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GRANULAR FLOWS

13.1 INTRODUCTION

Dense fluid-particle flows in which the direct particle-particle interactions
are a dominant feature encompass a diverse range of industrial and geo-
physical contexts (Jaeger et al. 1996) including, for example, slurry pipelines
(Shook and Roco 1991), fluidized beds (Davidson and Harrison 1971), min-
ing and milling operations, ploughing (Weighardt 1975), abrasive water jet
machining, food processing, debris flows (Iverson 1997), avalanches (Hutter
1993), landslides, sediment transport and earthquake-induced soil liquefac-
tion. In many of these applications, stress is transmitted both by shear
stresses in the fluid and by momentum exchange during direct particle-
particle interactions. Many of the other chapters in this book analyse flow in
which the particle concentration is sufficiently low that the particle-particle
momentum exchange is negligible.

In this chapter we address those circumstances, usually at high particle
concentrations, in which the direct particle-particle interactions play an im-
portant role in determining the flow properties. When those interactions
dominate the mechanics, the motions are called granular flows and the flow
patterns can be quite different from those of conventional fluids. An example
is included as figure 13.1 which shows the downward flow of sand around a
circular cylinder. Note the upstream wake of stagnant material in front of
the cylinder and the empty cavity behind it.

Within the domain of granular flows, there are, as we shall see, several very
different types of flow distinguished by the fraction of time for which particles
are in contact. For most slow flows, the particles are in contact most of the
time. Then large transient structures or assemblages of particles known as
force chains dominate the rheology and the inertial effects of the random
motions of individual particles play little role. Force chains are ephemeral,
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Figure 13.1. Long exposure photograph of the downward flow of
sand around a circular cylinder. Reproduced with the permission of
R.H.Sabersky.

quasi-linear sequences of particles with large normal forces at their contact
points. They momentarily carry much of the stress until they buckle or are
superceded by other chains. Force chains were first observed experimentally
by Drescher and De Josselin de Jong (1972) and, in computer simulations,
by Cundall and Strack (1979).

13.2 PARTICLE INTERACTION MODELS

It is self-evident that the rheology of granular flows will be strongly in-
fluenced by the dynamics of particle-particle interactions. Consequently the
solid mechanics and dynamics of those interactions must be established prior
to a discussion of the rheology of the overall flow. We note that the relation
between the rheology and the particle-particle interaction can quite subtle
(Campbell 2002, 2003).

Early work on rapid granular material flows often assumed instantaneous,
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Figure 13.2. Schematic of the soft particle model of particle interaction.

binary collisions between particles, in other words a hard particle model (see,
for example, Campbell and Brennen 1985a, b). While this assumption may
be valid in some applications, it is now recognized that the high shear rates
required to achieve such flow conditions are unusual (Campbell 2002) and
that most practical granular flows have more complex particle-particle in-
teractions that, in turn, lead to more complex rheologies. To illustrate this
we will confine the discussion to the particular form of particle-particle in-
teraction most often used in computer simulations. We refer to the model
of the particle-particle dynamics known as the soft particle model, depicted
in figure 13.2. First utilized by Cundall and Strack (1979), this admittedly
simplistic model consists of a spring,Kn, and dashpot, C, governing the nor-
mal motion and a spring, Ks, and Coulomb friction coefficient, μ∗, governing
the tangential motion during the contact and deformation of two particles
of mass, mp. The model has been subject to much study and comparison
with experiments, for example by Bathurst and Rothenburg (1988). Though
different normal and tangential spring constants are often used we will, for
simplicity, characterize them using a single spring constant (Bathurst and
Rothenburg show that Ks/Kn determines the bulk Poisson’s ratio) that,
neglecting the effects of non-linear Hertzian-like deformations will be char-
acterized by a simple linear elastic spring constant,K. Note that as described
by Bathurst and Rothenburg, the Young’s modulus of the bulk material will
be proportional to K. Note also that K will be a function not only of prop-
erties of the solid material but also of the geometry of the contact points.
Furthermore, it is clear that the dashpot constant, C, will determine the
loss of energy during normal collisions and will therefore be directly related
to the coefficient of restitution for normal collisions. Consequently, appro-
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priate values of C can be determined from known or measured coefficients
of restitution, ε; the specific relation is

ε = exp
(
−πC/ [2mpK −C2

]1
2

)
(13.1)

Note that this particle interaction model leads to a collision time for indi-
vidual binary collisions, tc, that is the same for all collisions and is given
by

tc = πmp/
[
2mpK − C2

] 1
2 (13.2)

Before leaving the subject of individual particle interactions, several cau-
tionary remarks are appropriate. Models such as that described above and
those used in most granular flow simulations are highly simplified and there
are many complications whose effects on the granular flow rheology remain
to be explored. For example, the spring stiffnesses and the coefficients of
restitution are often far from constant and depend on the geometry of the
particle-particle contacts and velocity of the impact as well as other fac-
tors such as the surface roughness. The contact stiffnesses may be quite
non-linear though Hertzian springs (in which the force is proportional to
the displacement raised to the 3/2 power) can be readily incorporated into
the computer simulations. We also note that velocities greater than a few
cm/s will normally lead to plastic deformation of the solid at the contact
point and to coefficients of restitution that decrease with increasing veloc-
ity (Goldsmith 1960, Lun and Savage 1986). Boundary conditions may also
involve complications since the coefficient of restitution of particle-wall col-
lisions can depend on the wall thickness in a complicated way (Sondergard
et al. 1989). Appropriate tangential coefficients are even more difficult to
establish. The tangential spring stiffness may be different from the normal
stiffness and may depend on whether or not slippage occurs during contact.
This introduces the complications of tangential collisions studied by Maw et
al.(1976, 1981), Foerster et al.(1994) and others. The interstitial fluid can
have a major effect on the interaction dynamics; further comment on this is
delayed until section 13.6. The point to emphasize here is that much remains
to be done before all the possible effects on the granular flow rheology have
been explored.

13.2.1 Computer simulations

Computer simulations have helped to elucidate the behavior of all types
of granular flow. They are useful for two reasons. First there is a dearth
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of experimental techniques that would allow complete observations of real
granular flows and their flow variables such as the local solids fraction; this
is particularly the case for interior regions of the flow. Second, it is useful
to be able to simplify the particle-particle and particle-wall interactions and
therefore learn the features that are most important in determining the flow.
The simulations use both hard particle models (see, for example, Campbell
and Brennen 1985a, b) and soft particle models (see, for example, Cundall
and Strack (1979), Walton and Braun 1986a, b). The hard particle model is,
of course, a limiting case within the soft particle models and, though com-
putationally efficient, is only applicable to rapid granular flows (see section
13.5). Soft particle models have been particularly useful in helping elucidate
granular material flow phenomena, for example the formation and dissipa-
tion of force chains (Cundall and Strack 1979) and the complex response of
a bed of grains to imposed vertical vibration (Wassgren et al. 1996).

13.3 FLOW REGIMES

13.3.1 Dimensional Analysis

As pointed out by Campbell (2002), given a particle interaction model (such
as that described above) characterized by a set of parameters like (K, ε, μ∗),
it follows from dimensional analysis that the stress, τ , in a typical shearing
flow with a shear rate, γ̇, and a solids volume fraction, α, will be a function
of the particle interaction parameters plus (D, ρS, α, γ̇) where the particle
density ρS has been used instead of the particle mass, mp. Applying di-
mensional analysis to this function it follows that the dimensionless stress,
τD/K, must be a function of the following dimensionless quantities:

τD

K
= f

(
α, μ∗, ε,

K

ρSD3γ̇2

)
(13.3)

Alternatively one could also use a different form for the non-dimensional
stress, namely τ/ρSD

2γ̇2, and express this as a function of the same set of
dimensionless quantities.

Such a construct demonstrates the importance in granular flows of the pa-
rameter,K/ρSD

3γ̇2, which is the square of the ratio of the typical time asso-
ciated with the shearing, tshear = 1/γ̇, to a typical collision time, (mp/K)

1
2 .

The shearing time, tshear , will determine the time between collisions for a
particular particle though this time will also be heavily influenced by the
solids fraction, α. The typical collision time, (mp/K)

1
2 , will be close to the

binary collision time. From these considerations, we can discern two possible
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flow regimes or asymptotic flow states. The first is identified by instanta-
neous (and therefore, necessarily binary) collisions in which the collision
time is very short compared with the shearing time so that K/ρSD

3γ̇2 � 1.
We will we refer to this as the inertial regime. It includes an asymptotic case
called rapid granular flows in which the collisions are essentially instanta-
neous and binary. The above dimensional analysis shows that appropriate
dimensionless stresses in the inertial regime take the form τ/ρSD

2γ̇2 and
should be functions only of

τ

ρSD2γ̇2
= f (α, μ∗, ε) (13.4)

This is the form that Bagnold (1954) surmised in his classic and much quoted
paper on granular shear flows.

The second asymptotic flow regime is characterized by contact times that
are long compared with the shearing time so that K/ρSD

3γ̇2 � 1. From
computer simulations Campbell (2002) finds that as K/ρSD

3γ̇2 is decreased
and the flow begins to depart from the inertial regime, the particles are forced
to interact with a frequency whose typical time becomes comparable to the
binary collision time. Consequently multiple particle interactions begin to
occur and force chains begin to form. Then the dimensional analysis shows
that the appropriate dimensionless stresses are τD/K and, in this limit,
these should only be functions of

τD

K
= f (α, μ∗, ε) (13.5)

Note that this second regime is essentially quasistatic in that the stresses
do not depend on any rate quantities. Campbell refers to this as the elastic-
quasistatic regime.

13.3.2 Flow regime rheologies

Campbell (2002, 2003) has carried out an extensive series of computer sim-
ulations of shear flows designed to identify further characteristics of the
flow regimes and, in particular, to identify the boundaries between them.
Though his results are complicated because the simulations carried out with
the solids fraction fixed seem to exhibit differences from those carried out
with the normal stress or overburden fixed, we give here a brief overview of
a few key features and results emerging from the fixed normal stress simula-
tions. As one might expect, the flows at low values of K/ρSD

3γ̇2 are domi-
nated by force chains that carry most of the shear stress in the shear flow.
These chains form, rotate and disperse continually during shear (Drescher
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Figure 13.3. Typical non-dimensional stress, τ/ρSD
2γ̇2 (in this case a

normal stress) in a uniform shear flow as a function of the parameter,
K/ρSD

3 γ̇2, for various solids fractions, α, a friction coefficient μ∗ = 0.5
and a coefficient of restitution of ε = 0.7 (adapted from Campbell 2003).

and De Josselin de Jong 1972, Cundall and Strack 1979). Evaluating the
typical particle contact time, Campbell finds that, in this elastic-quasistatic
regime the dynamics are not correlated with the binary contact time but
are determined by the shear rate. This clearly indicates multiple particle
structures (force chains) whose lifetime is determined by their rotation un-
der shear. However, as K/ρSD

3γ̇2 is increased and the flow approaches the
rapid granular flow limit, the typical contact time asymptotes to the binary
contact time indicating the dominance of simple binary collisions and the
disappearance of force chains.

Figure 13.3 is a typical result from Campbell’s simulations at fixed normal
stress and plots the dimensionless stress τ/ρSD

2γ̇2 against the parameter
K/ρSD

3γ̇2 for various values of the solids fraction, α. Note that at high solids
fractions the slopes of the curves approach unity indicating that the ratio,
τD/K, is constant in that part of the parameter space. This is therefore
the elastic-quasistatic regime. At lower solids fractions, the dimensionless
stress is a more complex function of both solids fraction and the parame-
ter, K/ρSD

3γ̇2, thus indicating the appearance of inertial effects. Another
interesting feature is the ratio of the shear to normal stress, τs/τn, and
the manner in which it changes with the change in flow regime. At high
K/ρSD

3γ̇2 this ratio asymptotes to a constant value that corresponds to
the internal friction angle used in soil mechanics (and is closely related to
the interparticle friction coefficient, μ∗). However, asK/ρSD

3γ̇2 is decreased
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Figure 13.4. The variation of the solids fraction, α, with the dimensionless
applied stress, τD/K, in a uniform shear flow with fixed normal stress for
various values of the parameter, K/ρSD

3γ̇2 . Computer simulation data
from Campbell (2003) for the case of a friction coefficient of μ∗ = 0.5 and
a coefficient of restitution of ε = 0.7.

(at constant normal stress) the simulations show τs/τn increasing with the
increases being greater the smaller the normal stress.

Fundamental rheological information such as given in figure 13.3 can be
used to construct granular flow regime maps. However, it is first necessary
to discuss the solids fraction, α, and how that is established in most gran-
ular flows. The above analysis assumed, for convenience, that α was known
and sought expressions for the stresses, τ , both normal and tangential. In
practical granular flows, the normal stress or overburden is usually estab-
lished by the circumstances of the flow and by the gravitational forces acting
on the material. The solids fraction results from the rheology of the flow.
Under such circumstances, the data required is the solids fraction, α as a
function of the dimensionless overburden, τD/K for various values of the
parameter, K/ρSD

3γ̇2. An example from Campbell (2003), is shown in fig-
ure 13.4 and illustrates another important feature of granular dynamics.
At high values of the overburden and solids fraction, the rate parameter,
K/ρSD

3γ̇2 plays little role and the solids fraction simply increases with the
overburden. As the solids fraction decreases in order to facilitate flow, then,
for low shear rates or high values of K/ρSD

3γ̇2, the material asymptotes
to a critical solids fraction of about 0.59 in the case of figure 13.4. This is
the critical state phenomenon familiar to soil mechanicists (see, for example,
Schofield and Wroth 1968). However, at higher shear rates, lower values of
K/ρSD

3γ̇2, and lower overburdens, the material expands below the critical
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solids fraction as the material moves into the inertial regime and the colli-
sions and interactions between the particles cause the material to expand.
Figure 13.4 therefore displays both the traditional soil mechanics behavior
and the classic kinetic theory behavior that results from the dominance of
random, collisional motions. We also see that the traditional critical solids
fraction could be considered as the dividing line between the inertial and
elastic-quasistatic regimes of flow.

13.3.3 Flow regime boundaries

Finally, we include as figure 13.5, a typical flow regime map as constructed
by Campbell (2003) from this computer-modeled rheological information.
The regimes are indicated in a map of the overburden or dimensionless
stress plotted against the parameter K/ρSD

3γ̇2 and the results show the
progression at fixed overburden from the elastic-quasistatic regime at low
shear rates to the inertial regime. Campbell also indicates that part of the
inertial regime in which the flow is purely collisional (rapid granular flow).
This occurs at low overburdens but at sufficiently high shear rates that rapid
granular flows are uncommon in practice though they have been generated
in a number of experimental shear cell devices.

Figure 13.5. Typical flow regime map for uniform shear flow in a plot
of the dimensionless overburden or normal stress against the parameter,
K/ρSD

3 γ̇2, as determined from the fixed normal stress computer simula-
tions of Campbell (2003) (for the case of a friction coefficient of μ∗ = 0.5
and a coefficient of restitution of ε = 0.7).
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13.4 SLOW GRANULAR FLOW

13.4.1 Equations of motion

All of the early efforts to understand granular flow neglected the random
kinetic energy of the particles, the granular temperature, and sought to
construct equations for the motion as extrapolations of the theories of soil
mechanics by including the mean or global inertial effects in the equations of
motion. We now recognize that, if these constructs are viable, they apply to
the elastic-quasistatic regime of slow granular motion. Notable among these
theories were those who sought to construct effective continuum equations
of motion for the granular material beginning with

D(ρSα)
Dt

+ ρSα
∂ui

∂xi
= 0 (13.6)

ρSα
Duk

Dt
= ρSαgk − ∂σki

∂xi
(13.7)

where equation 13.6 is the continuity equation 1.25 and equation 13.7 is
the momentum equation (equation 1.46 for a single phase flow). It is then
assumed that the stress tensor is quasistatic and determined by conventional
soil mechanics constructs. A number of models have been suggested but here
we will focus on the most commonly used approach, namely Mohr-Coulomb
models for the stresses.

13.4.2 Mohr-Coulomb models

As a specific example, the Mohr-Coulomb-Jenike-Shield model (Jenike and
Shield 1959) utilizes a Mohr’s circle diagram to define a yield criterion and it
is assumed that once the material starts to flow, the stresses must continue to
obey that yield criterion. For example, in the flow of a cohesionless material,
one might utilize a Coulomb friction yield criterion in which it is assumed
that the ratio of the principal shear stress to the principal normal stress
is simply given by the internal friction angle, φ, that is considered to be a
material property. In a two-dimensional flow, for example, this would imply
the following relation between the stress tensor components:{(

σxx − σyy

2

)2

+ σ2
xy

} 1
2

= −sinφ
(
σxx + σyy

2

)
(13.8)

where the left hand side would be less than the right in regions where the
material is not flowing or deforming.
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However, equations 13.6, 13.7, and 13.8, are insufficient and must be sup-
plemented by at least two further relations. In the Mohr-Coulomb-Jenike-
Shield model, an assumption of isotropy is also made; this assumes that
the directions of principal stress and principal strain rate correspond. For
example, in two-dimensional flow, this implies that

σxx − σyy

σxy
=

2
(

∂u
∂x − ∂v

∂y

)
∂u
∂y + ∂v

∂x

(13.9)

It should be noted that this part of the model is particularly suspect since
experiments have shown substantial departures from isotropy. Finally one
must also stipulate some relation for the solids fraction α and typically this
has been considered a constant equal to the critical solids fraction or to the
maximum shearable solids fraction. This feature is also very questionable
since even slow flows such as occur in hoppers display substantial decreases
in α in the regions of faster flow.

13.4.3 Hopper flows

Despite the above criticisms, Mohr-Coulomb models have had some notable
successes particularly in their application to flows in hoppers. Savage (1965,
1967), Morrison and Richmond (1976), Brennen and Pearce (1978), Nguyen
et al.(1979), and others utilized Mohr-Coulomb models (and other variants)
to find approximate analytical solutions for the flows in hoppers, both con-
ical hoppers and two-dimensional hopper flows. Several types of hopper are

Figure 13.6. Some hopper geometries and notation. Left: a mass flow
hopper. Right: funnel flow.
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Figure 13.7. Dimensionless discharge, V/(gdo)
1
2 (do is the opening width

and V is the volume-averaged opening velocity), for flows in conical hoppers
of various hopper opening angles, θw. Experimental data for the flows of
glass beads (internal friction angle, φ = 25o, wall friction angle of 15o) in
two sizes of hopper are compared with the Mohr-Coulomb-Jenike-Shield
calculations of Nguyen et al.(1979) using internal friction angles of 20o and
25o.

shown in figure 13.6. In narrow mass flow hoppers with small opening angles,
θw, these solutions yield flow rates that agree well with the experimentally
measured values for various values of θw, various internal friction angles and
wall friction angles. An example of the comparison of calculated and exper-
imental flow rates is included in figure 13.7. These methods also appear to
yield roughly the right wall stress distributions. In addition note that both
experimentally and theoretically the flow rate becomes independent of the
height of material in the hopper once that height exceeds a few opening
diameters; this result was explored by Janssen (1895) in one of the earliest
papers dealing with granular flow.

Parenthetically, we note even granular flows as superficially simple as flows
in hoppers can be internally quite complex. For example, it is only for nar-
row hoppers that even low friction granular materials manifest mass flow.
At larger hopper angles and for more frictional materials, only an internal
funnel of the granular material actually flows (see figure 13.6) and the mate-
rial surrounding that funnel remains at rest. Funnel flows are of considerable
practical interest (see, for example, Jenike 1964, Johanson and Colijin 1964)
and a substantial literature exists for the heuristic determination of the con-
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Figure 13.8. Long exposure photographs of typical granular flows in hop-
pers showing the streamlines in the flowing material. Left: flow of sand
without stagnant regions. Right: a funnel flow of rice with stagnant re-
gions. From Nguyen et al.(1980).

ditions under which they occur; for a study of the conditions that determine
these various flow patterns see Nguyen et al.(1980). One interpretation of
funnel flow is that the stress state within the funnel is sufficient to allow
dilation of the material and therefore flow whereas the surrounding stag-
nant material has a stress state in which the solids fraction remains above
the critical. It should be possible to generate computer simulations of these
complex flows that predict the boundaries between the shearing and non-
shearing regions in a granular flow. However, it is clear that some of the
experimentally observed flows are even more complex than implied by the
above description. With some materials the flow can become quite unsteady;
for example, Lee et al. (1974) observed the flow in a two-dimensional hopper
to oscillate from side to side with the alternating formation of yield zones
within the material.

13.5 RAPID GRANULAR FLOW

13.5.1 Introduction

Despite the uncommon occurence of truly rapid granular flow, it is valuable
to briefly review the substantial literature of analytical results that have
been generated in this field. At high shear rates, the inertia of the ran-
dom motions that result from particle-particle and particle-wall collisions
becomes a key feature of the rheology. Those motions can cause a dilation
of the material and the granular material begins to behave like a molecu-
lar gas. In such a flow, as in kinetic theory, the particle velocities can be
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decomposed into time averaged and fluctuating velocity components. The
energy associated with the random or fluctuating motions is represented by
the granular temperature, T , analogous to the thermodynamic temperature.
Various granular temperatures may be defined depending on whether one in-
cludes the random energy associated with rotational and vibrational modes
as well as the basic translational motions. The basic translational granular
temperature used herein is defined as

T =
1
3

(
< Ù2

1 > + < Ù2
2 > + < Ù2

3 >
)

(13.10)

where Ùi denotes the fluctuating velocity with a zero time average and < >

denotes the ensemble average. The kinetic theory of granular material is
complicated in several ways. First, instead of tiny point molecules it must
contend with a large solids fraction that inhibits the mean free path or flight
of the particles. The large particle size also means that momentum is trans-
ported both through the flight of the particles (the streaming component of
the stress tensor) and by the transfer of momentum from the center of one
particle to the center of the particle it collides with (the collisional compo-
nent of the stress tensor). Second, the collisions are inelastic and therefore
the velocity distributions are not necessarily Maxwellian. Third, the finite
particle size means that there may be a significant component of rotational
energy, a factor not considered in the above definition. Moreover, the im-
portance of rotation necessarily implies that the communication of rotation
from one particle to another may be important and so the tangential friction
in particle-particle and particle-wall collisions will need to be considered. All
of this means that the development of a practical kinetic theory of granular
materials has been long in development.

Early efforts to construct the equations governing rapid granular flow
followed the constructs of Bagnold (1954); though his classic experimental
observations have recently come under scrutiny (Hunt et al. 2002), his qual-
itative and fundamental understanding of the issues remains valid. Later
researchers, building on Bagnold’s ideas, used the concept of granular tem-
perature in combination with heuristic but insightful assumptions regarding
the random motions of the particles (see, for example, McTigue 1978, Ogawa
et al. 1980, Haff 1983, Jenkins and Richman 1985, Nakagawa 1988, Babic
and Shen 1989) in attempts to construct the rheology of rapid granular flows.
Ogawa et al. (1978, 1980), Haff (1983) and others suggested that the global
shear and normal stresses, τs and τn, are given by

τs = fs(α)ρSγ̇T
1
2 and τn = fn(α)ρST (13.11)
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where fs and fn are functions of the solid fraction, α, and some properties
of the particles. Clearly the functions, fs and fn, would have to tend to zero
as α→ 0 and become very large as α approaches the maximum shearable
solids fraction. The constitutive behavior is then completed by some relation
connecting T , α and, perhaps, other flow properties. Though it was later
realized that the solution of a granular energy equation would be required to
determine T , early dimensional analysis led to speculation that the granular
temperature was just a local function of the shear rate, γ̇ and that T

1
2 ∝ Dγ̇.

With some adjustment in fs and fn this leads to

τs = fs(α)ρSD
2γ̇2 and τn = fn(α)ρSD

2γ̇2 (13.12)

which implies that the effective friction coefficient, τs/τn should only be a
function of α and the particle characteristics.

13.5.2 Example of rapid flow equations

Later, the work of Savage and Jeffrey (1981) and Jenkins and Savage (1983)
saw the beginning of a more rigorous application of kinetic theory methods
to rapid granular flows and there is now an extensive literature on the sub-
ject (see, for example, Gidaspow 1994). The kinetic theories may be best
exemplified by quoting the results of Lun et al. (1984) who attempted to
evaluate both the collisional and streaming contributions to the stress tensor
(since momentum is transported both by the collisions of finite-sized parti-
cles and by the motions of the particles). In addition to the continuity and
momentum equations, equations 13.6 and 13.7, an energy equation must be
constructed to represent the creation, transport and dissipation of granular
heat; the form adopted is

3
2
ρSα

DT

Dt
= − ∂qi

∂xi
+
∂uj

∂xi
σji − Γ (13.13)

where T is the granular temperature, qi is the granular heat flux vector, and
Γ is the rate of dissipation of granular heat into thermodynamic heat per
unit volume. Note that this represents a balance between the granular heat
stored in a unit volume (the lefthand side), the conduction of granular heat
into the unit volume (first term on RHS), the generation of granular heat
(second term on RHS) and the dissipation of granular heat (third term on
RHS).

Most of the kinetic theories begin in this way but vary in the expressions
obtained for the stress/strain relations, the granular heat flux and the dissi-
pation term. As an example we quote here the results from the kinetic theory
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of Lun et al. (1984) that have been subsequently used by a number of au-
thors. Lun et al. obtain a stress tensor related to the granular temperature,
T (equation 13.10), by

σij =

(
ρSg1T − 4π

1
2

3
ρSα

2(1 + ε)g0T
1
2
∂ui

∂xi

)
δij

−2ρSDg2T
1
2

(
1
2
(uij + uji) − 1

3
ukkδij

)
(13.14)

an expression for the granular heat flux vector,

qi = −ρSD

(
g3T

1
2
∂T

∂xi
+ g4T

3
2
∂α

∂xi

)
(13.15)

and an expression for the rate of dissipation of granular heat,

Γ = ρSg5T
3
2/D (13.16)

where g0(α), the radial distribution function, is chosen to be

g0 = (1 − α/α∗)−2.5α∗
(13.17)

and α∗ is the maximum shearable solids fraction. In the expressions 13.14,
13.15, and 13.16, the quantities g1, g2, g3, g4, and g5, are functions of α and
ε as follows:

g1(α, ε) = α+ 2(1 + ε)α2g0

g2(α, ε) =
5π

1
2

96

(
1

η(2− η)g0
+

8(3η− 1)α
5(2 − α)

+
64ηα2g0

25

(
(3η − 2)
(2 − η)

+
12
π

))

g3(α, ε) =
25π

1
2

16η(41− 33η)

(
1
g0

+ 2.4ηα(1− 3η + 4η2)

+
16η2α2g0

25
(9η(4η− 3) + 4(41− 33η)/π)

)

g4(α, ε) =
15π

1
2 (2η − 1)(η− 1)
4(41− 33η)

(
1
αg0

+ 2.4η
)
d

dα
(α2g0)

g5(α, ε) =
48η(1− η)α2g0

π
1
2

(13.18)
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Figure 13.9. Left: the shear stress function, fs(α), from the experiments
of Savage and Sayed (1984) with glass beads (symbol I) and various com-
puter simulations (open symbols: with hard particle model; solid symbols:
with soft particle model; half solid symbols: with Monte Carlo methods).
Right: Several analytical results. Adapted from Campbell (1990).

where η = (1 + ε)/2.
For two-dimensional shear flows in the (x, y) plane with a shear ∂u/∂y

and no acceleration in the x direction the Lun et al. relations yield stresses
given by:

σxx = σyy = ρSg1T ; σxy = −ρSDg2T
1
2
∂u

∂y
(13.19)

in accord with the expressions 13.11. They also yield a granular heat flux
component in the y direction given by:

qy = ρSD

(
g3T

1
2
∂T

∂y
+ g4T

3
2
∂α

∂y

)
(13.20)

These relations demonstrate the different roles played by the quantities g1,
g2, g3, g4, and g5: g1 determines the normal kinetic pressure, g2 governs the
shear stress or viscosity, g3 and g4 govern the diffusivities controlling the
conduction of granular heat from regions of differing temperature and den-
sity and g5 determines the granular dissipation. While other kinetic theories
may produce different specific expressions for these quantities, all of them
seem necessary to model the dynamics of a rapid granular flow.

Figure 13.9 shows typical results for the shear stress function, fs(α). The
lefthand graph includes the data of Savage and Sayed (1984) from shear
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cell experiments with glass beads as well as a host of computer simulation
results using both hard and soft particle models and both mechanistic and
Monte Carlo methods. The righthand graph presents some corresponding
analytical results. The stress states to the left of the minima in these figures
are difficult to observe experimentally, probably because they are unstable
in most experimental facilities.

In summary, the governing equations, exemplified by equations 13.6, 13.7
and 13.13 must be solved for the unknowns, α, T and the three velocity
components, ui given the expressions for σij , qi and Γ and the physical
constants D, ρS, ε, α∗ and gravity gk.

It was recognized early during research into rapid granular flows that some
modification to the purely collisional kinetic theory would be needed to ex-
tend the results towards lower shear rates at which frictional stresses become
significant. A number of authors explored the consequences of heuristically
adding frictional terms to the collisional stress tensor (Savage 1983, John-
son et al., 1987, 1990) though it is physically troubling to add contributions
from two different flow regimes.

13.5.3 Boundary conditions

Rheological equations like those given above, also require the stipulation
of appropriate boundary conditions and it transpires this is a more diffi-
cult issue than in conventional fluid mechanics. Many granular flows change
quite drastically with changes in the boundary conditions. For example, the
shear cell experiments of Hanes and Inman (1985) yielded stresses about
three times those of Savage and Sayed (1984) in a very similar apparatus;
the modest differences in the boundary roughnesses employed seem to be
responsible for this discrepancy. Moreover, computer simulations in which
various particle-wall interaction models have been examined (for example,
Campbell and Brennen, 1985a,b) exhibit similar sensitivities. Though the
normal velocity at a solid wall must necessarily be zero, the tangential veloc-
ities may be non-zero due to wall slip. Perhaps a Coulomb friction condition
on the stresses is appropriate. But one must also stipulate a wall boundary
condition on the granular temperature and this is particularly complicated
for wall slip will imply that work is being done by the wall on the granular
material so that the wall is a source of granular heat. At the same time,
the particle-wall collisions dissipate energy; so the wall could be either a
granular heat source or sink. The reader is referred to the work of Hui et al.
(1984), Jenkins and Richman (1986), Richman (1988) and Campbell (1993)
for further discussion of the boundary conditions.
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13.5.4 Computer simulations

Computer simulations have helped to elucidate the rheology of rapid gran-
ular flows and allowed evaluation of some of the approximations inherent in
the theoretical kinetic theory models. For example, the shape of the fluc-
tuation velocity distributions begins to deviate from Maxwellian and the
velocity fluctuations become more and more non-isotropic as the solids frac-
tion approaches the maximum shearable value. These kinds of details require
computer simulations and were explored, for example in the hard particle
simulations of shear and chute flows by Campbell and Brennen (1985a,b).
More generally, they represent the kinds of organized microstructure that
can characterize granular flows close to the maximum shearable solids frac-
tion. Campbell and Brennen (1985a) found that developing microstructure
could be readily detected in these shear flow simulations and was manifest
in the angular distribution of collision orientations within the shear flow. It
is also instructive to observe other phenomenon in the computer simulations
such as the conduction of granular temperature that takes place near the
bed of a chute flow and helps establish the boundary separating a shearing
layer of subcritical solids fraction from the non-shearing, high solids fraction
block riding on top of that shearing layer (Campbell and Brennen, 1985b).

13.6 EFFECT OF INTERSTITIAL FLUID

13.6.1 Introduction

All of the above analysis assumed that the effect of the interstitial fluid was
negligible. When the fluid dynamics of the interstitial fluid have a signifi-
cant effect on the granular flow, analysis of the rheology becomes even more
complex and our current understanding is quite incomplete. It was Bagnold
(1954) who first attempted to define those circumstances in which the inter-
stitial fluid would begin to effect the rheology of a granular flow. Bagnold
introduced a parameter that included the following dimensionless quantity

Ba = ρSD
2γ̇/μL (13.21)

where γ̇ is the shear rate; we will refer to Ba as the Bagnold number. It is
simply a measure of the stresses communicated by particle-particle collisions
(given according to kinetic theory ideas by ρSV

2 where V is the typical
random velocity of the particles that, in turn, is estimated to be given by
V = Dγ̇) to the viscous stress in the fluid, μLγ̇. Bagnold concluded that
when the value of Ba was less than about 40, the viscous fluid stresses
dominate and the mixture exhibits a Newtonian rheology in which the shear
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stress and the strain rate (γ̇) are linearly related; he called this the viscous
regime. On the other hand when Ba is greater than about 400, the direct
particle-particle (and particle-wall) interactions dominate and the stresses
become proportional to the square of the strain rate. The viscous regime can
be considered the dense suspension regime and many other sections of this
book are relevant to those circumstances in which the direct particle-particle
and particle-wall interactions play a minor role in the mixture rheology. In
this chapter we have focused attention on the other limit in which the effect
of the interstitial fluid is small and the rheology is determined by the direct
interactions of the particles with themselves and with the walls.

13.6.2 Particle collisions

A necessary prerequisite for the understanding of interstitial fluid effects on
granular material flows is the introduction of interstitial fluid effects into
particle/particle interaction models such as that described in section 13.2.
But the fluid mechanics of two particles colliding in a viscous fluid is itself
a complicated one because of the coupling between the intervening lubrica-
tion layer of fluid and the deformation of the solid particles (Brenner 1961,
Davis et al. 1986, Barnocky and Davis 1988). Joseph et al.(2001) have re-
cently accumulated extensive data on the coefficient of restitution for spheres
(diameter, D, and mass, mp) moving through various liquids and gases to
collide with a solid wall. As demonstrated in figure 13.10, this data shows
that the coefficient of restitution for collision normal to the wall is primarily
a function of the Stokes number, St, defined as St = 2mpV/3πμD2 where μ
is the viscosity of the suspending fluid and V is the velocity of the particle
before it begins to be slowed down by interaction with the wall. The data
shows a strong correlation with St and agreement with the theoretical calcu-
lations of Davis et al. (1986). It demonstrates that the effect of the interstitial
fluid causes a decrease in the coefficient of restitution with decreasing Stokes
number and that there is a critical Stokes number of about 8 below which
particles do not rebound but come to rest against the wall. It is also evident
in figure 13.10 that some of the data, particularly at low St shows significant
scatter. Joseph et al. were able to show that the magnitude of the scatter
depended on the relation between the size of the typical asperities on the
surface of the particles and the estimated minimum thickness of the film
of liquid separating the particle and the wall. When the former exceeded
the latter, large scatter was understandably observed. Joseph (2003) also
accumulated data for oblique collisions that appear to manifest essentially
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Figure 13.10. Coefficients of restitution for single particles colliding nor-
mally with a thick Zerodur wall. The particles are spheres of various diame-
ters and materials suspended in air, water and water/glycerol mixtures. The
experimental data of Joseph et al. (2001) is plotted versus the Stokes num-
ber, St. Also shown are the theoretical predictions of Davis et al. (1986).

the same dependence of the coefficient of restitution on the Stokes number
(based on the normal approach velocity, V ) as the normal collisions. He
also observed characteristics of the tangential interaction that are similar to
those elucidated by Maw et al.(1976, 1981) for dry collisions.

Parenthetically, we note that the above descriptions of particle-particle
and particle-wall interactions with interstitial fluid effects were restricted
to large Stokes numbers and would allow the adaptation of kinetic theory
results and simulations to those circumstances in which the interstitial fluid
effects are small. However, at lower Stokes and Reynolds number, the inter-
stitial fluid effects are no longer small and the particle interactions extend
over greater distances. Even, though the particles no longer touch in this
regime, their interactions create a more complex multiphase flow, the flow
of a concentrated suspension that is challenging to analyze (Sangani et al.
1996). Computer simulations have been effectively used to model this rhe-
ology (see, for example, Brady 2001) and it is interesting to note that the
concept of granular temperature also has value in this regime.
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13.6.3 Classes of interstitial fluid effects

We should observe at this point that there clearly several classes of intersti-
tial fluid effects in the dynamics of granular flows. One class of interstitial
fluid effect involves a global bulk motion of the interstitial fluid relative to
the granular material; these flows are similar to the flow in a porous medium
(though one that may be deforming). An example is the flow that is driven
through a packed bed in the saltation flow regime of slurry flow in a pipe
(see section 8.2.3). Because of a broad data base of porous media flows,
these global flow effects tend to be easier to understand and model though
they can still yield unexpected results. An interesting example of unexpected
results is the flow in a vertical standpipe (Ginestra et al. 1980).

Subtler effects occur when there is no such global relative flow, but there
are still interstitial fluid effects on the random particle motions and on the
direct particle-particle interactions. One such effect is the transition from
inertially-dominated to viscously-dominated shear flow originally investi-
gated by Bagnold (1954) and characterized by a critical Bagnold number,
a phenomena that must still occur despite the criticism of Bagnold’s rheo-
logical results by Hunt et al.(2002). We note a similar transition has been
observed to occur in hopper flows, where Zeininger and Brennen (1985)
found that the onset of viscous interstitial fluid effects occurred at a con-
sistent critical Bagnold number based on the extensional deformation rate
rather than the shear rate.

Consequently, though most of these subtler interstitial fluid effects remain
to be fully explored and understood, there are experimental results that pro-
vide some guidance, albeit contradictory at times. For example, Savage and
McKeown (1983) and Hanes and Inman (1985) both report shear cell experi-
ments with particles in water and find a transition from inertially-dominated
flow to viscous-dominated flow. Though Hanes and Inman observed behavior
similar to Bagnold’s experiments, Savage and McKeown found substantial
discrepancies.

Several efforts have been made to develop kinetic theory models that
incorporate interstitial fluid effects. Tsao and Koch (1995) and Sangani et
al.(1996) have explored theoretical kinetic theories and simulations in the
limit of very small Reynolds number (ρC γ̇D

2/μC � 1) and moderate Stokes
number (mpγ̇/3πDμC - note that if, as expected, V is given roughly by
γ̇D then this is similar to the Stokes number, St, used in section 13.6.2).
They evaluate an additional contribution to Γ, the dissipation in equation
13.13, due to the viscous effects of the interstitial fluid. This supplements
the collisional contribution given by a relation similar to equation 13.16. The
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problem is that flows with such Reynolds numbers and Stokes numbers are
very rare. Very small Reynolds numbers and finite Stokes numbers require a
large ratio of the particle density to the fluid density and therefore apply only
to gas-solids suspensions. Gas-solids flows with very low Reynolds numbers
are rare. Most dense suspension flows occur at higher Reynolds numbers
where the interstitial fluid flow is complex and often turbulent. Consequently
one must face the issues of the effect of the turbulent fluid motions on
the particle motion and granular temperature and, conversely, the effect
those particle motions have on the interstitial fluid turbulence. When there
is substantial mean motion of the interstitial fluid through the granular
material, as in a fluidized bed, that mean motion can cause considerable
random motion of the particles coupled with substantial turbulence in the
fluid. Zenit et al. (1997) have measured the granular temperature generated
in such a flow; as expected this temperature is a strong function of the solids
fraction, increasing from low levels at low solids fractions to a maximum and
then decreasing again to zero at the maximum solids fraction,αm (see section
14.3.2). The granular temperature is also a function of the density ratio,
ρC/ρD. Interestingly, Zenit et al. find that the granular temperature sensed
at the containing wall has two components, one due to direct particle-wall
collisions and the other a radiative component generated by particle-particle
collisions within the bulk of the bed.
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