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hermodynamics 
Equations of State 

The art of narrative consists in concealing from your audience every- 
thing it wants to know until after you expose your favorite opinions on 
topics foreign to the subject. I will now begin, ifyou please, with a 
horoscope located in the Cherokee Nation; and end with a moral tune 
on the phonograph. 

-0. HENRY, "CABBAGES AND KINGS" 

THERMODYNAMICS 

The total energy contained in a system, such as a mineral, 
is called the internal energy, U, and includes the kinematic 
and potential energy of all the atoms. It depends on tem- 
perature, pressure and position in the field of gravity. For 
an infinitesimal change of the system, the law of conserva- 
tion of energy, or thejrst law of thermodynamics, is 

dU = dQ - dW 

where Q is the heat flow and W is the mechanical work, for 
example the change of volume acting against a hydrostatic 
pressure 

dW = P d V  

The enthalpy or heat content of a system is 

H = U + P V  

d H = d U  + P d V +  VdP  

The energy contents cannot be determined in absolute 
terms; they are only known as differences. The usual, but 
arbitrary, zero point is known as the standard state and is 
denoted A HO. 

The heat capacity or specijic heat is the heat required 
to raise a unit mass of the material by one degree. This can 
be done at constant volume or at constant pressure and the 
corresponding symbols are Cv and C,, 

For minerals, 

A certain fraction of the heat entering a system, dQIT, 
is not available for mechanical work. The integral of this is 
the entropy, S, defined from 

giving the second law of thermodynamics, 

T d S  = dU + dW 

which applies to reversible processes, processes that do not 
lose energy to the environment. In irreversible processes, 

Entropy is a measure of the energy associated with the 
random arrangement and thermal motion of the atoms 
and that is therefore unavailable for external work. At 
absolute zero temperature a perfectly ordered crystal has 
zero entropy; with increasing temperature a certain dis- 
order or randomness is introduced. The entropy at tempera- 
ture T is 

At high temperature, 

When a mineral undergoes a change of phase'at temperature 
T involving a change in enthalpy or latent heat of transfor- 



mation AH, there is a discontinuous change of entropy: 

AS = AHIT 

The mechanical part of the free energy U is the Helm- 
holtz free energy F: 

F = U - T S  

d F  = dU - T d S  - S d T  

= -P dV - S dT 

giving 

P = -(dFIdV)T 

When using P and T as independent variables, instead 
of V and T, it is convenient to use the Gibbs free energy, G: 

G = H - T S = U + P V - T S = F + P V  

For a reversible process, 

d G =  VdP  - S d T  

TABLE 5-1 
Differentials of Thermodynamic Parameters 

If W is any thermodynamic function, the volume and 
pressure derivatives at constant temperature may be related 
by writing 

(aw/ev), = (aw~ap),  (apiav), 

We can also write 

(dWldT)" = (dWIdT)P + aKT(dW/dP), 

where a is the volume expansion coefficient. 

Thermodynamic Identities 

There are a variety of relations between the partial differ- 
entials of the standard thermodynamic parameters. Some of 
the standard forms are: 

Differential Constant 

element T P V S 

- 

PV 

KSV 
PV- yTS 

-S+yrnC, K,V- yTS 

Stacey (1977). 

U Internal energy * V Volume* 
H Enthalpy * y Gmneisen parameter 
F Helmholtz free energy * a Volume expansion coefficient 
G Gibbs free energy * p Density 
S Entropy * rn Mass of material * 
T Absolute temperature K Bulk modulus = incompressibility 
P Pressure C Specific heat 
Subscripts signify parameters held constant. 
*Parameters proportional to mass. 
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d u  = (auias), d s  + (auiav), d v  = T d s  - P d v  

dH = T d S  + VdP 

d F =  - S d T - P d V  

dG = - S d T  + VdP 

The Maxwell relations are: 

(dTlaV), = - (aP/dS), = - yTIV 

(dSl~3V)~ = (dP/aT)v = ypCv = aKT 

(dTIaP), = (~3VldS)~ = yTIKs 

- (dSIdP), = (dVIdT), = a V  

Table 5-1 represents all possible partial differentials of the 
standard parameters. The individual entries are to be taken 
in pairs. Thus (dTIdP), is aT at constant S (that is, yT) 
divided by dP at constant S (that is, K,) giving 

(dTIdP)s = yTIKs 

The following partial differentials are of particular 
interest: 

(dPldT)v = ?PC, 

is the differential form of the Mie-Griineisen equation 
and gives the variation in pressure in heating at constant 
volume. 

(daldP), = (lIK+) (dKT/dT), 

connects the pressure dependence of the coefficient of ther- 
mal expansion with the temperature dependence of the bulk 
modulus. The relation 

T(daIdT)v = - p(8CvIdP)T 

is useful in the high-temperature limit where C, = 3R (R 
being the gas constant) and a is independent of T at con- 
stant V and nearly independent of T at constant P .  

Table 5-2 gives thermodynamic data for a few minerals. 

The combination aK,  occurs in many thermodynamic 
relationships. The following second derivative thermody- 
namic identities are therefore useful: 

Chemical Equilibria 

The fact that a mineral assemblage changes into a different 
assemblage means that the new association has a lower free 
energy than the old. At equilibrium both assemblages have 
the same free energy. The stable phase has the lowest free 
energy, at the given pressure and temperature and mineral 
association, of all alternative phases. In general, the denser 
phases are favored at high pressure and low temperature. 

The partial molal free energy or chemical potential 
per mole of species i is F, , 

where a, is the activity of a chemical species, and Fp is the 
free energy in a standard state. The total energy is 

G = n,F,. 

where G is Gibbs free energy and n, is the number of moles 
of species i. At constant temperature and pressure, 

dG = F, dn, 

F, = Mi/..&, 

TABLE 5-2 
Thermodynamic Properties of Minerals 

Mineral CP cv by K s  Y 0 
erg/g/K 

( lo6)  (K x 10 -6) (kbar) (K) 

MgO 
CaO 
'41203 
Mg,Si04 
MgSiO, 
MgA1204 
SiO, 
Garnet 
Garnet 



and Mi is the molecular weight and pi is the chemical po- 
tential per gram. The change of activity with pressure is 

The total Gibbs free energy of a system of C compo- 
nents and p phases is 

where n{ is the number of moles of the component i in phase 
j and p{ is its chemical potential in phase j. The equilibrium 
assemblage, at a given pressure and temperature, is found 
by minimizing G. Taking the standard state of i to be pure 
i in phase j at the pressure and temperature of interest, 

where Hi,,, Si,, and V$ are the enthalpy and entropy of pure 
i in phase j at P = 0 and T and volume at T. With the 
chosen standard state for the activity, a$ in phase j contain- 
ing pure i is one. The activity of pure liquids or pure solids 
is unity. In an ideal solution ai is equal to the mole fraction 
of component i. 

At equilibrium the standard-state free-energy change at 
the pressure and temperature of interest is 

AG:,, = - RT In K 

where K is the equilibrium constant. Consider the hypo- 
thetical reaction 

where two molecules of A react to form one molecule each 
of C and D. The rate of reaction is proportional to the col- 
lisional probability between any two molecules, which is 
related to the product of the concentrations. For equilibrium 
the rates of the two reversible reactions are the same, and 

where (A), (C) and (D) are the concentrations or activities. 
For the general reaction, 

then 

The equation for equilibrium 

yields 

d P  AS AH - - - - 
dT AV TAV 

which is the Clausius-Clapeyron equation. 
For a system in equilibrium the following relation 

holds between the number of coexisting phases p, compo- 
nents c, and degrees of freedom f :  

This is the phase rule of J. Willard Gibbs. The phases are 
the parts of the system that can be mechanically separated, 
for example, the minerals and any coexisting liquid and 
gas. The components are the smallest number of chemical 
species necessary to make up all the phases. The degrees 
of freedom are generally the temperature, pressure and 
composition. 

The components distribute themselves over all the 
phases of the system. No phase can be without some contri- 
bution from all components since the chemical potential or 
activity of each component must be the same in all phases 
of the system. The phase rule places a limitation on the 
number of minerals that can occur in equilibrium in a 
given rock. The maximum number of phases can be at- 
tained only in an invariant system, one with P and T fixed. 
If both P and T vary during the process of formation of a 
rock, then 

which is the mineralogical phase rule of Goldschmidt. 
Because of the phenomenon of solid solution, the number 
of different minerals in a rock is less than the number of 
components. 

Table 5-3 is a compilation of the terms and relations 
introduced in this section. 

THEORETICAL 
EQUATIONS OF STATE 

The equation of state of a substance gives the pressure P as 
a function of volume V and temperature T: 

The general expression for the free energy of a crystal can 
be written in terms of three functions 

where X = VJV = plp, is the dimensionless volume rela- 
tive to the volume at normal conditions and 8 is a charac- 
teristic temperature, such as the Debye or Einstein tempera- 
ture. U(X) is the potential part of the free energy, which 
depends only on the volume. The second term is the phonon 
term and is usually calculated from the Debye or Einstein 
theory. The third term represents high-temperature correc- 
tions to the equation of state. This term, which is generally 



TABLE 5-3 
Notation and Basic Relationships 

V = Specific volume 

V , , = V a t P = O  

p = Density = MIV 

p ,  = p a t P = O  

T = Absolute temperature 

P = Pressure 

S = Entropy 

a = - - -  = Volume thermal expansion 
V dT 

K = - v  ( )  -- = p (E) = Adiabatic bulk modulus 

a s = K l  s P -  - V 2 - - V 2 =  p s (z) = elastic ratio 

y = aKTIpCv = crKs/pCp = Griineisen ratio 

C, = Specific heat at constant volume 

C ,  = Specific heat at constant pressure 

V,, V,  = Velocity of compressional and shear waves 

0 = Characteristic temperature 

= Mean atomic weight 

Bulk modulus = Incompressibility = l/Compressibility. 

6 = [alnKlalnp], = Second Griineisen ratio 

small, is due to anharmonic lattice oscillations, formation 
of point defects and thermal excitation of conduction elec- 
trons in metals. For most geophysical problems U(X) is the 
dominant term. 

The potential energy of a crystal can be written as the 
sum of an attractive potential, which holds the atoms to- 
gether, and a repulsive potential, which keeps the crystal 
from collapsing: 

where r is the interatomic spacing and A, B, m and n are 
constants, different from those in the last section. The func- 
tional form of the repulsive potential is uncertain, and an 
exponential form is also often used. 

The pressure is obtained by differentiation: 

The isothermal bulk modulus, KT, is 

The bulk modulus is also called the incompressibility. At 
P = 0, V = V, and KT = KT(0). The PV equation of state 
can therefore be written as 

and the bulk modulus as 

The pressure derivative of KT at P = 0 is 

K$(O) is approximately 4 for many substances. Since the 
repulsive potential is a stronger function of r than the at- 
tractive potential, n > m and 3 < n < 6 for K$(O) = 4. 

THE GRUNEISEN RELATIONS 

Griineisen (1912) introduced the concept of a "thermal 
pressure" derived from the pressure of a collection of atoms 
vibrating under the excitation of the energy associated with 
nonzero temperature. A crystalline solid composed of N at- 
oms has 3N degrees of freedom, and the solid can be 
viewed as a collection of harmonic oscillators. The energy 
levels of a harmonic oscillator are nhv, where n are succes- 
sive integers and h is Planck's constant. In thermal equilib- 
rium a given energy level is populated with the probability 
exp( - nhvlkT), where k is Boltzmann's constant. The in- 
dividual oscillators have a frequency vi, and these are con- 
sidered to be independent of temperature but dependent on 
the volume, V. 

The quantity 
d log vi 

Yi = -- d log V 

is involved in calculations of the thermal pressure and is 
known as the Griineisen ratio. If it is assumed that all the yi 
are the same, then 

Vi = v-Y 
The Griineisen equation of state is 



where Po is the pressure at absolute zero and UD is the in- 
ternal energy of the oscillators in a volume V due to the 
elevated temperature: 

Differentiating P with respect to temperature gives 

where C, is the specific heat at constant V. From the ther- 
modynamic relations 

where a is the volume coefficient of thermal expansion, the 
following relation can be derived: 

which is called the Griineisen relation. 
The thermal energy of a crystal is equal to the sum 

over all oscillators and, therefore, over all pertinent fre- 
quencies. In the Debye theory the sum is replaced by an 
integral, and it is assumed that all frequencies of vibration 
are bounded by some maximum value vi < v,. 

In an elastic solid three modes of wave motion are per- 
mitted, one compressional mode and two shear modes hav- 
ing orthogonal particle motions. The total thermal energy is 
therefore 

where No is the number of atoms per unit volume. 
The maximum oscillation frequency is related to the 

volume available to the oscillator and the velocity of elastic 
waves. In the Debye theory a mean sound velocity is im- 
plied, and thus 

where N,  is Avogadro's number, p is the density, and is 
the mean atomic weight (molecular weight divided by the 
number of atoms in the moleculej. In the Debye theory it is 
assumed that velocity is isotropic and nondispersive, that 
is, independent of direction and frequency. 

The Debye temperature is defined as 

and therefore 

where V, is mean velocity: 

The Debye temperature can be estimated from the ve- 
locities of elastic waves and, therefore, can be estimated for 
the mantle from seismic data. In principle, the velocities 
should be measured at frequencies near v, (- lO I3  Hz) since 
there is some dispersion. Ignoring dispersion, however, is 
consistent with Debye's original assumption. There are also 
optical modes, as well as acoustic modes, and these are ig- 
nored in the simple theories. By differentiation of U we 
obtain for the thermal pressure 

U, d log 0 p* = -- 
V d log V 

and, therefore, 

- d log 0 - d log v, - - 
= d log V d log V 

At high temperature, 01T << 1, 

At very low temperature, 

At intermediate temperature, 

where 5 = hvlkT. 
The thermal pressure in the mantle is estimated to be 

between 10 and 200 kilobars, increasing with depth. The 
Debye temperature increases by about a factor of 2 through 
the mantle, and the Griineisen parameter probably remains 
close to 1. 

The specific heat can be written 

At T >> 0 we have the classic high-temperature limit, 

Silicates show a close approach to the "classical" values at 
temperatures greater than about 1000°C. Under these con- 
ditions C, approaches 6 calI0C g atom for each particle of 
the chemical formula. The mean atomic weight for most 
rock-forming minerals is close to 20, so the specific heat at 
high temperatures is close to 0.3 calIoC g. The variation of 
specific heat with pressure is 



The specific heat probably only decreases about 10 percent 
at the highest mantle pressures, and its variation is therefore 
small relative to the changes expected for bulk modulus and 
thermal expansion. 

Most of the interior of the Earth is hot, well above the 
Debye temperature. This means that the Earth's interior 
probably can be treated with classical solid-state physics 
concepts. I say "probably" because the interior of the Earth 
is at simultaneous high temperature and high pressure and 
these are competing effects. The quantization of lattice vi- 
brations and the departures from classical behavior that are 
of interest to quantum and low-temperature physicists are 
not relevant except, in some cases, when extrapolating from 
laboratory measurements to the high temperatures in the in- 
terior. The close relationship between y and the elastic con- 
stants and their pressure derivatives means that y can be 
estimated from seismology. 

The thermal pressure, P, can be viewed as the radia- 
tion pressure exerted on the solid by completely diffuse 
elastic waves, that is, 

- - up ae, us ae, 
2- -  

8, av 0, av 
where the Urn, V, and 6, are the thermal energies, elastic 
wave velocities and characteristic temperatures associated 
with the longitudinal ( P )  and transverse ( S )  waves. At high 
temperature we have 

The thermal pressure can be written in a form analogous to 
the perfect gas equation: 

Q 
P* = - RT, Q = y,  + 2ys v 

where Q is of the order of 5 or 6 for many elements and is 
near 4 for MgO and A1203. 

EFFECT OF TEMPERATURE 
ON BULK MODULI 

The pressure and the isothermal bulk modulus are volume 
derivatives, at constant temperature, of the free energy 
F(V,T). The corresponding adiabatic quantities are vol- 
ume derivatives of the internal energy U (V,S) at constant 
entropy. The equation of state of simple solids subjected 
to hydrostatic pressure can be written in two alternative 

forms. The vibrational formulation splits the free energy of 
the solid into the lattice energy, U,(V), which is the energy 
of a static solid of volume V in its electronic ground state, 
and a vibrational energy U*(KT). The thermal formula- 
tion splits the free energy into a nonthermal cohesive energy 
U,(V) of the solid of volume V at 0 K and a thermal energy 
U*(V,T). Note that the lattice and cohesive energies depend 
only on volume and the terms with asterisks depend, in gen- 
eral, on both volume and temperature; in the Hildebrand 
approximation the thermal and vibrational energies are 
taken to be a function of temperature alone, this being a 
good approximation at high temperatures where the heat 
capacity at constant volume has attained its classical value. 
The cohesive energy is the free energy required to assemble 
the atoms from infinity to form the rigid lattice; it includes 
both static lattice and zero-point energy contributions. The 
total vibrational energy of the solid is the sum over all the 
modes of lattice vibration of all the particles. The vibra- 
tional energy Um(V,T) consists of the zero-point vibrational 
energy, U*(V,O), of the normal modes at T = 0 K plus the 
energy required to heat the lattice at constant volume, V,  
from 0 K ,  to T K ;  that is, 

The Helmholtz free energy, in the Hildebrand approxi- 
mation, can be written, for example, 

F(V,T)  = U,(V) + U*T - TS(V,T) 

Since 

P = - (aFIdV), 

and 

we have 

and 



The quantity 

is of the order of - 1. The quantity aKT is of the order of 
10 to 100 bar/K for elements and is between about 30 and 
70 for compounds of interest in the deeper mantle. The 
quantity 

is of the order of - 50 bar/K, and a temperature rise of 
some 2000 K changes the bulk modulus by about 100 kbar, 
which is about 10 percent of estimated values for the bulk 
modulus in the mantle. 

The following relations are useful and serve to define 
the second Griineisen parameter, 6: 

The elastic moduli of a solid are affected by tempera- 
ture both implicitly, through the volume, and explicitly. 
Thus, for example, 

and 

The measured variation of KT with temperature is, then, 

where (a In KT/dT), is the intrinsic temperature dependence 
of KT. (a In KS/dT), is positive. There is a general tendency 
for (d In KT/dT), to be smaller at high Tie. 

Experiments show 

and 

all of which are useful when trying to estimate the effects 
of pressure, volume, and temperature on the adiabatic bulk 
modulus. Note that these are all experimental and thermo- 
dynamic inequalities and are independent of the equation of 
state. We also note that 

6, < K' < 6, 

8~ - 6s = Y 

The seismic parameter @ is simply 

@ = Kslp 

so that 

The pressure in the mantle rises to about 1500 kbar, 
which, for (dKldP), = 4, corresponds to a 6000-kbar in- 
crease in the bulk modulus. Temperature can therefore be 
treated as a small perturbation on the general trend of bulk 
modulus, or @, with depth, at least in the deeper part of the 
mantle. 

THERMAL EXPANSION 
AND ANHARMONICITY 

Because the attractive and repulsive potentials have a dif- 
ferent dependence on the separation of atoms, the thermal 
oscillation of atoms in their (asymmetric) potential well is 
anharmonic or nonsinusoidal. Thermal oscillation of an 
atom causes the mean position to be displaced, and thermal 
expansion results. (In a symmetric, or parabolic, potential 
well the mean positions are unchanged, atomic vibrations 
are harmonic, and no thermal expansion results.) The Debye 
model is restricted to assemblages of harmonic oscillators 
and, strictly speaking, cannot be used to discuss anhar- 
monic effects such as thermal expansion. Anharmonicity 
causes atoms to take up new average positions of equilib- 
rium, dependent on the amplitude of the vibrations and 
hence on the temperature, but the new positions of dynamic 
equilibrium remain nearly harmonic. At any given volume 
the harmonic approximation can be made so that the char- 
acteristic temperature, 6, and frequency are not explicit 
functions of temperature. This is called the quasi-harmonic 
approximation. If it is assumed that a change in volume 
can be adequately described by a change in 8 ,  then the 
frequency of each normal mode of vibration is changed in 
simple proportion as the volume is changed. The Griineisen 
parameter 
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FIGURE 5-1 
Coefficient of thermal expansion of mantle minerals, representing theoretical fits to avail- 
able experimental data (after Duffy and Anderson, 1988). 

is then a measure of anharmonicity, 
From one of Maxwell's thermodynamic relations, 

we have the volume coefficient of thermal expansion 

where Cv and Cp are molar specific heats and V is the molar 
volume. If the specific heats per unit volume are used, then 
V will not be present in these equations. The Griineisen 
equation then shows that thermal expansion will only arise 
as a consequence of anharmonicity through the parameter 
y, and if y is itself independent of temperature, and we can 
ignore any explicit temperature dependence of KT, then y 

should be proportional to Cv in its temperature dependence. 
Since C ,  is constant at high temperature (in "classical be- 
havior"), then a should be as well; a should increase with 
temperature but level off at high T18, as shown in Table 
5-4 and Figure 5- 1. 

The change of a with pressure is given by the thermo- 
dynamic identity 

Thermal expansion decreases with pressure and reaches 
fairly low values at the base of the mantle. According to 
Birch (1938, 1952), a at the core-mantle boundary is only 
about 30 percent of its near-surface value. Birch (1968) 
showed that 
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TABLE 5-4 
Thermal Ex~ansion of Minerals 

Lindemann formula, 

Mineral 20°C 400°C 800°C 1500K 

Quartz 34 69 -3 - 
Coesite 8 I I 14 - 
Stishovite 16.5 22 23 24 
Feldspar 12 19 24 - 
Olivine 26 32 34 52 

24 28 32 - Pyroxene 
Garnet 19 26 30 33 
A1203 16.3 26 27 28 
MgO 31.5 42 45 52 
Spinel 16.2 28 29 31 
P-spinel 20.6 31 34 37 
y-spinel 18.6 27 28 30 
MgSiO ,-perovskite - 37 42 

Clark (1966), Jeanloz and Knittle (1986). 

where the subscripts denote P = 0, and showed that 

If 6 is independent of pressure [(a = (d In Kld In p),)] ,  then 

a la ,  = (VIV,)S 

and 

implying that dKIdT is independent of pressure and dKIaP 
is independent of temperature. 

In shock-wave work it is often assumed that yC,/V is 
independent of pressure. This gives 

a la ,  = KoIK 

or a K  is independent of pressure. 
The Griineisen theory for thermal expansion 

written 

a = (dEldT)pl[Qo (1 - kE1Q,)l2 

where E is the thermal or vibrational lattice energy, 

Qo = KoVoIy 

and 

k = (112) (KA - 1) 

can be 

where KO, Ki and V, are the bulk modulus, its pressure 
derivative and volume, respectively. The thermal energy 
can be calculated from the Debye model or the Nernst- 

where p is the number of atoms in the molecular formula 
and 0 is a characteristic temperature. In fitting experimental 
data for a as a function of T, the parameters Q,, k and 0 
can be treated, if necessary, as adjustable parameters or, 
if a(T) is to be estimated for unmeasured materials, these 
parameters can be estimated from other types of measure- 
ments. Both theory and experiment show that a increases 
rapidly with temperature and then levels off at high tem- 
perature (TI0 > 1). Most of the mantle is at high tem- 
perature, but most laboratory measurements are made at 
relatively low temperatures. It cannot be assumed that 
a is constant with temperature, or varies linearly with 
temperature. 

The theory of thermal expansion and a realistic esti- 
mate of its variation with temperature are essential in mod- 
eling the density and elastic properties of the mantle and 
in calculating mineral equilibria. The elastic properties of 
minerals have both an intrinsic and an extrinsic temperature 
dependence. The former is the variation of a property at 
constant volume, an experiment that requires a change in 
temperature and a compensating change in pressure. Most 
of the variation of the elastic properties is a result of the 
change in volume, and therefore it is important to under- 
stand the variation of a with temperature and to allow for 
this variation in modeling high-temperature phenomena. 
The functional forms of a(T) and C,(T) are related, and 
this is why y is relatively independent of temperature. 

In general, the coefficient of thermal expansion a is less 
for high-pressure phases than for low-pressure phases. Of 
the important mantle minerals, olivine and periclase have 
high thermal expansivities and y-spinel and stishovite have 
relatively low coefficients. (Mg,Fe)SiO,-perovskite violates 
this trend (Kuittle and others, 1986), having a relatively 
high a ,  at least for the metastable form. 

There is a close relationship between lattice thermal 
conductivity, thermal expansion and other properties that 
depend intrinsically on anharmonicity of the interatomic 
potential. The atoms in a crystal vibrate about equilibrium 
positions, but the normal modes are not independent except 
in the idealized case of a harmonic solid. The vibrations of 
a crystal lattice can be resolved into interacting traveling 
waves that interchange energy due to anharmonic, nonlinear 
coupling. 

In a harmonic solid: 

There is no thermal expansion. 

Adiabatic and isothermal elastic constants are equal. 

The elastic constants are independent of pressure and 
temperature. 

The heat capacity is constant at high temperature 
(T > 0). 



These consequences are the result of the neglect of anhar- 
monicity (higher than quadratic terms in the interatomic dis- 
placements in the potential energy). In a real crystal the 
presence of one phonon, or lattice vibration of a given type, 
causes a periodic elastic strain that, through anharmonic in- 
teraction, modulates the elastic constants of a crystal. Other 
phonons are scattered by these modulations. This is a non- 
linear process that does not occur in the absence of anhar- 
monk terms. 

Perhaps the simplest departure from linear or harmonic 
theory is to assume that the frequencies, mi, of lattice vibra- 
tions depend on volume. In the harmonic theory the free 
energy is independent of volume. The mode Griineisen pa- 
rameter expresses this volume dependence 

and is a useful measure of anharmonicity. The crystal an- 
harmonicity is a suitable average of all the modal y,. The 
Griineisen approximation is that all yi are equal, but this is 
not generally true. A better approximation is to consider the 
longitudinal and shear modes separately, giving 

where y, and y, are the longitudinal and transverse compo- 
nents, respectively, and all shear modes are assumed to have 
the same volume dependence, or, alternatively, separate 
averages are made of the two mode types. The above .y is 
sometimes called the acoustic or high-temperature y .  It 
is clearly dominated by the shear modes. In principle, the 
variation of the elastic constants with volume provides an 
estimate of y or the anharmonicity and, therefore, higher 
order properties of the interatomic potential. 

At high temperature (T > 6 )  all phonons are excited 
and the acoustic y  is a weighted average of all modes. At 
lower temperature the value of y  is largely controlled by the 
lower frequency transverse waves. 

According to the Mie-Griineisen theory of the thermal 
expansion of solids, 

and, in the Debye theory, 

In terms of the interatomic potential function, U, 

where U" and U"' are related to the elastic constants and 
their volume derivatives, respectively. Note that if a = 0 or 
U"' = 0 (that is, no pressure dependence of elastic moduli), 
then y  = 0 and there is no anharmonicity. If y = 0, the 
lattice thermal conductivity is infinite. 

Actually, the concept of a strictly harmonic crystal is 
highly artificial. It implies that neighboring atoms attract 
one another with forces proportional to the distance between 

them, but such a crystal would collapse. We must distin- 
guish between a harmonic solid in which each atom exe- 
cutes harmonic motions about its equilibrium position and 
a solid in which the forces between individual atoms obey 
Hooke7s law. In the former case, as a solid is heated up, the 
atomic vibrations increase in amplitude but the mean posi- 
tion of each atom is unchanged. In a two- or three- 
dimensional lattice, the net restoring force on an individual 
atom, when all the nearest neighbors are considered, is not 
Hookean. An atom oscillating on a line between two adja- 
cent atoms will attract the atoms on perpendicular 
lines, thereby contracting the lattice. Such a solid is not 
harmonic; in fact it has negative a and y .  

The quasi-harmonic approximation takes into account 
that the equilibrium positions of atoms depend on the am- 
plitude of vibrations, and hence temperature, but that the 
vibrations about the new positions of dynamic equilibrium 
remain closely harmonic. One can then assume that at any 
given volume V the harmonic approximation is adequate. 
In the simplest quasi-harmonic theories it is assumed that 
the frequencies of vibration of each normal mode of lat- 
tice vibration and, hence, the vibrational spectra, the 
maximum frequency and the characteristic temperatures 
are functions of volume alone. In this approximation y  is 
independent of temperature at constant volume, and a has 
approximately the same temperature dependence as molar 
specific heat C,. 

ISOTHERMAL-ADIABATIC 
TRANSFORMATIONS 

Seismic data are adiabatic in the sense that the time scale 
of seismic waves is short compared to the time scale re- 
quired for the temperature to equilibrate between the com- 
pressed and dilated parts of the wave. To relate isothermal 
theories and experiments with adiabatic data, laboratory or 
seismic, requires isothermal-adiabatic transformations, all 
of which follow from 

A large amount of ultrasonic data on solids at moderate 
pressures has accumulated in the past decades, and these 
transformations are also required to interpret the data in 
terms of isothermal equations of state. 

From equation 7 we can write 



The Griineisen ratio, y ,  is relatively independent of tem- 
perature, and the coefficient of volume thermal expansion 
a is independent of temperature at high temperatures. The 
second term on the right of equation 8 is, therefore, of the 
order of y and is negative. The volume dependence of y can 
be written: 

if we take (a In Cv/d In V), = 0,  appropriate for high tem- 
peratures. Note that the multiplicative factor (ayTKTlKS) in 
equation 9 can be written (K,  - KT)  -+ iY5, which is a small 
number of the order of 0.001 for most materials at room 
temperature. The derivative (d In yld In p), is of the order 
of - 1 and (a In KTld In p), is of the order of 6, so the 
second term on the right-hand side of equation 8 is of the 
order of - 0.007 or about 1 percent of the first term. 

The following relations are useful: 

CALCULATION OF 
DENSITY IN THE EARTH 

The variation of density p with radius in the Earth r can be 
written 

that is, density is a function of pressure, temperature, phase 
( 4 )  and composition (c). For a homogeneous adiabatic self- 
compressed region, we have 

In a convecting mantle the mean temperature gradient, 
away from thermal boundary layers, is close to adiabatic: 

It is therefore convenient to write the temperature gradi- 
ent as 

where r is the superadiabatic (or subadiabatic) gradient. 
Adiabatic compression of a material is given by the adia- 
batic bulk modulus, Ks 

Seismic waves are also adiabatic, and hence we can use 

to calculate the variation of density with depth in a homo- 
geneous, adiabatic region for which we have seismic data. 
Making the above substitutions, 

- - dp - g p i ~  + apr  
d r  

These are the Williamson-Adams equations as modified by 
Birch (1938, 1952). 

A useful test of homogeneity (Birch, 1952) is pro- 
vided by 

The Bullen parameter (Dziewonski and Anderson, 1981), 

should be near unity for homogeneous regions of the mantle 
that do not depart too much from adiabaticity. 

In the upper mantle the temperature gradients are high, 
decreasing from a high conductive gradient at the surface 
to the convective gradient in the deeper interior. There are 
also probably chemical, mineralogical and phase changes 
in the shallow mantle. The latter include partial melting and 
basalt-eclogite and garnet-pyroxene reactions. At greater 
depth the olivine-spinel, pyroxene-majorite and garnet- 
perovskite phase changes keep the mantle from being ho- 
mogeneous in the Williamson-Adams sense. Any chemical 
layers also cause thermal boundary layers and superadia- 
batic gradients. The Bullen parameter is consequently far 
from unity at depths less than 670 km, and the Williamson- 
Adams equations cannot be used over most of the upper 
mantle (Butler and Anderson, 1978). The parameter dKldP 
is another measure of homogeneity. It is generally close to 
4 at P = 0 and decreases smoothly with pressure. This 
behavior is exhibited by the mantle below 770 lun except 
for the region near the core-mantle boundary. 
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FINITE-STRAIN 
EQUATION OF STATE 

Finite-strain theory has been applied extensively to prob- 
lems in geophysics. The resulting equations are called semi- 
empirical because they contain parameters that have to be 
determined from experiment. The theory relates strain, or 
compression, to pressure. 

The relation between strain E and volume V or density 
p is 

where f = - E refers to compression, a positive quantity. 
The first few terms in the Birch-Murnaghan equation 

of state (Birch, 1938, 1952) are 

KO is the bulk modulus at P = 0 and can refer to either 
isothermal or adiabatic conditions depending on whether an 
isotherm or an adiabat is to be calculated. KO and 5 are 
parameters that are functions of temperature alone. In terms 
of strain, 

The term 5 can be found in terms of (dKldP), = KA; 

This equation of state has been fitted to a large amount of 
shock-wave data on oxides and silicates, and KA is found to 
be generally between 2.9 and 3.6 (Anderson and Kanamori, 
1968; Sammis and others, 1970; Davies and Anderson, 
1971). K' generally decreases with pressure. In the lower 
mantle K' (P) varies from about 3.8 to 3.1. Ultrasonic 
measurements of KA on minerals generally give values in 
the range 3.8 to 5.0. Note that for [ = 0, KL = 4, a typical 
value. 

For quick, approximate calculations, the Murnaghan 
equation is useful: 

where n = KA. This diverges from the Birch-Murna- 
ghan equation at high compressions but is useful at low 
pressures. 

Finite-strain equations can also be developed for the 
variation of seismic velocity with pressure (Birch, 1961b; 
Burdick and Anderson, 1975). These have been used in the 
interpretation of velocity and density profiles of the mantle 
(Butler and Anderson, 1978; Davis and Dziewonski, 1975; 

Jeanloz and Knittle, 1986). The equations are: 

Vz (P) = Vz(0)(1 - 2s) [1 - 2&(3K,Dp - l)] 

where 

at P = 0.  Pressure is calculated from 

The < parameter satisfies 

The expressions to the next order in strain have been given 
by Davies and Dziewonski (1975). In order to apply these, 
the higher order pressure derivatives of Ks, V, and V, are 
required, and these are generally not available. However, 
the higher order terms for the lower mantle can be deter- 
mined by fitting these equations to the seismic data for the 
lower mantle, assuming it is homogeneous and adiabatic. 
The zero-pressure properties of the lower mantle can there- 
fore be estimated. 

The "fourth-order" finite-strain equations can be 
written 

where L,, M ,  and C, are constants. 
By evaluating the above equations and their derivatives 

at E = 0, it is possible to relate the above coefficients to the 
P = 0 values of the elastic moduli and their pressure deriv- 
atives. There is some question as to whether the finite-strain 
equations converge at high pressure and which order is ap- 
propriate for application to the lower mantle. There are sig- 
nificant differences in the inferred P = 0 properties of the 
mantle depending on whether third-order or fourth-order 
finite-strain equations are used. 

Unfortunately, there has been little progress in deter- 
mining equations of state for Vp and V, from first principles. 
The bulk modulus and seismic parameter, K,lp = @, how- 
ever, can be determined by simple differentiation of a wide 
variety of equations of state. @ = dPldp can also be deter- 
mined from static-compression and shock-wave measure- 
ments. Therefore, most discussions of the composition and 
mineralogy of the mantle depend upon the seismic values 
for p, Ks and a, rather than Vp and V,. Unfortunately, it is 
the velocities that can be determined most accurately. 

Other potential functions in common use are the Bar- 
deen potential: 

a b c  
U ( r )  = - + - - - 

r3 r2 r 



giving 

where X = plp,, D is an empirically determined constant 
and 

For an exponential repulsive term in the potential 
function, 

a 
U(r) = - -  + b exp 

r (- :) 
giving 

P = AX2', exp[B (1 - X -  113)] - AX413 

1 
KO = - A(B - 2) 

3 

and 

ZERO-PRESSURE VALUES 
OF LOWER-MANTLE 
SEISMIC PROPERTIES 

Butler and Anderson (1978) fitted a variety of equations of 
state to the lower mantle in order to test for homogeneity 
and to obtain estimates of lower-mantle properties at zero 
pressure. Their results are summarized in Table 5-5. The 
first row gives the extrapolated zero-pressure values, based 
on the assumption that the lower mantle is homogeneous 
and adiabatic. These assumptions, for the Earth model they 
used, were only valid between radii of 4825-5125 km and 
3850-4600 km; and I have taken the average here. In the 
Earth model PREM the homogeneity-adiabaticity assump- 
tion seems to hold below 5700 km radius. For comparison 
the Earth model PREM yields p,(T) = 3.99-4.00 g/cm3, 
Ko(T) = 2.05-2.23 Mbar, KA = 3.8-4.4, Go = 1.30- 
1.35 Mbar and GA = 1.5-1.8. 

In subsequent rows various temperature corrections 
have been made, using temperature derivatives given at 
the bottom of the table. In the lower part of the table, 
measurements or estimates of the zero-pressure, room-tem- 
perature values for various candidate lower-mantle min- 
erals are given. Note that "perovskite" (the high-pressure 

form of MgSiO,) and corundum (A120,) give good fits. 
If the mantle is homogeneous and contains abundant oli- 
vine, (Mg,Fe),Si04, in the upper mantle, then the lower 
mantle will contain substantial magnesiowiistite, (Mg,Fe)O, 
thereby decreasing the moduli and velocities compared to 
perovskite. 

THE EQUATION OF STATE 

The general form of an equation of state follows from con- 
siderations of elementary thermodynamics and solid-state 
physics. A wide variety of theoretical considerations lead 
to equations of state that can be expressed as 

The choice of exponents m = 2, n = 4 leads to 
Birch's equation, which is based on finite-strain considera- 
tions; if m = 1, n = 2 we obtain Bardeen's equation, which 
was derived from quantum mechanical considerations. If 
rn = - 3 we obtain Murnaghan's finite-strain equation. A 
generalized form of the equation of state of a degenerate 
electron gas obeying Fermi-Dirac statistics can also be cast 
into this form. Equations of state based on the Mie form 
of the potential energy U(r) of an atom in a central inter- 
atomic force field, given as 

where the two terms on the right correspond to an attractive 
and a repulsive potential and r is an interatomic distance, 
yield the general form of the equation of state by differen- 
tiation. The choice m = 1 is appropriate for electrostatic 
interactions, and m = 6, n = 12 is the Lennard-Jones po- 
tential, appropriate for Van der Waals or molecular crystals. 

The foundations of the atomic approach were laid near 
the beginning of this century by Born, Van Karman, Grii- 
neisen, Madelung, Mie and Debye. The basic premise of 
the theory is that ionic crystals are made up of positively 
charged metal atom ions and negatively charged electro- 
negative atom ions that interact with each other according 
to simple central force laws. The electrostatic, or Coulomb, 
forces that tend to contract the crystal are balanced by re- 
pulsive forces, which, in the classical theory, are of uncer- 
tain origin. Dipole-dipole and higher order interactions, the 
Van der Waals forces, provide additional coupling between 
ions. They dominate the attraction between closed-shell at- 
oms but are a minor part of the total attractive force in 
mainly ionic crystals. The Van der Waals forces are also of 
much shorter range than electrostatic forces. 

An ionic crystal is a regular array of positive and nega- 
tive ions that exert both attractive and repulsive forces on 
each other. The attractive force is the Coulomb or electro- 
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TABLE 5-5 
Extrapolated Values of Lower Mantle Properties 

-AT P K s  Cc V P  v s  K s  ' P' 
("C) (q/cm3) (Mbar) (Mbar) (km/s) (km/s) 

0 3.97 2.12 1.34 9.93 5.83 3.9 1.5 
1400 4.14 2.48-2.62 1.67-1.72 10.7- 10.9 6.3-6.4 
1600 4.16 2.53-2.68 1.71-1.76 10.8-11.0 6.4-6.5 
1800 4.18 2.57-2.74 1.74-1.80 10.8-11.1 6.5-6.6 

Minerals 
(Mg,., Fe, ,)O (mw) 4.07 1.66 1 .05 8.7 5.08 4.0 2.5 
Stishovite (st) 4.29 3.16 2.20 11.9 7.16 4.0* 1.1* 
A1,0, (cor) 3.99 2.53 1.63 10.83 6.40 4.3 1 .8 
Perovskite * (pv) 4.10 2.60-2.45 1.43-1.84 10.5- 10.9 5.9-6.7 4.1-4.5 2.1-2.6 

*Estimated. 
Temperature corrections: 

(a In K,la In p), = 4.0-5.5 
(a In ,da  In p), = 5.7-6.5 

= 3 x 10-vOc 

static force between the ions, and the force that keeps the 
crystal from collapsing is the repulsion of filled shells. For 
a simple salt the attractive potential between any pair of 
ions with charges q, and 9, is 

where r is the distance between the centers of the ions and 
e is the electronic charge. This potential must be summed 
over all pairs of ions in the crystal to get the total cohesive 
energy. The result for the attractive potential energy of a 
crystal is 

U = aU, 

where a (or A) is the Madelung constant, which has a char- 
acteristic value for each crystal type. The repulsive poten- 
tial is much shorter range and usually involves only nearest 
neighbors. 

The calculation of the exact form of the interatomic 
force law or the potential energy of an assembly of particles 
as a function of their separation is a difficult problem and 
has been treated by quantum mechanical methods for only 
a few cases. For many purposes it is sufficient to adopt a 
fictitious force law that resembles the real one in some 
general features and that can be made to fit it in a narrow 
region around the equilibrium point. The total energy U 
must satisfy 

d2 U K T  
= 0 and = (=) = - 

"0 v, "0 

which are the conditions that the crystal be in equilibrium 
with all forces and that the theoretical bulk modulus, Kt, 
should be equal to the observed value. These conditions 
serve to determine the constants in the fictitious force law 
and assure that the slope and curvature of this law are 
proper at the equilibrium point. 

The attractive forces in a crystal are balanced by the 
so-called overlap repulsive forces that oppose the inter- 
penetration of the ions. Perhaps the simplest picture is a 
rigid ion surrounded by a free-electron gas. The effect of 
hydrostatic pressure is to reduce the volume of the electron 
gas and to raise its kinetic energy. The kinetic energy varies 
as r-= where r is the nearest neighbor separation. The re- 
pulsive force between ions is very small until the ions come 
in contact, and then it increases more rapidly than the elec- 
trostatic force. In his early work on ionic crystals, Born 
(1939) assumed that the repulsive forces between ions gave 
rise to an interaction energy of the type 

for the whole crystal where b and n are constants and r is 
the distance between nearest unlike ions. Investigations of 
interionic forces based on quantum mechanics indicate that 
a repulsive potential of this type cannot be rigorously cor- 
rect, although it may be a good approximation for a small 
range of r. Later work has used a repulsive potential of 
the form 

where b and a are constants. 
Regardless of the details of the various attractive and 

repulsive potentials and their dependence on interatomic 
spacing, the Mie-Lennard-Jones potential 

is a simple useful approximation for a restricted region of 
the potential energy curve and, in pmicular, the vicinity of 
the potential minimum. Constants A, B, m and n will be 
determined at a point in the vicinity of interest by requiring 
that the interatomic spacing and the bulk modulus both be 
appropriate for the pressure at this point. 
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TABLE 5-6 
Thermodynamic Properties of Minerals and Metals 

( ah")  - ("'"9 - ("""9 - (dl;:.)" ( d l n ~ )  - ( d l n ~ )  - ( d ; ~ ) "  
dlnp T alnp P dlnp P alnp T alnp P 

Substance Y = ( ~ K I ~ P ) .  = 6, = 6, x 10s/K x 105/K 

MgO 1.53 3.89 6.18 3.61 0.842 3.13 5.58 7.72 
Mg,SiO, 1.18 5.39 7.60 5.38 0.025 2.83 6.50 9.19 
Fe,SiO, 1.25 5.97 6.95 5.15 2.14 - A - 

,0 3 1.32 3.99 5.14 3.41 0.945 2.73 6.85 6.72 
MgA1,O, 1.13 4.19 6.14 3.97 0.389 1.31 5.89 7.42 
Garnet 1.43 5.45 6.88 5.00 1 .062 2.61 5.40 6.07 
Cu 1.96 5.62 5.69 3.23 10.89 - - - 

Ag 2.40 6.21 6.19 3.26 15.38 - A - 

Au 3.03 6.50 7.03 3.92 9.64 - - - 

Using the interatomic potential a linear function of pressure and a simple power-law rela- 
tionship holds between the bulk modulus and the density. 

A B 
U =  - - + - ,  n > m  Table 5-6 summarizes some pertinent experimental data on 

rm rn minerals and metals, which show the relationships between 

and setting the molar volume of the solid V = Mlp equal Ks, KT and rigidity, G, with density and temperature. 

to a constant times r3 and using the relations For m  = 3, we have the simple relation (Fiirth, 1944) 

and 

for the pressure and bulk modulus, respectively, we obtain 
the equations previously given as equations 18 and 19: 

( m  + 3)13 (n + 3) /3  

m - n  

(rn + 3)13 

K = m - n  I ( m  + 3) (s) 

where V, and KO are the molar volume and the bulk modulus 
at zero pressure. 

For small compressions we can expand K about V = 

V,, to obtain 

and can note in passing that 

so, to a first approximation, the isothermal bulk modulus is 

Using Griineisen's approximation for (a In K,/dT),/ 
(a In VIdT),, we can summarize the important results of the 
previous sections. For small compressions: 
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and corresponding equations for (a In @Id In p). 
The Debye theory leads to a nonthermal definition of 

the Griineisen ratio (Knopoff, 1963; Brillouin, 1964): 

This relation assumes thpt  all the mode., of vibration have 
the same volume dependence or, equivalently, that all the 
elastic constants depend on volume or pressure the same 
way. An alternative expression has been suggested by Druy- 
vesteyn and Meyering (1941) and Dugdale and MacDonald 
(1953) and is hence called the DM expression: 

and this corresponds physically to a model of independent 
pairs of nearest neighbor atoms, in a linear chain, rather 
than to the Debye model of coupled atomic vibrations. This 
definition of the Griineisen ratio is often used in the reduc- 
tion of shock-wave data. 

Taking into account the transverse oscillations of 
atoms leads to the free-volume y: 

This is more exact than the other derivations (Stacey, 1977; 
Brennan and Stacey, 1979) and is appropriate for high 
temperatures where the classic assumption of independent 
vibrations of atoms becomes a good one and where the 
distinction between longitudinal and transverse modes be- 
comes fuzzy. 

The y's are related by 

At finite pressure, 

Using the above relations we can write 

and 

1 
yFV = - (rn + n + 1 )  

6 

which shows that the exponents in the equation of state are 
related to the anharmonic properties of the solid since the 
Griineisen relation y = aKTlpCV, relating the coefficient 
of thermal expansion a with the specific heat C,, is a mea- 
sure of anharmonicity. 

The parameter y decreases with compression but has a 
tendency to be higher for the close-packed crystal structures 
such as face-centered cubic and hexagonal close-pack than 
it is for the more open structures such as diamond structure 
and body-centered cubic. For most materials y is between 
1 and 2, which gives a range for m + n of 1 to 7 for the 
Lorentz-Slater theory and 3 to 9 for the DM theory. The 
corresponding ranges for ( - 8 In KT/d In V), are 2.3 to 4.3 
and 3 to 6, respectively. Many minerals have measured or 
inferred y in the range 1.1 to 1.5. 

In a later section I discuss the role of shear vibratjons 
in a more accurate nonthermal definition of the Griineisen 
parameter. 

THE SEISMIC PARAMETER @ 

The seismic parameter @ plays an important role in discus- 
sions of the mineralogy, composition and homogeneity of 
the mantle. It is more amenable to theoretical treatment than 
the seismic velocities and is available from static compres- 
sion, shock-wave and ultrasonic experiments. Table 5-7 
tabulates mean atomic weight density p and @ for a 
variety of important minerals and analog compounds. 

The @ for many silicates and oxides is approximately 
the molar average of the @'s of the constituent oxides (An- 
derson, 1967b, 1969, 1970). Using the values for MgO, 
Al,O, and SiO, (stishovite) in Table 5-7, we can estimate @ 
for MgAl,O, and MgSiO, as 55.3 and 60.6, respectively. 
Table 5-8 gives @ calculated from the molar averaging rule; 
note the excellent agreement between the predictions and 
the measurements. This rule is useful in the estimation of @ 
for compounds that have not been measured. 

EFFECT OF COMPOSITION 
AND PHASE 

We have now established the theoretical form for the ex- 
pected relationship between seismic parameter @ and den- 
sity and have investigated the effect of temperature and 
pressure. The exponent in the power-law relationship is dif- 
ferent for temperature and pressure, meaning that there is 
an intrinsic temperature effect over and above the effect of 
temperature on volume. We have not yet specifically al- 
lowed for composition except insofar as this information 



TABLE 5-7 
Mean Atomic Weight, Density and Seismic Parameter 
of Minerals 

Mineral M P 4, 

(glcm 3, (km '1s ') 

Albite 20.2 2.62 20.3 
Nephelite 21.1 2.62 17.4 
Oligoclase 20.5 2.65 24.9 
Orthoclase 21.4 2.58 18.3 
Microcline 21.4 2.56 20.2 
Quartz 20.0 2.65 17.4 
Olivine 20.1 3.22 40.1 
Olivine 23.0 3.35 38.7 
Orthopyroxene 21.2 3.29 32.5 
Diopside 21.6 3.28 34.5 
Garnets 21.9 3.73 45.1 

22.6 3.62 47.4 
3.64 48.7 

Jadeite 22.5 3.35 40.4 
Fayalite 29.1 4.14 26.0 
P-spinel 20.1 3.47 50.1 
y-spinel 20.1 3.56 51.7 
Majorite 20.1 3.52 49.7 * 
Spinel 20.3 3.58 55.1 
MgSi0,-perovskite 20.1 4.10 64.8 
MgFeSiO, -perovskite - 4.21 61.6" 
SrTi0,-perovskite 36.7 5.12 34.1 
TiO, 26.6 4.26 50.6 
A 1 z 0 3  20.4 3.99 63.2 
MgO 20.2 3.58 47.4 
Si0,-stishovite 20.0 4.29 73.7 
CaSi0,-perovskite 24.0 4.13" 55.0" 
CaMgSi ,O,-perovskite 22.1 4.12" 57.8" 

*Estimated. 

is contained in the initial density and @,. Birch (1961a) 
showed empirically that the mean atomic weight, a, is an 
appropriate measure of composition although exceptions to 
this general rule occur. Knopoff and Uffen (1954) used a 
"representative atomic number" Z as a measure of compo- 
sition in applying the Thomas-Fermi-Dirac (TFD) theory to 
compounds. 

McMillan (1985) and Knopoff (1965) made semi- 
empirical adjustments to the Thomas-Fermi statistical 
model of the atom in order to obtain the proper low-pressure 
limit. Their equations can be put in the forms 

- 5(K,Z- lo/,) (ZV,) - I  = d(P,Z-1°13)Id(ZV) "= vo 

and 

(K,Z- lo',) (ZVo)713 = constant 

The latter form can be written approximately as 

@, = constant (p,~M )413 

for pressures as low as those existing in the Earth and the 
extrapolation to zero-pressure conditions is not justified be- 
cause of the presence of phase changes, this equation does 
suggest the form of the relationship between a,, p, and 
composition a. At this stage the constants are more prop- 
erly obtained from experiment. 

Consider an equation of the general form we treated 
earlier: 

where M and N are constants, P is pressure, KO is initial 
bulk modulus, p, is initial density and p is the density 
pressure P. Its derivative with respect to density gives 

where the seismic parameter @ is the ratio of the bulk 
modulus to the density. The adiabatic @ for the Earth is 
available from seismic data. The ratio of @ for two different 
densities is then 

This is the seismic equation of state (Anderson, 
the total compression is small, then 

TABLE 5-8 
Seismic Parameter 4, = K , / p  Calculated from Molar Average 
of Constituent Oxides 

4, 
(km ' IS  ') 

Mineral Formula Calculated Measured 

Spinel 
Spinel 
Magnetite 
Ilmenite 

Chrornite 
Titanate 

Perovskite 

Stishovite 

Although the Thomas-Fermi model is not appropriate * MgO or CaO plus SiO, (stishovite). 
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FIGURE 5-2 
Seismic parameter a, density p ,  and mean atomic weight for rocks, minerals and oxides 
(after ~ i d e r s o n ,  1967a). 

Figure 5-2 gives a, p and @ for selected minerals 
that vary in mean atomic weight. A least-square fits to these 
data gives 

--  (ad E),, = 3.10 

For comparison, a least-squares fit to the ultrasonic com- 
pression data on MgO and A1203 gives 

- -  (ad :), = 2.99 

for MgO and 

for A1203. The agreement of these parameters, which are 
obtained from compression experiments, with those found 
above is remarkable. This lends support to the generaliza- 

tion that, as a first approximation, the bulk modulus in 
silicates and oxides is determined by density and mean 
atomic weight, or mean molar volume. The effect of changes 
in bulk modulus and volume at constant temperature and 
constant pressure are given in Table 5-6. The values for 
(d In Kld In p )  in that table can be compared with the above 
values and values computed from 

THE REPULSIVE POTENTIAL 

For any solid where the potential U can be separated into 
an attractive term and a repulsive term, which are functions 
of the interatomic separation r, we can write 

For an ionic crystal with a Born power-law repulsive poten- 
tial, it can be shown that 

where A is the Madelung constant, zi is the valence of a 
constituent ion, and n is the exponent in the power-law re- 
pulsive potential. If the exponential form of the repulsive 
potential is used, the energy per cell can be written 
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FIGURE 5-3 
Bulk modulus versus molecular volume for various crystal struc- 
tures (Anderson and Anderson, 1970). 

where cr is a scale factor. At equilibrium the bulk modulus- 
volume product can be written 

The parameter n in the power-law potential is simply re- 
lated to cr: 

Data for a number of oxides are presented in Figure 
5-3, which demonstrates that KV, is a constant for a wide 
variety of oxide compounds. Here V, is the specific molar 
volume of the formula and K is the bulk modulus at zero 
pressure. 

The parameter $ = KVoI(z,z,e2) is tabulated in the 
last column of Table 5-9; z, and z, are, respectively, the va- 
lences of oxygen and the mean cation. Except for ZnO and 
TiO, all of the values fall in the range 0.150-0.165, and 
the values show no systematic behavior. ZnO and TiO, are 
anomalous in several other respects. The values of Poisson's 
ratio are high, the shear velocity decreases with pressure, 
and the oxygen coordination is anomalous for the size of 
the cation. If these compounds are excluded, the remain- 

ing substances for which bulk modulus data are available 
satisfy 

$ = 0.157 + 0.005 

The standard deviation corresponds to an error of 3.3 per- 
cent. This is remarkable consistency when one considers 
that so many structures (halite, wurtzite, spinel, corundum, 
perovskite, and rutile) and so many cations (Mg, Be, Al, 
Fez+, Fe3+, Mn, Ni, Cr, Sr, and Si) are involved, and that 
no account has been taken of structural factors (the Made- 
lung constant) or range or repulsion parameters. These fac- 
tors apparently tend to compensate for each other. The KV 
= constant law is useful for estimating the bulk modulus of 
high-pressure phases. 

The empirit al repuisi~ rdhlc - rameter a calculated 
from the data is also tabulated in YBble 5-9. It is relatively 
constant for each group of compounds and shows a ten- 
dency to increase with molecular volume. It can be well 
approximated, as shown in Table 5-10, by the simple 
equation 

where R is the cube root of the molecular volume and AR 
= R - R,, where R, is the (Pauling) radius of the smallest 
cation. 

The reduced Madelung constant A,  also given in Table 
5-9, is defined as 

where m is the number of ions in the chemical formula. 
This is a useful parameter since it varies much less from 
structure to structure than the conventional Madelung con- 
stant, and it correlates well with coordination and inter- 
atomic distances. For example, it satisfies the relation 

as shown in Table 5-10. 
For crystals involving more than one cation, the va- 

lence product is defined as 

where x, is the number of cations in the formula having 
valence zi, z, is the valence of the anion (oxygen), and p is 
the total number of cations in the formula. z, is the cation 
valence. 

A check on the form of the repulsive potential is avail- 
able from ultrasonic measurements of dKIdP. This quantity 
depends only on the parameters in the repulsive potential, 
that is, 

(dKldP), = (n + 7)/3 (39) 
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TABLE 5-9 
Data for Calculation of Repulsive Range Parameter 

Substance Structure ( z ,  z,) v (A3) R (A) A A,  K (Mbar) a (A) @ 

MgO Halite 4 18.67 2.653 8.808 1.10 1.62 0.477 0.164 
CaO Halite 4 27.83 3.030 8.808 1.10 1.06 0.509 0.160 
SrO Halite 4 34.35 3.251 8.808 1.10 0.84 0.54 - 
Be0 Wurtzite 4 13.77 2.397 9.504 1.19 2.20 0.482 0.164 
ZnO Wurtzite 4 23.74 2.874 9.604 1.20 1.39 0.490 0.179 
MgAl204 Spinel 5.33 65.94 4.040 67.54 1.81 2.02 0.790 0.155 
FeFe20, Spinel 5.33 73.85 4.195 65.48 1.75 1.87 0.769 0.161 
NiFe,04 Spinel 5.33 72.48 4.169 65.53 1.76 1.82 0.790 0.153 
MriFe204 Spinel 5.33 76.72 4.249 (66.7) (1.79) 1.85 0.768 0.165 
SrTiO, Perovskite 6 59.56 3.905 49.51 1.65 1.79 (0.74) 0.154 
A1203 Corundum 6 42.47 3.489 45.77 1.53 2.51 0.674 0.154 

Corundum 6 50.27 3.691 45.68 1.52 2.07 0.700 0.150 
Cr203 Corundum 6 48.12 3.637 (45.7) (1.52) 2.24 0.681 0.155 
TiO, Rutile 8 31.23 3.149 30.89 1.29 2.24 0.658 0.126 

Anderson and Anderson (1970). 

A is the Madelung constant; A, is the reduced Madelung constant. 

for the power law and exponential forms respectively. Table 
5-1 1 gives (dKldP), evaluated from equations 39 and 40 
and, for comparison, the ultrasonic results. The power-law 
repulsive potential gives better agreement, although the 
measured values of (dKldP), are higher than computed for 
either potential. The exponential form gives (dKldP), from 
0.50 to 0.58 units lower than the power-law form. Table 
5-12 gives the bulk modulus calculated from the KV, rela- 
tion. Figure 5-4 shows experiments and calculations relat- 
ing KA , n and interatomic distance. 

SHOCK WAVES 

Pressures in the deepest parts of the Earth are beyond the 
reach of static-compression experiments, although pres- 
sures in diamond anvils are getting close. Explosively 
generated transient shock waves can be used to study mate- 
rial properties to pressures in excess of several megabars 
(1 Mbar = 1011 Pa). The method is to fire a projectile at a 
target composed of the material under investigation, gen- 
erating a shock wave that propagates through it at a speed, 

TABLE 5-10 
Comparison of Repulsive Parameter 

R c R u= u AR A c A R 

MgO 0.65 2.65 0.48 0.48 2.00 1.10 1.10 
CaO 0.99 3.03 0.51 0.51 2.04 1.12 1.10 
Be0 0.31 2.40 0.48 0.48 2.09 1.14 1.19 
ZnO 0.74 2.82 0.50 0.49 2.08 1.14 1.20 
MgAl,O, 0.50 4.04 0.78 0.79 3.54 1.79 1.81 
FeFe ,O, 0.64 4.20 0.79 0.77 3.56 1.80 1.75 
NiFe ,04 0.64 4.17 0.79 0.79 3.53 1.79 1.76 
MnFe20, 0.64 4.25 0.80 0.77 3.61 1.82 1.79 
A1203 0.50 3.49 0.67 0.67 2.99 1.55 1.53 
Fe203 0.64 3.69 0.69 0.70 3.05 1.57 1.52 
Cr:O, 0.69 3.64 0.67 0.68 2.95 1.53 (1.52) 
TiO, 0.68 3.15 0.58 0.66 2.47 1.31 1.29 
SrTiO, 0.68 3.91 0.73 0.74 3.23 1.65 1.65 

Anderson and Anderson (1970). 

u, = 0.05(1 + R + 3 AR) where AR = R - R,. Also given are the reduced Madelung constants calcu- 
lated from A, = 0.20 + 0.45 AR and the reduced Madelung constant calculated by conventional tech- 
niques. R, is the radius of the smallest cation. 
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TABLE 5-11 
Repulsive Parameters and Corresponding Values of dKldP for 
Power-Law and Exponential Repulsive Potentials 

Substance r, dKldP n dKldP (dKldP),, 

MgO 
CaO 
Be0  
ZnO 
MgAW4 
NiFe204 

A1203 

SiO,(st.) 
TiO, 

Anderson and Anderson (1970). 

*Estimated. 

v,, which is faster than the following material or particle 
velocity, v; that is, a pressure wave travels through the solid 
at a speed greater than its speed of sound. The pressure rises 
in a thin layer to a value set up by the impact. The shock 
front propagates to the far side of the sample where it is 
reflected as a rarefaction wave. The equations of conserva- 
tion of mass, momentum and energy, together with the mea- 
sured shock-wave and material or particle velocities, allow 
one to calculate the pressure, density and internal energy of 
the shocked material. The sample is usually destroyed in 
the process. A series of shock-wave experiments, using dif- 
ferent impact velocities and different, but hopefully similar 
samples then gives a relation between density, pressure and 
internal energy from which a shock-wave equation of state 

can be constructed. It is neither an adiabat nor an isotherm 
since the temperature and internal energy vary from point 
to point. Shock compression is not simply adiabatic be- 
cause the compressed material acquires kinetic energy, and 
it is not a reversible process. The locus of points is called 
the Hugoniot, and a major problem is the deduction of 
an isothermal, or adiabatic, equation of state from this 
kind of data. 

The basic equations are: 
Conservation of mass: 

Conservation of momentum: 

Conservation of energy: 

where E - E, is the change in internal energy per unit 
mass. 

The rate at which material enters the shock front is p,v,, 
and it leaves at a rate p(v, - v) per unit area of the shock. 
The rate at which momentum is generated is equal to the 
rate of flow of material through the shock front, p,v,, mul- 
tiplied by the velocity acquired, v, and this is equal to the 
difference in pressure across the front. The rate at which 
work is done on the material passing through the shock is 
equal to the rate of flow through the shock, p,v,, times the 
change of kinetic energy [1/2 vZ] plus the change in internal 
energy, both per unit mass. Pv is the rate at which pressure 
does work on the material, or the rate at which kinetic en- 

TABLE 5-12 
Comparison of Computed (K,) and Measured (K) Bulk Modulus 

Substance (z, z,) V R' * C  * , K c  K 

MgO 4 18.67 2.653 0.48 1.10 1.61 1.62 
CaO 4 27.83 3.030 0.51 1.12 1.07 1.06 
Be0  4 13.77 2.397 0.48 1.14 2.12 2.20 
ZnO 4 23.74 2.874 0.50 1.14 1.28 1.39 
MgA1204 5.33 65.94 4.040 0.78 1.79 2.04 2.02 
FeFe,O, 5.33 73.85 4.195 0.79 1.80 1.84 1.87 
NiFe ,04 5.33 72.48 4.169 0.79 1.79 1.86 1.82 
MnFe204 5.33 76.72 4.249 0.80 1.82 1.77 1.85 
SrTiO, 6 59.56 3.905 0.73 1.65 1.83 1.79 
A1203 6 42.47 3.489 0.67 1.55 2.58 2.52 
Fez03 6 50.27 3.691 0.69 1.57 2.18 2.07 
CrzO, 6 48.12 3.637 0.67 1.53 2.30 2.24 
SiO, 8 23.27 2.855 0.56 1.20 3.44 3.16 
TiO, 8 31.23 3.149 0.58 1.31 2.81 2.24 

Anderson and Anderson (1970). 
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2 3 0 4 
Interatomic distance, A 

FIGURE 5-4 
KA and repulsive parameter n versus interatomic distance. The uz 
calculated from K using ionic theory and from compression data 
are shown. The line is drawn through the rare-gas solids. Ions 
can be treated as rare-gas atoms plus or minus electrons. 

ergy plus internal energy are increased. These equations 
can be rewritten: 

1 
v = - [(P - Po) (Vn - v)]'/2 

2 
(44) 

where V = l l p  and the subscript refers to the initial 
conditions. 

In many cases the Hugoniot equations can be simpli- 
fied since there is an approximately linear relation between 
v, and v. In this case 

where c, is the bulk sound speed  KIP)"^, to which v, re- 
duces when the shock is weak, and A is a constant. This 
gives 

Reduction of shock-wave data to an isotherm usually 
involves the Mie-Griineisen equation, which relates the dif- 
ference in pressure at fixed volume between the initial low 
temperature and a high-temperature state of specified ther- 
mal energy: 

where the total pressure, P, is the sum of an initial ambient 
pressure Po plus a thermal pressure P*. The two states 
(P ,  E) and (Po, En) have the same volume. Thus, a locus of 
(P, V) points along a shock compression curve are reduced 
to a set of (PI, V) points along an isotherm (To) by 

where the integral is along the shock compression curve. 
The pressure, P,, along an adiabat is 

This follows from 

and 

the internal energy difference between the adiabat and the 
Hugoniot . 

The pressure correction can be substantial for the 
higher pressure (megabar) experiments, and a reliable value 
of the Griineisen ratio y at high pressure is needed. As 
shown in previous sections, y is related directly to the pres- 
sure dependence of the bulk modulus and can therefore 
be estimated from the shock-wave data. However, Ks and 
dK,ldP require differentiation of corrected experimental 
data and are therefore uncertain. Usually the experimental 
data are fitted with theoretical or semi-empirical equations 
of state and the differentiations performed on these smooth 
functions. Shock-wave data remain our best source of infor- 
mation on the bulk modulus, or bulk sound speed, of rocks 
and minerals at high pressure, particularly high-pressure 
phases. These properties can be directly compared with 
seismic data: 

Unfortunately, methods have not yet been developed for de- 
termining accurate values for the shear velocity under shock 
conditions. 

Shock waves heat as well as compress the sample. 
Temperatures can be inferred from the equations already 
given. Temperatures are typically 1400-1700 K at pres- 
sures of the order of a megabar for materials that do not 
undergo phase changes, such as MgO and Al,O,. Silicates, 
which undergo shock-induced phase changes, typically end 
up at much higher temperature (2500-5000 K) at compa- 
rable pressures (Anderson and Kanamori, 1968). In fact, 
melting may occur under shock conditions. 
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High-speed pyrometry techniques have permitted the 
measurement of temperature under shock conditions (Ahrens 
and others, 1982). Shock-induced temperatures of 4500 to 
5000 K have been measured for forsterite in the pressure 
range 1.5 to 1.7 Mbar. At these pressures Mg,SiO, has pre- 
sumably converted to MgO and MgSiO, (perovskite), and 
hence the temperature is due not only to compression but 
also due to the energy involved in phase transformation. 
The measured temperature is close to that calculated on 
the basis of the equation-of-state data (Anderson and Kana- 
mori, 1968; Ahrens and others, 1969). 

When a phase change is involved, the shock tempera- 
ture TH is calculated from 

P(V, - V)/2 = ETR - I"!, dV + V(P - PJiy 

where P is the shock pressure, Pa is the isentropic pressure 
of the high-pressure phase, ETR is the transition energy be- 
tween the low- and high-pressure phases at standard condi- 
tions, and T, is the temperature achieved on the isentrope 
of the high-pressure phase at volume V .  The calculated 
temperature is therefore sensitive to ETR, which is not al- 
ways well known, particularly when the nature of the high- 
pressure phase is unknown. 
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