\[\beta_3 = h(\cos \theta_1 + \cos \theta_2) + h^2 \gamma^2 \cos \Theta, \]
\[\beta_4 = -h(\cos \theta_1 + \cos \theta_2) + h^2 \gamma^2 \cos \Theta. \]

It is easily seen that
\[\alpha_i = \beta_i - \frac{1}{3} \beta_i^3 + \frac{1}{5} \beta_i + \cdots, \quad i = 1, 2, 3, 4. \]

For small \(h \) we can expand around \(\alpha_i = 0 \) to obtain
\[W_n = 4f(R) - 2 \frac{\partial f}{\partial R} \sum_{r} Y_n^2(r) + \frac{2}{3} \frac{\partial^2 f}{\partial R^2} - h^2 \gamma^2 \cos \Theta \]
\[+ 2 \frac{\partial f}{\partial R} - h^2 \gamma^2 \cos \Theta + h^2 \gamma^2 \cos \Theta + O(h^4). \]

Now we have
\[\cos \theta = \frac{3}{4}\left(\cos \theta_1 + \cos \theta_2 \right), \]
\[\cos \Theta = \frac{1}{2} \left(2 P_2(\Theta) + 1\right), \]
\[P_2(\Theta) = \frac{3}{2} \sum_{\mu} Y_{2\mu}^* \Theta_{2\mu}^2 (\Psi_1, \varphi_1) Y_{2\mu} (\theta_2, \varphi_2). \]

Therefore we have
\[W_n = \sum_{j_1 j_2 \leq n} \frac{b_{j_1 j_2}}{j_1 + j_2 + 1} Y_{j_1}^* (\theta_1, \varphi_1) Y_{j_2} (\theta_2, \varphi_2), \]
\[+ O \left(\frac{1}{n} \right)^4. \]

Referring to Eq. (1) we can show that
\[a_{j_1 j_2} = \left(\frac{(2j_1 + 1)(2j_2 + 1)}{4\pi(2j + 1)} \right)^{1/2} \]
\[\times \frac{1}{\Omega_{j_1 j_2}} \sum_{\mu} b_{j_1 j_2} Y_{j_1}^* (\theta_1, \varphi_1) Y_{j_2} (\theta_2, \varphi_2). \]

We have shown that terms with \(j_1 \) or \(j_2 = 4 \) are smaller than terms with \(j_1 = 0 \) and \(j_2 = 2 \) or \(j_1 = 2 \) and \(j_2 = 0 \) by a factor of the order of \((d/r_{12})^6 \).

The expansion (A2) does not converge for a potential of the type \(f(r) = e^{-ar} \). The same conclusions, however, are easily seen to be valid for this potential by expanding \(W_n \) in a series of Bessel functions.

Evaluation of the Third Moment of the Imaginary Part of the Dielectric Constant

T. C. McGill

Joseph Henry Laboratory of Physics, Princeton University, Princeton, New Jersey 08540

(Received 20 March 1972)

The values of the third moment of the imaginary part of the dielectric constant are reported for a number of AB semiconductors. The frequency \(\omega_4 \) defined by Hopfield is obtained from these moments and is compared with the average band gap \(\omega_4 \) defined by the electronic part of the dielectric constant at zero frequency.

Recently, Phillips and colleagues have developed an ionity scale based on an average band gap of a solid. This average band gap \(\omega_4 \) is defined by the expression
\[\omega_4 = \frac{\omega_4^2}{\epsilon_1 (0) - 1} = \omega_4^2 \frac{2}{\pi} \int \epsilon_2 (\omega) \frac{d\omega}{\omega}, \quad (1) \]

where \(\omega_4 \) is the plasma frequency. While this ionity scale has proved useful in ordering a number of the properties of AB semiconductors and insulators, no real theoretical justification for its success has been given. On the other hand, Hopfield has shown that the third moment of the imaginary part of the dielectric constant \(\epsilon_2 \) can
be related to the pseudovalence charge density ρ and the bare pseudopotential V. For a cubic crystal, this relation is

$$\frac{2}{\pi} \int_0^\infty \frac{\omega^3 \varepsilon_\omega(\omega)}{3m_e N} \int_{\text{all space}} \rho(\vec{r}) V(\vec{r}) d^3r,$$

where m_e is the mass of the electron and N is the total number of electrons. Using Eq. (2), one can define a frequency ω_s by the expression

$$\omega_s = \frac{2}{\pi} \int_0^\infty \frac{\omega^3 \varepsilon_\omega(\omega)}{\omega^2} \rho(\vec{r}) V(\vec{r}) d^3r.$$

Hopfield² has shown that for the diamond and zinc-blende structures ω_s may be split into a symmetric part ω_s^S and an antisymmetric part ω_s^A in a manner which is similar to that postulated for ω_s by Phillips.¹ This fact coupled with the close connection between ω_s and the chemically significant quantities of charge density and potential have led Hopfield² to suggest that ω_s forms a basis for the chemical properties found by Phillips¹ in ω_s. However, it is obvious from comparison of relations (1) and (3) that the ω_f and ω_s involve very different moments of $\varepsilon_\omega(\omega)$. The moment required for ω_s weights heavily the low-frequency part of ε_ω. Thus, we have attempted to check the connection by evaluating the right-hand side of Eq. (3) for a number of AB semiconductors and comparing it with the value of ω_s given by Phillips. The Heine-Abarenkov³ pseudopotentials with the parameters given by Animalu and Heine⁴ were used as the bare pseudopotential. The charge density was obtained by computing the Thomas-Fermi charge density given by the Cohen-Bergstresser⁵ empirical pseudopotential, V_{CB}. That is,

$$\rho(\vec{r}) = \left(\frac{2m_e}{\hbar^2} \left[E_f - V_{CB}(\vec{r}) \right] \right)^{3/2} / 3\pi^2.$$

The value of E_f was determined by the condition that the integral of $\rho(\vec{r})$ should yield the correct number of valence electrons.

The results obtained for ω_s are plotted as a function of ω_s in Fig. 1. Several points are to be noted. First, the values of ω_s are approximately twice as big as the corresponding value of ω_f, suggesting that the high-frequency part of ε_ω is playing a more significant role in ω_s than it is in ω_f. Second, while there is some indication of correlation between ω_s and ω_f, there is no obvious simple relation connecting the two frequencies. To further check for correlations between ω_s and ω_f, we have calculated the ionicity based on ω_s using the formula

$$f_s = \frac{\omega_s^2}{\omega_f^2},$$

which is analogous to the one used by Phillips¹ for defining the ionicity f_i. A plot of f_s vs f_i is shown in Fig. 2. From this plot one can see that there is an approximately monotonic relation between f_s and f_i. However, it is clear that the relation is...
not a linear one.

In conclusion, we have evaluated the sum rule suggested by Hopfield\(^3\) as a possible theoretical basis for the Phillips ionicity scale and find that \(\omega_e\) exhibits trends which are similar to those shown by \(\omega_x\) and, thus, could be used to order properties in the same way as Phillips has used \(\omega_e\).\(^1\) The rather wide discrepancy in value between \(\omega_x\) and \(\omega_e\) may in part be due to the use of the Cohen-Bergstresser pseudopotentials which have been determined empirically by fitting a few band gaps and, thus, have not been determined in such a way that binding or the charge distribution in the crystal are closely modeled.

The author would like to acknowledge very useful discussions with J. J. Hopfield.

Research supported in part by the Air Force Office of Scientific Research, under Contract No. F44620-71-C-0108.

\(^1\)AFNRC Post Doctoral Fellow 1970–71. Present address: Department of Applied Physics, California Institute of Technology, Pasadena, Calif. 91109.

PHYSICAL REVIEW B

VOLUME 6, NUMBER 6

15 SEPTEMBER 1972

Specific Heats of GaSb, GaAs, InSb, InAs, Bi, Cd, Sn, and Zn below 30 K\(^5\)

J. C. Holste

Institute for Atomic Research and Department of Physics, Iowa State University, Ames, Iowa 50010
(Received 27 January 1972)

Previously reported heat-capacity data from 1 to 30 K for four III–V compounds and four anisotropic metals have been reanalyzed using a magnetically smoothed temperature scale \((T_x)\). Values are given for the contributions due to free carriers in the III–V compounds and electrons in the metals, and for the lattice contributions specific to the heavy specific heats. Excellent agreement is obtained between calorimetric and elastic-constant determinations of the limiting Debye temperature at \(T = 0\).

Specific-heat measurements made in this laboratory on copper\(^1\) and on several III–V compounds\(^1\) and anisotropic metals\(^2\) were reported previously in terms of two separate temperature scales \((T_{28} \text{ and } T_{619})\) which are not continuous near 4.2 K where the two scales overlap. A single continuous temperature scale \((T_x)\) recently has been established in the 1–30 K region by Cetas and Swenson\(^3,4\) using paramagnetic-salt thermometry, and the germanium thermometer used in the previous heat-capacity work since has been calibrated directly in terms of this new scale. \(T_x\) appears to be quite smooth in the thermodynamic sense, and we have used it to reanalyze earlier heat-capacity data for copper with encouraging results.\(^5\) The copper analysis included an investigation of the effects of deviations in temperature scales on specific-heat results and indicated that the correction applied in our previous analyses\(^1,2\) for a thermometry problem below 1.5 K was incorrect. We therefore have reanalyzed the data for all samples, with the exception of the yttrium. Our yttrium sample contained magnetic impurities,\(^6\) and the uncertainties introduced by these impurities are considerably larger than those introduced by thermometry error, so nothing is to be gained by further analysis of those data.

As in the previous analyses, the power series

\[
C_p = \sum_{n=0}^{\infty} \alpha_{2n+1} T_x^{2n+1}
\]

was fit to the reanalyzed data for each of the samples. The value of \(\alpha_1\) for each of the samples except bismuth was determined graphically (as in Refs. 1 and 2), after which the remaining coefficients were determined by least-squares fitting, minimizing the relative deviations in the lattice specific heats. Because of the large deviations from Debye behavior for these solids, it was not possible to obtain a fit to Eq. (1) over the entire 1–30-K range to the precision of the data. A close correspondence was found between the minimum in the equivalent \(\omega\)-vs-\(T\) curve and the highest temperature for which a valid fit could be obtained. Overlapping-fit ranges then were used to obtain smooth representations of