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Abstract

Recent realizations of single-atom trapping and tracking in cavity QED open
the door for feedback schemes which actively stabilize the motion of a
single atom in real time. We present feedback algorithms for cooling the
radial component of motion for a single atom trapped by strong coupling to
single-photon fields in an optical cavity. Performance of various algorithms
is studied through simulations of single-atom trajectories, with full
dynamical and measurement noise included. Closed loop feedback
algorithms compare favourably to open loop ‘switching’ analogues,
demonstrating the importance of applying actual position information in real
time. The high optical information rate in current experiments enables
real-time tracking that approaches the standard quantum limit for broadband
position measurements, suggesting that realistic active feedback schemes
may reach a regime where measurement backaction appreciably alters the

motional dynamics.
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1. Introduction

Recent experiments [1-5] have demonstrated the ability to
trap [1, 3-6] and localize [2] a single atom in a high-finesse
optical cavity by way of optical forces. Moreover, by detecting
the light transmitted by the cavity, the atom’s motion within the
cavity mode can be monitored in real time with high signal to
noise throughout its trapped lifetime [7]. These achievements
in trapping and localization open up exciting possibilities for
quantum logic and quantum state preparation in the context
of cavity QED [8-13]. Beyond the realization of trapping,
the high signal-to-noise for continuous, real-time position
measurement is itself one of the most notable features of these
strongly coupled cavity QED systems. Such detailed real-time
position information immediately suggests the idea of active
feedback to dynamically cool the motion of a single trapped
atom. By investigating this system and the feedback schemes
available in it, basic questions of quantum state estimation and
optimal control can be explored for continuous measurement of
adynamical variable—in this case the position of a single atom.

Crucial to the realization of trapping and sensing in cavity
QED is strong coupling, a condition in which the coherent
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coupling between atom and cavity field dominates dissipative
rates in the system. For a two-state atom optimally coupled
to the cavity mode, the dipole—field coupling is given by the
Jaynes—Cummings interaction Hamiltonian [14]

Hine = hg(o,a+o_a'), (1)

where o are dipole raising and lowering operators, (a, a') are
field annihilation and creation operators for the cavity mode,
and g is one-half of the single-photon Rabi frequency. This
interaction gives rise to the well known Jaynes—Cummings
ladder of eigenstates for the coupled atom—cavity system, and
correspondingly to the vacuum Rabi splitting for the system’s
resonant frequencies [15]. Dissipation, on the other hand,
is characterized by the cavity decay rate « and the atomic
spontaneous emission rate y. Strong coupling occurs for
g > (k,y). We can define a further condition of strong
coupling for the external atomic degrees of freedom; this
occurs when the coherent coupling also dominates the atomic
kinetic energy, as first achieved in [16].

Under these conditions, interaction with a single-photon
cavity field exerts a strong mechanical effect on a single atom,
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allowing trapping of the atom when the system is driven to
strong-field seeking states in the Jaynes—Cummings ladder.
Furthermore, strong coupling assures that the intracavity light
field and thus the cavity output field (transmitted light) are
influenced by an atom; thus, as an atom moves between
more and less strongly coupled positions within the cavity,
the transmitted light provides a real-time measurement of
atomic position. This sensing enables the one-time triggering
employed in [1-4] to switch on a trapping potential when an
atom is present near the centre of the cavity. The ongoing
stream of position information should, however, be useful
for continued active feedback based on the atomic position.
Rather than simply triggering a potential to turn on, it should
be possible to modulate the potential depth to dynamically cool
the atomic motion, in a method analogous to the principles
of stochastic cooling but for a single atom. Initial steps in
this direction are represented in the work of [17]. Quantum
feedback for other atomic state variables is also an active area of
research, including the recent experimental demonstration of
quantum feedback to control the ensemble spin of a collection
of cold atoms [18].

In this paper, we address the question of how to implement
atomic position feedback in experimentally realistic situations,
where several constraints apply:

(1) the system is inherently nonlinear and largely nonanalytic,
with relationships between many quantities of interest
determined by steady-state solutions to the master
equation for the atom—cavity system,

(2) dynamical noise is significant and changes in tandem with
the driving field and trapping potential, and

(3) measurement noise, arising largely from the fundamental
quantum noise (shot noise) of detection, imposes
necessary delays in the estimation of dynamical variables
and the implementation of feedback.

Broadband measurement near the standard quantum limit
(see [19]) has been demonstrated in this system through
measurement of cavity transmission amplitude [1] and by
simultaneous measurement of transmitted amplitude and
phase [20]. Use of these measurements in feedback control
of some aspect of the atomic motion should bring us closer
to regimes where measurement backaction has a significant
effect, so that different detection methods may exhibit different
control limits based on these effects as well as on more
conventional signal-to-noise considerations [21, 22].

In section 2 we review the experimental system on which
our work is based. The feedback strategy we consider is
presented and motivated in section 3. Section 4 presents
feedback results; these are considered both in the realistic
experimental context and in several idealized systems in order
to illustrate the algorithm’s effect on the individual components
of atomic motion. In section 5 we again take up the topic of
experimentally measurable feedback results, and in section 6
we discuss limits and possible extensions of the algorithms
discussed in the paper.

2. Experimental status and sensitivity for atomic
position measurement

In our feedback calculations, we have considered the situation
of [1], where a single atom is trapped via its interaction with a
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Figure 1. Caesium atoms are dropped from a MOT and a small
fraction of these fall one by one through the mode of an optical
cavity. The cavity mode is a cylindrically symmetric Gaussian in the
transverse (p, 0) plane and has a standing-wave structure in the
axial (x) direction. Transmission of a probe beam through the cavity
is monitored to sense an atom’s motion through the cavity mode; a
detected rise in transmission triggers a switch to higher probe
intensity, significantly populating strong-field seeking states of the
atom—cavity system and thus trapping the atom. The figure shows
one falling atom which misses the cavity mode altogether and a
second atom which enters the cavity, is trapped in the mode, and
eventually escapes.

near-resonant cavity light field at the level of a single photon.
In that experiment, the small saturation photon number and
critical atom number [23]—the smallest in experiments to
date—facilitated not only the trapping mechanism but, more
importantly for these considerations, the high signal-to-noise
observation of atomic motion within the cavity field.

Figure 1 shows a schematic diagram of the experimental
procedure, in which caesium atoms (atomic resonance
frequency w,) are collected in a magneto-optical trap (MOT)
directly above the cavity mirrors, cooled to temperatures of
~10 K, and dropped through the cavity. The geometry of the
mirror substrates cuts off most of the atomic flux so that one
atom at a time transits the cavity mode of length / and Gaussian
waist wy. The cavity resonance @, is tuned near but slightly
below the atomic resonance frequency so that w. — w, < 0.
The cavity is continuously driven by a probe laser at frequency
wp, and the transmission of this beam through the cavity is
monitored via balanced heterodyne detection. For a probe red-
detuned from both atom and cavity (w, near the lower vacuum
Rabi sideband [15]), transmission is low for the empty cavity
and is highest when an atom is in the regions of strongest
coupling. Thus the monitored photocurrent carries real-time
information about the atomic position, with high signal-to-
noise even for probe strengths corresponding to <1 intracavity
photons. Saturation of the atom—cavity response [16] sets in
for larger field strength, so that the most sensitive tracking is
realized at ~1 intracavity photon.

The atom—cavity evolution in this system is described
by a master equation (see, e.g., [24-26]) for the joint atom—
cavity density operator p. We consider a driving (and probing)
field € of frequency wp, a cavity resonant at w. = w, + Acp,
and an atomic resonance frequency w, = wp + Ayp. In the
electric dipole and rotating-wave approximations, and in the
interaction picture with respect to the probe frequency, the
master equation can be written
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Figure 2. (a) First few levels of the ladder of energy eigenstates for
the atom—cavity system. Uncoupled and maximally coupled
eigenvalues are illustrated, along with their smooth dependence on
the atomic position (and hence the atom—cavity coupling). The
strength of driving light determines the system’s population
distribution across the first few levels of the ladder, setting the shape
and depth of the effective potential. (b) Effective potential for the
atom, cavity, and probe detuning parameters of the simulations, and
drive strength n;; corresponding to 0.3 photons in the empty cavity
on resonance.
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Here g(7) is the coupling strength which takes into account
the atomic position 7 within the cavity mode. For a Fabry—
Perot cavity supporting a standing wave mode with Gaussian
transverse profile, g(¥) = go cos(2mx/A) exp[—(y>+z%)/wi].
The cylindrical symmetry of the field suggests the use of
cylindrical coordinates (p, @, x), where p = /y2+z2 and
0 = tan~!(—z/y) (see figure 1). Thus we write g(+) =
8o cos(2x /) exp[—p?/wi]. In the fully quantum treatment,
the atomic position 7 is itself an operator; in experiments to
date a quasi-classical treatment suffices, so the atom may be
considered a wavepacket with 7 a classical centre-of-mass
position variable. Similar feedback schemes for an atom-—
cavity system have also been explored theoretically in the case
of an atom which has already been cooled radially and must
now be treated in a fully quantized manner for cooling of the
remaining axial motion [27].

Following the experimental situation of [1], we
consider an atom—cavity system in which (go, k, y)/2n =
(110, 14.2,2.6) MHz. The simulation results below refer
to varying cavity field strength but with detunings fixed at
(we — wy) /2w = —47 MHz, (wp — w,) /27 = —125 MHz.

Figure 2(a) shows the first few levels of the Jaynes—
Cummings ladder of energy eigenvalues, obtained by
diagonalizing the interaction Hamiltonian of equation (3). The
smooth evolution from uncoupled to fully coupled eigenstates
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Figure 3. (a) Cavity transmission record for an atom trapped with
0.3 photons in the empty cavity. Motion of the trapped atom within
the cavity mode can be tracked via the oscillations in cavity
transmission. Each oscillation has amplitude A and period P as
indicated on the trace. (b) Oscillation period P versus amplitude A
of transmission oscillations as in (a). The solid curve is calculated
for motion in the known anharmonic potential of figure 2(b), with no
free parameters in the fit.

reflects the dependence of coupling g () on the atomic position
7, and specifically on the atom’s distance p from the cavity
axis. In the presence of dissipation and driving, the distribution
of populations across the first few levels of this ladder is
determined by numerical steady-state solution of the master
equation at each position. Figure 2(b) shows the effective
potential for the atom—cavity properties considered in this
work, with driving level in this example fixed at n;; = 0.3
photons in the empty cavity. The atom-trapping scheme of [1]
is based on tracking the atomic position and altering the driving
field strength to place the system in the attractive potential of
figure 2(b) when the atom is close to the cavity axis (p ~ 0).

Figure 3(a) shows a sample experimental trace of
transmission versus time for a single atom trapped as in [1].
Immediately notable in the transmission record are the large,
regular oscillations in the heterodyne current, which can be
associated with an atom repeatedly approaching and receding
from the regions of strongest atom—cavity coupling. The
cavity mode structure produces a trapping potential with width
~X\/2 = 426 nm in the axial direction and ~wy = 14 um in
the radial direction, giving axial oscillations at ~1-2 MHz
while radial oscillations occur on the much slower timescale
of ~10-20 kHz. By using a detection bandwidth of 100 kHz,
we obtain a transmission record that averages over the effects
of axial motion.
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A series of quantitative comparisons demonstrates that the
remaining transmission signal faithfully reflects radial motion
with very little contamination from the axial averaging [7].
Simulations indicate that, for the parameter regime employed
in [1], a trapped atom is typically confined within ~50 nm of
a single standing-wave antinode until it heats very quickly and
escapes the trap altogether. Events involving large-amplitude
oscillations or ‘skipping’ across wells and retrapping in another
antinode are very rare occurrences in this regime; since
axial motion typically has such small amplitudes, we expect
the average over it to have a negligible effect on measured
cavity transmission. Comparison of observed maximum
transmission levels with the expected theoretical maximum
confirms this notion, giving an estimate of <75 nm for typical
axial excursions.

As further confirmation that transmission accurately
reflects radial motion, we consider the observed period of
transmission oscillations as a function of their amplitude.
From our knowledge of the anharmonic (approximately
Gaussian) trapping potential in the radial direction, it is
straightforward to calculate the expected relationship between
amplitude and period for these oscillations. As evident from
figure 3(b), actual data closely follow the theoretical curve,
indicating that the transmission record can indeed be inter-
preted as a record of radial motion (7' () — p(¢)). Though
the atom—cavity coupling is cylindrically symmetric and thus
provides no explicit information about 6(¢), knowledge of
p(t) and the trapping potential allow us to reconstruct an es-
timate of an atom’s angular momentum L(¢) and thus of a
two-dimensional trajectory in the (p, 6) plane. Such a method
can be applied with success in a parameter regime where the
atomic motion is largely conservative and the angular momen-
tum varies slowly on the timescale of a single radial orbit [1, 7].

Three basic ambiguities will be clear from this algorithm
for trajectory reconstruction: (1) the sign of the angular
momentum is unknown, so the trajectory has arbitrary
handedness. (2) The initial angle 6y is arbitrary, so the resulting
trajectory can be rotated freely as a unit. (3) The trajectory is
constructed in two dimensions, with the axial motion confined
within a single antinode, but no information is available about
which antinode the atom occupies during the trajectory. These
ambiguities, while noted here for clarity, arise in aspects of the
motion not used in the feedback scheme treated below.

Two-dimensional trajectory reconstructions dramatically
illustrate the cavity-enhanced sensing power for atomic
motion. However, the initial goal of our feedback algorithms
will be to control p(¢); for this purpose it is sensible to ignore
0(t) and apply all available signal to noise to the task of
estimating p(¢) and p(¢) in real time. The goal of such a
program is then to use this information to drive p(f) to a
constant value, or in other words to circularize an orbit in the
(p, 0) plane while not necessarily driving it to the cavity axis
(p = 0). The latter task, which requires an explicit method of
breaking cylindrical symmetry for position sensing and for the
effective potential, can be considered as a later extension.

3. The atom and cavity as a control system: basic
feedback strategy

As a guide in the identification of plausible feedback strategies
and their limitations, it is useful to restate the problem
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somewhat in the language of control systems. To this end, we
begin by setting aside the issue of axial motion and treating the
atom as a particle in a cylindrically symmetric, approximately
Gaussian two-dimensional potential whose depth is controlled
by the input light intensity:

U~ —Upe "™, )

Note that the potential waist w is not simply equated with the
previously introduced cavity field waist wy or with the mode
intensity waist wo/~/2, but rather is set by the self-consistent
interaction of atom and light field in the strong coupling regime.
Whereas the cavity mode profile is exactly Gaussian, U is
only approximately Gaussian and has an exact form that is
nonanalytical as determined by steady-state solutions to the
master equation for an atom at each value of p. The potential
depth Uy depends on the intensity of the optical field used to
drive the cavity mode. The potential waist w is in fact a (slowly
varying) function of the drive strength as well [7].

The trapped atom is also subject to friction and to
dynamical noise (momentum diffusion), both arising from
decays and re-excitations of the system on timescales faster
than the motion. In the regime of [1], the contribution of
friction is small compared to the momentum diffusion terms
in the equation of motion.

Because the two-dimensional potential is symmetric, the
atom’s angular momentum L is constant, or rather varies only
due to dynamical noise. We can thus write a one-dimensional
effective potential in the p dimension,

Ve = —Upe """ + L2 )2mp? 5)

and thus an equation of motion (for an atom of mass m)

2pU . L?
p=—LRermt 6)
muw m2p-
which we notationally simplify to the form
. .o L
p=—pEe” + = ()
5

where /5 is dimensionless (5 = p/w), E = 2Uy/mw? is the
input we control by varying the driving field strength, and
L = L?/m*w* is constant except for the influence of friction
and dynamical noise.

The measurement of light transmitted through the cavity,
T (1), is equivalent to a (noisy) measurement of p(z). The
noise of this measurement is largely fundamental quantum
noise (shot noise) of detection. The mapping between 7" and
p, derived again from steady-state solutions of the master
equation for the coupled atom—cavity system, is not linear
and furthermore depends on the value of the driving strength
E. The initial objective is to circularize the two-dimensional
orbit—in other words, to make p constant or to hold p = 0 by
varying the control input E.

The simplified system can be described by a block
diagram as shown in figure 4. The system exhibits myriad
nonlinearities; for example, (T — p) is nonlinear and depends
on E, the dynamical noise depends on E, and the equation
of motion for p is itself nonlinear. Nonetheless, while this
statement of the problem does not suggest provably optimal
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Figure 4. Block diagram for the atomic position feedback loop,
illustrating sources of noise and system nonlinearities.

feedback strategies, it does motivate some conceptually simple
algorithms based on switching between discrete values of
driving strength E. Switching strategies of this sort are often
invoked for the sake of robustness, a major consideration
in this scenario; robustness to dynamical and measurement
noise is certainly important, but perhaps even more relevant is
robustness to small uncertainties in system parameters (e.g.,
driving strengths or detunings). Switching or ‘bang—bang’
type algorithms [28] have the additional virtue of admitting
easy implementation in simulations and in experimental
design.

The feedback algorithms we investigate in this paper all
share the same basic strategy of switching the driving field
intensity between two discrete levels. This corresponds to
switching between two potential depths (and, incidentally, two
different sets of friction and momentum diffusion coefficients
as well). The simple objective is to time this switching
relative to the atomic motion so that an atom sees a steep
potential when climbing out of the trap (¢ > 0) and a shallow
potential when falling back towards the trap centre (p < 0), as
illustrated in figure 5. The feedback algorithm, then, is based
on switching the potential at turning points of p, i.e., each
time p crosses zero. Implemented effectively, this approach
promises significant dynamical cooling of the radial motion
(p — constant or p — 0) in just a few oscillations.

The initial detection and trapping of an atom are
accomplished as in [1, 7]; a weak probe at driving level
exlo is used to detect the atom’s arrival in the cavity with
minimal effect on the motion, and an increase in transmission
of this beam triggers a switch to driving level Ai to populate
strong-field-seeking states and trap the atom. Feedback is then
implemented by switching the trapping potential between the
hi level and an intermediate lo setting, with switching times
based on real-time information about the motion of the single
atom.

The simplest algorithm would be to switch back and forth
between hi and lo potentials at the turning points of p(¢), which
are the zero-crossings of p(¢). That is, trap initially in ki,
switch to lo when p crosses zero from above (i.e., when p
begins to decrease), switch back to ki when p crosses zero
from below (p reaching its minimum and increasing), and so
on until the atom escapes. However, this strategy calls for
a theoretically infinite sequence of switching events, while it
is desirable to instead achieve a steady state in some long-
time limit. The presence of dynamical noise implies that

AVARNARVE
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Figure 5. General feedback strategy for atomic radial coordinate.

the exact steady state of p — 0 is in any case unreachable,
so we replace it with a goal of confining p to some range
[—lim,+lim]. Thus the feedback strategy is modified to
include slight hysteresis: lo — hi when p — +lim from
below, hi — lo when p — —lim from above. With this
modification, switching stops once p is confined within the
acceptable range. Furthermore, we prefer a steady state with
hi potential for reasons of the deeper confinement; to bias the
system towards this final state, we use asymmetric hysteresis
limits: [o — hi when p — +lim from below, hi — [o when
p — —(lim + §) from above.

4. Simulations of feedback algorithms in operation

For our simulations, we first choose driving strengths n,,;, =
0.05 photons in the empty cavity, n;,; = 0.3 photons in the
empty cavity, and n;,, = 0.15 empty-cavity photons. These
driving strengths are high enough so that an atom of typical
kinetic energy can be trapped by both /o and hi drives, yet low
enough to ensure the increase in momentum diffusion between
lo and hi does not outstrip the increase in potential depth.

Our simulations of the atom—cavity dynamics are based
on the treatment described in detail in [7, 29]; the treatment
is fully quantized for the atomic internal state and the cavity
light field, but considers the atomic centre-of-mass motion
quasiclassically. This approximation is suitable for the current
experimental situation, with more manifestly quantized motion
to be accessed by better cooling and/or detection of the atom’s
axial motion. The non-conservative terms in the system, in the
form of friction and momentum diffusion, are included in the
simulation; the resulting ‘heterodyne transmission’ trace is a
perfect record of |(a)|?, on which measurement bandwidths
and shot noise must be imposed separately. Shot noise is
modelled as Gaussian white noise with an amplitude that
depends on the size of the (noiseless) transmission signal.

In the presence of sensor noise, we require estimators
for the quantities p and p. Because one parameter (L)
in the equation of motion is unknown and in fact slowly
varying, we have chosen not to implement estimators based
on a Kalman-filter approach. More sophisticated treatments
include Kalman-type approaches to simultaneously estimate
p, p, and L, but these have not been explored in full detail.
Meanwhile, we choose to estimate p(¢) and p(¢) directly
from the measurement record, with no explicit reference to
the equation of motion for the system.

The noisy transmission signal 7 is sampled at | MHz as in
the experiment of [1]. To estimate p, we first perform an RC

S219



T W Lynn et al

Trajectory in (p,0) plane
25

o

Transmission (T)

o o

T (Ka)1P); p/50 (um); dp/dt (um/us)
Vertical Position (um)
o

=10 0 10
Horizontal Position (um)

0 100 200 300 400 500 600 700 800 900
Time (us)

Figure 6. Simulated feedback example with perfect sensing of p (7).
The graph on the left shows idealized cavity transmission 7'(¢)
(purple), radial position p(¢) (blue), and dp/d¢ (red) for a simulated
atom trajectory. In the right panel the same atomic trajectory is
shown in the (x, y) (or (p, 0)) plane. This trajectory begins as a
nearly vertical transit through the cavity, but is circularized by the
feedback employed. In the left panel, the circularization is evident
as dp/dt is damped towards zero and p and 7" become nearly
constant at the end of the trajectory.

low-pass filter on 7" at 100 kHz. This step is an infinite impulse
response (IIR) filter which introduces only a small delay in the
estimator. This filtered transmission signal is then put through
a lookup table with linear interpolation to obtain peg (¢).

The resulting peq (f) tracks the actual p closely but still
with significant noise. Obtaining a time derivative without
excessive noise thus requires some care. A variety of methods
are mentioned in [30], in which the authors are concerned with
estimating the sign of a time derivative in order to feed back
to a system—essentially the same problem we encounter. We
employ a simple finite impulse response (FIR) filter that takes
the slope of a linear least squares fit to peg () over a window
of fixed size. A detailed implementation of this filter is found
in [31]. The resulting pes () is a good estimator for p at the
middle of the window, so the delay induced is approximately
half the window size. We find via numerous simulations that a
window size of 30—40 us gives a signal peg (#) which is quiet
enough for use in our control. Thus reliable estimation in
the presence of noise introduces a delay of approximately 15—
20 ws in the feedback loop. This time delay can be compared to
a typical atomic orbital period of 7, ~ 100 us, corresponding
to a period of ~50 us for p. Feeding back effectively in
the presence of such large delays requires a certain amount
of adjustment to the naive cooling algorithm, as discussed in
detail below.

4.1. Actual dynamics but no measurement noise

Before treating the case of actual experimental noise,
we explore the performance of our feedback strategy in
simulations with noiseless measurement and thus perfect, zero-
delay sensing of (p, p). Figure 6 shows an example trajectory
using this asymmetric-hysteresis switching strategy. The
values of cavity transmission 7" and atomic position variables
are sampled every 1 us, but the dynamical timestep is 3000

5220

times finer than this ‘information’ timestep. Note that axial
motion (the x direction our strategy neglects) is included in
the simulation, and when its amplitude is large it gives rise to
the very fast variations seen in 7'(¢). However, since the period
of x motion is similar to the information timestep used, note
that these signals are undersampled in the record.

A 10 ps box filter is applied to p in order to remove
some oscillations caused by x motion and also partially to
anticipate some effects of noisy detection and delay. In
setting the conditions for potential-switching, we employ
the asymmetric hysteresis described above with (lim,§) =
(0.05,0.03) um pus~', so the potential depth is switched at
p = +0.05, —0.08 um us~'. Switching events, since they
correspond to turning the light level up and down, can be seen
as sharp edges in the transmitted light 7. As the example
illustrates, the control strategy successfully circularizes atomic
trajectories within a few orbital cycles. This can be seen from
p(t) as well as from the trajectory shown in the (p, 6) plane.
The hysteresis limits are chosen so that variations in p due
only to dynamical noise tend not to trigger any switching of
the drive. This is illustrated by the continued high control level
throughout the time 1 = 500-650 us, while p is wandering
diffusively rather than oscillating with regularity.

The overall trap lifetime is dominated, as in this example,
by heating in the x direction. (In the example shown, note
the fast, large-amplitude variation in transmission just before
the atom escapes; this is a signature of rapid axial heating.)
Thus our feedback strategy has little impact (at the level of
10%) on average trapping lifetimes. Circularizing the orbit
helps decrease axial heating since the potential depth no longer
wanders as p varies; however, the feedback is accomplished by
sharp switching events which occur at arbitrary times relative
to the oscillations in the x direction. The overall impact
on lifetimes is therefore small in the simulations we have
performed. Since the feedback algorithm is aimed at reducing
motion in the p direction, its success is best measured by
its performance at that task specifically. Lifetime effects can
become apparent only if the axial motion is suppressed by some
other means; that case is treated briefly in section 4.5 below.

4.2. Adding measurement noise adds delays

The addition of measurement noise and consequent estimation
of p introduce significant loop delays, as described above.
Since pey can be almost half a cycle behind the actual p, we
expect naive switching to be well out of phase with the atomic
motion and thus relatively ineffective as a cooling mechanism.
Figure 7 shows an example in which the feedback strategy
is identical to that of figure 6, but applied to pey rather than
to p itself. The resulting time delay seriously compromises
performance, as shown. In the figure, note that the switching
events, recognizable as sharp edges in transmission, do not line
up with turning points of p. As a result, p is not damped and
the trajectory remains elliptical.

4.3. Account for delays by waiting a cycle

Since it seems clear we cannot simply close the loop with
the delays necessitated by measurement noise, we choose to
address the problem by adding even more delay—that is, by
detecting a switching condition (e crossing a hysteresis limit)
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Figure 7. Measurement noise leads to filtering and unacceptable
loop delay in this example. In addition to the quantities plotted in
figure 6, the left panel now displays the experimentally realistic
transmission 7 (¢) with noise (yellow), and the radial motion
estimators pey (¢) (green) and (dp/df)ey (light blue) arising from the
noisy transmission signal. Feedback switching is triggered by the
value of (dp/dt)cy, but since the estimator lags well behind the true
dp/dt damping is not achieved, and indeed the two-dimensional
trajectory shows little change in shape over time.

and then waiting to switch the potential at a time which should
catch the next oscillation of p. A first attempt in this direction
would be to assume a fixed period for oscillations of p. In
this case the additional wait before switching is given by this
fixed period minus the estimator delay for p.y. Since each
switching time is now set by the detected signal from the
previous cycle, the first switching opportunity (first minimum
of T and maximum of p) will be missed in this strategy. Rather
than miss this cooling cycle, we impose a single switching
event a fixed time after the initial trap turn-on. Thus the
potential switches exlo — hi on the initial trigger, hi — lo
a fixed time later, and lo <> hi thereafter based on the last
zero-crossing time of Peg.

However, the actual dynamical period varies by easily a
factor of two over the course of an atom’s trapping lifetime
due to changing amplitude of oscillation in the anharmonic
potential, as seen in figure 3(b). Thus the fixed-period
assumption is a poor one. A better strategy is to record the
length of each period in peg and assume each cycle will be the
same length as the previous recorded one. Thus the ‘waiting
time’ estimate will adjust itself as the dynamical period
changes, though it will in general be one cycle behind. This
strategy is employed for the trajectory shown in figure 8. The
initial switch occurs 45 us after trap turn-on, the least-squares
window is 40 us, and the ‘wait time’ between subsequent Qg
limit-crossings and the resultant potential switches is given
by the previous period minus 20 pus. This switching strategy,
with deliberate delay based on an active measurement of the
p oscillation time, appears to be a viable means of performing
control in the presence of sensor noise and its associated
loop delay.

4.4. Comparisons with open loop strategies

To evaluate the effects of feedback more quantitatively, we
introduce a figure of merit for the damping of radial oscillations

1.2 i i
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Figure 8. In this example delay is dealt with by tracking p turning
points and using this information from each cycle to switch the
potential at the predicted next turning point. This strategy gives
moderate success at damping dp/d¢ and circularizing the trajectory.

in an atomic trajectory. Since the goal of the control strategy
is to confine p near zero, the performance can be measured by
comparing the variance of p over intervals of equal duration
near the beginning of the trajectory and after feedback has been
operating for some time. We choose a time window of duration
200 ws as long enough to encompass well over one cycle of
the radial motion. The comparison is taken between two such
windows separated from one another by 200 us; this delay is
selected as long enough for several cycles of feedback action,
yet short enough so that the statistics exist for a large fraction
of trapped atom events. Finally, we base our performance
measure on the experimentally accessible pey rather than on
o itself. Thus our figure of merit for feedback performance is
given by
O st s Pest (1)

M= (8)

2 .
0415 1s—615 ps (Pest (1))

where times are measured from the initial trapping (exlo —
hi) switch. Large values of the quantity M correspond to well
damped radial motion, p(t) — constant, though orbits may
still be circular at any radius p > 0. (Damping in the sense of
actual energy removal is discussed explicitly in section 4.5.)
Small (~50-100 ps) changes in delay time or window size
have been investigated and do not appreciably change the
nature of the results for M.

Figure 9 shows histograms of M for several data sets in
which different switching protocols, detailed in table 1, have
been employed. Each data set is generated by simulating
a fixed number of individual atom drops from the known
distribution of initial conditions. Only some fraction of
trajectories result in a triggering/trapping event, and of these
only a fraction of atoms have dwell times long enough to
compute a value for M. Thus, for example, set C2 was
generated from 5000 trajectories, yielding 1335 trigger events
and 147 trajectories for which M could be obtained (i.e., with
dwell times at least 615 us).

While table 1 gives the specifics of each data set
represented in figure 9, the essential comparison is between
closed loop—i.e., active feedback—algorithms and open loop
counterparts which simply switch potentials in a predetermined
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Simulation feedback performance for full dynamics and measurement noise
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Figure 9. Figure of merit for feedback in closed- and open loop
cases (full dynamics). M > 1 indicates damping of radial motion.

sequence independent of real-time position information for
the individual atom. The closed loop algorithm is that of
figure 8, in which measurement noise and loop delays are dealt
with by waiting nearly one cycle to apply the knowledge of
motion gained during the previous oscillation. The open loop
algorithms, in contrast, simply switch the potential between hi
and lo at fixed intervals following the initial trapping event;
the fixed interval is chosen to coincide with a reasonable
average value for an atomic oscillation period. Over a long
atomic trajectory, the atomic trajectory clearly evolves out of
phase with any one open loop switching algorithm; since this
evolution is different for each atomic trajectory, we compare
closed loop with open loop strategies as a means of evaluating
the importance of real-time measurement and feedback in our
algorithm.

Closed loop, active feedback clearly damps radial
oscillations more effectively than its open loop counterpart.
The M distributions in figures 9(a) and (c) have larger means
than those in figures 9(b), (d) and (e), with the closed loop
histograms showing many trajectories pushed out to higher
values of M by the active feedback. These results indicate
that real-time measurements of p(¢) can indeed be applied to
facilitate cooling of a single atom’s motion in that dimension.
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Table 1. Exact conditions used for data of the full-simulation
histograms.

Data set Switching protocol

Cl1 Closed loop
Switch once
45 us after
initial trigger.
Thereafter switch
(previous cycle length)
—20 ps after
(dp / de )C%l
crosses limits

Cc2 Same as above (C1)

Ol Open loop
Switch every 45 us
after initial trigger

02 Same as above (O1)
03 Open loop

Switch every 35 us
after initial trigger

04 Same as above (03)

No of atom drops No trapped
2000 534

5000
2000

1335
561

5000
2000

1319
552

5000 1322

Further refinements should improve the performance of
the algorithm. Forinstance, the cycle-length predictor could be
changed to allow asymmetries between p > 0 and p < 0 half-
cycles. Additionally, the filters themselves could be adjusted or
replaced with better estimators which incorporate information
about angular momentum L.

The simulations reported here could in principle
be employed, with minor modifications, to address the
experimental regime of the atom—cavity feedback performed
in [17]. We have not attempted a quantitative comparison
since results may be sensitive to details of the experimental
implementation. However, we note that because of the values
of (g, k) for the optical cavity employed, [17] was carried
out in a qualitatively different regime from the one in which
our simulations operate. In particular, while both scenarios
involve a measurement bandwidth which averages over axial
motion, in the case of [17] the amplitude of the axial motion is
in fact quite large. One key observation in that experimental
setting was in fact the change in measured transmission as
atoms either oscillated within a single standing-wave antinode
or ‘flew’ across multiple antinodes. Without the measurement
bandwidth to observe axial oscillations directly, one is hard
pressed to separate axial modulation from radial motion in
the manner presented here. While both feedback algorithms
involve a similar switching of cavity driving strength, the
feedback modelled here is directed at cooling a particular
component of the atom’s motion 7(¢). Figures 9 and 10
illustrate the damping of dp/df. By contrast, the lifetime
enhancement of [17] occurs because the authors are able to
discern when the atom is trapped at high g(7) and selectively
turn down the otherwise large diffusive heating by lowering
the trap intensity at those times.

4.5. Performance with axial motion suppressed

In a final set of simulations, we investigate the performance
of our radial cooling algorithm in a setting where the axial
atomic motion is independently suppressed. With no (or little)
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Figure 10. Feedback performance and lifetime enhancement in
simulations with no axial motion. M" > 1 indicates damping of
radial motion.

axial motion, axial heating no longer limits trapping times and
the effects of radial feedback can be seen more clearly. To
achieve this in simulations, we impose an ad hoc elimination
of the axial dimension; however, this case could be relevant to
several future experimental scenarios. For example, trapping
and sensing mechanisms, both currently accomplished with the
same probe beam, could be separated to allow a trapping field
with a low scattering rate and much-reduced axial diffusion.
Alternatively, the separation of axial and radial timescales
could be exploited, either to apply axial cooling [32] between
cycles of radial feedback or to simply avoid extra axial heating
by ramping the potentials up and down at a rate that appears
adiabatic to the axial motion while still impulsive in the radial
dimension.

Prospects for implementation aside, simulations with no
axial motion demonstrate some aspects of the radial feedback
protocol that are otherwise less transparent. We explore this
regime with a set of simulations that differ in three ways from
those presented above. First, the axial dimension is eliminated
entirely and the atom is artificially constrained to remain at rest
at an antinode of the standing-wave cavity field. Second, since
axial heating is no longer an issue, we employ somewhat deeper

trapping potentials than in the simulations above. The weak
probe level is still n,,, = 0.05 photons in the empty cavity,

but now we turn on the trap initially at a level n,,,; = 0.6
photons in the empty cavity, and we feed back by switching
between this and the weaker level n,; = 0.3 photons. The

effective potentials thus generated are ~50% deeper than in
the previous simulations using n,; and n;,. Finally, without
axial motion we employ a coarser computational timestep of
(1/30) ps.

Figure 10(a) shows the feedback figure of merit for the
cases of closed loop feedback, constant trapping at nj,; Or neyp;,
and open loop switching. The open loop protocol in this case
is to trap initially with n,,,; and switch between driving levels
Neyni and ny; every 40 ws during the transit duration. Taking
advantage of longer overall atom dwell times, we can now
consider time windows separated by a greater delay, so the
quantity displayed here is

M = ol us—215 s (Pest () ©

2 ;
1015 ps—1215 s Pest (1))

rather than the original M of figure 9. The resultis qualitatively
similar to that of the full simulation, with the closed loop
strategy performing significantly better than its open loop
counterpart. In this case, the mean value of M’ for closed loop
feedback is ~2.5 times greater than for open loop switching
or for no switching.

The data of figures 9 and 10(a) indicate that our feedback
algorithm acts to drive p to zero, i.e., to circularize atomic
orbits at a constant value of p. If angular momentum L is
not correspondingly increased, this effect implies a damping
of radial energy. However, we may investigate more directly
whether this algorithm actually removes total energy from the
radial motion. With axial motion eliminated, we can now
explore this issue by asking how the feedback algorithm affects
trapping lifetimes. Figure 10(b) shows atom dwell times for
the same three cases of closed loop feedback, constant drive
levels of n,yp; or ny;, and open loop switching. The increase
in lifetime for closed loop feedback is immediately apparent.
Indeed, the closed loop results agree well with an exponential
lifetime of 8.9 ms, as contrasted with 2.6 ms for trapping at
neyni alone, 1.9 ms for trapping at n,;, and 1.1 ms for open
loop switching between the drive levels.

In the closed loop case the trap potential is varied during
the transit but never exceeds the depth associated with driving
level n,,p;. Nevertheless, trap times exceed those for constant
driving at n,,,;, demonstrating that active feedback as applied
to the radial dimension does act to remove radial energy, in
addition to simply pinning p to a constant value. The same
point can be illustrated by considering the change in total
energy between the beginning (15-215 us after trigger) and
end (1015-1215 us after trigger) of an atom’s dwell time in the
cavity; the active feedback strategy produces a modest (>~ 10%)
net energy removal not seen under either the simple trap or the
open loop switching protocol. Since the feedback algorithm
performs better than both open loop and fixed-trap strategies
when measured by dwell time, radial damping M’, or total
energy removal, we characterize its effect as in fact actively
cooling a component (p(¢)) of the atomic motion.

Note that all lifetimes in the two-dimensional simulation
are enhanced relative to the full three-dimensional case, in
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which both experiments and simulations have mean trapping
times of only ~400 ws. Lack of lifetime enhancement from
radial feedback in the full simulation is some indication of
the very weak mixing between axial and radial motion, so
that cooling in one of these dimensions does little to control
temperatures in the other.

5. Outlook for experimental implementation

The feedback simulations discussed in this paper have
been conducted with very close reference to the conditions
realized in the experiment of [1], in particular for cavity
properties, trapping statistics, and signal-to-noise in the
balanced heterodyne detection. The current experimental
effort, aimed at realizing the feedback strategies described
here, employs very similar conditions while incorporating
some improvements as in [3-5]. Notable changes from [1]
include a slightly shorter cavity, improved vacuum pressure in
the cavity region (3 x 107'° Torr) enabled by a differentially
pumped double chamber, and cavity length stabilization via an
error signal generated by an independent laser one free spectral
range away from the cavity QED light. Implementation of
the feedback strategy described above is clearly outside the
regime of analog electronics, so an additional modification is
the use of digital processing and FPGA technology [33]. With
these tools, experimental data similar to the simulation results
presented above seem well within reach.

It seems reasonable to ask how many experimental data
should be necessary to exhibit a distinction between active
feedback and open loop schemes. From the simulations of
figure 9 (table 1), we see that with data sets of about 500 trapped
atoms the differences between open and closed loop schemes
already begin to become apparent, and these differences are
well demarcated with two or three times this many data.
With fairly conservative estimates of one trigger per MOT
drop and one MOT drop every 5 s, this means significant
effects could well be seen with just one to two hours of
experimental data at each setting. Much more data collection
is experimentally realistic, allowing exploration of a wealth of
additional questions.

With the atom—cavity system’s capacity to give real-time
information on a trapped atom’s position, active feedback
might seem to be an attractive enabling technology for
experiments that require a stationary atom at fixed g(r) in
the cavity field. The present work was undertaken in part to
explore this option through simulation of realistic experiments.
While we conclude that feedback of a uniquely real-time
nature can measurably alter properties of the atomic motion,
we also find that measurement bandwidths and signal to
noise strongly constrain the precision of feedback performance
under current experimental conditions. Feedback experiments
address important topics in quantum measurement and control;
meanwhile, trapping strategies using auxiliary fields offer a
more direct route towards a stationary atom in a cavity.

6. Current limits and future directions

The feedback algorithm developed above for the atomic radial
position p is subject to basic limits arising from dynamical
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and measurement noise in our system. These limits can
be expressed as lower bounds on the (one-dimensional)
temperature for p. Because the strategy is based on discrete
switching, with feedback delayed and timed based on the
previous switching-cycle length, the control is always based
on information gathered over the previous motional cycle.
Thus dynamical noise over an atomic motional timescale
will set a lower limit on 7,. Referring to [7], we find that
momentum diffusion (due to spontaneous emission) gives a
typical energy increase per radial oscillation time of AE, ~
0.02(Uy) ~ k(50 uK). Furthermore, measurement noise
places a limit on the detectable amplitude of p variations. This
amplitude depends strongly on the absolute value of p due to
the nonlinearity of the 7 — p mapping. However, using
the measured sensitivity from the atom—cavity microscope,
we estimate that over a motional cycle we can resolve
p oscillations of amplitude (20 nm Hz~'/?)/1/2nt, ~
0.77 pm. On the side of the cavity mode, where the effective
potential is steepest, this corresponds to 7, ~ 150 uK. While
this limit corresponds closely to the simulations of the previous
section, where axial motion is suppressed, the full simulation
never reaches this limit because axial heating cuts off atomic
lifetimes too quickly. Thus improvements to address axial
heating are of great interest for seeing the full effect even of
radial cooling.

Beyond the experimental and algorithmic variations
already discussed, a number of broader questions are raised by
the use of active feedback to dynamically cool a component
of motion for a single atom. One question deals with the
ultimate limits of such a cooling mechanism. Within the
current experimental setting, limits to radial cooling arise from
atomic lifetimes (dominated by axial motion), but are also
constrained by the dynamical noise and by the shot noise of
detection. Some lifetime and dynamical noise issues could be
addressed by separating trapping and sensing, for example by
using a far off resonance trap in conjunction with a sub-photon
level cavity QED probe [4]. The remaining issues would then
centre on signal-to-noise for the atomic position measurement,
as well as on limits imposed by backaction of the measurement
itself as it approaches the standard quantum limit [19, 22].
These limits must be considered not only in the context of
near-resonant probing, as treated here, but also in the case of
a far detuned probe for which atomic position information is
extracted from probe phase shifts, as first measured in [20].

Extension of active feedback beyond the p dimension
raises related questions. The question here is one of
using various techniques—for example, a symmetry-breaking
potential as could be provided by a higher-order transverse
mode of the cavity or frequency-domain filtering of the
signal—to estimate and control a three-dimensional vector
using the time record of a single quantity, the transmitted light
field. Undoubtedly, different driving parameters, detection
methods, and data processing will be appropriate depending
on the relative importance placed on information about each
dimension of the motion. These questions address in various
ways some basic issues of optimal state estimation and control
for single quantum systems, and this experimental system
promises to be a rich one for exploring such issues in further
detail.
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