Computational design of an integrin I domain stabilized in the open high affinity conformation
Abstract
We have taken a computational approach to design mutations that stabilize a large protein domain of approximately 200 residues in two alternative conformations. Mutations in the hydrophobic core of the αMβ2 integrin I domain were designed to stabilize the crystallographically defined open or closed conformers. When expressed on the cell surface as part of the intact heterodimeric receptor, binding of the designed open and closed I domains to the ligand iC3b, a form of the complement component C3, was either increased or decreased, respectively, compared to wild type. Moreover, when expressed in isolation from other integrin domains using an artificial transmembrane domain, designed open I domains were active in ligand binding, whereas designed closed and wild type I domains were inactive. Comparison to a human expert designed open mutant showed that the computationally designed mutants are far more active. Thus, computational design can be used to stabilize a molecule in a desired conformation, and conformational change in the I domain is physiologically relevant to regulation of ligand binding.
Additional Information
© 2000 Nature America Inc. Received 13 April, 2000; accepted 20 June, 2000. We thank M. Ferzly for technical assistance. This work was supported by the NIH.Additional details
- Eprint ID
- 24128
- DOI
- 10.1038/77978
- Resolver ID
- CaltechAUTHORS:20110620-160434458
- NIH
- Created
-
2011-09-15Created from EPrint's datestamp field
- Updated
-
2022-01-11Created from EPrint's last_modified field