Formyltetrahydrofolate synthetase gene diversity in the guts of higher termites with different diets and lifestyles

Elizabeth A Ottesen and Jared R Leadbetter

Supplemental Materials

Supplemental Figure 1. Mitochondrial cytochrome oxidase II phylogeny of termites and roaches.

Supplemental Figure 2. Phylogenetic analysis of termite and roach FTHFS sequences.

Supplemental Figure 3. UniFrac Analysis of FTHFS library compositions.

Supplemental Figure 4. Phylogenetic analysis of FTHFS sequences used for UniFrac analysis.

Supplemental Table 1. Operational taxonomic unit grouping of FTHFS sequences identified in this study

Supplemental Table 2. Sequences used in FTHFS phylogenetic analysis

Supplemental Table 3. Sequences used in COII phylogenetic analysis

Supplemental References.
Supplemental Figure 1. Mitochondrial cytochrome oxidase II phylogeny of termites and roaches. Species from which gut FTHFS diversity has been examined marked in bold, species examined in this study underlined. Tree calculated using Phylip PHYML and 393 unambiguous, aligned DNA bases. Open circles indicate nodes also supported by either Fitch distance or Phylip parsimony methods. Closed circles indicate nodes supported by all three algorithms. Scale bar represents 0.1 base pair changes per alignment position.
Supplemental Figure 2. Non-acetogenic Firmicutes. Tree constructed using 346 unambiguous, aligned amino acids and the PhyML maximum likelihood algorithm. Open circles indicate nodes also supported by either Fitch distance or Phylip parsimony methods. Closed circles indicate nodes supported by all three algorithms. Scale bar indicates 0.1 changes per alignment position. The 13 acetogenic isolates in Figure 1 (main text) were used as an outgroup.
Supplemental Figure 3. UniFrac Analysis of FTHFS library compositions. Analyses conducted utilizing the phylogenetic tree shown in Supplemental Figure 4. As the UniFrac Jacknife re-sampling algorithm does not correct for sequence de-replication (6), sequences representing multiple clones were copied and added back into the tree before analysis. Environments were clustered using the abundance-weighted, normalized metric for the Lovell cluster (A) or full tree (B). Nodes supported by >90% of Jacknife re-sampling tests are marked. Principal component analyses were conducted using the abundance-weighted, normalized metric for the Lovell cluster (A) or the full tree (B). Abbreviations: P, *P. americana*; Ca, *C. punctulatus* adult; Cn, *C. punctulatus* nymph; Z, *Z. nevadensis*; R, *R. santonensis*; C, *C. secundus*; I, *Incisitermes* sp. Pas1; N, *Nasutitermes* sp. Cost003; M, *Microcerotermes* sp. Cost008; Rh, *Rhynchorotermes* sp. Cost004; G, *Gnathamitermes* sp. JT5; Ac, *Amitermes* sp. Cost010; Aj, *Amitermes* sp. JT2.
Supplemental Figure 4. Phylogenetic analysis of FTHFS sequences used for UniFrac analysis. Tree constructed using 301 unambiguous, aligned amino acids and the PhyML maximum likelihood algorithm. Scale bar indicates 0.1 changes per alignment position. As the PCR primers used in these studies specifically target acetogen-like FTHFS types, UniFrac analyses were conducted for both the Lovell cluster only (node A) and for the Lovell cluster plus the Clone E, *C. acidiurici* and *M. thermoacetica* groups. Clones affiliated with non-target groups such as *Bacteroidetes*, sulfate-reducing *Proteobacteria*, and most non-acetogenic *Firmicutes* were judged to represent non-specific amplification events and were excluded from the analysis. The number of RFLP types represented by each sequence is listed; for *C. secundus* and *R. santonensis*, abundances were published at the phylotype only, so the total number of hits was distributed amongst the representative clones for each group.
SUPPLEMENTAL TABLE 1. Operational Taxonomic Grouping of FTHFS sequences identified in this study

<table>
<thead>
<tr>
<th>Group</th>
<th>Phylotype</th>
<th>Abundance (%)</th>
<th>Genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasutitermes sp. Cost003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>1F</td>
<td>23.1%</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>15.4%</td>
<td>2B, 2F</td>
</tr>
<tr>
<td></td>
<td>1A</td>
<td>13.5%</td>
<td>1A, 2D, 7B</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>9.6%</td>
<td>2A, 7A</td>
</tr>
<tr>
<td></td>
<td>1E</td>
<td>5.8%</td>
<td>1E</td>
</tr>
<tr>
<td></td>
<td>2G</td>
<td>5.8%</td>
<td>2G</td>
</tr>
<tr>
<td></td>
<td>3H</td>
<td>5.8%</td>
<td>3H</td>
</tr>
<tr>
<td></td>
<td>1G</td>
<td>3.8%</td>
<td>1G</td>
</tr>
<tr>
<td></td>
<td>4A</td>
<td>3.8%</td>
<td>4A, 4B</td>
</tr>
<tr>
<td></td>
<td>4E</td>
<td>3.8%</td>
<td>4E</td>
</tr>
<tr>
<td></td>
<td>7D</td>
<td>3.8%</td>
<td>7D</td>
</tr>
<tr>
<td></td>
<td>3G</td>
<td>1.9%</td>
<td>3G</td>
</tr>
<tr>
<td></td>
<td>7G</td>
<td>1.9%</td>
<td>7G</td>
</tr>
<tr>
<td>Other</td>
<td>1D</td>
<td>1.9%</td>
<td>1D</td>
</tr>
<tr>
<td>Microcerotermes sp. Cost008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>1H</td>
<td>29.6%</td>
<td>1H, 5E, 8H</td>
</tr>
<tr>
<td></td>
<td>1F</td>
<td>14.8%</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>14.8%</td>
<td>2C, 11A</td>
</tr>
<tr>
<td></td>
<td>6G</td>
<td>11.1%</td>
<td>6G, 4H</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>3.7%</td>
<td>3E</td>
</tr>
<tr>
<td></td>
<td>5F</td>
<td>3.7%</td>
<td>5F</td>
</tr>
<tr>
<td></td>
<td>9E</td>
<td>3.7%</td>
<td>9E</td>
</tr>
<tr>
<td></td>
<td>11G</td>
<td>3.7%</td>
<td>11G</td>
</tr>
<tr>
<td></td>
<td>11H</td>
<td>3.7%</td>
<td>11H</td>
</tr>
<tr>
<td>Other</td>
<td>2D</td>
<td>3.7%</td>
<td>2D</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>3.7%</td>
<td>3A</td>
</tr>
<tr>
<td></td>
<td>8F</td>
<td>3.7%</td>
<td>8F</td>
</tr>
<tr>
<td>Rhynchotermes sp. Cost004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>7C</td>
<td>9.8%</td>
<td>7C, 2E, 4E, 5A</td>
</tr>
<tr>
<td></td>
<td>3A</td>
<td>8.2%</td>
<td>3A, 8C</td>
</tr>
<tr>
<td></td>
<td>6C</td>
<td>4.9%</td>
<td>6C</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>3.3%</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>5C</td>
<td>3.3%</td>
<td>5C, 11A</td>
</tr>
<tr>
<td></td>
<td>2A</td>
<td>1.6%</td>
<td>2A</td>
</tr>
<tr>
<td></td>
<td>7B</td>
<td>1.6%</td>
<td>7B</td>
</tr>
<tr>
<td></td>
<td>9H</td>
<td>1.6%</td>
<td>9H</td>
</tr>
<tr>
<td></td>
<td>10F</td>
<td>1.6%</td>
<td>10F</td>
</tr>
<tr>
<td></td>
<td>11F</td>
<td>1.6%</td>
<td>11F</td>
</tr>
<tr>
<td>Clostridium sp. M62/1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1D</td>
<td>1.6%</td>
<td>1D</td>
</tr>
<tr>
<td></td>
<td>3B</td>
<td>1.6%</td>
<td>3B</td>
</tr>
<tr>
<td></td>
<td>9F</td>
<td>1.6%</td>
<td>9F</td>
</tr>
<tr>
<td></td>
<td>10H</td>
<td>1.6%</td>
<td>10H</td>
</tr>
<tr>
<td>C. acidiurici</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td>13.1%</td>
<td>1C, 2B</td>
</tr>
<tr>
<td></td>
<td>1E</td>
<td>4.9%</td>
<td>1E, 7A, 8D</td>
</tr>
<tr>
<td></td>
<td>4C</td>
<td>4.9%</td>
<td>4C, 6B</td>
</tr>
<tr>
<td></td>
<td>1F</td>
<td>3.3%</td>
<td>1F</td>
</tr>
<tr>
<td></td>
<td>2H</td>
<td>3.3%</td>
<td>2H, 9E</td>
</tr>
<tr>
<td></td>
<td>9G</td>
<td>3.3%</td>
<td>9G, 12H</td>
</tr>
<tr>
<td></td>
<td>10C</td>
<td>3.3%</td>
<td>10C</td>
</tr>
<tr>
<td></td>
<td>10E</td>
<td>3.3%</td>
<td>10E, 12E</td>
</tr>
<tr>
<td>Group</td>
<td>Phylotype</td>
<td>Abundance (%)</td>
<td>Genotypes</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>2D</td>
<td>1.6%</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>1.6%</td>
<td>6A</td>
<td></td>
</tr>
<tr>
<td>10G</td>
<td>1.6%</td>
<td>10G</td>
<td></td>
</tr>
<tr>
<td>11C</td>
<td>1.6%</td>
<td>11C</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>4A</td>
<td>6.6%</td>
<td>4A</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>1.6%</td>
<td>3E</td>
</tr>
<tr>
<td></td>
<td>8F</td>
<td>1.6%</td>
<td>8F</td>
</tr>
<tr>
<td>Amitermes sp. Cost010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>4C</td>
<td>3.8%</td>
<td>4C</td>
</tr>
<tr>
<td></td>
<td>7D</td>
<td>3.8%</td>
<td>7D</td>
</tr>
<tr>
<td></td>
<td>10A</td>
<td>3.8%</td>
<td>10A</td>
</tr>
<tr>
<td>Clostridium sp. M62/1</td>
<td>2D</td>
<td>23.1%</td>
<td>2D, 8H</td>
</tr>
<tr>
<td></td>
<td>4F</td>
<td>15.4%</td>
<td>4F</td>
</tr>
<tr>
<td></td>
<td>1G</td>
<td>7.7%</td>
<td>1G</td>
</tr>
<tr>
<td></td>
<td>1C</td>
<td>3.8%</td>
<td>1C</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>3.8%</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>6A</td>
<td>3.8%</td>
<td>6A</td>
</tr>
<tr>
<td></td>
<td>6H</td>
<td>3.8%</td>
<td>6H</td>
</tr>
<tr>
<td></td>
<td>10B</td>
<td>3.8%</td>
<td>10B</td>
</tr>
<tr>
<td></td>
<td>12C</td>
<td>3.8%</td>
<td>12C</td>
</tr>
<tr>
<td>Other</td>
<td>1D</td>
<td>3.8%</td>
<td>1D</td>
</tr>
<tr>
<td></td>
<td>4H</td>
<td>3.8%</td>
<td>4H</td>
</tr>
<tr>
<td></td>
<td>5A</td>
<td>3.8%</td>
<td>5A</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>3.8%</td>
<td>5D</td>
</tr>
<tr>
<td></td>
<td>5F</td>
<td>3.8%</td>
<td>5F</td>
</tr>
<tr>
<td>Amitermes sp. JT2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>7E</td>
<td>1.1%</td>
<td>7E</td>
</tr>
<tr>
<td>Clostridium sp. M62/1</td>
<td>1E</td>
<td>48.3%</td>
<td>1E, 1B, 8G, 12B</td>
</tr>
<tr>
<td></td>
<td>1A</td>
<td>20.2%</td>
<td>1A, 2G, 1F</td>
</tr>
<tr>
<td></td>
<td>2E</td>
<td>5.6%</td>
<td>2E</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>2.2%</td>
<td>2C</td>
</tr>
<tr>
<td></td>
<td>3F</td>
<td>2.2%</td>
<td>3F</td>
</tr>
<tr>
<td></td>
<td>7A</td>
<td>2.2%</td>
<td>7A</td>
</tr>
<tr>
<td></td>
<td>5B</td>
<td>1.1%</td>
<td>5B</td>
</tr>
<tr>
<td>Other</td>
<td>2H</td>
<td>5.6%</td>
<td>2H, 3A</td>
</tr>
<tr>
<td></td>
<td>5D</td>
<td>5.6%</td>
<td>5D, 8A, 4B</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>1.1%</td>
<td>2D</td>
</tr>
<tr>
<td></td>
<td>4D</td>
<td>1.1%</td>
<td>4D</td>
</tr>
<tr>
<td></td>
<td>4H</td>
<td>2.2%</td>
<td>4H, 3D</td>
</tr>
<tr>
<td></td>
<td>10E</td>
<td>1.1%</td>
<td>10E</td>
</tr>
<tr>
<td>Gnathamitermes sp. JT5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termite treponemes</td>
<td>12A</td>
<td>1.7%</td>
<td>12A</td>
</tr>
<tr>
<td>Clostridium sp. M62/1</td>
<td>4E</td>
<td>6.7%</td>
<td>4E</td>
</tr>
<tr>
<td></td>
<td>1D</td>
<td>5.0%</td>
<td>1D</td>
</tr>
<tr>
<td></td>
<td>8B</td>
<td>5.0%</td>
<td>8B</td>
</tr>
<tr>
<td></td>
<td>1A</td>
<td>3.3%</td>
<td>1A</td>
</tr>
<tr>
<td></td>
<td>9A</td>
<td>3.3%</td>
<td>9A</td>
</tr>
<tr>
<td></td>
<td>7B</td>
<td>1.7%</td>
<td>7B</td>
</tr>
<tr>
<td>Clone E / Streptococcus</td>
<td>1G</td>
<td>26.7%</td>
<td>1G, 8E</td>
</tr>
<tr>
<td></td>
<td>1E</td>
<td>10.0%</td>
<td>1E</td>
</tr>
<tr>
<td>C. acidiurici</td>
<td>1B</td>
<td>6.7%</td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>6H</td>
<td>3.3%</td>
<td>6H</td>
</tr>
<tr>
<td>Other</td>
<td>7F</td>
<td>5.0%</td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td>8D</td>
<td>1.7%</td>
<td>8D</td>
</tr>
<tr>
<td>Group</td>
<td>Phylotype</td>
<td>Abundance (%)</td>
<td>Genotypes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10A</td>
</tr>
<tr>
<td>10A</td>
<td>1.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>6.7%</td>
<td></td>
<td>3A, 9F</td>
</tr>
<tr>
<td>1F</td>
<td>1.7%</td>
<td></td>
<td>1F</td>
</tr>
<tr>
<td>2G</td>
<td>1.7%</td>
<td></td>
<td>2G</td>
</tr>
<tr>
<td>4B</td>
<td>1.7%</td>
<td></td>
<td>4B</td>
</tr>
<tr>
<td>5F</td>
<td>1.7%</td>
<td></td>
<td>5F</td>
</tr>
<tr>
<td>10F</td>
<td>1.7%</td>
<td></td>
<td>10F</td>
</tr>
<tr>
<td>Sulfate reducing Proteobacteria</td>
<td>2F</td>
<td>1.7%</td>
<td>2F</td>
</tr>
<tr>
<td>Not classified</td>
<td></td>
<td>1.7%</td>
<td>2E</td>
</tr>
</tbody>
</table>

1 Group representative (sequence used in published phylogenetic trees)
2 Defined as percent of full-length, non-chimeric clones
3 Sequenced RFLP type clones associated with each group
SUPPLEMENTAL TABLE 2. Sequences used in FTHFS phylogenetic analysis

<table>
<thead>
<tr>
<th>Source / Sequence Type</th>
<th>Accession</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetobacterium woodii</td>
<td>AAK20246</td>
<td>(4)</td>
</tr>
<tr>
<td>Alkaliphilus oremlandii</td>
<td>NC_009922</td>
<td></td>
</tr>
<tr>
<td>Blautia hydrogenotrophica DSM 10507</td>
<td>EEG47205</td>
<td>(12)</td>
</tr>
<tr>
<td>Bovine rumen clone BPG06</td>
<td>AB085389</td>
<td></td>
</tr>
<tr>
<td>Bovine rumen clone FNE01</td>
<td>AB085446</td>
<td></td>
</tr>
<tr>
<td>Bovine rumen clone R031</td>
<td>AB282722</td>
<td>(8)</td>
</tr>
<tr>
<td>Bryantella formatexigens</td>
<td>ZP_05346660</td>
<td>(12)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 10B</td>
<td>GU552387</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 10F</td>
<td>GU552383</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 1A</td>
<td>GU552365</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 1F</td>
<td>GU552369</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 2H</td>
<td>GU552370</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 4F</td>
<td>GU552376</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 5B</td>
<td>GU552377</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 6D</td>
<td>GU552379</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 6G</td>
<td>GU552380</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 7C</td>
<td>GU552387</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus adult clone 7H</td>
<td>GU552388</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 1A</td>
<td>GU552335</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 1B</td>
<td>GU552347</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 1F</td>
<td>GU552348</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 1G</td>
<td>GU552337</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 2B</td>
<td>GU552338</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 2E</td>
<td>GU552354</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 2H</td>
<td>GU552355</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 3H</td>
<td>GU552341</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 5D</td>
<td>GU552356</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 6B</td>
<td>GU552343</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 6D</td>
<td>GU552363</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 6F</td>
<td>GU552357</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 7A</td>
<td>GU552358</td>
<td>(16)</td>
</tr>
<tr>
<td>C. punctulatus nymph clone 9G</td>
<td>GU552352</td>
<td>(16)</td>
</tr>
<tr>
<td>C. secundus clone Cs27</td>
<td>DQ278254</td>
<td>(19)</td>
</tr>
<tr>
<td>C. secundus clone Cs3</td>
<td>DQ278251</td>
<td>(19)</td>
</tr>
<tr>
<td>C. secundus clone Cs56</td>
<td>DQ278258</td>
<td>(19)</td>
</tr>
<tr>
<td>Carboxydothermus hydrogenoformans Z-2901</td>
<td>ABB16038</td>
<td>(29)</td>
</tr>
<tr>
<td>Carnobacterium sp. AT7</td>
<td>ABHH01000002</td>
<td></td>
</tr>
<tr>
<td>Catonella morbi</td>
<td>ZP_04449844</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium aceticiu</td>
<td>AF295705</td>
<td>(4)</td>
</tr>
<tr>
<td>Clostridium acidurici</td>
<td>P13419</td>
<td>(27)</td>
</tr>
<tr>
<td>Clostridium asparagiforme DSM 15981</td>
<td>EEG52107</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium bartlettii</td>
<td>NZ_ABEZ02000016</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium botelae</td>
<td>NZ_ABCC02000007</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium carboxidivorans</td>
<td>ZP_05391913</td>
<td>(18)</td>
</tr>
<tr>
<td>Clostridium cylindrosporum</td>
<td>Q07064</td>
<td>(21)</td>
</tr>
<tr>
<td>Clostridium hiranonis</td>
<td>ABWP01000070</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium hylemonae DSM 15053</td>
<td>EEG73673</td>
<td>(12)</td>
</tr>
<tr>
<td>Clostridium phytofermentans</td>
<td>NZ_AAQTO10000065</td>
<td></td>
</tr>
<tr>
<td>Clostridium sp. M62/1</td>
<td>ZP_03733593</td>
<td>(12)</td>
</tr>
<tr>
<td>Cryptobacterium curtum</td>
<td>YP_003150638</td>
<td>(28)</td>
</tr>
<tr>
<td>Deer rumen clone d2sile09</td>
<td>ACZ68327</td>
<td>(1)</td>
</tr>
<tr>
<td>Desulfitobacterium hafniense DCB-2</td>
<td>ZP_00559333</td>
<td></td>
</tr>
<tr>
<td>Desulfitobacterium hafniense st. Y51</td>
<td>NC_007907</td>
<td>(13)</td>
</tr>
<tr>
<td>Source / Sequence Type</td>
<td>Accession</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dorea longicatena</td>
<td>NZ_AAXB02000001</td>
<td>(12)</td>
</tr>
<tr>
<td>Eggerthella lenta</td>
<td>YP_003183199</td>
<td>(28)</td>
</tr>
<tr>
<td>Enterococcus gallinarum</td>
<td>ZP_05648325</td>
<td>(17)</td>
</tr>
<tr>
<td>Eubacterium acidaminophilum</td>
<td>AAU84895</td>
<td></td>
</tr>
<tr>
<td>Eubacterium limosum</td>
<td>AF295706</td>
<td>(4)</td>
</tr>
<tr>
<td>Horse Manure Clone H1</td>
<td>AF295711</td>
<td>(4)</td>
</tr>
<tr>
<td>Human fecal clone OTU32</td>
<td>AB291670</td>
<td>(14)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 11C</td>
<td>GU552346</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 1B</td>
<td>GU552321</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 1E</td>
<td>GU552322</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 1F</td>
<td>GU552323</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 2A</td>
<td>GU552324</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 3A</td>
<td>GU552325</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 3D</td>
<td>GU552327</td>
<td>(16)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1 clone 7D</td>
<td>GU552331</td>
<td>(16)</td>
</tr>
<tr>
<td>Moorella thermoacetica ATCC 39073</td>
<td>ABC18448</td>
<td>(20)</td>
</tr>
<tr>
<td>Nasutitermes sp. FK-2007 Contig40968</td>
<td>JGI GOI: 2004144560</td>
<td>(26)</td>
</tr>
<tr>
<td>Ostrich colon clone PC_OTU04</td>
<td>BAI48802</td>
<td>(9)</td>
</tr>
<tr>
<td>Ostrich colon clone PC_OTU13</td>
<td>BAI48823</td>
<td>(9)</td>
</tr>
<tr>
<td>P. americana clone 10D</td>
<td>GU552420</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 10E</td>
<td>GU552421</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 11C</td>
<td>GU552424</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 1E</td>
<td>GU552406</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 1F</td>
<td>GU552390</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 1H</td>
<td>GU552407</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 2D</td>
<td>GU552413</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 2E</td>
<td>GU552394</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 3C</td>
<td>GU552395</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 3E</td>
<td>GU552414</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 3G</td>
<td>GU552415</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 4C</td>
<td>GU552398</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 5F</td>
<td>GU552411</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 5G</td>
<td>GU552399</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 6A</td>
<td>GU552400</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 6B</td>
<td>GU552416</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 6G</td>
<td>GU552401</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 7D</td>
<td>GU552403</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 8C</td>
<td>GU552418</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 8D</td>
<td>GU552429</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 9D</td>
<td>GU552412</td>
<td>(16)</td>
</tr>
<tr>
<td>P. americana clone 9F</td>
<td>GU552427</td>
<td>(16)</td>
</tr>
<tr>
<td>Peptostreptococcus micros</td>
<td>NZ_ABEE020000017</td>
<td>(12)</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>AF295710</td>
<td>(4)</td>
</tr>
<tr>
<td>R. santonensis clone Rs10</td>
<td>DQ278259</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs119</td>
<td>DQ278236</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs129</td>
<td>DQ278222</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs13</td>
<td>DQ278232</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs144</td>
<td>DQ278223</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs158</td>
<td>DQ278226</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs23</td>
<td>DQ278210</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs239</td>
<td>DQ278201</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs280</td>
<td>DQ278207</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs296</td>
<td>DQ278208</td>
<td>(19)</td>
</tr>
<tr>
<td>R. santonensis clone Rs44</td>
<td>DQ278211</td>
<td>(19)</td>
</tr>
<tr>
<td>Source / Sequence Type</td>
<td>Accession</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>R. santonensis clone Rs57</td>
<td>DQ278215</td>
<td>(19)</td>
</tr>
<tr>
<td>Roseburia intestinalis</td>
<td>NZ_ABYJ01000311</td>
<td>(12)</td>
</tr>
<tr>
<td>Ruminococcus gnavus</td>
<td>NZ_AAYG02000005</td>
<td>(12)</td>
</tr>
<tr>
<td>Ruminococcus productus</td>
<td>AF295707</td>
<td>(4)</td>
</tr>
<tr>
<td>Sporomusa ovata</td>
<td>AF295708</td>
<td>(4)</td>
</tr>
<tr>
<td>Sporomusa termitida</td>
<td>AF295709</td>
<td>(4)</td>
</tr>
<tr>
<td>Streptococcus dysgalactiae</td>
<td>YP_002997753</td>
<td></td>
</tr>
<tr>
<td>Streptococcus gordonii</td>
<td>NC_009785</td>
<td>(25)</td>
</tr>
<tr>
<td>Streptococcus parasanguinis</td>
<td>ZP_06899910</td>
<td>(12)</td>
</tr>
<tr>
<td>Streptococcus pyogenes SSI-1</td>
<td>BAC64868</td>
<td>(11)</td>
</tr>
<tr>
<td>Streptococcus sanguinis</td>
<td>NC_009009</td>
<td>(30)</td>
</tr>
<tr>
<td>Syntrophomonas wolfei</td>
<td>YP_754087</td>
<td>(23)</td>
</tr>
<tr>
<td>Thermoanaerobacter kivui</td>
<td>AF295704</td>
<td>(4)</td>
</tr>
<tr>
<td>Thermosediminibacter oceani JW/IW-1228P</td>
<td>JGI GOI: 2500808311</td>
<td></td>
</tr>
<tr>
<td>Treponema azotonutricium ZAS-9</td>
<td>AY162316</td>
<td>(22)</td>
</tr>
<tr>
<td>Treponema primitia ZAS-1</td>
<td>AY162313</td>
<td>(22)</td>
</tr>
<tr>
<td>Treponema primitia ZAS-2</td>
<td>AY162315</td>
<td>(22)</td>
</tr>
<tr>
<td>Treponema sp ZAS-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z. nevadensis clone A</td>
<td>AY162294</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone E</td>
<td>AY162296</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone F</td>
<td>AY162298</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone H</td>
<td>AY162302</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone N</td>
<td>AY162306</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone P</td>
<td>AY162307</td>
<td>(22)</td>
</tr>
<tr>
<td>Z. nevadensis clone Y</td>
<td>AY162311</td>
<td>(22)</td>
</tr>
<tr>
<td>Source</td>
<td>Accession</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Amitermes evuncifer</td>
<td>DQ442066</td>
<td>(3)</td>
</tr>
<tr>
<td>Amitermes sp. Cost010</td>
<td>HM208255</td>
<td></td>
</tr>
<tr>
<td>Amitermes sp. JT2</td>
<td>HM208250</td>
<td></td>
</tr>
<tr>
<td>Archotermopsis wroughtoni</td>
<td>DQ442080</td>
<td>(3)</td>
</tr>
<tr>
<td>Coptotermes formosanus</td>
<td>AB109529</td>
<td>(15)</td>
</tr>
<tr>
<td>Cornitermes pugnax</td>
<td>DQ442106</td>
<td>(3)</td>
</tr>
<tr>
<td>Cryptocercus clevelandi</td>
<td>DQ007626</td>
<td>(5)</td>
</tr>
<tr>
<td>Cryptocercus primarius</td>
<td>DQ007644</td>
<td>(5)</td>
</tr>
<tr>
<td>Cryptocercus punctulatus adult</td>
<td>GU552433</td>
<td>(16)</td>
</tr>
<tr>
<td>Cryptocercus punctulatus nymph</td>
<td>GU552434</td>
<td>(16)</td>
</tr>
<tr>
<td>Cryptotermes domesticus</td>
<td>AF189086</td>
<td>(24)</td>
</tr>
<tr>
<td>Cryptotermes secundus</td>
<td>AF189093</td>
<td>(24)</td>
</tr>
<tr>
<td>Deropeltis erythrocephala</td>
<td>DQ874271</td>
<td>(2)</td>
</tr>
<tr>
<td>Euryctis floridana</td>
<td>DQ874283</td>
<td>(2)</td>
</tr>
<tr>
<td>Gnathamitermes sp. JT5</td>
<td>HM208249</td>
<td></td>
</tr>
<tr>
<td>Incisitermes immigrans</td>
<td>AB109542</td>
<td>(15)</td>
</tr>
<tr>
<td>Incisitermes sp. Pas1</td>
<td>GU552433</td>
<td>(16)</td>
</tr>
<tr>
<td>Kalotermes hilli</td>
<td>AF189101</td>
<td>(24)</td>
</tr>
<tr>
<td>Labiatermes labralis</td>
<td>DQ442149</td>
<td>(3)</td>
</tr>
<tr>
<td>Microcerotermes newmani</td>
<td>DQ442166</td>
<td>(3)</td>
</tr>
<tr>
<td>Microcerotermes parvus</td>
<td>DQ442167</td>
<td>(3)</td>
</tr>
<tr>
<td>Microcerotermes sp. Cost008</td>
<td>HM208254</td>
<td></td>
</tr>
<tr>
<td>Nasutitermes corniger</td>
<td>AB037327</td>
<td>(10)</td>
</tr>
<tr>
<td>Nasutitermes ephratae</td>
<td>AB037328</td>
<td>(10)</td>
</tr>
<tr>
<td>Nasutitermes nigriceps</td>
<td>DQ442193</td>
<td>(3)</td>
</tr>
<tr>
<td>Nasutitermes sp. FK-2007</td>
<td>EU236539</td>
<td>(26)</td>
</tr>
<tr>
<td>Nasutitermes sp. Cost003</td>
<td>HM208252</td>
<td></td>
</tr>
<tr>
<td>Periplaneta americana</td>
<td>GU552435</td>
<td>(16)</td>
</tr>
<tr>
<td>Reticularitermes flaviceps</td>
<td>AB109532</td>
<td>(15)</td>
</tr>
<tr>
<td>Reticulitermes santonensis</td>
<td>AF291743</td>
<td>(7)</td>
</tr>
<tr>
<td>Reticulitermes speratus</td>
<td>AB109530</td>
<td>(15)</td>
</tr>
<tr>
<td>Rhynchotermes sp. Cost004</td>
<td>HM208253</td>
<td></td>
</tr>
<tr>
<td>Zootermopsis angusticollis</td>
<td>DQ442267</td>
<td>(3)</td>
</tr>
<tr>
<td>Zootermopsis nevadensis</td>
<td>GQ922444</td>
<td></td>
</tr>
</tbody>
</table>
Supplemental References

