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Abstract:

The total energy contained in a system, such as a mineral, is called the internal
energy, U, and includes the kinematic and potential energy of all the atoms. It
depends on temperature, pressure and position in the field of gravity.
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Ther modynamicsand

Equations of State

The art of narrative consists in concealing from your audience every-
thing it wants to know until after you expose your favorite opinions on
topics foreign to the subject. | will now begin, if you please, with a
horoscope located in the Cherokee Nation; and end with a moral tune

on the phonograph.

—0. HENRY, ""CABBAGES AND KINGS"

THERMODYNAMICS

The total energy contained in a system, such as a mineral,
is called the internal energy, U, and includesthe kinematic
and potential energy of al the atoms. It depends on tem-
perature, pressure and position in the field of gravity. For
an infinitesimal change of the system, thelaw of conserva-
tion of energy, or the first law of thermodynamics, is

dU = dQ — dW

where Q isthe heat flow and ‘" is the mechanical work, for
example the change of volume acting against a hydrostatic
pressure

dW = pPdv
The enthalpy or heat content of asystemis
H=U-++PV

dH = dU + PdV + VdP

The energy contents cannot be determined in absolute
terms; they are only known as differences. The usual, but
arbitrary, zero point is known as the standard state and is
denoted AH®.

The heat capacity or specific heat is the heat required
to raise a unit mass of the material by one degree. Thiscan
be done at constant volume or at constant pressure and the
corresponding symbolsare Cv and Cs,

dU = Gy dT

For minerals,
Cy =~ Cp=03cal/°’Cyg

A certain fraction of the heat entering a system, dQ/7,
is not available for mechanical work. Theintegral of thisis
the entropy, S, defined from

ds = do/T
giving the second law of thermodynamics,
7ds =du t aw

which applies to reversible processes, processesthat do not
lose energy to the environment. In irreversibleprocesses,

TdS > dU + dW

Entropy is a measure of the energy associated with the
random arrangement and thermal motion of the atoms
and that is therefore unavailable for external work. At
absolute zero temperature a perfectly ordered crystal has
zero entropy; with increasing temperature a certain dis-
order or randomnessis introduced. The entropy at tempera-
ture Tis

S = LT(C/T) ar

At high temperature,
S=ClnT

When a mineral undergoes achangeof phase'at temperature
T involving a change in enthalpy or latent heat of transfor-
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80 THERMODYNAMICS AND EQUATIONS OF STATE

mation AH, thereis a discontinuouschangeof entropy:
AS = AH/T

The mechanica part of thefree energy U isthe Helm-
holtz free energy F

F
dF

U-1§
dU — TdS - §dT
—Pdv - §dT

giving
P

—(0F/8V ),

S

When using P and T as independent variables, instead
of Vand T, it isconvenientto usethe Gibbsfree energy, G:

G=H-TS=U+PV-TS=F+ PV

— F/9T)y

For areversible process,

V = (8G/9P);

S = (0G/dT),

If Wis any thermodynamic function, the volume and
pressure derivativesat constant temperature may be related

by writing

(OW/3V)r = (OW/dP)y (0P/dV )+

or

@W/aV)r = —(Ky/V) (9W/OP),

We can also write

@W/dT)y = (@W/AT)e + aK(3W/OP);

where ais the volume expansion coefficient.

Thermodynamic | dentities

There are a variety of relations between the partial differ-
entials of the standard thermodynamic parameters. Some of

dG = VdP — §dT the standard forms are:
TABLE5-1
Differentialsof ThermodynamicParameters
Differential Constant
dement T P \ S
aT — 1 1 vT
oP —K. /v - aK1=vpC, K,
1'% 1 oV —_ -V
as aK =ypC, mC /T mC /T —
U oK T-P=ypC,T—P mC,—aVP mC, rv
oH  —K.(1-al) mC, mC (1+7) KV
oF -P —S—aVP -S PV—yTS
G K =S ~S+aKV==S+ymC, K V—TS
U H F G
oT  P—aTK.=P—ypC,T 1-aT P 1
oP —pC (K,—yP) -pC, K (S/V+aP) SV
v mC, aV(1+1/y) ~S aV—S/K=(1/K)(ymC,—S)
s  mC,PIT mC ,IT mC (PIT—yS/V) mC /T—aS
F ¢ J— mC ,—PVa(1+1/y) mC ,P—SypC ,T+SP mC ,—aTS—PaV+PS/K

=aV[K /y—P(1+1/y)]

oH mC [P(1+y)—K,] —
oF pC ,(yTS—PV)—PS

SK(1—aT)+mC P(1+y)

=S(A—al)—PVa(1+1/vy) —

S(K;—P)+PVaK

mC,+S(1—-aT)
—S(1—P/K1)—PaV

G mC [yTS/V+aP—K ]—PS =S(1—al)—mC,
Stacey (1977).
U  Interna energy™® V. Volume*
H Enthapy* y  Gruneisen parameter
F  Helmholtz free energy * «  Volume expansion coefficient
G  Gibbs free energy * p Density
S Entropy* m  Mass of material *
T  Absolute temperature K Bulk modulus = incompressibility
P Pressure C  Specific heat

Subscripts signify parameters held constant.
*Parameters proportional to mass.



dU = (3U/8S)y dS T (3U/V)sdV = TdS — PdV
dH =TdS T vdp
dF= —5dT - Pav

dG = —SdT Tt vdp
The Maxwell relations are:
@T/aV)s = — (8P/3S)y = — yTIV
(38/8V)y = (3P/3T)y = ypCy = aKy

i

T/aP)s = (3V/3S)e = yT/Ks

—(88/0P); = (aV/dT)p = aV

Table 5-1 representsall possible partial differentialsof the
standard parameters. The individual entries are to be taken
in pairs. Thus (87/6P)s is 0T at constant S (that is, yT)
divided by 9P at constant S (that is, Ks) giving

0T/9P)s = vT/Ks

The following partial differentials are of particular
interest:

(aP/oT)v = ypCy

is the differential form of the Mie-Griineisen equation
and gives the variation in pressure in heating at constant
volume.

(8ct/3P)r = (1/K3)(0K1/0T)p

connects the pressure dependence of the coefficient of ther-
mal expansion with the temperature dependenceof the bulk
modulus. The relation

is useful in the high-temperaturelimit where Cy = 3R (R
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The combination oK occursin many thermodynamic
relationships. The following second derivative thermody-
namic identities are therefore useful:

ek | _ 1 (K
v |, v\ar/,

dakn)| _ 1 (9K,
P |, K. \oT/,

Aok | _1(3Cy) | _pki (9Cy
oTf |, T\av/; T \ 0P/,
d(aKry) |
(aKr) - K, 3_04
T |, oT/

Chemical Equilibria

The fact that a mineral assemblage changesinto a different
assemblage means that the new association has a lower free
energy than the old. At equilibrium both assemblages have
the same free energy. The stable phase has the lowest free
energy, at the given pressure and temperature and mineral
association, of all aternative phases. In general, the denser
phases are favored at high pressure and low temperature.

The partial molal free energy or chemical potential
per mole of speciesi is F;,

F,= RThha, + F°

where g; is the activity of a chemical species, and F? isthe
free energy in astandard state. The total energy is

GZE”:'F.'

where G is Gibbsfree energy and »; isthe number of moles
of speciesi. At constant temperatureand pressure,

being the gas constant) and a is independent of T at con- 4G = 2 F dn
stant V and nearly independent of T at constant P. e
Table5-2 givesthermodynamicdatafor afew minerals. F = My,
TABLE §-2
Thermodynamic Properties of Minerals
Mineral Cp Cy o« K, Y 0
erg/g/K
(10%) (K "1x10%) (kbar) (K)
MgO 9.25 9.11 31.5 942 1.55 940
CaO 7.50 7.42 29.0 675 1.31 680
Al,O, 7.79 7.74 16.4 1035 1.33 1040
Mg,Si0, 8.38 8.31 24.7 760 1.18 760
MgSiO, 7.8 7.60 47.7 706 1.89 710
MgAl, O, 8.15 8.07 20.8 863 1.41 860
Sio, 7.41 7.35 36.6 572 0.7 570
Garnet 7.61 7.55 21.6 745 1.21 750
Garnet 7.0 6.96 18.3 739 1.09 740
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and M, is the molecular weight and w; is the chemical po-
tential per gram. The change of activity with pressureis

dlnay V
oP /. RT
The total Gibbs free energy of a system of C compo-
nents and p phasesis

c p
G =2 > win
i=1j=1

where r} isthe number of moles of thecomponent i in phase
j and wt isitschemical potential in phase j. Theequilibrium
assemblage, at a given pressure and temperature, is found
by minimizing G. Taking the standard state of i to be pure
i in phase j at the pressure and temperature of interest,

wi=u® + RTIn g}
p® = Hor — TSor + f Vi dpP
0

where H}, ,, S4 and V4 are the enthalpy and entropy of pure
i inphaseja P = 0and T and volume at 7. With the
chosen standard state for the activity, @/ in phase j contain-
ing pure i isone. The activity of pure liquids or pure solids
isunity. In an ideal solution a; is equal to the mole fraction
of component i.

At equilibrium the standard-state free-energy change at
the pressure and temperature of interest is

AGY, = _RTIn K

where K is the equilibrium constant. Consider the hypo-
thetical reaction

2A2C+ D

where two molecules of A react to form one molecule each
of C and D. Therate of reaction is proportional to the col-
lisiona probability between any two molecules, which is
related to the product of the concentrations. For equilibrium
therates of the two reversible reactions are the same, and

_(©) x (D)
(AY

where (A), (C) and (D) are the concentrations or activities.
For the genera reaction,

nA + mB = qC + rD
then

_ (©7 x (Dy
(A X (B)"

The equation for equilibrium
d(AG) = AVdP — ASdT =0
yields

&P AS AH
dr AV TAV
which is the Clausius-Clapeyron equation.
For a system in equilibrium the following relation

holds between the number of coexisting phases p, compo-
nents ¢, and degrees of freedom f:

p=ct+2-—Ff

This is the phase rule of J Willard Gibbs. The phases are
the parts of the system that can be mechanically separated,
for example, the minerals and any coexisting liquid and
gas. The components are the smallest number of chemical
species necessary to make up al the phases. The degrees
of freedom are generally the temperature, pressure and
composition.

The components distribute themselves over al the
phases of the system. No phase can be without some contri-
bution from all components since the chemical potential or
activity of each component must be the samein al phases
of the system. The phase rule places a limitation on the
number of minerals that can occur in equilibrium in a
given rock. The maximum number of phases can be at-
tained only in an invariant system, one with P and T fixed.
If both Pand T vary during the process of formation of a
rock, then

p=c

which is the mineralogical phase rule of Goldschmidt.
Because of the phenomenon of solid solution, the number
of different minerals in a rock is less than the number of
components.

Table 5-3 is a compilation of the terms and relations
introduced in this section.

THEORETICAL
EQUATIONSOF STATE

The equation of state of a substance gives the pressure P as
afunction of volumeV and temperature T:

P =PWV,T)

The general expression for the free energy of a crystal can
be written in terms of three functions

FX,T) = UX) + fi(8/T) + fL,(X,T)

where X = V,/V = p/p, isthedimensionlessvolume rela
tive to the volume at normal conditions and ¢ is a charac-
teristic temperature, such asthe Debye or Einstein tempera-
ture. U(X) is the potential part of the free energy, which
depends only on the volume. The second term is the phonon
term and is usually calculated from the Debye or Einstein
theory. The third term represents high-temperature correc-
tions to the equation of state. This term, which is generally



TABLE 5-3
Notation and Basic Relationships

V = Specific volume

V,=VatP=0

p = Density = M1V

p,=patP=0

T = Absolute temperature

P = Pressure

S = Entropy

= ll/‘a V\l ( éﬂ\ = Volume thermal expansion
V' aT, . p\\ T/ »

Ki=-V (E = <£> = Isothermal bulk modulus
v/ ¢ ap /¢
4 Py

K =-v\yy S: p 5 S = Adiabatic bulk modulus

b =KYP =vEi- g.vg = (%)S = eladtic ratio
v = aK/pCy = aKy/pC, = Griineisen ratio

C, = Specific heat at constant volume

C, = Specific heat at constant pressure

V,, V, = Velocity of compressional and shear waves
K¢ = K (1+ayT)

oP

7).
:

»

= K«

1 K 1 da
- = —y{—=
Ky ( 8T> <6V>1

1 oK a
—_ —T) = =K, o
K aTr oP /¢

0 = Characteristic temperature
M = Mean atomic weight

Bulk modulus = Incompressibility = 1/Compressibility.
8 = [dInK/dlnp], = Second Griineisen ratio

TN TN T

small, is due to anharmonic lattice oscillations, formation
of point defects and thermal excitation of conduction elec-
tronsin metals. For most geophysical problems U(X) isthe
dominant term.

The potential energy of a crystal can be written as the
sum of an attractive potential, which holds the atoms to-
gether, and a repulsive potential, which keeps the crystal
from collapsing:

A B A B

U= _’._m+r-—n: —Vm/3 Y

where r is the interatomic spacing and A, B, m and n are
constants, different from thosein thelast section. The func-
tional form of the repulsive potentia is uncertain, and an
exponential form is also often used.
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The pressureis obtained by differentiation:

&
P=|=
v/,

The isothermal bulk modulus, K+, is

The bulk modulus is aso called the incompressibility. At
P=0,V =V,and K; = K(0). The PV equation of state
can therefore be written as

B 3KT(0) E (m+3)3 B E (n+3)/3
(m — n) Vv Vv

and the bulk modulus as

K+(0)
(m — n)

(m+3)3 (n+3)3
. [W o(%) 7 (%) ]

The pressurederivativeof Ky at P = 0is
Ki(0) = (m +n+ 6)/3

Ky =

K1(0) is approximately 4 for many substances. Since the
repulsive potential is a stronger function of » than the at-
tractive potential, n> mand 3< n< 6for K;(0) = 4.

THE GRUNEISEN RELATIONS

Griineisen (1912) introduced the concept of a "therma
pressure” derived from the pressureof acollectionof atoms
vibrating under the excitation of the energy associated with
nonzero temperature. A crystalline solid composed of N at-
oms has 3N degrees of freedom, and the solid can be
viewed as a collection of harmonic oscillators. The energy
levelsof a harmonic oscillator are nhv, where n are succes-
siveintegersand h is Planck's constant. In thermal equilib-
rium a given energy level is populated with the probability
exp( — nhv/kT), where k is Boltzmann's constant. The in-
dividual oscillators have a frequency »;, and these are con-
sidered to be independent of temperature but dependent on
the volume, V.
The quantity
_ dlogy,
¥ = —drogv
is involved in calculations of the thermal pressure and is

known as the Griineisen ratio. If it is assumed that all they;
are the same, then

= V_'Y
The Griineisen equation of stateis

YUp

P =P, +
Vv
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where P, is the pressure at absolute zero and Uy, isthein-
ternal energy of the oscillators in a volume V due to the
elevated temperature;

hy,
exp(hv,/kT) — 1

Up =

Differentiating P with respect to temperaturegives

4P\ _ oGy
ar/, v

where C, isthe specific heat at constant V. From the ther-
modynamic relations

1 {oV 1 (0P
o0 = — R e p— —
Vv \eT/, K. \dT/,
where ais the volume coefficient of thermal expansion, the
following relation can be derived:

_ VK«

Y Cy

which is called the Griineisen relation.

The thermal energy of a crystal is equa to the sum
over al oscillators and, therefore, over all pertinent fre-
guencies. In the Debye theory the sum is replaced by an
integral, and it is assumed that all frequenciesof vibration
are bounded by some maximum valuev; < v,

In an elastic solid three modes of wave motion are per-
mitted, one compressional mode and two shear modes hav-
ing orthogonal particle motions. Thetotal thermal energy is
therefore

U. = ON, "= hv? dv
° w3 Jo exp(wikT) — 1

where N, is the number of atoms per unit volume.

The maximum oscillation frequency is related to the
volume availableto the oscillator and the velocity of elastic
waves. In the Debye theory a mean sound velocity is im-

plied, and thus
-1
poo= Map (12
T 4aM \VE V3

where N, is Avogadro’s number, p is the density, and M is
the mean atomic weight (molecular weight divided by the
number of atomsin the molecule). In the Debye theory it is
assumed that velocity is isotropic and nondispersive, that
is, independent of direction and frequency.

The Debye temperatureis defined as

0 = hv,/k

1/3
h {3N,p
= = L) v,
d k <47TM>

and therefore

where V,, is mean velocity:

~1/3
1
v. = |- 2.1
3\v: V3

The Debye temperaturecan be estimated from the ve-
locitiesof elastic waves and, therefore, can be estimated for
the mantle from seismic data. In principle, the velocities
should be measured at frequenciesnear v, (— 10'* Hz) since
there is some dispersion. Ignoring dispersion, however, is
consistent with Debye’s original assumption. There are also
optical modes, as wdl as acoustic modes, and these areig-
nored in the simple theories. By differentiation of U we
obtain for the thermal pressure

pr — Up dlog0
V dlog V
and, therefore,
_ —dlog0 -—dlogvn
" dlogV ~ dlogV
At high temperature, 8/T << 1,
pr = MIYP _ puipm

At very low temperature,
3
3 T\ NkTyp
* = Zomd| =) —2
Pr=3m (0) M

At intermediate temperature,

pP* = 3P*(HT)<%> J:/T & d¢

ef — 1

where £ = hv/kT.

The thermal pressurein the mantleis estimated to be
between 10 and 200 kilobars, increasing with depth. The
Debye temperature increases by about afactor of 2 through
the mantle, and the Griineisen parameter probably remains
closeto 1.

The specific heat can be written

_ () _ T\ (o7 _gretdt
cw(ﬁx_mﬁgﬁ(g_w

At T >> 6 we have the classic high-temperaturelimit,
Cy = 3kN,

Silicates show a close approach to the ' classical™ values at
temperatures greater than about 1000°C. Under these con-
ditions C, approaches6 cal/°C g atom for each particle of
the chemical formula. The mean atomic weight for most
rock-forming mineralsis closeto 20, so the specific heat at
high temperaturesis close to 0.3 cal/°C g. The variation of
specific heat with pressureis

1 (9C) _ _Teyf, 1 (0
C: \oP /. Ks o \oT/,




The specific heat probably only decreases about 10 percent
at the highest mantle pressures, and its variationistherefore
small relative to the changesexpected for bulk modulusand
thermal expansion.

Most of the interior of the Earthis hot, well above the
Debye temperature. This means that the Earth's interior
probably can be treated with classical solid-state physics
concepts. | say "probably" becausetheinterior of the Earth
is a simultaneous high temperature and high pressure and
these are competing effects. The quantization of lattice vi-
brations and the departuresfrom classical behavior that are
of interest to quantum and low-temperature physicists are
not rel evant except, in some cases, when extrapolating from
[aboratory measurementsto the high temperaturesin thein-
terior. The closerelationship between y and the elastic con-
stants and their pressure derivatives means that y can be
estimated from seismology.

The thermal pressure, P*, can be viewed as the radia-
tion pressure exerted on the solid by completely diffuse
elastic waves, that is,

U, (1 Vv, U (1 Vv,

pr=—2ls - =22y - ==
v\ v,av v\ Vv,ev
- U, 90, U, 00,

e, 6, o/

where the U,,, V,, and 4,, are the thermal energies, elastic
wave velocities and characteristic temperatures associated
with the longitudinal (P)and transverse (S) waves. At high
temperature we have

RT RT

¥ = —y + 22—y,
P v v Y
or, for y, = ¥,
3RTyp
pP* = ———
M

The thermal pressure can be written in aform analogous to
the perfect gas equation:

P*=\9/RT, Q=v,*1 2y

where Q is of the order of 5 or 6 for many elementsand is
near 4 for MgO and Al,Os.

EFFECT OF TEMPERATURE
ON BULK MODULI

The pressure and the isothermal bulk modulus are volume
derivatives, at constant temperature, of the free energy
F(V,T). The corresponding adiabatic quantities are vol-
ume derivatives of the interna energy U (V,S) at constant
entropy. The equation of state of simple solids subjected
to hydrostatic pressure can be written in two aternative
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forms. The vibrational formulation splitsthe free energy of

the solid into the lattice energy, Ur(V), whichisthe energy
of astatic solid of volumeV in its electronic ground state,

and a vibrational energy U*(V,7'). The thermal formula-
tion splitsthefree energy into a nonthermal cohesive energy
U(V) of thesolid of volumeV at 0 K and a thermal energy
U*(V,T). Note that thelattice and cohesive energiesdepend
only on volumeand the terms with asterisksdepend, in gen-
eral, on both volume and temperature; in the Hildebrand
approximation the thermal and vibrationa energies are
taken to be a function of temperature alone, this being a
good approximation at high temperatures where the heat
capacity at constant volume has attained its classical value.
The cohesiveenergy is the free energy required to assemble
the atoms from infinity to form the rigid lattice; it includes
both static lattice and zero-point energy contributions. The
total vibrational energy of the solid is the sum over al the
modes of lattice vibration of all the particles. The vibra
tional energy U*(V,T) consistsaf the zero-point vibrational

energy, U*(V,0), of thenorma modesat T = 0K plusthe
energy required to heat the lattice at constant volume, V,

from0O K, to TK; that is,

T
U*(v,Ty = U%V,0) + J'O CydT

The Helmholtz free energy, in the Hildebrand approxi-
mation, can be written, for example,

FV,T) = U(V) + U*T — TS(V,T)

Since
P = _(F/3V):

and

[¢)

—5 = 6_12 = ak;

v/, ar/,,
we have

P(V,T) = —a—%‘(/ﬂ + aK,T = P(V) + PXV,T)

and

() (dek,
v = v(#50) - wl5)

= K.(V) + K¥(V.T)

or

K{(V,T) = K(V,0)
+ TaKy(V.T) 0 In K; _ dIn K
KV, dlmvV/, dlnV),

K(V,T) = K(V.,Ty) + (T — Ty)aK:

y aanT) ~ (amm)]
almV/, dlnV/;

or
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dlnKr\  [(3In KT>
almV/, dlnV/,
is of the order of — 1. The quantity aK is of the order of

10 to 100 bar/K for elements and is between about 30 and
70 for compounds of interest in the deeper mantle. The

quantity
1% Jdln K; _ d0In K;
**[\omv/), \amv)/,
is of the order of — 50 bar/K, and a temperature rise of
some 2000 K changes the bulk modulus by about 100 kbar,
which is about 10 percent of estimated values for the bulk
modulus in the mantle.

The following relations are useful and serve to define
the second Griineisen parameter, 6:

dIn K/oT\ _ (ol K\ (p aKT>
d1np/oT J, dlnp /, K dp/s

(K
= ) ) = o (1)
P

dnK/dT| _ [alnKs\ (p 6K5>
01ln p/oT |, dlnp /, Ksop/,

~ ) /aKs\ _
= (Ksa) IKFT_/P = s )

The quantity

The elastic moduli of a solid are affected by tempera-
ture both implicitly, through the volume, and explicitly.
Thus, for example,

Ky = K;(V,T)
and
dln Ky = @ In Ki/0V) dV + (@ In K/0T),dT  (3)

The measured variation of Kr with temperatureis, then,
dinKr _ (0In K\ dV aanT>
ar  \ 8V /.dT aT /,

dIn K; _ J1ln K; +a—1aanT @

dlnv/, dlnV/, aT /.
where (3 In K;/3T)y istheintrinsic temperaturedependence
of Kr. (3 In K¢/0T)y is positive. Thereisageneral tendency

for (9 In K1/8T)y to be smaller a high T/6.
Experiments show

aanS < aans
dlmV/, alnV/,

o In K < oln K;
dmVv), \omV/,

and

oIn K\ _ aanT>

olnV/; dlnV/;
al of which are useful when trying to estimate the effects
of pressure, volume, and temperature on the adiabatic bulk
modulus. Note that these are all experimental and thermo-

dynamicinequalitiesand are independent of the equation of
state. We & so note that

8 < K' < &;
O — 65 =y
The seismic parameter ® issimply
d = Ki/p

9In @ =<aans) . )
dlnp/; dlnp /,

<aln®> =<6ans> _ 1 ©)
dlnp/. dlnp /.

The pressure in the mantle rises to about 1500 kbar,
which, for (dK/dP): = 4, corresponds to a 6000-kbar in-
crease in the bulk modulus. Temperature can therefore be
treated as a small perturbation on the general trend of bulk

modulus, or ®, with depth, at least in the deeper part of the
mantle.

s0 that

THERMAL EXPANSION
AND ANHARMONICITY

Because the attractive and repulsive potentials have a dif-
ferent dependence on the separation of atoms, the thermal
oscillation of atoms in their (asymmetric) potential well is
anharmonic or nonsinusoidal. Thermal oscillation of an
atom causes the mean position to be displaced, and thermal
expansion results. (In a symmetric, or parabolic, potential
well the mean positions are unchanged, atomic vibrations
areharmonic, and no thermal expansionresults.) The Debye
model is restricted to assemblages of harmonic oscillators
and, strictly speaking, cannot be used to discuss anhar-
monic effects such as thermal expansion. Anharmonicity
causes atoms to take up new average positions of equilib-
rium, dependent on the amplitude of the vibrations and
hence on the temperature, but the new positionsof dynamic
equilibrium remain nearly harmonic. At any given volume
the harmonic approximation can be made so that the char-
acteristic temperature, 8, and frequency are not explicit
functions of temperature. Thisis called the quasi-harmonic
approximation. If it is assumed that a change in volume
can be adequately described by a change in ¢, then the
frequency of each normal mode of vibration is changed in
simple proportion as the volumeis changed. The Griineisen
parameter
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Coefficient of thermal expansion of mantle minerals, representing theoretical fitsto avail-
able experimental data (after Duffy and Anderson, 1988).
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is then a measure of anharmonicity,
From one of Maxwell's thermodynamic relations,

oP 1 {0V 1 faV
— = — = - - — - aKT
aT/, v\er)/ V\oP/,

we have the volume coefficient of thermal expansion

Lo YC _ G
KV KV

where Cy and C» are molar specific heats and V isthe molar
volume. If the specific heats per unit volume are used, then
V will not be present in these equations. The Griineisen
equation then shows that thermal expansion will only arise
as a consequence of anharmonicity through the parameter
y, and if y isitself independent of temperature, and we can
ignore any explicit temperature dependence of Xr, then y

should be proportional to Cy inits temperature dependence.
Since Cy is constant at high temperature (in "classica be-
havior'), then a should be as well; a should increase with
temperature but level off at high 778, as shown in Table
5-4 and Figure 5-1.

The change of a with pressure is given by the thermo-

dynamic identity
s\ _ 1 (9K
P/, K3 \ar/,

Thermal expansion decreases with pressure and reaches
fairly low values at the base of the mantle. According to
Birch (1938, 1952), a at the core-mantle boundary is only
about 30 percent of its near-surface value. Birch (1968)
showed that

Ol/ —1+£ ._1_%_0 _1 8_6
o Klak, dar |~ K
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TABLE 54
Thermd Expansion  Minerds

Mineral 20°C 400°C  800°C  1500K
Quartz 34 69 -3 —
Coeste 8 [ 14 —
Stishovite 16.5 22 23 24
Feldsper 12 19 24 _—
Olivine 26 32 34 52
Pyroxene 24 28 32 —
Gang 19 26 30 33
Al O 16.3 26 27 28
MgO 315 42 45 52
Soind 16.2 28 29 31
B-spinel 20.6 31 34 37
y-spinel 18.6 27 28 30
MgSiO ;-perovskite — 37 42 —

Clark (1966), Jeanloz and Knittle (1986).

where the subscripts denote P = 0, and showed that

1(K\ _1ak [ _P (K
k\or), K, dT K\oP/.

If 8 isindependentof pressure[(d = (3 In K/d In p);)], then
a/a, = (VIV,)?

1(K) _ a1 dK (VYLK
K\oT), oa,K,dT ~ \V,) K, dT
implying that aK/0T is independent of pressure and 6K/9P

is independent of temperature.

In shock-wave work it is often assumed that yCy/V is
independent of pressure. Thisgives

a/a, = K J/K

and

or eK isindependent of pressure.
The Griineisen theory for thermal expansion can be
written

a = (IE/T)e/[Q, (1 — kE/Q,)P
where E isthe thermal or vibrational |attice energy,
o = K. V./y
and
k= (112) (K, — 1)

where K,, K, and V, are the bulk modulus, its pressure
derivative and volume, respectively. The therma energy
can be calculated from the Debye modd or the Nernst-

Lindemann formula,
E(T,0) = (3pRO/4) [2(e®T — 1)' + (e — 1)7!]

where p is the number of atoms in the molecular formula
and 6 isacharacteristic temperature. In fitting experimental
data for a as a function of T, the parameters @,,, k and 0
can be treated, if necessary, as adjustable parameters or,
if «(T) isto be estimated for unmeasured materias, these
parameters can be estimated from other types of measure-
ments. Both theory and experiment show that a increases
rapidly with temperature and then levels off at high tem-
perature (7/6 > 1). Most of the mantle is at high tem-
perature, but most laboratory measurements are made at
relatively low temperatures. It cannot be assumed that
« is constant with temperature, or varies linearly with
temperature.

The theory of thermal expansion and a redlistic esti-
mate of its variation with temperature are essential in mod-
eling the density and elastic properties of the mantle and
in calculating mineral equilibria. The elastic properties of
minerals have both an intrinsic and an extrinsic temperature
dependence. The former is the variation of a property at
constant volume, an experiment that requires a change in
temperature and a compensating change in pressure. Most
of the variation of the elastic propertiesis a result of the
change in volume, and therefore it is important to under-
stand the variation of a with temperature and to alow for
this variation in modeling high-temperature phenomena.
The functional forms of a(T) and Cu(T) are related, and
thisiswhy vy isrelatively independent of temperature.

In general, thecoefficient of thermal expansion« isless
for high-pressure phases than for low-pressure phases. Of
the important mantle minerals, olivine and periclase have
high thermal expansivitiesand y-spinel and stishovite have
relatively low coefficients. (Mg,Fe)SiO;-perovskite violates
this trend (Kuittle and others, 1986), having a relatively
high a, at least for the metastableform.

There is a close relationship between lattice thermal
conductivity, thermal expansion and other properties that
depend intrinsically on anharmonicity of the interatomic
potential. The atoms in a crystal vibrate about equilibrium
positions, but the normal modes are not independent except
in the idealized case of a harmonic solid. The vibrations of
a crystal lattice can be resolved into interacting traveling
waves that interchangeenergy due to anharmonic, nonlinear
coupling.

In a harmonic solid:

1. Thereisno thermal expansion.

2. Adiabaticand isothermal elastic constantsare equal.

3. The €elastic constants are independent of pressure and
temperature.

4. The heat capacity is constant at high temperature
(T>0).



These consequences are the result of the neglect of anhar-
monicity (higher than quadratictermsin theinteratomicdis-
placements in the potential energy). In a rea crystal the
presenceof one phonon, or lattice vibration of agiven type,
causes a periodic elastic strain that, through anharmonicin-
teraction, modulatesthe elastic constantsof acrystal. Other
phonons are scattered by these modulations. Thisis a non-
linear process that does not occur in the absence of anhar-
monic terms.

Perhapsthe simplest departurefrom linear or harmonic
theory is to assumethat thefrequencies, w;, of lattice vibra-
tions depend on volume. In the harmonic theory the free
energy is independent of volume. The mode Griineisen pa-
rameter expresses this volume dependence

¥, = —(@Inw/dInV)

and is a useful measure of anharmonicity. The crystal an-
harmonicity is a suitable average of al the moda y,. The
Griineisen approximationis that al v, are equal, but thisis
not generally true. A better approximationisto consider the
longitudinal and shear modes separately, giving

v = (1U3)(y, + 2v)

wherey, and vy, are the longitudinal and transverse compo-
nents, respectively, and all shear modes are assumed to have
the same volume dependence, or, aternatively, separate
averages are made of the two mode types. The abovey is
sometimes called the acoustic or high-temperature y. It
is clearly dominated by the shear modes. In principle, the
variation of the elastic constants with volume provides an
estimate of y or the anharmonicity and, therefore, higher
order propertiesof the interatomic potential.

At high temperature (T > 6) al phonons are excited
and the acoustic y is a weighted average of all modes. At
lower temperaturethe value of y islargely controlled by the
lower frequency transverse waves.

According to the Mie-Griineisen theory of the thermal
expansion of solids,

_ak;
Y Cyp

and, in the Debye theory,
y= —-0ln6/olnV
In terms of the interatomic potential function, U,
vy = —prU"/30"

where U" and U™ are related to the elastic constants and
their volume derivatives, respectively. Notethat if o = 0 or
U™ = 0 (thatis, no pressuredependenceof elastic moduli),
then y = 0 and there is no anharmonicity. If y = 0, the
lattice thermal conductivity isinfinite.

Actudly, the concept of a strictly harmonic crystal is
highly artificial. It implies that neighboring atoms attract
one another with forces proportional to the distance between
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them, but such a crystal would collapse. We must distin-
guish between a harmonic solid in which each atom exe-
cutes harmonic motions about its equilibrium position and
a solid in which the forces between individual atoms obey
Hooke's law. In theformer case, asa solid is heated up, the
atomic vibrations increase in amplitude but the mean posi-
tion of each atom is unchanged. In a two- or three-
dimensional lattice, the net restoring force on an individua
atom, when all the nearest neighbors are considered, is not
Hookean. An atom oscillating on a line between two adja-
cent atoms will attract the atoms on perpendicular
lines, thereby contracting the lattice. Such a solid is not
harmonic; in fact it has negativea and y.

The quasi-harmonic approximation takes into account
that the equilibrium positions of atoms depend on the am-
plitude of vibrations, and hence temperature, but that the
vibrations about the new positions of dynamic equilibrium
remain closely harmonic. One can then assumethat at any
given volume V the harmonic approximation is adequate.
In the simplest quasi-harmonic theories it is assumed that
the frequencies of vibration of each norma mode of |at-
tice vibration and, hence, the vibrational spectra, the
maximum frequency and the characteristic temperatures
are functions of volume aone. In this approximation vy is
independent of temperature a constant volume, and a has
approximately the same temperature dependence as molar
specificheat C.

ISOTHERMAL-ADIABATIC
TRANSFORMATIONS

Seismic data are adiabatic in the sense that the time scale
of seismic waves is short compared to the time scale re-
quired for the temperature to equilibrate between the com-
pressed and dilated parts of the wave. To relate isothermal
theories and experiments with adiabatic data, |aboratory or
seismic, requires isothermal-adiabatic transformations, all
of which follow from

A large amount of ultrasonic data on solids at moderate
pressures has accumulated in the past decades, and these
transformations are also required to interpret the data in
terms of isothermal equationsof state.

From equation 7 we can write

@In Ks/0T)p _ (81n Ko/dT)p Ky (mw) @
P

@ In pldT)y (310 p/aT)y  aKs\ oT

(0 In Ki/0P); ayTKy
(0 In p/dP)r K

dlnvy _ dIn K;
[ G), - Gl e

@ ln Ks/dP)y
(@ In p/oP),
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The Griineisen ratio, v, is relatively independent of tem-
perature, and the coefficient of volume thermal expansion
a isindependent of temperature at high temperatures. The
second term on the right of equation 8 is, therefore, of the
order of v and is negative. The volume dependence of y can
be written:

dlny)  (dlnK; B d1In Ky 41
dlnV/, dlnV/, olnvVv/,

1 (aIn K
- oL (eRE) L (10)
o aT /y

if wetake (9 In Cy/6 InV), = 0, appropriatefor high tem-
peratures. Note that the multiplicative factor (ayTK/Ks) in
equation 9 can be written (K; — Ky) + K, whichisasmall
number of the order of 0.001 for most materials at room
temperature. The derivative (9 In y/d In p), is of the order
of —1 and (@ In K1/9 In p)p is of the order of 6, so the
second term on the right-hand side of equation 8 is of the
order of —0.007 or about 1 percent of thefirst term.
The following relations are useful:

(0 In K{/9P)¢ _(oln Ky (p oK
(0 In p/oP); dlnp Krop/+

(aKT) oy (1)

dln K
dlnp

|
(), -5,

CALCULATION OF
DENSITY INTHE EARTH

The variation of density p with radiusin the Earth r can be
written

do _ (o) e
dr ~ \oP/ dr

dp\ dT ap\ do dp\ dc
+ ==+ l=]—=+ =)=
<6T> dr (8(]5) dr dc/ dr 13)
that is, density isafunction of pressure, temperature, phase

(¢) and composition (c). For a homogeneous adiabatic self-
compressed region, we have

@ de

(0 In K¢/0P); _
(0 In p/aP);

= 0, —_— =
dr dr 0
glj _ _ GM(»)
dr &, 8=

In a convecting mantle the mean temperature gradient,
away from thermal boundary layers, isclose to adiabatic:

dP P 5 pCp

It is therefore convenient to write the temperature gradi-
ent as

T P
dr _ Ta dp s
dr  pC,dr

where 7 is the superadiabatic (or subadiabatic) gradient.
Adiabatic compression of a material is given by the adia-
batic bulk modulus, K

X < aP)
= p—
: ap/ s

Seismic waves are also adiabatic, and hence we can use
—~ (4/3)V2 = K¢p = (0P/3p)s = P

to calculate the variation of density with depth in a homo-
geneous, adiabatic region for which we have seismic data.
Making the above substitutions,

dp
dr

—gp/P + apr
—8p/® (1 — yCorlg) (16)

These are the Williamson-Adams equations as modified by
Birch (1938, 1952).

A useful test of homogeneity (Birch, 1952) is pro-
vided by

1 — gt d®/dr = dKs/dP + adr/g amn
The Bullen parameter (Dziewonski and Anderson, 1981),

_dK 1 1dP
= dP g dr
should be near unity for homogeneous regions of the mantle
that do not depart too much from adiabaticity.

In the upper mantle the temperature gradients are high,
decreasing from a high conductive gradient at the surface
to the convective gradient in the deeper interior. There are
also probably chemical, mineralogical and phase changes
in the shallow mantle. Thelatter include partial melting and
basalt-eclogite and garnet-pyroxene reactions. At greater
depth the olivine-spinel, pyroxene-majorite and garnet-
perovskite phase changes keep the mantle from being ho-
mogeneous in the Williamson-Adams sense. Any chemical
layers also cause thermal boundary layers and superadia-
batic gradients. The Bullen parameter is consequently far
from unity at depths less than 670 km, and the Williamson-
Adams eguations cannot be used over most of the upper
mantle (Butler and Anderson, 1978). The parameter dK/dP
is another measure of homogeneity. It is generally close to
4 at P = 0 and decreases smoothly with pressure. This
behavior is exhibited by the mantle below 770 km except
for the region near the core-mantle boundary.



FINITE-STRAIN
EQUATION OF STATE

Finite-strain theory has been applied extensively to prob-
lemsin geophysics. Theresultingequations are called semi-
empirical because they contain parameters that have to be
determined from experiment. The theory relates strain, or
compression, to pressure.

The relation between strain & and volume V or density
pis

Vo/V = plp, = (1 = 2&)* = (1 + 2f)*"

wheref = — ¢ refersto compression, a positive quantity.
The first few terms in the Birch-Murnaghan equation
of state (Birch, 1938, 1952) are

[SS RV

P ==K, [(p/p)"? — (p/p.)*"]

XAl = L(plpy” = 1] + - - ]

K, is the bulk modulus at P = 0 and can refer to either
isothermal or adiabatic conditions depending on whether an
isotherm or an adiabat is to be calculated. K, and { are
parametersthat arefunctions of temperaturealone. In terms
of strain,

P = 3K, /(1 + 2/)7*(1 — 2Lf)
K = K,(1 + 2%l + 7f — 2052 + 9NH)]
Theterm £ can befound in terms of (dX/dP), = K_;

, 4
K, =4 3{

This equation of state has been fitted to a large amount of
shock-wave data on oxides and silicates, and X, isfound to
be generally between 2.9 and 3.6 (Anderson and Kanamori,
1968; Sammis and others, 1970; Davies and Anderson,
1971). K' generally decreases with pressure. In the lower
mantle K' (P) varies from about 3.8 to 3.1. Ultrasonic
measurements of K, on minerals generally give values in
therange 3.8105.0. Notethat for ¢ = 0, X, = 4, atypica
value.

For quick, approximate calculations, the Murnaghan
equation is useful:

o (A

where n = K,. This diverges from the Birch-Murna-
ghan equation at high compressions but is useful at low
pressures.

Finite-strain equations can aso be developed for the
variation of seismic velocity with pressure (Birch, 1961b;
Burdick and Anderson, 1975). These have been used in the
interpretation of velocity and density profiles of the mantle
(Butler and Anderson, 1978; Davis and Dziewonski, 1975;
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Jeanloz and Knittle, 1986). The equations are:

Vi (P) = VX0O)X1 - 2¢) [1 — 2&(3K,D, — 1)}

V2 (P) = VX0X1 — 2¢&) [1 — 2e(3K,D, — 1)]
where

D,. = (@InV,,/dP);
at P = 0. Pressureis calculated from
P = —3K, (1 — 2e)(1 — 2&De.

The { parameter satisfies

= 09/4) = B/2)p, [VIO)D, — (4/3)VA0)DJ

The expressionsto the next order in strain have been given
by Davies and Dziewonski (1975). In order to apply these,
the higher order pressure derivatives of Ks, V, and V, are
required, and these are generaly not available. However,
the higher order terms for the lower mantle can be deter-
mined by fitting these equations to the seismic datafor the
lower mantle, assuming it is homogeneous and adiabatic.
The zero-pressure properties of the lower mantle can there-
fore be estimated.

The "fourth-order" finite-strain equations can be
written

pVi= (1 — 2&)%L, + Lyeg + 1/2L;e*> + - - )
pV: = (1 — 2e)P%(M, + Mye + 1/2Mse> + - - )
P=—(Q0 — 2&)2(Cie + 1/2C,¢?
+ 1/6Cse* + - - -)

where L;, M; and C, are constants.

By evaluatingthe above equationsand their derivatives
at s = 0, it is possibleto relate the above coefficientsto the
P = 0 vaues of the elastic moduli and their pressure deriv-
atives. Thereis some question as to whether thefinite-strain
equations converge at high pressure and which order is ap-
propriate for applicationto the lower mantle. There are sig-
nificant differencesin the inferred P = 0 properties of the
mantle depending on whether third-order or fourth-order
finite-strain equations are used.

Unfortunately, there has been little progress in deter-
mining equations of statefor v, and V, from first principles.
The bulk modulus and seismic parameter, Ks/p = &, how-
ever, can be determined by simple differentiationof awide
variety of equations of state. & = dP/dp can also be deter-
mined from static-compression and shock-wave measure-
ments. Therefore, most discussionsof the composition and
mineralogy of the mantle depend upon the seismic values
for p, Ks and @, rather than V, and V.. Unfortunately, it is
the velocitiesthat can be determined most accurately.

Other potentia functionsin common use are the Bar-
deen potential:

a_,b
v =5 5

Cc
¥
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giving

3
P = X¥3(XP - 1) [5 K, + D(X> - 1)]

il

K

8
(g D - 2K0>X4/3 + (3K, = 4D)X* + = DX®

where X = plp,, D is an empiricaly determined constant
and

K' = 19 + §2

° 3 9K,

For an exponentia repulsive term in the potential
function,

U = —? t bexp(-£>

giving
P = AX*® exp[B(1 — X~')] — AX**
213 4
K= 3 (BX-**%y exp[B(1 — X)) — EAXM
1
K, = §A(B -2
and

K, =

o=

4 (B2 + 3B — 12)
K,

ZERO-PRESSURE VALUES
OF LOWER-MANTLE
SEISM|IC PROPERTIES

Butler and Anderson (1978) fitted a variety of equations of
state to the lower mantle in order to test for homogeneity
and to obtain estimates of |ower-mantle properties at zero
pressure. Their results are summarized in Table 5-5. The
first row gives the extrapolated zero-pressure values, based
on the assumption that the lower mantle is homogeneous
and adiabatic. These assumptions, for the Earth model they
used, were only valid between radii of 4825-5125km and
3850-4600km; and | have taken the average here. In the
Earth modd PREM the homogeneity-adiabaticity assump-
tion seems to hold below 5700 km radius. For comparison
the Earth model PREM vyields p(T) = 3.99-4.00 g/cm3,
K(T) = 2.05-2.23 Mbar, K, = 3.8-44, G, = 1.30—
1.35Mbar and G, = 1.5-1.8.

In subsequent rows various temperature corrections
have been made, using temperature derivatives given at
the bottom of the table. In the lower part of the table,
measurements or estimates of the zero-pressure, room-tem-
perature values for various candidate lower-mantle min-
eras are given. Note that " perovskite™ (the high-pressure

form of MgSiO;) and corundum (ALO;) give good fits.
If the mantle is homogeneous and contains abundant oli-
vine, (Mg,Fe),Si0,, in the upper mantle, then the lower
mantlewill contain substantial magnesiowiistite,(Mg,Fe)O,
thereby decreasing the moduli and velocities compared to
perovskite.

THE EQUATION OF STATE

The general form of an equation of state followsfrom con-
siderations of elementary thermodynamics and solid-state
physics. A wide variety of theoretical considerations lead
to equations of state that can be expressed as

P = 3K, (m — n)"'[(V,/V)m*33 — (V,/V)e+33]  (18)
Ke = Ky(m — n)~'[(m + 3)(V,/V)m+33
__(n + 3)(V0/V)(n+3)/3] (19)

The choice of exponents m = 2, n = 4 leads to
Birch's equation, which is based on finite-strain considera-
tions; if m = 1, n = 2 we obtain Bardeen's equation, which
was derived from quantum mechanical considerations. If
m = —3 we obtain Murnaghan's finite-strain equation. A
generalized form of the equation of state of a degenerate
electron gas obeying Fermi-Dirac statistics can also be cast
into this form. Equations of state based on the Mie form
of the potential energy U(r) of an atom in a central inter-
atomic forcefield, givenas

U(ry = —Ar—™ + Br—r

where the two terms on the right correspond to an attractive
and a repulsive potential and r is an interatomic distance,
yield the general form of the equation of state by differen-
tiation. The choice m = 1 is appropriate for electrostatic
interactions, and m = 6, n = 12 is the Lennard-Jonespo-
tential, appropriatefor Van der Waasor molecular crystals.
Thefoundationsof the atomic approach were laid near
the beginning of this century by Born, Van Karman, Grii-
neisen, Madelung, Mie and Debye. The basic premise of
the theory is that ionic crystals are made up of positively
charged metal atom ions and negatively charged electro-
negative atom ions that interact with each other according
to ssimplecentral force laws. The electrostatic, or Coulomb,
forces that tend to contract the crystal are balanced by re-
pulsive forces, which, in the classical theory, are of uncer-
tain origin. Dipole-dipoleand higher order interactions, the
Van der Waals forces, provide additional coupling between
ions. They dominate the attraction between closed-shell at-
oms but are a minor part of the total attractive force in
mainly ionic crystals. The Van der Waalsforces are also of
much shorter range than electrostatic forces.
Anioniccrystal isaregular array of positiveand nega-
tive ions that exert both attractive and repulsive forces on
each other. The attractiveforce is the Coulomb or electro-



THE EQUATION OF STATE

93

TABLE 5-5
Extrgpolaied Vduesd Lower Mantle Properties
-AT p K 1 Ve Vs K Iy
°C) (g/cm?) (Mbar) (Mbar) (km/s) (km/s)
0 3.97 2.12 1.34 9.93 5.83 3.9 15
1400 4.14 2.48-2.62 1.67-1.72 10.7-10.9 6.3-6.4
1600 4.16 2.53-2.68 1.71-1.76 10.8-11.0 6.4-6.5
1800 4.18 2.57-2.74 1.74-1.80 10.8-11.1 6.5-6.6
Minerals
(Mg 5 Feg,)O (mw) 4.07 1.66 1.05 8.7 5.08 4.0 25
Stishovite (st) 4.29 3.16 2.20 11.9 7.16 4.0% I.1*
ALO; (cor) 3.99 2.53 1.63 10.83 6.40 4.3 1.8
Perovskite* (pv) 4.10 2.60-2.45 1.43-1.84 10.5-10.9 5.9-6.7 4.1-45 2.1-2.6
* Estimated.

Temperature corrections:
(Alnkg/d Inp), = 4.0-5.5
@ Inw/31np), =57-6.5
a =23 X 1075/°C

static force between the ions, and the force that keeps the
crystal from collapsing is the repulsion of filled shells. For
a simple sat the attractive potential between any pair of
ions with charges q, and ¢, is

U = —qiq.er

where r is the distance between the centers of the ions and
e is the electronic charge. This potential must be summed
over dl pairsof ionsin the crystal to get the total cohesive
energy. The result for the attractive potential energy of a
crystal is

U = al,

where a (or A) isthe Madelung constant, which has a char-
acteristic value for each crystal type. The repulsive poten-
tia is much shorter range and usually involvesonly nearest
neighbors.

The calculation of the exact form of the interatomic
forcelaw or the potential energy of an assembly of particles
as afunction of their separation is a difficult problem and
has been treated by quantum mechanical methods for only
a few cases. For many purposesit is sufficient to adopt a
fictitious force law that resembles the real one in some
genera features and that can be made to fit it in a narrow
region around the equilibrium point. The total energy U
must satisfy

217 K
(if) “ 0 ad :d_) _K
dv/, vz} -y,

which are the conditions that the crystal be in equilibrium
with al forces and that the theoretical bulk modulus, K,
should be equal to the observed value. These conditions
serve to determine the constants in the fictitious force law
and assure that the slope and curvature of this law are
proper at the equilibrium point.

The attractive forcesin a crystal are balanced by the
so-called overlap repulsive forces that oppose the inter-
penetration of the ions. Perhaps the simplest picture is a
rigid ion surrounded by a free-electron gas. The effect of
hydrostatic pressureis to reduce the volume of the electron
gas and to raiseits kinetic energy. The kinetic energy varies
as r—2 where r is the nearest neighbor separation. The re-
pulsiveforce betweenionsisvery small until theionscome
in contact, and then it increases more rapidly than the elec-
trostatic force. In his early work on ionic crystals, Born
(1939) assumed that the repulsiveforces between ions gave
rise to an interaction energy of the type

U(r) = bir

for the whole crystal where b and n are constantsand r is
the distance between nearest unlike ions. Investigations of
interionic forces based on quantum mechanicsindicate that
arepulsive potential of this type cannot be rigorously cor-
rect, athough it may be a good approximation for a small
range of r. Later work has used a repulsive potential of
theform

U(r) = be e

where » and a are constants.

Regardless of the details of the various attractive and
repulsive potentials and their dependence on interatomic
spacing, the Mie-Lennard-Jones potential

Ur) = —Ar ™+ Br=", n>m

is a simple useful approximation for a restricted region of
the potential energy curve and, in particular, the vicinity of
the potential minimum. Constants A, B, m and n will be
determined at a point in the vicinity of interest by requiring
that the interatomic spacing and the bulk modulus both be
appropriate for the pressure at this point.
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TABLES5-6
ThermodynamicPropertiesof Mineralsand Metals

Ak (MT) (ﬂl_nKs) ( aans) aInG' aInG ( ama)

dinp / 7 olnp / » dmp/r aT Jv almp/ v almp/ r oT /v
Substance Y = (3K/oP) =8, =8 x 105K x 105/K
MgO 1.53 3.89 6.18 361 0.842 3.13 5.58 7.72
Mg,SiO, 1.18 5.39 7.60 5.38 0.025 2.83 6.50 9.19
Fe,Si0, 1.25 5.97 6.95 5.15 2.14 _ — —
AlLLO; 1.32 3.99 5.14 341 0.945 273 6.85 6.72
MgAlL0, 113 419 6.14 3.97 0.389 131 5.89 7.42
Garnet 1.43 5.45 6.88 5.00 1.062 261 5.40 6.07
Cu 1.96 5.62 5.69 3.23 10.89 — _ _
Ag 2.40 6.21 6.19 3.26 15.38 — — —
Au 3.03 6.50 7.03 392 9.64 _ _ _

Using the interatomic potential

and setting the molar volume of the solid V = M/p equal
to a constant times r* and using the relations

U
P=—|=
(&),

VP
KT = —\——
(),
for the pressure and bulk modulus, respectively, we obtain
the equations previoudly given as equations 18 and 19:

and

3Ko ( VD (m+3)3 /”0\ (n+3)/3_i
=6 -0
(m+3y3
emiaf ()

(n+3)3
V
-(n+ 3=

where V, and K, are the molar volume and the bulk modulus
at zero pressure.

For small compressionswe can expand K about V =
V, to obtain

dln K7\ S AR
amv/) 3" T"
and can notein passing that
(a In Ky oln K0P\ _ (oK)
olnV/, dln V/ioP ), P /..

s0, to afirgt approximation, the isothermal bulk modulusis

(20)

a linear function of pressure and a simple power-law rela-
tionship holds between the bulk modulus and the density.

Table 5-6 summarizes some pertinent experimental data on
mineralsand metal's, which show the relationships between

Ks, Kr and rigidity, G, with density and temperature.
For m = 3, we havethe simplerelation (Fiirth, 1944)

dlnK\  @InK/T)y [dlnK b
dlnV/, @InVvieT), [dlnV],

1
= —=(m+n+3
3 (m +n+3)
Using Griineisen’s approximation for (8 In K./dT)s/
(9 In V/3T),, we can summarizetheimportant resultsof the
previoussections. For small compressions:

1
g(m + n + 6)

1
g(m+n+9)

K3

Ks

1
sm+n+6)+

dayT
oP /.,

d In K, 1 K;: (dayT
= s =-(m+n+9 — — =
dlnp/, 3 aKs \ oT /,
d1ln P 1 K3 (doyT
“—) = —m 4+ 3+ (B
dlnp/,; 3 K or /.
dln® K; (dayT
= =—(m+n+6)——T—*ay
dlmp/, 3 aKs \ oT /.,
or
dIn K _1( t 46
dlnp), 3mTnto
_oyTK: | (91n Ky _(9lny
Ks dlnp /. dlnp/,



d In K, 1 K
o5 =—(m-}—n+9)—’y—I
dlnp /, 3 K

+a’yTKT dlny + dln«
Ks dlnp/, dlnp/,

and corresponding equationsfor (4 In $/d In p).
The Debye theory leads to a nonthermal definition of
the Griineisen ratio (Knopoff, 1963; Brillouin, 1964):

1 1{olnK
Yo = —~——< ) (22)
T

6 2\olnV

This relation assumes that al the modes of vibration have
the same volume dependence or, equivaently, that al the
elastic constants depend on volume or pressure the same
way. An alternative expression has been suggested by Druy-
vesteyn and Meyering (1941) and Dugdale and MacDonald
(1953) and is hence called the DM expression:

1/ 1n KT)

—2—\6an

Yom = —

L = ! (23)
2 L T3
and this corresponds physically to a model of independent
pairs of nearest neighbor atoms, in a linear chain, rather
than to the Debye model of coupled atomic vibrations. This
definition of the Griineisen ratio is often used in the reduc-
tion of shock-wave data.

Taking into account the transverse oscillations of
atoms |eads to the free-volume y:

5 1(olnkK:
= 2= 24
=T 2(a1nv>1 (24)

This is more exact than the other derivations (Stacey, 1977,
Brennan and Stacey, 1979) and is appropriate for high
temperatures where the classic assumption of independent
vibrations of atoms becomes a good one and where the
distinction between longitudinal and transverse modes be-

comes fuzzy.
They's arerelated by

1
'YFV=VDM_§:7D‘

At finite pressure,
4 pP

and
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1
yDM=8(m+n+3)

1
yFV=é(fﬂ+/’l+1)

which shows that the exponentsin the equation of state are
related to the anharmonic properties of the solid since the
Griineisenrelation y = aK/pCy, reating the coefficient
of thermal expansion a with the specific heat Cy, isa mea
sure of anharmonicity.

The parameter y decreaseswith compression but has a
tendency to be higher for the close-packedcrystal structures
such as face-centered cubic and hexagonal close-pack than
it is for the more open structuressuch as diamond structure
and body-centered cubic. For most materials y is between
1 and 2, which givesarangefor m + nof 1 to 7 for the
Lorentz-Slater theory and 3 to 9 for the DM theory. The
corresponding rangesfor (-6 In K1/ In V), are2.3t04.3
and 3 to 6, respectively. Many minerals have measured or
inferred y in therange 1.1t0 1.5.

In alater section | discuss the role of shear vibrations
in a more accurate nonthermal definition of the Griineisen
parameter.

THE SEISMIC PARAMETER @

The seismic parameter & plays an important role in discus-
sions of the mineralogy, composition and homogeneity of
the mantle. It is more amenableto theoretical treatment than
the seismic velocities and is availablefrom static compres-
sion, shock-wave and ultrasonic experiments. Table 5-7
tabulates mean atomic weight M density p and @ for a
variety of important mineralsand anal og compounds.

The ® for many silicates and oxides is approximately
the molar average of the ®’s of the constituent oxides (An-
derson, 1967b, 1969, 1970). Using the values for MgO,
Al,O; and SiO, (stishovite) in Table 5-7, we can estimate ®
for MgALO, and MgSiO; as 55.3 and 60.6, respectively.
Table 5-8 gives @ calculated from the molar averaging rule;
note the excellent agreement between the predictions and
the measurements. Thisruleis useful in the estimationof &
for compoundsthat have not been measured.

EFFECT OF COMPOSITION
AND PHASE

We have now established the theoretical form for the ex-
pected relationship between seismic parameter @ and den-
sity and have investigated the effect of temperature and
pressure. The exponent in the power-law relationshipisdif-
ferent for temperature and pressure, meaning that there is
an intrinsic temperature effect over and above the effect of
temperature on volume. We have not yet specificadly a-
lowed for composition except insofar as this information
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TABLE 57
Mean Atomic Weght, Dendty and Seismic Parameter
d Minerds

Mineral M p (
(g/em®)  (km?/s?)

Albite 20.2 2.62 20.3
Nephdite 211 2.62 17.4
Oligodese 205 2.65 24.9
Orthodase 214 2.58 18.3
Microdine 214 2.56 20.2
Quartz 20.0 2.65 17.4
Olivine 20.1 3.22 40.1
Olivine 230 3.35 38.7
Orthopyroxene 21.2 3.29 325
Diopsde 21.6 3.28 345
Garnets 21.9 3.73 451
22.6 3.62 47.4
3.64 48.7
Jeddite 22.5 3.35 40.4
Faydite 291 4.14 26.0
B-spinel 20.1 3.47 50.1
y-soind 20.1 3.56 51.7
Magorite 20.1 3.52 49.7%*
Soind 20.3 3.58 55.1
MgSi0;-perovskite 20.1 4.10 64.8
MgFeSiO,;-perovskite _ 421 61.6*
SrTiO,-perovskite 36.7 512 34.1
TiO, 26.6 4.26 50.6
AL O, 204 3.99 63.2
MgOo 20.2 3.58 47.4
Si0,-stishovite 20.0 4.29 73.7
CaSiO,-perovskite 24.0 4.13* 55.0%
CaMgSi,O,-perovskite 22.1 4.12" 57.8"
*Estimated.

is contained in the initial density and &,. Birch (1961a)
showed empirically that the mean atomic weight, M, is an
appropriate measure of composition although exceptions to
this general rule occur. Knopoff and Uffen (1954) used a
""representativeatomic number' Z as a measure of compo-
sition in applying the Thomas-Fermi-Dirac(TFD) theory to
compounds.

McMillan (1985) and Knopoff (1965) made semi-
empirical adjustments to the Thomas-Fermi statistical
mode of the atom in order to obtain the proper low-pressure
limit. Their equationscan be put in the forms

= 5(K,Z)(ZV)~! = d(PZ~"%)/d(ZV)y-y,

and
(K, Z~13)(ZV,y'”? = constant
Thelatter form can be written approximately as
®, = constant(p,/M )*?
Although the Thomas-Fermi model is not appropriate

for pressures as low as those existing in the Earth and the
extrapolation to zero-pressureconditionsis not justified be-
cause of the presenceof phase changes, this equation does
suggest the form of the relationship between &, p, and
composition M. At this stage the constants are more prop-
erly obtained from experiment.

Consider an equation of the general form we treated
earlier:

o[ ()]
Po Po

where M and N are constants, P is pressure, K, is initia
bulk modulus, p, is initial density and p is the density at
pressure P. Its derivative with respect to density gives

op % N-1 M1
2w B (|
ap Po Po Po

or

® = O N — M)—I[N(ﬁ) - M<ﬁ> } Q7
Po Po

where the seismic parameter @ is the ratio of the bulk
modulus to the density. The adiabatic ® for the Earth is
availablefrom seismicdata. Theratio of & for two different
densitiesisthen

O, _ Npip)* — M(pilp)¥!
. N(pa/p)" ' — M(pa/p™™"

Thisis the seismic equation of state (Anderson, 1967a). If
the total compressionissmall, then

oln®
=N+M-—-1 29)
dlnp

(28)

TABLE 5-8
Sdgmic Parameter © = K ¢/p Cdculaed from Molar Avarage
of Condtituent Oxides

4,
(km?*8?)

Mineral Formula Calculated Measured
Spind MgAl,0, 54.4 54.5
Spind NiFe,0, 33.6 34.3
Magnetite Fe,0, 33.2 36.0
[Imenite FeTiO, 37.7 38.4

(ALCN),0, 62.5 61.7
Chromite MgCr,0, 44.0 45.7
Titanate BaTiO, 30.7 27.0

SrTiO, 34.4 34.1
Perovkite MgSiO, 59.6% 64.8

CaSiO, 52.9% —
Stishovite Sio, - 73.7

*MgO or CaO plus SiO, (stishovite).
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Seismic parameter @, density p, and mean atomic weight M for rocks, minerals and oxides

(after Anderson, 1967a).

Figure 5-2 gives M, p and ® for selected minerals
that vary in mean atomic weight. A least-squarefitsto these
data gives

P _ 0.048d0 (30)
M
In ®
- aj o 3.10 31)
InV/,., =

For comparison, a least-squaresfit to the ultrasonic com-
pression data on MgO and Al,O; gives

P _ 0.048@0ns

M
_(91“ 9) — 2.09
AV T
for MgO and
L _ 0.052005
M

for AlL,Os;. The agreement of these parameters, which are
obtained from compression experiments, with those found
above is remarkable. This lends support to the generaliza-

tion that, as a first approximation, the bulk modulus in
silicates and oxides is determined by density and mean
atomic weight, or mean molar volume. Theeffect of changes
in bulk modulus and volume at constant temperature and
constant pressure are given in Table 5-6. The vaues for
(3 1n K/0 In p) in that table can be compared with the above
values and values computed from

@InKdmV)y=@nd®onV) -1

THE REPULSIVE POTENTIAL

For any solid where the potential U can be separated into
an attractive term and arepulsiveterm, which arefunctions
of the interatomic separation r, we can write

U= U, (n+ f(r)

For an ionic crystal with a Born power-law repulsive poten-
tial, it can be shown that

KV, = Az,z,¢*(n — 1)/97, (32)

where A is the Madelung constant, z, is the valence of a
congtituent ion, and n is the exponent in the power-law re-
pulsive potential. If the exponential form of the repulsive
potential is used, the energy per cell can be written

U(r) = —Alr + Be™"
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Bulk modulus versus molecular volumefor various crystal struc-
tures (Anderson and Anderson, 1970).

where o is ascalefactor. At equilibrium the bulk modulus-
volume product can be written

KV, = Az z,e*(r,/Jo0 — 2)/9r, (33)

The parameter » in the power-law potential is simply re-
lated tocr:

n=(rso)—1 34)

Data for a number of oxides are presented in Figure
5-3, which demonstrates that KV, is a constant for a wide
variety of oxide compounds. Here V, is the specific molar
volume of the formula and K is the bulk modulus at zero
pressure.

The parameter iy = KV, /(z,z.¢?) is tabulated in the
last column of Table 5-9; z, and z, are, respectively, the va-
lences of oxygen and the mean cation. Except for ZnO and
TiO, al of the values fall in the range 0.150-0.165, and
the values show no systematic behavior. ZnO and TiO, are
anomalous in several other respects. The values of Poisson's
ratio are high, the shear velocity decreases with pressure,
and the oxygen coordination is anomalous for the size of
the cation. If these compounds are excluded, the remain-

ing substances for which bulk modulus data are available
satisfy
¢ = 0.157 + 0.005

The standard deviation corresponds to an error of 3.3 per-
cent. This is remarkable consistency when one considers
that so many structures (halite, wurtzite, spinel, corundum,
perovskite, and rutile) and so many cations (Mg, Be, Al,
Fe2+, Fe*+, Mn, Ni, Cr, Sr, and Si) are involved, and that
no account has been taken of structural factors (the Made-
lung constant) or range or repulsion parameters. These fac-
tors apparently tend to compensate for each other. The KV
= constant law is useful for estimating the bulk modulus of
high-pressure phases.

The empirical repulsi rane » = rameter a calculated
from the data is also tabulated in [able 5-9. It is relatively
constant for each group of compounds and shows a ten-
dency to increase with molecular volume. It can be well
approximated, as shown in Table 5-10, by the simple
equation

g, = 0.05(1 + R + 3AR) (35)

where R is the cube root of the molecular volume and AR
= R — R., where R, is the (Pauling) radius of the smallest
cation.

The reduced Madelung constant A, also given in Table
5-9, isdefined as

A = Alm(z.z,) (36)

where m is the number of ions in the chemical formula.
This is a useful parameter since it varies much less from
structure to structure than the conventional Madelung con-
stant, and it correlates well with coordination and inter-
atomic distances. For example, it satisfies the relation

Ar = 0.20 + 0.45AR 37

as shown in Table 5-10.
For crystals involving more than one cation, the va
lence product is defined as

p
z,2, = E X;2:2,/p (38)

where x; is the number of cations in the formula having
valence z;, z, is the valence of the anion (oxygen), and p is
the total number of cations in the formula. z. is the cation
vaence.

A check on the form of the repulsive potential is avail-
able from ultrasonic measurements of dK/dP. This quantity
depends only on the parameters in the repulsive potential,
that is,

(dK/dP), = (n + 7)/3 (39
(dK/dP), = 132 — r,/o)]?
X [14 — (1 + r/o)(2 + r/o)] (40)
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TABLE 5-9
Datafor Calculationof Repulsive Range Parameter
Substance Structure . ) V(A% R @A) A A, K (Mbar)  a(A) v
MgO Halite 4 18.67 2.653 8.808 1.10 1.62 0.477 0.164
Ca0 Halite 4 27.83 3.030 8.808 1.10 1.06 0.509 0.160
SrO Halite 4 34.35 3.251 8.808 1.10 0.84 0.54 _
BeO Wurtzite 4 13.77 2.397 9.504 1.19 2.20 0.482 0.164
ZnO Wurtzite 4 23.74 2.874 9.604 1.20 1.39 0.490 0.179
MgAl 0, Spinel 5.33 65.94 4.040 67.54 1.81 2.02 0.790 0.155
FeFe ,0, Spinel 5.33 73.85 4.195 65.48 1.75 1.87 0.769 0.161
NiFe,0, Spinel 5.33 72.48 4.169 65.53 1.76 1.82 0.790 0.153
MnFe,0, Spinel 5.33 76.72 4.249 (66.7) (1.79) 1.85 0.768 0.165
SrTiO, Perovskite 6 59.56 3.905 49,51 1.65 179 (0.74) 0.154
Al O, Corundum 6 42.47 3.489 45.77 1.53 251 0.674 0.154
Corundum 6 50.27 3.691 45.68 152 2.07 0.700 0.150
Cr,0;, Corundum 6 48.12 3.637 (45.7) (152 2.24 0.681 0.155
TiO, Rutile 8 31.23 3.149 30.89 1.29 2.24 0.658 0.126

Anderson and Anderson (1970).

A is the Madelung constant; A, is the reduced Madelung constant.

for the power law and exponential forms respectively. Table
5-11 gives (dK/dP), evaluated from equations 39 and 40
and, for comparison, the ultrasonic results. The power-law
repulsive potential gives better agreement, athough the
measured values of (dK/dP), are higher than computed for
either potential. The exponential form gives(dK/dP), from
0.50 to 0.58 units lower than the power-law form. Table
5-12 gives the bulk modulus calculated from the KV, rela
tion. Figure 5-4 shows experiments and calculations rel at-
ing K, n and interatomic distance.

SHOCK WAVES

Pressures in the deepest parts of the Earth are beyond the
reach of static-compression experiments, athough pres-
sures in diamond anvils are getting close. Explosively
generated transient shock waves can be used to study mate-
rial properties to pressures in excess of several megabars
(1 Mbar = 10" Pa). The method is to fire a projectileat a
target composed of the material under investigation, gen-
erating a shock wave that propagatesthrough it at a speed,

TABLE 5-10
Comparison of Repulsive Parameter
Rc R o, o AR A c A R

MgO 0.65 2.65 0.48 0.48 2.00 1.10 1.10
CaO 0.99 3.03 0.51 0.51 2.04 1.12 1.10
BeO 0.31 240 0.48 0.48 2.09 114 1.19
ZnO 0.74 2.82 0.50 0.49 2.08 1.14 1.20
MgAl, O, 0.50 4.04 0.78 0.79 354 1.79 181
FeFc,0, 0.64 4.20 0.79 0.77 3.56 1.80 175
NiFe,0, 0.64 417 0.79 0.79 3.53 1.79 1.76
MnFe,O, 0.64 4.25 0.80 0.77 3.61 1.82 1.79
Al O, 0.50 3.49 0.67 0.67 2.99 1.55 1.53
Fe,0; 0.64 3.69 0.69 0.70 3.05 157 1.52
Cr,0, 0.69 3.64 0.67 0.68 2.95 153  (152)
TiO, 0.68 3.15 0.58 0.66 247 131 1.29
S1TiO, 0.68 391 0.73 0.74 3.23 1.65 1.65

Anderson and Anderson (1970).

o, =0051*%R + 3AR)where AR =R — R .. Also given are the reduced Madelung constants calcu-
lated from A, = 0.20 * 0.45 AR and the reduced Madelung constant calculated by conventional tech-

niques. R isthe radius of the smallest cation.
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TABLE 5-11
Repulsive Parameters and Corresponding Vaues of dK/dP for
Power-Law and Exponential Repulsive Potentials

Substance r, dK/dP n dK/dP (dK/dP),,
MgO 5.56 3.33 4.56 3.85 3.89
CaO 5.95 3.48 4.95 3.98 5.23
BeO 4.97 3.10 3.97 3.66 5.52
ZnO 5.87 3.45 4.87 3.96 4.78
MgAl,O, 5.1 3.16 4.11 3.70 4.18
NiFe,O, 5.28 3.22 4.28 3.76 4.41
Al,O, 5.18 3.18 4.18 3.73 3.98
5.27 3.22 4.27 3.76 4.53
SiO,(st.) 5.02 3.12 4.02 3.67 7*
TiO, 4.79 3.02 3.79 3.60 6.76
Anderson and Anderson (1970).
*Estimated.

v,, which is faster than the following material or particle
velocity, v; that is, apressurewave travel sthrough the solid
at a speed greater than its speed of sound. The pressurerises
in athin layer to a vaue set up by the impact. The shock
front propagates to the far side of the sample where it is
reflected as a rarefaction wave. The equations of conserva-
tion of mass, momentum and energy, together with the mea
sured shock-wave and material or particle velocities, alow
one to calculate the pressure, density and internal energy of
the shocked material. The sample is usualy destroyed in
the process. A seriesof shock-wave experiments, using dif-
ferent impact velocitiesand different, but hopefully similar
samplesthen gives a relation between density, pressure and
internal energy from which a shock-wave equation of state

can be constructed. It is neither an adiabat nor an isotherm
since the temperature and internal energy vary from point
to point. Shock compression is not smply adiabatic be-
cause the compressed materia acquireskinetic energy, and
it is not a reversible process. The locus of pointsis caled
the Hugoniot, and a major problem is the deduction of
an isothermal, or adiabatic, equation of state from this
kind of data.
The basic equations are:
Conservation of mass.

povs = p(vy — V) 41)
Conservation of momentum:
P = p,vyv (42)
Conservation of energy:
1
Pv = p,v, <5 v+ E — Eo) (43)

where E — E, is the change in internal energy per unit
mass.

Therateat which material enterstheshock frontisp,vs,
and it leaves a arate p(v, — V) per unit area of the shock.
The rate at which momentum is generated is equal to the
rate of flow of materia through the shock front, p,v., mul-
tiplied by the velocity acquired, v, and thisis equal to the
difference in pressure across the front. The rate at which
work is done on the material passing through the shock is
equal to the rate of flow through the shock, p,v,, times the
changeadf kinetic energy [1/2 v?] plus the changein internal
energy, both per unit mass. Pv isthe rate at which pressure
does work on the material, or the rate at which kinetic en-

TABLE 5-12

Comparison of Computed (K,) and Measured (K) Bulk Modulus
Substance  (z, z,) v R o, A K, K
MgO 4 18.67 2.653 0.48 1.10 161 1.62
CaO 4 27.83 3.030 0.51 1.12 1.07 1.06
BeO 4 13.77 2.397 0.48 114 212 2.20
ZnO 4 23.74 2.874 0.50 114 1.28 1.39
MgAl,0, 5.33 65.94 4.040 0.78 179 204 2.02
FeFe,0, 5.33 73.85 4.195 0.79 1.80 1.84 1.87
NiFe,O, 5.33 72.48 4.169 0.79 1.79 1.86 1.82
MnFe,0, 5.33 76.72 4.249 0.80 1.82 1.77 1.85
StTiO, 6 59.56 3.905 0.73 1.65 1.83 1.79
Al,0, 6 42 47 3.489 0.67 1.55 2.58 2.52
Fe,0, 6 50.27 3.691 0.69 157 218 2.07
Cr,0, 6 48.12 3.637 0.67 1.53 2.30 224
Si0, 8 23.27 2.855 0.56 1.20 344 3.16
TiO, 8 31.23 3.149 0.58 131 281 224

Anderson and Anderson (1970).
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ergy plus internal energy are increased. These equations
can be rewritten:

(P - PY”
TV, = V)

V=;@—PM%—VW2 (44)

1
E—EO=E(P+P0)(V0— V)

where V =
conditions.

In many cases the Hugoniot equations can be simpli-
fied since there is an approximately linear relation between
v.and v. In thiscase

[Ip and the subscript refers to the initia

Ve = C, T AV

where ¢, is the bulk sound speed (K/p)"2, to which v, re-
duces when the shock is weak, and A is a constant. This
gives
(Vo — V)
V, — MV, — V)2

P=rP,+

Reduction of shock-wave data to an isotherm usualy
involvesthe Mie-Griineisen equation, which relates the dif-
ference in pressure at fixed volume between the initial low
temperature and a high-temperature state of specified ther-
mal energy:

saock waves 101

Y& -E)

P — P, = P* = ak,T v

= ypC T =
where the total pressure, 7, isthe sum of aninitial ambient
pressure P, plus a therma pressure P*. The two states
(P, E) and (P,, E,) have the same volume. Thus, alocus of
(P, V) points along a shock compression curve are reduced
to aset of (P, V) pointsaong an isotherm (T,) by

_pol (Y )| e
PI—P[I 2(V 1” (y/V)fVO[P ypC T ]dV

where the integral is dong the shock compressioncurve.
The pressure, P, along an adiabat is

= Pl — (y/2)(V,/V — D] — (y/V) j: Psdv

Thisfollowsfrom
dE = —PgdV

and
v 1
— Ey = —f P dV — - PV, — V)
v, 2

the internal energy difference between the adiabat and the
Hugoniot.

The pressure correction can be substantial for the
higher pressure (megabar) experiments, and areliablevalue
of the Griineisen ratio v at high pressure is needed. As
shown in previoussections, v isrelated directly to the pres-
sure dependence of the bulk modulus and can therefore
be estimated from the shock-wave data. However, K and
dK/dP require differentiation of corrected experimental
data and are therefore uncertain. Usudly the experimental
data are fitted with theoretical or semi-empirical equations
of state and the differentiationsperformed on these smooth
functions. Shock-wave data remain our best sourceof infor-
mation on the bulk modulus, or bulk sound speed, of rocks
and minerals at high pressure, particularly high-pressure
phases. These properties can be directly compared with
seismic data:

P K. 4
o (g), 5= (e
/s P 3

Unfortunately, methods have not yet been developedfor de-
termining accurate valuesfor the shear velocity under shock
conditions.

Shock waves heat as well as compress the sample.
Temperatures can be inferred from the equations aready
given. Temperatures are typically 1400-1700 K at pres-
sures of the order of a megabar for materials that do not
undergo phase changes, such as MgO and ALO;. Silicates,
which undergo shock-induced phase changes, typically end
up at much higher temperature (2500-5000K) at compa
rable pressures (Anderson and Kanamori, 1968). In fact,
melting may occur under shock conditions.



102 THERMODYNAMICS AND EQUATIONS OF STATE

High-speed pyrometry techniques have permitted the
measurementof temperatureunder shock conditions(Ahrens
and others, 1982). Shock-induced temperatures of 4500 to
5000K have been measured for forsterite in the pressure
range 1.5t0 1.7 Mbar. At these pressuresMg,SiO, has pre-
sumably converted to MgO and MgSiO; (perovskite), and
hence the temperatureis due not only to compression but
also due to the energy involved in phase transformation.
The measured temperature is close to that calculated on
the basis of the equation-of-statedata (Anderson and Kana-
mori, 1968; Ahrens and others, 1969).

When a phase change is involved, the shock tempera-
ture Ty is calculated from

PV, — V)2

\'
Em — fvpa dav + V(P — Py

\4
T, =Ty CXP[_L (‘y/V)dV}

V(P — P)y=Cy(Tu—T)

where P is the shock pressure, P, is the isentropic pressure
of the high-pressurephase, Erx is the transition energy be-
tween the low- and high-pressurephases at standard condi-
tions, and 7, is the temperature achieved on the isentrope
of the high-pressure phase at volume V. The calculated
temperature is therefore sensitive to Erx, which is not al-
ways well known, particularly when the nature of the high-
pressure phase is unknown.
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