subcritical region. It shows convergence from above and
low to a finite amplitude instability. The error for the con
verged amplitude is estimated to be one-half of the diff
ence between the converged-from-above and conver
from-below values. This error (8.031024) is taken to be
the same for all points, even though the convergence f
below was not repeated for all points@29#. We also con-
firmed the decay of alinear perturbation at this same sub
critical value. An exponential fit to the dynamical evolutio
of the peak amplitude of the instability yields a decay rate
l520.0416, in good agreement with the largest eigenva
l520.0429.

The minimum value of@MA #L below which a finite am-
plitude instability does not exist, corresponding to t
saddle-node bifurcation, can be computed from the fitted
rameters. Using the parameter values given in Eqs.~14!–
~16!, @MA #SN is found to be

@MA #SN5194.34. ~17!

The inset in Fig. 4 shows this turning point. For@MA #L
5193.0 below this value, we explicitly verified decay to ze
of an initial perturbation with amplitudeA50.7756.

We note that the transition is ‘‘weakly’’ subcritical. Thi
is characterized by the small range of control parameter
low linear threshold, approximately equal to 0.18
31026 M), for which a finite amplitude instability exists, in
comparison with the linearly unstable range, 55.4 (2
31023 M), determined in our earlier work@11#. The

FIG. 5. Convergence to finite amplitude below linear thresho
@MA #L5194.4: The closely spaced circles denote the numer
time evolution, and the solid lines denote the computed fit to
exponential plus a constant offset. Convergence from above
below to a finite amplitude is apparent. The plot is shown for n
dimensionalized amplitude.
e
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weakly subcritical nature of the transition implies that a li
ear stability analysis of the one-dimensional structures al
the gradients@11# does have utility in predicting the exis
tence of a transverse instability for given reaction parame
and boundary conditions over a wide range of control para
eters~in the supercritical regime!.

V. CONCLUSION AND DISCUSSION

To summarize, we have carried out a two-dimensio
numerical simulation of the boundary-fed CDIMA reactio
diffusion system based on the realistic LRE model for t
system. Our results are qualitatively similar to those seen
experiments on the CIMA reaction-diffusion system, a
support the earlier work@11# in which we studied the linea
instability of the boundary-fed CDIMA system to transver
Turing patterns.

Numerical studies by Jensenet al. @30–32# on the two-
variable LRE model withuniform backgrounds have found
the transition to stripes in one and two dimensions to
subcritical. Our results demonstrate this transition to also
subcritical in theboundary-fedLRE model. This prediction
and computed bifurcation diagram can be directly verified
experiments based on the CDIMA system.

The subcritical nature of the transition to stripes mak
the LRE model qualitatively different from other abstra
reaction-diffusion models hitherto used to study Turing p
terns. For example, in the ramped Brusselator, the transi
to stripes has been shown to be supercritical@33#. Jensen
et al. have investigated the propagation of fronts separa
the homogeneous steady state from the Turing structur
one and two dimensions using the uniform LRE model. T
subcriticality allows for the existence of a range of values
control parameters for which the front velocity vanishes,
lowing an infinite number of stable steady inhomogeneo
structures. Despite the weakly subcritical nature of the tr
sition, it would be interesting to similarly investigate fron
propagation and formation of localized~quasi-one-
dimensional! states in the boundary-fed system.

In experimental geometries~disk reactors! where the di-
mensions of the reactor transverse to the gradients are la
the analog of the one-dimensional row of spots that devel
in our numerical simulation and in experiments using th
strip reactors is a two-dimensional ‘‘monolayer.’’ Dufie
et al. @34# have pointed out that these monolayers, which
confined by a strong transverse gradient of reservoir che
cal concentrations, must be distinguished fromgenuinetwo-
dimensional structures with uniform control parameters. P
tern selection in genuine two- and three-dimensional syst
has been studied analytically and numerically using abst
reaction-diffusion models@35#. However, it is not practical
to generate sustained genuine structures experimentally
the context of a model reaction-diffusion system, Dufi
et al. have shown that in genuine two-dimensional syste
and monolayers, the stripe-hexagon competition is sim
close to onset. They find, however, that far from onset, h
agonal phases in monolayers are restabilized due to t
interaction with a longitudinal (k50) instability. The latter
finding is consistent with earlier theoretical predictio
@36,37#, as well as experiments in bevelled disk reactors@38#.
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It would be interesting to numerically investigate patte
selection for monolayers in the LRE model of the CDIM
system in the range of boundary conditions and reaction
rameters accessible to experiments, allowing in principle
rect comparison with experimental results. This would
quire extension of our numerical computation to thr
dimensions.
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