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Corrigendum

Dabiri, J. O. (2005). On the estimation of swimming and flying forces from wake measurements. J. Exp. Biol. 208, 3519-3532.

An error appears in Eqn·4 (p. 3521), which is propagated throughout the remainder of the manuscript. The correct version of
the equation is as follows:

where the factor 1/CAM denotes the element-wise inverse of the added-mass tensor.

The conclusions of the manuscript are unaffected by the error; however, the quantitative interpretation of the wake vortex ratio
(Wa) is revised accordingly.

The author apologises for any inconvenience this may cause the reader.
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The vortex wake is the fluid dynamic footprint of swimming
and flying animals. When an animal moves through fluid,
Newton’s second and third laws together dictate that the
locomotive force exerted by the fluid on the animal has a
magnitude equal to the rate at which the animal imparts
momentum to the fluid. Often the animal delivers this
momentum in the form of rotating fluid masses called vortices.
Since the vortex wake created by an animal during locomotion
persists for some time after the forces needed to initiate
locomotion have been achieved, the vortex wake serves as a
temporary record of the animal–fluid interactions from which
locomotion arises.

A self-propelled animal moving at constant velocity
experiences no net force and therefore delivers no net
momentum to the wake via these fluid vortices. However, any
time the animal accelerates, fluid momentum exists in the
vortex wake that can be probed to deduce the locomotive

forces generated by the animal. Despite the common
approximation of ‘steady locomotion’, in which it is assumed
that the animal does not accelerate from its nominal cruising
speed, nearly all swimming and flying animals continually
exhibit linear and angular accelerations during locomotion,
both parallel and perpendicular to the direction of travel, which
are related to starting, stopping, maneuvering and cruising.
Hence, measurements of the vortex wake can elucidate
physical principles governing nearly every aspect of swimming
and flying locomotion.

An exact determination of swimming and flying forces based
on measurements of the surrounding fluid requires precise
knowledge of both the flow in the wake of the animal and the
flow near its body. Noca et al. (1997, 1999) derived the
complete set of equations necessary to measure instantaneous,
unsteady (time-dependent), forces on a body based on the
velocity of flow around the body and in the wake.
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The transfer of momentum from an animal to fluid in
its wake is fundamental to many swimming and flying
modes of locomotion. Hence, properties of the wake are
commonly studied in experiments to infer the magnitude
and direction of locomotive forces. The determination of
which wake properties are necessary and sufficient to
empirically deduce swimming and flying forces is
currently made ad hoc. This paper systematically
addresses the question of the minimum number of wake
properties whose combination is sufficient to determine
swimming and flying forces from wake measurements. In
particular, it is confirmed that the spatial velocity
distribution (i.e. the velocity field) in the wake is by itself
insufficient to determine swimming and flying forces, and
must be combined with the fluid pressure distribution.
Importantly, it is also shown that the spatial distribution
of rotation and shear (i.e. the vorticity field) in the wake is
by itself insufficient to determine swimming and flying
forces, and must be combined with a parameter that is
analogous to the fluid pressure. The measurement of this
parameter in the wake is shown to be identical to a
calculation of the added-mass contribution from fluid

surrounding vortices in the wake, and proceeds identically
to a measurement of the added-mass traditionally
associated with fluid surrounding solid bodies. It is
demonstrated that the velocity/pressure perspective is
equivalent to the vorticity/vortex-added-mass approach in
the equations of motion. A model is developed to
approximate the contribution of wake vortex added-mass
to locomotive forces, given a combination of velocity and
vorticity field measurements in the wake. A dimensionless
parameter, the wake vortex ratio (denoted Wa), is
introduced to predict the types of wake flows for which the
contribution of forces due to wake vortex added-mass will
become non-negligible. Previous wake analyses are re-
examined in light of this parameter to infer the existence
and importance of wake vortex added-mass in those cases.
In the process, it is demonstrated that the commonly used
time-averaged force estimates based on wake
measurements are not sufficient to prove that an animal is
generating the locomotive forces necessary to sustain flight
or maintain neutral buoyancy.
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Due to practical difficulties in experimentally measuring the
flow close to the body of an animal, recent efforts have focused
on estimating the forces generated by swimming and flying
animals based on properties of vortex wake alone. Of the
various properties that one can measure in a vortex wake, those
that are most commonly examined in the literature are the
velocity, vorticity (rotation and shear), and pressure. 

Pressure measurements are generally difficult to accomplish
and have rarely been achieved in studies of swimming and
flying animals (for an exception, see Usherwood et al., 2005).
Velocity and vorticity are more easily measured in the wake
due to advent of quantitative measurement techniques such as
digital particle image velocimetry (DPIV; cf. Drucker and
Lauder, 1999; Spedding et al., 2003; Warrick et al., 2005).
These velocity and vorticity measurements are typically
presented in an Eulerian frame, for which the velocity and
vorticity are defined at fixed locations in space and at discrete
instants in time. The locations in space at which velocity and
vorticity are measured usually form a rectangular grid of data
points in the animal wake. The analysis of these wake
measurements for force estimation currently proceeds in an ad
hoc manner, specific to the animal being studied and the
techniques used to measure the flow.

This paper aims to generalize and formalize the
methodology of force estimation from wake measurements by
addressing the following questions. What is the minimum
number of wake properties whose combination is sufficient to
determine swimming and flying forces from wake
measurements? Does this set of wake properties change
depending on the kinematics (e.g. unsteadiness, three-
dimensionality) of the flow being studied? Can this set of wake
properties be determined directly from Eulerian, DPIV-type
data?

Answers to these questions will guide future empirical
investigations in comparative biology and biological fluid
mechanics, suggest limits to the capabilities of existing
measurement techniques, and aid the development of new
experimental methods.

Materials and methods
The relationship between flow and force

To establish a quantitative relationship between the fluid
motions generated by a swimming or flying animal and the
resultant locomotive forces, let us examine the balance of
forces acting on the animal. In fluid dynamics, it is common
to accomplish a force balance analysis like this by considering
a control volume surrounding the animal (Fig.·1). The control
volume is an imaginary boundary surrounding the body on
which fluid forces are being exerted (or which is itself exerting
force on the fluid). The control volume boundary should
enclose both the body and the fluid with which it is interacting.

To simplify the present analysis, we will first assume that
the animal is moving at a constant velocity. Hence, by moving
the control volume along with the steadily translating animal,
the control volume becomes stationary in the reference frame

of the animal. In addition, the effect of fluid viscosity
(subsequent to wake vortex formation) will be neglected in this
analysis. The implications of this inviscid flow assumption will
be discussed later in this paper. Finally, the fluid is assumed to
be incompressible.

Our goal is now to determine the rate at which the fluid
momentum of the control volume changes. By Newton’s
second law, the rate at which the control volume fluid
momentum changes is equal to the sum of the forces exerted
on the fluid inside the control volume and on the surface of the
control volume. The force balance implied by this statement of
Newton’s second law, combined with the aforementioned
simplifying assumptions, can be expressed as (Smits, 2001):

In Eq.·1, u is the Eulerian velocity field. u(x,y,z,t)=ui+vj+wk,
where u, v and w are the flow velocity components (i.e. flow
speeds) in the x, y and z directions, respectively, and i, j and k
are unit vectors (i.e. vectors of magnitude equal to one) in the
x, y and z directions, respectively (see Fig.·1 for orientation).
The variable n is a unit vector oriented normal to each portion
dS of the surface of the control volume and pointing out of the
control volume. The fluid density and pressure are represented
by the variables � and p, respectively. Finally, the vector F is
the net force exerted on the fluid inside the control volume.

The first term in Eq.·1 is the rate of change of fluid
momentum inside the control volume. The partial derivative,
�/�t, indicates that although the integrand �u is potentially a
function of space (i.e. x, y and z) and time, we are only
concerned with its temporal variations. The second term is the
rate at which fluid momentum is transported out of the control
volume, with the sign of this term being positive when the
velocity vector is oriented in the direction of the unit normal
vector n (i.e. an outflux of momentum). The sum of these two
terms is the net rate of change of control volume fluid
momentum.
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Fig.·1. Schematic of control volume concept, indicating variables
described in the text. The control volume moves along with the animal
so that it is stationary in the reference frame of the animal. The
boundary of the control volume encloses both the animal and the fluid
with which it interacts. The vortex wake resulting from this interaction
is shown trailing the animal. For definitions, see List of symbols.
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Forces acting on the control volume can be exerted either at
the surface or inside the control volume. The surface forces are
accounted by integrating the fluid pressure on the entire surface
of the control volume, i.e. the first term on the right-hand side
of Eq.·1. Since the animal is the only body in the fluid, we
know that it is responsible for the force F acting inside the
control volume.

By Newton’s third law, the animal experiences a reaction
force –F in response to the force it applies to the fluid. It is this
reaction force that drives locomotion. Thus, in principle, the
instantaneous, time-dependent fluid dynamic force that
facilitates swimming and flying motions can be deduced from
the fluid flow by using the equation:

where t is time. 
The benefit of this type of control volume analysis is that

the exact details momentum transfer and force generation are
not needed. However, the equation of motion (Eq.·2) dictates
that the Eulerian velocity field u is not sufficient by itself to
determine the forces generated by swimming and flying
animals using this control volume method; the fluid pressure p
is also required. As mentioned previously, this is a difficult
task to accomplish with existing experimental techniques.

The control volume analysis and associated velocity/
pressure perspective are limited in other critical points as well.
For example, the control volume must be large enough to
enclose all fluid whose momentum is affected by the animal.
Even if one could determine a boundary for this region of
affected fluid, the limited size of the measurement window in
experiments makes it unlikely that all of this fluid could be
measured simultaneously. Furthermore, in cases when an
animal exhibits linear or angular accelerations, a proper control
volume cannot be defined since the measured forces will
change in an accelerating frame of reference. These constraints
severely limit the applicability of the control volume approach
in animal studies, and are a primary reason for the lack of
velocity/pressure-based control volume analyses in the animal
locomotion literature.

The vorticity perspective

The difficulties described above suggest that we search for
other wake properties that allow us to deduce changes in wake
momentum and, hence, to determine corresponding force
generation during animal swimming and flying. One such
property is the vorticity, a measure of rotation and shear (i.e.
spatial velocity gradients) in the fluid. The momentum in the
wake is manifested in the vorticity field ��. It can be computed
by taking the mathematical curl (denoted ��) of the velocity
field:

Saffman (1992, chapters 3–5) derived a quantitative
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relationship between the vorticity field and the net force
exerted on the fluid in order to generate the vorticity:

where x is the position of the vector (relative to a pre-defined
origin) of each fluid particle in the flow (Fig.·2).

The integrals in Eq.·4 are evaluated throughout the volume
VV and over the surface SV of the region of flow containing
vorticity, i.e. the wake vortices (Fig.·2). These vortices need
not be stationary as in the case of the control volume previously
examined. Note that we also no longer need to contend with
the pressure term directly, as it is eliminated in the process of
deriving Eq.·4. However, a new velocity potential term ��
appears. Physically, the velocity potential is related to the fluid
pressure via the unsteady Bernoulli equation:

where C (Bernoulli variable) is dependent on time t and any
external forces acting on the fluid. The approximation sign has
been used because equality only holds if the force F in Eq.·4
is conservative (i.e. it does not dissipate energy). This cannot
always be guaranteed for the forces generated by swimming
and flying animals. The velocity potential term in Eq.·4 is non-
zero in any flow that exhibits sufficient unsteadiness to create
a net fluid circulation in the wake during a finite period of time.
The velocity potential contribution only vanishes for a steady
flow in which the spatial distribution of vorticity does not
change in time. This restriction is unrealistic for most modes
of animal swimming and flying, since it is typical for net
circulation to be constantly shed into the wake.

We now have two complementary perspectives for
estimating locomotive forces from wake measurements:
velocity/pressure (u–p) and vorticity/velocity potential (��–��).
The benefit of the velocity potential term relative to pressure
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Fig.·2. Schematic of wake vortex parameters described in the text. The
distribution of wake vorticity ��(x) is indicated by grey patches in this
cross-section view. Hypothetical flow streamlines inside the vortex
are sketched below the vortex patches. The integrals in Eq.·4 are
evaluated throughout the vortex volume VV and on the vortex surface
SV. The dimension S is the wake vortex width.
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is that a simple and robust method exists to determine its
magnitude from velocity data, unlike the fluid pressure. The
following section describes this method.

A connection between velocity potential and wake vortex
added-mass

As mentioned in the previous section, a force contribution
from the velocity potential exists in the form of an integral
evaluated over the surface of the wake vortices (Fig.·2).
Importantly, it has been previously noted that the surface
integral of a velocity potential such as that in Eq.·4 is equal to
the added-mass associated with the body enclosed by the
surface (e.g. Benjamin, 1986; Saffman, 1992). However, the
surface in Eq.·4 encloses fluid, i.e. the wake vortex. Can the
relationship between velocity potential and added-mass hold
for a fluid body such as a vortex in the same manner that it
does for solid bodies?

The literature on the physics of added-mass is relatively sparse,
with a few notable exceptions (e.g. Darwin, 1953; Batchelor,
1967; Daniel, 1984; Eames et al., 1994, 1997; Bush and Eames,
1998; Eames and Flor, 1998; Eames, 2003). Qualitatively, the
concept of added-mass accounts for the resistance force that a
body faces when it is accelerated through a surrounding medium
of non-zero density. The surrounding medium can be any fluid,
e.g. air, water or blood. The surrounding medium need not have
viscosity, so the analysis can proceed under an assumption of
inviscid flow as in the preceding developments.

The resistance force occurs because, as the body moves
forward, the surrounding medium interacts with the body at
their interface (via the pressure field), ultimately leading to a
net translation of the surrounding medium in the same direction
as the traveling body. Hence, the force required to accelerate
a body though a medium of non-zero density must overcome
both the inertia of the body itself and the inertia of the
surrounding medium that moves along with the body. This is
the added-mass effect.

The added-mass contribution for uniform linear acceleration
of a body can be expressed quantitatively by rewriting Eq.·4 as:

where FT is the total force required to accelerate (at a rate �U/�t)
a body of volume 	B and density �B through a surrounding
medium of density �M (Saffman, 1992). The variable CAM is the
added-mass tensor, a 3�3 matrix whose elements cij are the
dimensionless added-mass coefficients that relate linear
acceleration in the ith direction to the resultant forces in the jth
direction (where i and j can assume the x-, y- and z-axis directions,
and repeated subscripts cii do not indicate summation):
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The variable �U/�t is a 3�1 vector whose elements U describe
the linear acceleration of the body in the x-, y- and z-axis
directions, respectively:

It is important to note that the full motion of the body is
described by larger added-mass and acceleration tensors (with
dimensions 6�6 and 6�1, respectively) that also account for
rotational acceleration of the body in the xy-, xz- and yz-planes
and the associated moments (torques) on the body (cf.
Batchelor, 1967). In general these rotational components
should not be assumed to be negligible. However, for the
purpose of demonstration in this paper, it is sufficient to focus
on the linear acceleration components.

The contribution of the added-mass of the body to the force
required to accelerate it will depend on the body shape and the
type of motion it is experiencing (i.e. which components of the
added-mass tensor are relevant), as well as the relative
densities of the body and the surrounding medium. For
example, the force FA required to accelerate an axisymmetric
body (with respect to the x-axis) along the x-axis through a
surrounding medium of density equal to the body is given by:

The only physical properties required of the accelerating
body are that it possesses a non-zero density and that it has a
physical boundary separating it from the surrounding flow.
This boundary redirects particles in the surrounding medium
(via the pressure field) so that they pass around the body,
ultimately leading to the net translation of the surrounding
medium in the direction of body motion. As mentioned
previously, this net translation of the surrounding medium is
the source of the added-mass contribution. The body may be
solid such as a wing, fin or heart valve; or fluid such as air,
water or blood. However, in the latter case of fluid bodies,
defining the boundary between the body and the surrounding
medium is not an obvious task.

The Eulerian velocity field generally does not indicate the
presence of fluid bodies or their boundaries in the flow. Dabiri
and Gharib (2004) illustrated this difficulty for the case of
mechanically generated vortex rings. In this case, the wake is
formed by a piston that accelerates fluid through the open end
of a hollow tube. As the boundary layer vorticity that formed
inside the tube is ejected downstream from the open end, it
rolls into a vortex ring that propagates though the surrounding
fluid.

When DPIV measurements of the flow are presented as a
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vector field or as streamlines (i.e. lines tangent to the field of
velocity vectors throughout the flow), there is no indication of
a boundary between fluid particles recirculating in the vortex
and those redirected around the vortex (Fig.·3A). However, if
the same data is plotted in a reference frame moving with the
vortex ring (i.e. by adding the forward velocity of the vortex
ring to every velocity vector in the flow field), we can identify
the boundary of the vortex with reasonable accuracy (Fig.·3B).

Fluid particles inside the vortex recirculate, while fluid
particles outside the vortex are redirected around boundary in
the same manner as flow around an equivalent solid body.
Interestingly, the vortex boundary does not form a toroid as
suggested by the vorticity field, but instead takes an ellipsoidal
shape. In a later section of this paper, measurements will
demonstrate that an added-mass is indeed associated with this
fluid vortex, and that the magnitude of the added-mass
contribution is equal to that of a solid body with the same
boundary dimensions.

The preceding discussion does not yet resolve the issue of
how to determine the boundary of vortices in animal wakes so

that we may quantitatively evaluate their added-mass
contribution, e.g. by using Eq.·4. The transformation of
reference frame utilized by Dabiri and Gharib (2004) is limited
to simple flows such as a train of mechanically generated
vortex rings. It is not clear that an extension of their reference
frame transformation method to the more complex vortex
wakes of swimming and flying animals is possible.

It has recently been demonstrated that by tracking the
motion of individual fluid particles in the flow instead of
analyzing the entire velocity field at each instant in time (i.e.
the Eulerian perspective), it is possible to quantitatively
determine the boundaries of vortices in a measured flow
without changing the frame of reference of the measurements
(S. C. Shadden, J. O. Dabiri and J. E. Marsden, manuscript
submitted for publication). The method of Shadden et al.
exploits the fact that, regardless of the frame of reference,
vortex boundaries are known to separate fluid particles that
recirculate inside the vortices from fluid particles that are
redirected around the vortices. Given the wake vortex
boundaries, we are left with the challenge of empirically

A B

Fig.·3. DPIV measurements of flow created by a mechanical wake generator. Images correspond to a meridian symmetry plane of the wake
vortex ring. Streamlines of the velocity field (i.e. lines tangent to each vector in the velocity field) are plotted in yellow. Exit plane of the vortex
generator is located at the upper margin of the frame. Flow is directed vertically downward. Flow field is 20·cm in height. (A) View of vortex
ring propagating downstream from the mechanical wake generator in the laboratory reference frame. (B) Same vortex ring as in A, viewed in
a reference frame that moves at the speed of the propagating vortex ring. The full extent of the vortex is clearly visible from this perspective.
White arrows indicate location of vortex ring in A and B.
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measuring the added-mass of the wake vortices (i.e. the second
term on the right-hand side of Eq.·4) and determining the
magnitude of the wake vortex added-mass contribution to the
forces generated by swimming and flying animals.

Measuring the wake vortex added-mass contribution

The physical description of the added-mass concept in the
previous section suggests that to compute its effect in vortex
wakes, we must examine the dynamics of fluid surrounding the
wake vortices. Conveniently, Darwin (1953) developed a
simple method that quantitatively connects the translation of
fluid outside of a body (e.g. the fluid vortex body of present
interest) to the added-mass of the body itself. To quantitatively
track the translation of the fluid surrounding the vortex, it is
convenient to replace the Eulerian perspective that examined
the entire velocity field at single instances in time with a
Lagrangian approach that tracks the trajectories of individual
particles of the fluid over long durations of time. Conveniently,
the Lagrangian description of the flow can be derived from the
Eulerian velocity field.

To do so, let us imagine that a particle of the fluid
surrounding the vortex is located at the position x0=x0i+y0j+z0k
at time t0. The Eulerian velocity field dictates that a fluid
particle at that position at that time has a velocity u(x0,t0).
Hence, a small time later, t1=t0+
t, the particle will have the
new position x1, where:

x1 � x0 + u(x0,t0)
t·. (10)

The velocity of the fluid particle at the new position x1 and at
time t1 will be given by the Eulerian velocity u(x1,t1). This
information can be used to update the particle position to x2,
and so on. The record of fluid particle trajectories x(t) such as
this provides a Lagrangian description of the flow.

The method of Darwin (1953) uses the following Lagrangian
method for determining the added-mass contribution. Suppose
that a plane of initially stationary particles in the flow
downstream of a body (such as our fluid vortex) that is
traveling at constant velocity is tracked in order to determine
the Lagrangian motion of the particles that is induced by the
passage of the body (Fig.·4). The volume of surrounding fluid
that is enclosed between the initial plane of particles and the
distorted plane that results after the body has passed far
downstream (called the drift volume 	D) is equal to the
product of the volume of the body 	B and the added-mass
coefficient c corresponding to the direction of body travel, i.e.

where i=x, y or z.
A similar method can be used to determine the added-mass

coefficients corresponding to the case of a body in rotational
motion (Darwin, 1953).

Fig.·4 illustrates the method of Darwin (1953) by computing
the Lagrangian fluid particle trajectories of flow surrounding a
solid sphere that travels along the x-axis at constant velocity
through an inviscid fluid. This flow is an exact solution derived
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Fig.·4. Demonstration of the method for measuring solid body added-
mass (i.e. Darwin, 1953). Axisymmetric inviscid flow about a solid
sphere is shown in cross section. Solutions were computed using
dimensional units to allow comparison with experimental results.
Sphere radius and propagation speed are 2.54·cm and 1·cm·s–1,
respectively. Computational domain is 50 sphere radii axially in both
directions normal to the reference plane and approximately 12·cm
radially. Variables d0 and rL indicate (qualitatively) finite upstream
approach distance and reference plane radius, respectively. Total fluid
drift (i.e. for infinite domain) was computed using measured partial
drift in the computational domain and an analytical asymptotic
correction factor (i.e. Eq.·12; Eames et al., 1994). (A) Sphere
approaches initially planar Lagrangian surface from left; t=0·s. (B)
Streamwise distortion of Lagrangian surface occurs as the sphere
passes through the plane; t=4.45·s. Note that since only streamwise
Lagrangian displacement is plotted, the sphere appears to pass through
the plane. Plots of combined streamwise and transverse Lagrangian
displacement (e.g. D–F below) verify that the plane is actually
distorted around the sphere. (C) Volume between initial plane and
horn-like distorted surface is the drift volume, 	D, from which the
added-mass coefficient is computed; t=13.3·s. (D–F) Individual
Lagrangian particle paths corresponding to t=0·s, 4.45·s and 13.3·s,
respectively.
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from the fluid dynamic equations of motion (Milne-Thomspon,
1968). The volume of surrounding fluid enclosed between the
initial plane of particles and the horn-shaped distorted plane
that results after the solid body has passed far downstream is
equal to one-half of the sphere volume. This is consistent with
the known added-mass coefficient for translation of a solid
sphere, i.e. cxx=1/2.

Note that although the body has a simple motion and the
streamlines of the flow past the body would suggest similarly
simple fluid particle trajectories, this is not the case. Rather
than the particle motion being uniform over time, fluid
particles exhibit looping trajectories called elasticas (Fig.·4).
During each elastica trajectory, a fluid particle briefly travels
in the direction opposite to the body translation. These particle
kinematics are reflected in a plot of the drift volume vs time
(Fig.·5), in which an oscillation occurs before the drift volume
saturates at a constant value. Furthermore, although the net
motion of fluid surrounding the body is in the direction of the
traveling body, the motion of the surrounding fluid does not
occur uniformly in space. Regions of the fluid closer to the
body experience a greater net translation. As one would expect,
the net translation of each fluid particle in the surrounding flow
is less than or equal to the net translation of the body itself.

These details are missed in an analysis of the Eulerian
velocity field, but are critical for understanding the kinematics
and dynamics of the added-mass associated with fluid bodies
such as wake vortices, as will be seen in the following section.

Extension of Darwin’s added-mass method to wake vortices

Given the idealized nature of the added-mass measurement
technique developed by Darwin, care must be taken in
extending it to flows of practical concern such as the wakes of
swimming and flying animals. The proof presented by Darwin
(1953) and others for the validity of the added-mass
measurement technique described above is limited to the case
of solid bodies moving in an infinite expanse of fluid. More

recent work by Eames et al. (Eames et al., 1997; Bush and
Eames, 1998; Eames and Flor, 1998; Eames, 2003) suggests
that the method of Darwin can be extended to include more
realistic flows where the extent of the surrounding fluid is finite,
and to include the case of fluid bodies such as vortices in air
and water moving through a surrounding fluid of equal density.

To address the issue of a finite surrounding flow volume,
Eames et al. (1994) introduced the concept of partial drift to
describe drift volume measurements in which the body travels
only a finite distance through the plane of Lagrangian particles
being tracked. The concept of partial drift also accounts for the
fact that the size of the plane of Lagrangian particles is limited
by the measurement window size, and therefore cannot be
infinite in practice as Darwin’s method assumes. An
approximate relationship between the partial drift volume
	D,partial measured in practice and the total drift volume 	D

required in the analysis of Darwin (1953) is given by:

where rL is the (finite) radius of the plane of Lagrangian fluid
particles being tracked and d0 is the (finite) distance upstream
from the Lagrangian plane at which the motion of the body
toward the plane is initiated (Eames et al., 1994; see also
Fig.·4A). Although this equation is strictly valid only for
spherical wake vortices, we will see that it also provides a
useful approximation for a wider class of vortex wake
geometries as well.

Given the vorticity/velocity-potential Eq.·4, the connection
between velocity-potential and wake vortex added-mass
(Eq.·6), the added-mass measurement technique of Darwin
(Eq.·11), and the concept of partial drift (Eq.·12), we are now
prepared to develop an improved method to estimate
swimming and flying forces based on wake measurements,
especially the types of data available from DPIV.
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Fig.·5. Time dependence of drift volume induced by the
motion of a solid sphere through an inviscid fluid. Sphere
radius and propagation speed are 2.54·cm and 1·cm·s–1,
respectively. Total fluid drift (i.e. for infinite domain) was
computed using measured partial drift in the measurement
window and an analytical asymptotic correction factor (i.e.
Eq.·12; Eames et al., 1994). The oscillation in drift volume
corresponds to changes in direction of Lagrangian particle
translation during looping elastica trajectories.
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As a first step we must determine the added complexity that
arises due to a fluid body such as a wake vortex in air or water
moving in a surrounding fluid of equal density. To do so, the
same Lagrangian particle analysis performed using the
theoretical inviscid flow past a sphere (i.e. Fig.·4) is
accomplished, this time by using DPIV measurements of a
mechanically generated wake of vortex rings. The wake vortex
rings were generated using a piston-cylinder apparatus (Dabiri
and Gharib, 2004), which was submerged in water and ejected
discrete pulses of fluid with jet length-to-diameter ratio L/D=2
from the open end of a hollow 2.54·cm diameter circular tube.
During each pulse, the vorticity shed by the wake generator
rolled into a single ring vortex that propagated downstream via
its self-induced motion. The downstream velocity field created
by the wake generator was measured by using DPIV with an
uncertainty between 1% and 3%. Larger uncertainty occurred
in regions with greater spatial velocity gradients. Lagrangian
particle trajectories of several axisymmetric planes
downstream of the wake generator, each with 4.5·cm radius
and unit normal vector n aligned with the direction of wake
vortex translation, were quantitatively tracked using the
method of Eq.·10. The partial drift of each plane of Lagrangian
particles was measured from this data.

Results
Wake vortex added-mass measurements

Lagrangian particles in the mechanically generated vortex
wake were observed to behave in a manner very similar to the
inviscid sphere solution (compare Figs·4 and 6). Looping
elastica paths were induced by each translating vortex, and the
initially planar surfaces were again distorted to horn-like shapes.

Fig.·7 plots the drift volume measured for several planes of
initially stationary Lagrangian particles located downstream of
the wake generator. The drift volume of the sphere in inviscid
fluid from Fig.·4 above is included for comparison. Whereas
the drift volume associated with the sphere reaches a maximum
value equal to one-half the sphere volume (consistent with the
known added-mass coefficient of a sphere, cxx=1/2), the drift
volume of the wake vortex continually increases.

The continuous growth of the drift volume reflects the
concomitant growth of the wake vortex due to fluid
entrainment. Entrainment is the process whereby fluid
surrounding the wake vortex is engulfed into the vortex itself,
leading to the observed increase in the wake vortex volume
(Dabiri and Gharib, 2004). Since the magnitude of the drift
volume is a function of the body volume (via the added-mass
coefficient; cf. Eq.·11), the drift volume also increases due to
fluid entrainment by the wake vortex.

Therefore, in the case of wake vortices, rather than the
added-mass coefficient reflecting the ratio of the drift volume
magnitude to the body (i.e. wake vortex) volume magnitude,
it indicates the ratio of the drift volume growth rate to the body
volume growth rate, i.e.

where d	V/dt is the vortex volume growth rate and d	E/dt is
the volume of surrounding fluid entrained into the vortex per
unit time. Note that we must subtract the volume of entrained

φ

dt

d

dt

d

dt

d

c

i

ii

V

ED

Ω

Ω
−

Ω

= ,

φ

(13)

φ

φφ

φ

⎜⎜⎝

⎛
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎟⎟⎠

⎞

⎟⎟⎠

⎞
⎜⎜⎝

⎛

J. O. Dabiri

Fig.·6. Measurements of
Lagrangian drift induced by
translating fluid vortices. Vortex is
indicated by black arrow.
(A) Vortex approaches several
planar Lagrangian surfaces
downstream of the vortex
generator (several more planes
further downstream not shown);
t=0.07·s. (B,C) Fluid vortices
interact with Lagrangian surfaces
in a manner similar to that
observed for the inviscid sphere
solution. Initially planar surfaces
are deformed to horn-like shapes;
t=3.34·s and 13.3·s, respectively.
(D–F) Individual Lagrangian
particle paths corresponding to
t=0.07·s, 3.34·s and 13.3·s,
respectively.
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fluid from the drift volume in Eq.·13 since it is automatically
included in the wake vortex volume 	V.

Applying this analysis to the experimental data from the
mechanical wake generator, the added-mass coefficient cxx of
the mechanically generated wake vortices is:

This is precisely the added-mass coefficient of a solid
ellipsoid with the same shape as the mechanically generated
wake vortices, where the wake vortex shape was determined
using the frame transformation method of Dabiri and Gharib
(2004) described earlier. In Fig.·7, the least-squares linear fit
to the vortex volume data is compared with the linear trend
required for an exact match to the added-mass coefficient of
an equivalent solid body. The agreement is very good, with the
discrepancy being less than the experimental uncertainty
(indicated by error bars).

An important principle underlying this result is that even
though wake vortices will tend to increase in size due to fluid
entrainment, their added-mass can be determined in a manner
similar to that of solid bodies as long as the shape of the fluid
body does not change significantly.

An improved force estimation method

Eq.·4 properly incorporates both the process of vorticity
generation and rearrangement (via the first term) and the
interaction of wake vortices with surrounding fluid (i.e. the
added-mass effect via the second term) in the estimation of
swimming and flying forces from wake measurements.
However, the spatial and temporal resolution of input data
required to evaluate Eq.·4 directly can limit its practical
application, hindering the analysis of data collected by
empirical methods such as DPIV. Given the results of the
preceding section, we can develop an improved force
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estimation method that does not require the level of
measurement resolution (temporal and spatial) required to
evaluate the terms in Eq.·4 directly, but still captures each of
the important physical contributions to swimming and flying
forces including the wake vortex added-mass.

To accomplish this, let us approximate the first term in Eq.·4
in the manner that is common in the literature:

The assumption inherent to this approximation is that the
vorticity in the wake vortex is arranged into thin, closed vortex
loops, e.g. vortex rings and vortex chains. Each loop encloses
an area A and has a circulation �. In practice, the wake vortices
will not be thin; nevertheless, the approximation is used here
for consistency with previous studies. The author suggests that
an examination of the adequacy of this common adaptation
should be undertaken in the future.

The second term is the wake vortex added-mass
contribution, and can be approximated based on the added-
mass coefficient, as well as the size and trajectory of each wake
vortex as it is formed in the wake:

where UVi is wake vortex velocity in the i direction relative to
the animal. In its present form, Eq.·16 is difficult to use because
both the added-mass coefficient and the vortex volume can
only be determined exactly by using three-dimensional flow
data. Existing experimental techniques such as DPIV are
limited to two-dimensional measurements.

We can circumvent this difficulty by implementing two
approximations. First, the added-coefficient cii can be
estimated based on a cross-sectional view of the animal wake
corresponding to the bilateral symmetry plane of the animal
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Fig.·7. Drift and fluid body volume measurements for
translating vortices. Colored solid lines: drift volume of
planes initially located in 0.3·cm increments from 2.7·cm
(red) to 8.0·cm (blue) downstream of the vortex
generator exit. Total fluid drift (i.e. for infinite domain)
was computed using measured partial drift in the
measurement window and an analytical asymptotic
correction factor (i.e. Eq.·12; Eames et al., 1994). Closed
circles: measured volume of ellipsoidal fluid vortex.
Error bars indicate measurement uncertainty. Broken
blue line: least-squares linear fit to vortex volume
measurements. Solid red line: linear fit required to
exactly match the added-mass coefficient of an
equivalent solid body. Inviscid sphere solution is plotted
for comparison (black line).
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(cf. Fig.·2). Ideally, the boundary of the forming wake vortex
in this plane should be determined using a Lagrangian method
(such as that of S. C. Shadden, J. O. Dabiri and J. E. Marsden,
manuscript submitted for publication). In the absence of such
a technique, the vortex boundary can also be estimated based
on the spatial extent of wake vorticity or the use of dye or
aerosol visualizations. This two-dimensional approximation of
the added-mass coefficient will be denoted cii

— . The added-mass
of a three-dimensional body is typically lower than an estimate
based on its two-dimensional cross-section (Daniel, 1983).
However, the overestimation of the added-mass coefficient by
the two-dimensional approximation will be compensated in
Eq.·16 by the underestimation of the vortex volume, which
arises when the vorticity distribution is used to determine the
vortex boundary (cf. Dabiri and Gharib, 2004).

The two-dimensional approximation of the wake vortex
boundary can also be used to estimate the vortex volume, i.e.:

	V � AS·, (17)

where S is the width of each wake vortex determined from the
cross-sectional view (see Fig.·2). As in the added-mass
coefficient approximation, the determination of the vortex
width should ideally be made using a Lagrangian technique
such as that of Shadden et al. (2005); however, the width of
the vorticity in each wake vortex can provide a rough estimate
of this parameter.

Combining these approximations with Eq.·15 gives the
desired force estimation equation:

The wake measurements required to evaluate Eq.·18 can be
deduced by using existing wake measurement techniques such
as DPIV, with little additional data analysis. The vortex area
A and circulation � are commonly measured in the existing
literature; the wake vortex width S and vortex velocity UVi can
be estimated from Eulerian velocity and vorticity field
measurements of the wake vortex cross-section. The added-
mass coefficient cii

— can be determined from an equivalent solid
body calculation of the identified vortex boundary, or by using
the Lagrangian method of Eq.·13.

To make the expression in Eq.·18 compatible with the
format of typical wake measurements, the time derivative can
be written in terms of data taken at discrete time points t0,
t1=t0+
t, t2=t0+2
t, etc.:

As 
t decreases to zero, Eq.·19 becomes an estimate of the
instantaneous force generated by the swimming or flying
animal. As 
t increases to T, the duration of the propulsive
stroke, Eq.·19 becomes an estimate of the time-averaged
locomotive force.
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The effect of the additional vortex added-mass terms in
Eq.·19 can be quite substantial, depending on the level of
unsteadiness during wake formation. The following section
introduces a simple dimensionless parameter to aid the a priori
determination of whether the contribution of wake vortex
added-mass should be considered in a particular study of
animal swimming and flying dynamics.

The wake vortex ratio (Wa)

To determine whether the added-mass of wake vortices
should be considered in a particular study of animal swimming
and flying dynamics, we must determine the relative
contribution of the second term in Eq.·18. Let us define a
dimensionless parameter, the wake vortex ratio (denoted Wa),
as the ratio of the wake vortex added mass-term in Eq.·18 to
the vortex circulation term:

Since the vorticity generated during each stroke cycle is
created during the propulsive stroke duration T, the time
derivatives in Eq.·20 can be approximated as:

or

Note that both the area A enclosed by the wake vortex and
the time parameter T are eliminated from Eq.·22. Therefore,
the calculation of the wake vortex ratio can be accomplished
by using a single, two-dimensional measurement of the wake
vortex cross-section. When the added-mass coefficient, wake
vortex width, or vortex velocity relative to the body is large
relative to the vortex circulation, the wake is sufficiently
unsteady that the contribution from wake vortex added-mass
(e.g. Eq.·19) must be considered. To be more precise, the
following criterion is suggested:

where �� is the experimental uncertainty of the circulation
measurement. The physical requirement dictated by this
criterion is that the wake vortex added-mass (i.e. the numerator
of the wake vortex ratio) should be discernable above the noise
level of the circulation measurement. If the magnitude of the
wake vortex added-mass contribution is less than the
uncertainty of the circulation measurement, than it cannot be
distinguished from the measurement noise and can be
neglected. In practice, wake vortex circulation can often be
measured to within ±10% (with the possibility of higher or
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lower accuracies depending on the animal under consideration,
wake Reynolds number, etc.).

It is useful to connect the wake vortex ratio Wa with existing
dimensionless parameters used to describe animal swimming
and flying. This can be accomplished by first considering the
physical units of the variables in Eq.·22. In particular:

where l and s indicate length and time units, respectively, and
the constant 1 indicates a dimensionless term. The
relationships in Eq.·24 indicate that the wake vortex ratio in
Eq.·22 can be rewritten in terms of a characteristic frequency
f, length scale l, and velocity U:

or, equivalently

Wa = cii
—St̂ , (26)

where St̂ is a generic Strouhal number. The symbol St̂ is used
to distinguish this parameter from the more common Strouhal
number St in the animal locomotion literature, which is based
specifically on the swimming or flight speed of the animal as
well as its stroke amplitude (e.g. Taylor et al., 2003).

Despite differences between the definitions of St̂ and St,
their trends will be similar. In particular, as the Strouhal
number increases, the effect of wake vortex added-mass
becomes more significant. This result is consistent with the fact
that the Strouhal number (as used in the animal locomotion
literature) is a measure of the periodicity of the body motion;
therefore, it can also serve as a surrogate measure of the
periodicity of wake flow created by the body motion.
Interestingly, the relationship between St and Wa that is
implied by Eq.·26 suggests the possibility that the observed
tuning of swimming and flying locomotion according to the
Strouhal number St (Taylor et al., 2003) may in fact be the
consequence of a primary intention to tune for wake vortex
ratio Wa.

Discussion
The existence of fluid vortex added-mass

The fact that fluid vortices exhibit an added-mass effect
similar to solid bodies should not be unexpected. It is indeed
quite common in fluid dynamics to analyze the flow around
solid bodies by replacing them with distributions of fluid
vorticity that result in equivalent flow behavior. For example,
the flow around a solid sphere in inviscid fluid, such as that
computed in Fig.·4, can be exactly reproduced by replacing the
sphere with a spherical Hill’s vortex of the same radius
(Batchelor, 1967). The Lagrangian particle tracking analysis
that was accomplished for the solid sphere in Fig.·4 would
result in identical flow kinematics (e.g. drift volume
measurements) if the spherical Hill’s vortex were similarly
translated through the plane of Lagrangian particles.
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The existence of an added-mass effect associated with the
fluid vortices in animal wakes has been recognized for nearly
30 years, dating back to the work of Weihs (1977) on aquatic
locomotion via pulsed jets. However in that study, it was
assumed that the calculation of vortex ring added-mass should
be made on a toroidal geometry to reflect the distribution of
vorticity in the wake vortices. It was also assumed that the
volume of the wake vortices remains constant. The recent work
of Dabiri and Gharib (2004) and Shadden et al. (2005)
demonstrates that the proper geometry to be modeled for
vortex rings is a temporally increasing ellipsoidal volume of
fluid — both vortical and irrotational — translating with the
vortex. Regardless of these details of vortex geometry, the
wake vortex added-mass effect elucidated by Weihs (1977) has
been neglected in nearly all recent studies of animal swimming
and flying (for an exception, see Sunada and Ellington, 2001),
in spite of its well-established origins in classical fluid
dynamics.

Implications for previous force estimation studies

Despite the present demonstration of a wake vortex added-
mass contribution to animal swimming and flying forces, the
fact remains that previous studies appear to have successfully
matched wake-based force estimates with the expected forces
needed to sustain flight or to overcome negative buoyancy (e.g.
Drucker and Lauder, 1999; Spedding et al., 2003; Warrick et
al., 2005). How is this possible if wake vortex added-mass was
neglected?

One important difference between force estimates that can
be achieved using the methods introduced here (e.g. Eq.·19)
and those in the literature is that existing methods estimate
time-averaged forces rather than the instantaneous forces. The
use of the time-average occurs both explicitly, for example,
when the locomotive forces are averaged over the duration of
the propulsive stroke (e.g. Warrick et al., 2005); or implicitly,
when the wake is examined far downstream (e.g. Spedding et
al., 2003). This latter case is equivalent to taking the time-
average because the far downstream wake represents the
integrated effect of the unsteady vortex formation process that
occurred at the upstream site of force generation by the
swimming or flying appendages.

Daniel (1984) has shown that in the case of solid bodies, the
time-averaged added-mass force contribution is cancelled out
if the body exhibits symmetric (in space and time) acceleration
and deceleration phases during periodic motions. The
published data from previous animal swimming and flying
studies is insufficient to infer a similar cancellation of the wake
vortex added-mass contributions during the stroke cycle.
However, this effect remains a plausible explanation for the
apparent absence of a wake vortex added-mass force
contribution to time-averaged force measurements.

The use of time-averaged forces inferred from wake
measurements for the purpose of deducing animal swimming
and flying dynamics appears reasonable at first sight, as the
forces required to achieve lift or overcome negative buoyancy
should be achieved by the animal over durations sufficiently
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long that a time-averaged force can be computed. However, an
estimation of the time-averaged force provides no information
about the instantaneous swimming and flying forces. It is these
instantaneous forces that dictate important dynamics of
locomotion such as the trajectory, speed and efficiency of
swimming and flying. Furthermore, it can be shown that a
time-averaged force estimate based on wake measurements is
not sufficient to prove that an animal is generating the
locomotive forces necessary to sustain flight or maintain
neutral buoyancy.

To see this, consider the three hypothetical force profiles in
Fig.·8. These curves represent the records of net vertical force,
FV–mg, generated by three flying animals, where FV is the
vertical fluid dynamic force and mg is the (constant) weight of
the body (the same example can be equally applied to
swimming animals with no loss of generality). Each animal
starts from the same altitude and a zero vertical velocity. All
three animals also possess the same time-averaged vertical
force (i.e. FV

——
–mg=0), and therefore cannot be distinguished

using methods of time-averaged force estimation in a
comparative biological study. However the vertical flight
speeds V(t) and flight trajectories Y(t) of the three animals are
very different (Fig.·8).

The animal with constant zero force generation does not
change its altitude over time (Fig.·8; solid black line). The two
animals with sinusoidal time-dependent force profiles both
change their altitude, but in opposite directions. The animal
whose instantaneous net force is initially positive increases its
altitude (Fig.·8, blue broken line), while the animal whose
instantaneous net force is initially negative decreases its
altitude (Fig.·8, red dotted line). This latter animal is not

generating sufficient force to sustain flight. Indeed, from any
finite altitude, it will eventually descend to the ground. Yet a
time-averaged force estimate would suggest that the forces
generated by this animal are sufficient to maintain flight
indefinitely, since the time-averaged fluid dynamic force FV

——
is

equal to the weight mg of the animal. An estimate of
instantaneous forces is required to achieve more effective
comparative biological studies that are capable of making these
types of distinctions.

The inadequacy of the time-averaged force for determining
locomotive dynamics stems from the fact that the time-
averaged force only dictates the behavior of the time-averaged
acceleration, not the behavior of the time-averaged velocity or
position of a body. For example, a time-averaged force equal
to zero requires that (for a constant body mass) the time-
averaged acceleration must also be equal to zero. The body
must therefore start and end its motion at the same velocity.
However, there is no implicit or explicit restriction on the
velocity the body exhibits during the time between the start of
the motion and its conclusion. An infinite set of temporal
velocity profiles can be derived for the body, each one
satisfying the requirement of zero time-averaged acceleration
(and force). Consequently, the set of time-dependent position
trajectories satisfying the requirement of zero time-averaged
acceleration (and force) is also infinite.

A proper proof that an animal is generating sufficient
locomotive forces to sustain flight or maintain neutral
buoyancy requires knowledge of the instantaneous forces it is
generating. The requirement that time-averaged forces
generated by the animal should sustain flight or maintain
neutral buoyancy is a necessary condition but it is not sufficient
by itself.

These results indicate that even if instantaneous wake vortex
added-mass forces exhibit no time-averaged contribution, they
are still critical in determining the locomotive dynamics of
swimming and flying animals.

Krueger and Gharib (2003) provide the only known
comparison of instantaneous wake-measured force estimates
with forces determined directly from a force balance device.
The results of that work provide the best opportunity to
compare the current experimental results with the existing
literature, especially since both sets of experiments examine
piston-generated vortex rings. In the current experiments, the
wake vortex added-mass coefficient (cxx=0.72), wake vortex
width (S=3.2·cm), vortex velocity (UVi=2·cm·s–1) and
circulation (�=20·cm2·s–1) result in a wake vortex ratio (as
defined in Eq.·22) Wa=0.23, suggesting that wake vortex
added-mass provides a non-negligible contribution to the
generated forces during vortex formation.

Unfortunately, the data presented by Krueger and Gharib
(2003) is insufficient to compute the wake vortex ratio or to
deduce the instantaneous forces generated early during vortex
formation, when the contribution of wake vortex added-mass
is expected to be the largest (i.e. due to vortex acceleration in
the downstream direction). However, Krueger and Gharib
(2003) do show that even after this period when wake vortex
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added-mass is expected to be most significant, the impulse of
the quasi-steady jet that forms behind the vortex is also
underestimated by up to 10% when the contribution from wake
vortex added-mass is neglected. The magnitude of force
underestimation will become even more egregious during
vortex formation. Hence, the results of Krueger and Gharib
(2003) support the existence of a non-negligible contribution
from wake vortex added-mass to the forces generated during
wake formation. The present results suggest that the geometric
picture of added-mass presented by Krueger and Gharib (2003)
be revised, however. Rather than the wake vortex added-mass
being distributed in a volume surrounding the vortex, Fig.·6
illustrates that it forms a horn of fluid that trails behind the
translating vortex.

Implications for animal swimming and flying in general

As mentioned previously, the concept of wake vortex added-
mass is not a discovery attributable to this paper; it is founded
in classical fluid dynamics and has been appropriately
recognized by a few investigators (e.g. Weihs, 1977; Krueger
and Gharib, 2003). Furthermore, wake vortex added-mass is
not a phenomenon that is specific to a particular vortex
geometry such as the vortex rings studied in these experiments.
The fluid dynamics concepts that dictate the existence of a
wake vortex added-mass contribution are well established and
generally applicable to any fluid flow containing vortices. It is
therefore logical to hypothesize that wake vortex added-mass
contributes to the dynamics of animal swimming and flying in
general and, even more broadly, to vortex formation in any
biological system including internal flows.

In the previous section, it was noted that since existing
studies have focused on time-averaged forces, the effect of
wake vortex added-mass has gone unnoticed. However, as
comparative biologists begin to examine the fluid dynamics of
animal swimming and flying more closely, instantaneous
forces and wake vortex added-mass can no longer be
overlooked. The present paper supports the development of
methods to estimate these locomotive dynamics from wake
measurements, by presenting models that are compatible with
current experimental capabilities. A primary challenge that has
not been fully resolved here is the quantitative determination
of wake vortex boundaries. This information is needed to
determine the shape and size of the wake vortices, from which
the wake vortex added-mass coefficient can be empirically
determined. In the present case, the frame transformation
method of Dabiri and Gharib (2004) has been implemented.
This method will likely be effective for studying radially
symmetric vortex ring wakes such as those generated by
jellyfish (cf. Fig.·9; Dabiri et al., 2005), squids and salps;
however, it cannot be used to elucidate the structure of more
complex wakes.

In general, a Lagrangian particle tracking method (such as
that of S. C. Shadden, J. O. Dabiri and J. E. Marsden,
manuscript submitted for publication) will be needed, since the
Eulerian velocity field has been shown to be ineffective in
determine the vortex boundary. Alternatively, the vortex

boundary can be roughly estimated based on the spatial
distribution of the wake vorticity.

In this paper, we have primarily concerned ourselves with
linear vortex acceleration corresponding to the diagonal
elements of the added-mass tensor. It is prudent to note the
possibility that the angular acceleration components of the
added-mass tensor may also contribute to swimming and flying
dynamics in some special cases. Further work is needed to
develop methods to quantify these components and to infer
their contribution to the dynamics of animal swimming and
flying. It is expected that the dynamics of turning and rotating
maneuvers will depend heavily on these additional added-mass
effects.

Finally, it is important to note that vortex formation is not
the only time during the stroke cycle when large vortex
accelerations may lead to a measurable force contribution from
wake vortex added-mass. Any time the animal body and/or
appendages interact with vortices in the flow, the resulting
vortex acceleration or deceleration can result in substantial
added-mass forces. The author hypothesizes that these
interactions are integral to the observed effectiveness of wake
capture (e.g. Dickinson et al., 1999) and other body–vortex
interactions (e.g. Liao et al., 2003) that characterize animal
swimming and flying. Recent results suggest that these
interactions can be optimized by animals (Dabiri and Gharib,
2005).

2

1 1

2

Fig.·9. DPIV measurements of a free-swimming Aurelia aurita
jellyfish. Images are taken in the laser sheet plane, which is aligned
close to the plane of symmetry of the animal. Vortex wake of the free-
swimming jellyfish consists of a train of nearly axisymmetric vortex
rings (white arrows; cores numbered in order of formation). Flow field
is approximately 14·cm in height.
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List of symbols
A wake vortex loop area
C Bernoulli variable
CAM added-mass tensor
cii added-mass coefficient
cii
— two-dimensional added-mass coefficient
d0 initial body-plane separation distance
dS control surface element
f characteristic frequency
F locomotive force
FT total force 
FV
——

time-averaged vertical fluid dynamic force
FV vertical fluid dynamic force
i, j, k Cartesian unit vectors
l characteristic length scale
l generic length unit
L/D jet length-to-diameter ratio
mg animal body weight
n unit normal vector
p fluid pressure
rL Lagrangian particle plane radius
s generic time unit
S wake vortex width
St̂ generic Strouhal number
St locomotion Strouhal number
SV surface of vorticity-containing region
T propulsive stroke duration
t time
U body translational velocity
U characteristic velocity
u Eulerian velocity field
u, v, w Cartesian velocity components
UVi wake vortex velocity in i-direction
V control volume
V(t) vertical flight speed
VV volume of vorticity-containing region
Wa wake vortex ratio
x(t) Lagrangian particle trajectory
x, y, z Cartesian coordinate directions
Y(t) vertical flight trajectory
	B body volume
	D drift volume
	V wake vortex volume
	D,partial partial drift volume
d	E/dt ambient fluid entrainment rate
d	V/dt wake vortex volume growth rate
�� circulation measurement uncertainty
� velocity potential
� fluid density
�B body density
�M medium density
� wake vortex circulation
�� vorticity field

The author gratefully acknowledges the comments of the
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