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Numerical bifurcation diagram for the two-dimensional boundary-fed
chlorine-dioxide—iodine—malonic-acid system
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Condensed Matter Physics 114-36, California Institute of Technology, Pasadena, California 91125
(Received 22 June 1998

We present a numerical solution of the chlorine-dioxide—iodine—malonic-acid reaction-diffusion system in
two dimensions in a boundary-fed system using a realistic model. The bifurcation diagram for the transition
from nonsymmetry-breaking structures along boundary feed gradients to transverse symmetry-breaking pat-
terns in a single layer is numerically determined. We find this transition to be discontinuous. We make a
connection with earlier results and discuss prospects for future W8#63-651X99)01104-9

PACS numbeps): 82.20.Wt, 82.20.Mj, 47.54.r

[. INTRODUCTION reaction terms renders these models unsuitable for analysis

by standard analytical tools. Furthermore, unlike the case

In 1952, Turing showefl1] that under certain conditions, considered originally by Turing and subsequently by others,
reaction and diffusion processes alone could lead to théhe experimental system is not uniform. A continuous supply
symmetry-breaking instability of a system from a homoge-of reactants is fed into the reactor from two separately non-
neous state to a stationary patterned state. The Turing insteeactive reservoirs to keep the system far from equilibrium,
bility is characterized by an intrinsic wavelength, in contrastsetting up gradients in the concentrations of these reservoir
to hydrodynamic instabilities, such as RayleighaBed con-  species along the width of the reactor. In an earlier work
vection where the wavelength depends on cell height. Fo11], we used the realistic LRE model to investigate the for-
this reason, this instability mechanism has particular relmation of one-dimensional stationary structures along the
evance to pattern formation in biological systefis3]. boundary feed gradients and their linear instability to trans-

Given the difficulties of noninvasive experiments on biologi- Verse symmetry-breakin@uring) patterns. Here, we extend

cal systems, experimental studies of Turing pattern formathese results by numerically solving the fully nonlinear

tion have been carried out primarily on chemical systemsréaction-diffusion equations in two dimensions. _
Kadar, Lengyel, and Epsteii2] have also numerically

Even so, Turing patterns have been generated in the labora- tigated two-di onal Turi it ithin' th
tory only recently, specifically in the chlorite-iodide— investigated: two-dimensional 1uring patterns wiihin-the

malonic-acid (CIMA) chemical reaction-diffusion system LRE_modeI, but in a closed syste(ne., n the absence of
[4-7. gradient$ where the patterns are transient by nature. Two-

Althouah Turi it h b tensively studi Cfimensional numerical simulations of Turing patterns in
ough Turng patterns have been extensively studie amped systems have been performed using popular abstract
theoretically and numerically in the context of abstract mod-,

o ) ) models, such as the Schnakenberg mddél 14, and the
els, the possibility of comparison with controlled and repro-gy,sselator moddll5—17, as well as the generalized Swift-

ducible experiments pro_vides motivation for quantitativeHohenberg equatiofL8]. These models, which are easier to
analyses based on realistic models of these systems. Lengyghplement, produce patterns that possess similar features to
Rabai, and Epsteithenceforth referred to as LRIBave pro-  those observed in experimental systems. However, they do
posed a realistic model of the simpler chlorine dioxide-pot allow quantitative comparison or prediction of new fea-
iodine-malonic acid (CDIMA) reaction-diffusion system res at specific parameter values of a real chemical system.
[8,9]. The chemistry of the CDIMA and CIMA systems are |, thjs article, we present a numerical solution of the LRE
related, and the two are similar in terms of their stationaryygdel in a boundary-fed system in two dimensions, corre-
pattern forming and dynamical behavior. The potential forgyonding to sustained patterns in thin-strip open reactors. We
both experimental and theoretical work makes the CDIMAqetermine the branch of the bifurcation diagram correspond-
system well suited for the study of nonequilibrium patterning to the transition to stripes in this system, a result that can

formation in general. _ ~ be directly investigated in experiments based on the CDIMA
fluid systems[10], experimental and theoretical efforts in ;sed. In Sec. Ill, we describe our numerical method. We

chemical systems have not been closely coupled. First, Nuysresent our results in Sec. 1V, and give conclusions and pros-
merical solution of reaction-diffusion equations using realis-pects for future work in Sec. V.

tic chemical parameters is computationally demanding. In
addition, the algebraic complexity of the realistic nonlinear

IIl. CHEMICAL MODEL

* Author to whom correspondence should be addressed. Present The LRE model of the CDIMA reaction-diffusion system
address: Applied Mathematics Department, Caltech, CA. FAX: 62ehas been discussed in detail elsewhé&11,19. The result-
683 3549. Electronic address: simas@ama.caltech.edu ing governing partial differential equations are given below:
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J[MA] TABLE I. Kinetic constants for the CDIMA system.
" =—r;+DyaVIMA], (1)
J Rate or diffusion constant Dimensions Value
a[l2] k (sY 9x10 42
ot :—I’1+%r2+2l’3—l’4+D|2V2[|2], (2) kiz (M) 5X10—5a
K, (M~ts™h 1x10%2
J[ClO,] kaa (M~2s7%) 1.2x1072
at = _r2+ DClOZVZ[Cl()Z]! (3) k3b (Sfl) 1.5x10°42
h (M?) 1.0x10 142
a1 K. (M~2s71) 6.0x10° P
T=rl—r2—4l’3—l’4+D|—V2[|7], (4) k_ (s_l) 10b
D,- (cm?s™h) 7.0x10°6¢
J[CIO; ] Dcio; (cm?s™h 7.0x10°6°¢
o 2 Tfat DC,OZ—VZ[Clog], (5 Dy, (cm?s™h 6.0x10°62
Dma (cmPs™t) 4.0x10°62
- Dcio (cm?s™h 7.5x10°62
Sk =r,. (6) Dys (cmPsh) 1.0x10°°
at K[Sl, (M1 6.25x 10" @
The nonlinear reaction terms are given by arrom[20] at 7°C.
bFrom[12] at 4°C.
_ kla[ MA][ |2] (7) ‘From [23] at 4°C.
Kip+[l2] dFrom[19] at 4°C.
r2= k[ CIO N1, ® CDIMA system, chlorine dioxide is nonreactive with both
_ _ iodine and malonic acid, allowing for well controlled bound-
N k3p[ CIO, J[12][17] : f th : is k from batch
r3=ksa[ CIO; J[17J[H* ]+ (9) ary concentrations of these species. It is known from batc
h+[1"]2 experiments and simulations of the CDIMA system that con-
centrations of chlorine dioxide, iodine, and malonic acid
ra=ki[SI[L][1"]-k_[SI5]. (10 vary little on the scale of variations in the chlorite and iodide

concentration$8]. This observation has formed the basis of
The left/right reservoir species are malonic acidthe adiabatic elimination of the former reactants, resulting in
(MA)/chlorine dioxide (CIQ) and iodine (3), respectively.  a two-variable reduction of the full modg8,25], and making
As these species diffuse through and react in the gel reactofyejr jdentification as the background species a natural one.
the dynamical iodide (1) and chlorite (CIQ) species are  Hence, in the interest of aligning experiment with numerical
produced. The concentration of starch in exceS8sis as-  ang theoretical work in this area, it appears reasonable for
sumed to be uniform and constant, equal to its initial Val“eexperiments to implement the CDIMA system.
(Sp). The starch triiodide complex ($1) is the experimen-
tally observed species.

The rate and diffusion constants used in the numerical
calculations here are taken from Ref42,19,2Q and are
given in Table I. The value of the parametein Eq. (9) is A pseudospectral method was used to solve the governing
not an experimentally determined quantity but rather chosepartial differential equation in two dimensions. The physical
in an ad hocmanner[8,21] to preserve the validity of the boundary conditions are no flux in tixedirection(transverse
second term in the rate lamg for very low[I~]. This issue to the gradients and fixed point boundary conditions in the
is discussed in detail by Rudovied al. [22]. In the two-  zdirection(along the gradienjsin our numerical implemen-
sided-feed geometry explored here, at the boundaries whetation, the governing equations are cosine Fourier trans-
Dirichlet boundary conditions hold for the iodide species,formed in thex direction, and each spectral mode is evolved
this rate law will not be strictly valid. However, our earlier in time as a one-dimensional problem in thdirection. We
work [11] demonstrates its validity[ ("]=h) in the rel- used a five-point finite-difference approximation with a
evantinterior of the gel(and away from theboundarie$  variable-width spatial mesh to allow better resolution of the
where the localized front patterns form. sharp front patterns along the gradients. The time-stepping

The experimental CIMA reaction is similar to the CDIMA scheme was Crank-Nicolson for the linear tertmaplicit)
reaction in terms of dynamics and stationary pattern formaand Adams-Bashford for the nonlinear terfegplicit), both
tion [19,23,24. However, a quantitative model of the CIMA second-order accurate. After each time step, the updated so-
reaction does not exist. In particular, the role of chlorine-lutions were transformed back into real space to reconstruct
dioxide in this reaction is not well understoptd]. Further-  the nonlinear terms.
more, it has been pointed out that in the experimental CIMA  As Table | indicates, the large order-of-magnitude varia-
system, use of chlorite and iodide along with acid as resertions in the real chemical parameters of the LRE model make
voir species could lead to reactive reservdit®]. In the  numerical solution of this model less tractable than the afore-

Ill. NUMERICAL METHOD
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FIG. 1. Two-dimensional solution for starch triiodide witMA], =0.0115 M: The initial condition is shown ife). The numerical
solution afterT=1000 s of evolution time is shown ifo). Dark and light shadings correspond to low and high concentrations, respectively.

mentioned abstract models. The stability restriction on the The integration time step wast=0.001 s, chosen to be
time stepAt due to explict treatment of the nonlinear terms the same as that for the time evolution in one dimension. In
is onerous. Hence, we parallelized the above numericahe one-dimensional time evolution, the restriction on the
scheme, and the computations were performed on a 512ime step due to the explicit treatment of the nonlinear terms
node Intel Paragon. was explored empirically, by varyingt and using a value
As initial conditions, we used the stationary solution such that the algorithm was stable. We investigated using a
Us(z) alongz with a uniform profile inx, to which we added higher-order(third-ordej Adams-Bashford scheme to verify
a perturbation given by the most linearly unstable mkitle  that the restriction orkt was limited by stability as opposed
- = - . to accuracy. The dynamically evolved stationary state was
U(x,2,t=0)=us(z)+ Couix(z)codk*x). (1D compared with that obtained from direct solution using a
Newton-Raphson root-finding algorithm. We determined the
time step used in one dimension to be adequate for the time
evolution in two dimensions as follows: By using initial con-

51],(*(2) is the eigenvector obtained from the linear stability
analysis, andC is an overall scale factor to ensure that

the perturbation is small and lies in the linear regime'ditions uniform in thex direction (and equal to % 10~ 12 M

The concentration vectors corr_espon_d to t_he Six vari_e_lbleﬁ)r all specieg thereby reducing the two-dimensional time
of the_ LRE model_. The ull s_lx-va_rlable Ilnear _stab|I|ty evolution to be effectively one-dimensional, we verified that
analysis was carried out using Inverse |ter§t|@Z_6]. the asymptotic solution was the same as that obtained in one
The nonzero boundary conditions in the direction dimension. It is possible that implementing a numerical al-
are [MA] =0.0115 M, [CIOZ]'-:Q'O% M, and [|2]'-, gorithm adapted to solving stiff partial differential equations
=0.008 M, where R,L) refer the right and Ieft»reservows, (see Ref[12] and references thergimill improve the total
respectively. From the linear stability analysisuwy{z), the  execution time in the two-dimensional evolution.

growth rate for the instability at* =471.2 cm* is A (k*)

=0.00465 s?, giving a characteristic saturation time of

~1/\~215 s. The system size is 0.3 cm in théirection IV. RESULTS

and 0.133 cm in the& direction, corresponding to exactly ten
wavelengths in the direction. The spatial resolution of the
system investigated here wag =129 andN,=914. One In Fig. 1, we show density plots of the initial state, as well
thousand iterations at this resolution required approximatehas the numerical solution for the starch triiodide species after
12 node hours. a total integration time of approximatelly=1000 s, with

A. Two-dimensional stationary solution
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FIG. 2. Time evolution of the most linearly unstable mokie and its higher-order harmonic$a)—(d) show the values of the
k*, 2k*, 3k*, and 4«* modes for the starch triiodide species at the peak of the most linearly unstable eigenzed@d94 cm), as a
function of time;(e)—(h) show the logarithms of magnitudes of these amplitudes. The plots are shown for nondimensionalized quantities.
(The time and concentration conversion factors axel® * s ! and 510 % M, respectively. The slope of the linear segmefiteavy
line) in plot (e) for t<0.2 is 5.129-0.012, and agrees well with the growth ratgk*)=5.172 from the linear stability analysis.

dark and light shading representing low and high concentrafront [27]. The wavelength of the solution presented here is
tions, respectively. In Figs.(8)—(d), we show the time evo- 0.133 mm, in agreement with the 0.13—0.33 mm experimen-
lution of thek* mode and its higher-order harmonics at thetally observed rangg28]. Finally, the numerical evolution in
peak of the linear instability eigenvectar<£0.094 cm) for  two dimensions confirms our result from the linear stability
the starch triiodide species. In Figsieg-(h), we plot the  analysis of the one-dimensional stationary state along the
logarithm of the magnitude of these quantiti€Bhese plots  gradientg11].
are shown for th@ondimensionalizeduantities) The slope
of the linear segment in Fig.(®, for t<7~0.2 is 5.129
+0.012 (corresponding to 0.004 6160.000011 s) agrees
well (to within one percentwith the linear growth rate, and ~ The symmetry-breaking transition from Fig(al to Fig.
further verifies our linear stability results. In these plots, it is1(b) is effectively one dimensional, since only a single layer
apparent that the saturated amplitudes of the higher-ordd$ unstable over a range of values[®1A ], control param-
harmonics are much smaller than thatkéf eter, as we showed in Refll]. In this earlier work, we

To compare the size of the nonlinear perturbations in thélemonstrated the existence(dfree disjoint unstable ranges
x direction with the unperturbed profile in tzalirection, we  as the[ MA], control parameter was continuously varied
have plotted thex andz dependence of the two-dimensional from 4.0<10°* M to 4.0x10 2 M, consistent with ex-
solution. In Fig. 3a), we show thex dependence at the peak perimental observations in thin-strip reactors showing the ap-
of the linear instability eigenvectorz&0.094 cm), which pearance and subsequent vanishing of a transverse instability
approximates a pure Fourier mode, verified by the relativelyas one of reservoir concentrations was increased. Here, we
small saturated amplitudes of the higher-order harmonics ifumerically investigate the dependence of the saturated am-
Fig. 2. In Fig. 3b), the dashed and dotted lines denote theplitude of the transverse instability on th&A]_ control
profiles in the z direction at x=0.067 cm=5\ and x parameter in the vicinity of thdower) bifurcation point for
=0.073 cm=5.5\, respectively. The solid line denotes the one of these unstable ranges (97 * M<[MA]
profile of the unperturbed one-dimensional stationary state<1.25x10°2 M). In the following, for convenience, we
We note that although the saturated amplitude of the trangeport our results imondimensionalizednits: the time con-

B. Bifurcation diagram

verse instability is comparable to the variation of the one-version factor isk;,=9x 10 * 71, and the concentration
dimensional stationary state in tizedirection, itsx depen-  conversion factor i&;,=5X 10°°
dence is not strongly nonlinear. First, the critical control parameter was determined nu-

The results presented in this section can be summarizeaierically from a linear fit to the maximum linear growth rate
by three points. First, we have presented a numerical solutioversus [MA]_ . This value was found to bgMA],
of two-dimensional patterns in theoundary-fedCDIMA =194.5226. Linear stability analysis of the stationary state at
reaction-diffusion system using the LRE model. Second, outhis value of{MA]_ yields a maximum growth rate of*
numerical solution agrees qualitatively with patterns ob-=1.1054<10 4. This value of\*, which is expected to be
served in thin-strip reactors in experiments on the CIMAzero, gives a combined measure of the numerical uncertain-
system, for experimental conditions giving a single unstabldies in the determination of the stationary state at a particular
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—~ 40 .
E of the peak amplitude to an exponential plus a constant off-
= set, excluding initial points until the converged value did not
o o . depend on the number of excluded points.
% Close to onset, the solution is given by
fe! R _
= 0l ! ] U(X,z,t) = dugx (Z)[ A(t)exp(ik* x) + A* (t)exp( —ik*x)],
< | 12
8 !
© M . .
& it wherek* is the most linearly unstable mode, afx¢t),A* (t)
or u ] are complex conjugates. The amplitude equation, which
) gives a universal description of the weakly nonlinear behav-
ior and depends only on the symmetries of the prob{am
05 005 040 045 020 025 080 this case, translational invariance in tkedirection is (at

z (cm) seventh order

FIG. 3. Spatial dependence of the two-dimensional solution in dA 5 4 6
the x andz directions for SJ speciesia) The system size in the o €A+ |A|I°A+ o  Al*A+gs|APA, (13
direction is 0.133 mm, constructed to incorporate exactly ten wave-
lengths of the most linearly unstable mokfe. The profile in thex
direction is plotted at=0.094 cm.(b) The dashed and dotted lines

d_e(;\ gt;:gth?rﬁ;og\esrm thets/'rfcn_?ﬁ atxn:doﬁgm § Cﬁs)‘t:ndf 1o ONset. Our results, described below, reveal a subcritfirat
=0. C O\, respectively. e SO € denotes the protile Ol’der) bifurcation.

of the unperturbed one-dimensional stationary state. We note that Fiqure 4 shows a sixth order polvnomial it to the numeri-
the saturated amplitude of the instability is comparable to the varia- 9 poly

; _ _ 2_ 4_ 6 [
tion in the profile of the one-dimensional stationary state inzhe cal data: [MA]L_[_MA]C 91|A| . 9ol Al*—gs|A]". First,
direction. [MA]. was held fixed at the linear threshold value, and

(91,92,93) were fitted for. The goodness of the fit depended
value of[MA], as well its linear stability. Hence, in prin- on the number of points farthest from linear threshold re-
ciple, there would be error bars associated with values ofained in the fit. We determined that excluding the last point
[MA],, equal toA[MA] =aAN=3.0826x10 4, wherea ([MA] =230.0) gave the best fit. The fitted parameters are
is the slope of the linear fit from whichMA ], is extracted.

where the coefficients depend on the specific system under
investigation, ande=[MA] —[MA]. is the distance from

Figure 4 shows the computed bifurcation diagram. Start- 9:=1.7585, (14
ing in the supercritical regime, for each value[MA], , as
initial condition, we use the corresponding one-dimensional g,=—4.0825, (15
stationary solution in the direction seeded with the most
linearly unstable eigenvector at approximately the saturated g;=—0.82677. (16)

amplitude of the previous higher value of control parameter
(adiabatic approagh The final converged amplitudes were Sinceg;>0, the instability does not saturate fer-0, and
obtained from a least squares fit of the dynamical evolutiorihe bifurcation is subcritical. We also investigated allowing
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070 v v i weakly subcritical nature of the transition implies that a lin-
I ] ear stability analysis of the one-dimensional structures along
the gradientd11] does have utility in predicting the exis-
tence of a transverse instability for given reaction parameters
and boundary conditions over a wide range of control param-
eters(in the supercritical regime

0.65 E

Amplitude
o
3

V. CONCLUSION AND DISCUSSION

To summarize, we have carried out a two-dimensional
numerical simulation of the boundary-fed CDIMA reaction-
] diffusion system based on the realistic LRE model for this
A system. Our results are qualitatively similar to those seen in
400 S0 experiments on the CIMA reaction-diffusion system, and
support the earlier workl1] in which we studied the linear
instability of the boundary-fed CDIMA system to transverse

FIG. 5. Convergence to finite amplitude below linear threshold, T UriNg patterns.
[MA],=194.4: The closely spaced circles denote the numerical Numerical studies by Jensest al. [30—-33 on the two-
time evolution, and the solid lines denote the computed fit to arvariable LRE model withuniform backgrounds have found
exponential plus a constant offset. Convergence from above andl€ transition to stripes in one and two dimensions to be
below to a finite amplitude is apparent. The plot is shown for non-subcritical. Our results demonstrate this transition to also be
dimensionalized amplitude. subcritical in theboundary-fedLRE model. This prediction
and computed bifurcation diagram can be directly verified by

all parameters,[MA].,01,09,,93), to float. Again, exclud- €xperiments based on the CDIMA system.
ing the last point produces a fit with an off§&1A 1., which The subcritical nature of the transition to stripes makes
is closest to the linear threshold value. The values of théhe LRE model qualitatively different from other abstract
fited parameters in this case ard MA]..9;,02.95) reaction-diffusion models hitherto used to study Turing pat-
=(194.47,1.5548; 3.8692;- 0.891 60). terns. For example, in the ramped Brusselator, the transition
Figure 5 shows the convergence of the peak amplitude d@ Stripes has been shown to be supercrit{@8]. Jensen
the fastest growing linear mode f§MA], =194.4 in the €t al. have investigated the propagation of fro_nts separating
subcritical region. It shows convergence from above and beth€ homogeneous steady state from the Turing structure in
low to a finite amplitude instability. The error for the con- Oné and two dimensions using the uniform LRE model. The
verged amplitude is estimated to be one-half of the differ-Subcriticality allows for the existence of a range of values of
ence between the converged-from-above and convergegontrol parameters for which the front velocity vanishes, al-
from-below values. This error (8:010 %) is taken to be lowing an infinite number of stable steady inhomogeneous
the same for all points, even though the convergence froritructures. Despite the weakly subcritical nature of the tran-
below was not repeated for all poinf29]. We also con- Sition, it would be interesting to similarly investigate front
firmed the decay of dinear perturbation at this same sub- Propagation and formation of localizedquasi-one-
critical value. An exponential fit to the dynamical evolution dimensional states in the boundary-fed system. _
of the peak amplitude of the instability yields a decay rate of In experimental geometrieiglisk reactors where the di-
A= —0.0416, in good agreement with the largest eigenvaluglensions of the reactor transverse to the gradients are large,
\=—0.0429. the analog of the one-dimensional row of spots that develops
The minimum value of MA], below which a finite am- in our numerical simulation and in experiments using thin-
plitude instability does not exist, corresponding to theSUIP reactors is a two-dimensional “monolayer.” Dufiet
saddle-node bifurcation, can be computed from the fitted pa€t @l [34] have pointed out that these monolayers, which are

rameters. Using the parameter values given in Efé)— confined by a strong transverse gradient of reservoir chemi-
(16), [MA]sy is found to be cal concentrations, must be distinguished frgemuinetwo-

dimensional structures with uniform control parameters. Pat-
tern selection in genuine two- and three-dimensional systems
[MA]gn=194.34. (17) has been studied analytically and numerically using abstract
reaction-diffusion model§35]. However, it is not practical
The inset in Fig. 4 shows this turning point. FOMA],  to generate sustained genuine structures experimentally. In
=193.0 below this value, we explicitly verified decay to zerothe context of a model reaction-diffusion system, Dufiet
of an initial perturbation with amplitudé&=0.7756. et al. have shown that in genuine two-dimensional systems
We note that the transition is “weakly” subcritical. This and monolayers, the stripe-hexagon competition is similar
is characterized by the small range of control parameter bezlose to onset. They find, however, that far from onset, hex-
low linear threshold, approximately equal to 0.18 (9 agonal phases in monolayers are restabilized due to their
x 1078 M), for which a finite amplitude instability exists, in interaction with a longitudinal=0) instability. The latter
comparison with the linearly unstable range, 55.4 (2.77inding is consistent with earlier theoretical predictions
X102 M), determined in our earlier work11]. The [36,37], as well as experiments in bevelled disk reacf88].
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