CaltechAUTHORS
  A Caltech Library Service

Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles

Sweatlock, L. A. and Maier, S. A. and Atwater, H. A. and Penninkhof, J. J. and Polman, A. (2005) Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles. Physical Review B, 71 (23). Art. No. 235408. ISSN 1098-0121. http://resolver.caltech.edu/CaltechAUTHORS:SWEprb05

[img]
Preview
PDF
See Usage Policy.

810Kb

Use this Persistent URL to link to this item: http://resolver.caltech.edu/CaltechAUTHORS:SWEprb05

Abstract

Linear arrays of very small Ag nanoparticles (diameter ~10 nm, spacing 0–4 nm) were fabricated in sodalime glass using an ion irradiation technique. Optical extinction spectroscopy of the arrays reveals a large polarization-dependent splitting of the collective plasmon extinction band. Depending on the preparation condition, a redshift of the longitudinal resonance as large as 1.5 eV is observed. Simulations of the three-dimensional electromagnetic field evolution are used to determine the resonance energy of idealized nanoparticle arrays with different interparticle spacings and array lengths. Using these data, the experimentally observed redshift is attributed to collective plasmon coupling in touching particles and/or in long arrays of strongly coupled particles. The simulations also indicate that for closely coupled nanoparticles (1–2 nm spacing) the electromagnetic field is concentrated in nanoscale regions (10 dB radius: 3 nm) between the particles, with a 5000-fold local field intensity enhancement. In arrays of 1-nm-spaced particles the dipolar particle interaction extends to over 10 particles, while for larger spacing the interaction length decreases. Spatial images of the local field distribution in 12-particle arrays of touching particles reveal a particlelike coupled mode with a resonance at 1.8 eV and a wirelike mode at 0.4 eV.


Item Type:Article
Additional Information:©2005 The American Physical Society (Received 1 December 2004; revised 16 February 2005; published 10 June 2005) Bart Kooi (Groningen University) is acknowledged for TEM and Arjen Vredenberg (Utrecht University) for assistance with MeV ion irradiation. Kobus Kuipers (FOMInstitute AMOLF) is gratefully acknowledged for stimulating discussions and advice. David Sheets is acknowledged for scripting simulation macro files. This work was sponsored by G. Pomrenke of the Air Force Office of Scientific Research. The Dutch part of this work is part of the research program of FOM, which is financially supported by NWO.
Subject Keywords:silver; nanoparticles; particle size; ion beam effects; visible spectra; infrared spectra; surface plasmon resonance; red shift
Record Number:CaltechAUTHORS:SWEprb05
Persistent URL:http://resolver.caltech.edu/CaltechAUTHORS:SWEprb05
Alternative URL:http://dx.doi.org/10.1103/PhysRevB.71.235408
Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:2377
Collection:CaltechAUTHORS
Deposited By: Archive Administrator
Deposited On:31 Mar 2006
Last Modified:26 Dec 2012 08:48

Repository Staff Only: item control page