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SYSTEM INSTABILITIES

15.1 INTRODUCTION

One of the characteristics of multiphase flows with which the engineer has to
contend is that they often manifest instabilities that have no equivalent in
single phase flow (see, for example, Boure et al. 1973, Ishii 1982, Gouesbet
and Berlemont 1993). Often the result is the occurence of large pressure,
flow rate or volume fraction oscillations that, at best, disrupt the expected
behavior of the multiphase flow system (and thus decrease the reliability
and life of the components, Makay and Szamody 1978) and, at worst, can
lead to serious flow stoppage or structural failure (see, for example, NASA
1970, Wade 1974). Moreover, in many systems (such as pump and turbine
installations) the trend toward higher rotational speeds and higher power
densities increases the severity of the problem because higher flow velocities
increase the potential for fluid/structure interaction problems. This chapter
will focus on internal flow systems and the multiphase flow instabilities that
occur in them.

15.2 SYSTEM STRUCTURE

In the discussion and analysis of system stability, we shall consider that the
system has been divided into its components, each identified by its index, k,
as shown in figure 15.1 where each component is represented by a box. The
connecting lines do not depict lengths of pipe which are themselves com-
ponents. Rather the lines simply show how the components are connected.
More specifically they represent specific locations at which the system has
been divided up; these points are called the nodes of the system and are
denoted by the index, i.

Typical and common components are pipeline sections, valves, pumps,
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Figure 15.1. Flow systems broken into components.

Figure 15.2. Typical component characteristics, ΔpT
k (ṁk).

turbines, accumulators, surge tanks, boilers, and condensers. They can be
connected in series and/or in parallel. Systems can be either open loop or
closed loop as shown in figure 15.1. The mass flow rate through a component
will be denoted by ṁk and the change in the total head of the flow across
the component will be denoted by ΔpT

k defined as the total pressure at inlet
minus that at discharge. (When the pressure ratios are large enough so that
the compressibility of one or both of the phases must be accounted for, the
analysis can readily be generalized by using total enthalpy rather than total
pressure.) Then, each of the components considered in isolation will have a
performance characteristic in the form of the function ΔpT

k (ṁk) as depicted
graphically in figure 15.2. We shall see that the shapes of these character-
istics are important in identifying and analysing system instabilities. Some
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Figure 15.3. Typical system characteristic, ΔpT
s (ṁs), and operating point.

of the shapes are readily anticipated. For example, a typical single phase
flow pipe section (at higher Reynolds numbers) will have a characteristic
that is approximately quadratic with ΔpT

k ∝ ṁ2
k. Other components such as

pumps, compressors or fans may have quite non-monotonic characteristics.
The slope of the characteristic, R∗

k, where

R∗
k =

1
ρg

dΔpT
k

dṁk
(15.1)

is known as the component resistance. However, unlike many electrical com-
ponents, the resistance of most hydraulic components is almost never con-
stant but varies with the flow, ṁk.

Components can readily be combined to obtain the characteristic of
groups of neighboring components or the complete system. A parallel com-
bination of two components simply requires one to add the flow rates at
the same ΔpT , while a series combination simply requires that one add the
ΔpT values of the two components at the same flow rate. In this way one
can synthesize the total pressure drop, ΔpT

s (ṁs), for the whole system as a
function of the flow rate, ṁs. Such a system characteristic is depicted in fig-
ure 15.3. For a closed system, the equilibrium operating point is then given
by the intersection of the characteristic with the horizontal axis since one
must have ΔpT

s = 0. An open system driven by a total pressure difference of
ΔpT

d (inlet total pressure minus discharge) would have an operating point
where the characteristic intersects the horizontal line at ΔpT

s = ΔpT
d . Since

these are trivially different we can confine the discussion to the closed loop
case without any loss of generality.

In many discussions, this system equilibrium is depicted in a slightly dif-
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Figure 15.4. Alternate presentation of figure 15.3.

ferent but completely equivalent way by dividing the system into two series
elements, one of which is the pumping component, k = pump, and the other
is the pipeline component, k = line. Then the operating point is given by
the intersection of the pipeline characteristic, ΔpT

line, and the pump charac-
teristic, −ΔpT

pump, as shown graphically in figure 15.4. Note that since the
total pressure increases across a pump, the values of −ΔpT

pump are normally
positive. In most single phase systems, this depiction has the advantage
that one can usually construct a series of quadratic pipeline characteristics
depending on the valve settings. These pipeline characteristics are usually
simple quadratics. On the other hand the pump or compressor characteristic
can be quite complex.

15.3 QUASISTATIC STABILITY

Using the definitions of the last section, a quasistatic analysis of the stabil-
ity of the equilibrium operating point is usually conducted in the following
way. We consider perturbing the system to a new mass flow rate dṁ greater
than that at the operating point as shown in figure 15.4. Then, somewhat
heuristically, one argues from figure 15.4 that the total pressure rise across
the pumping component is now less than the total pressure drop across the
pipeline and therefore the flow rate will decline back to its value at the oper-
ating point. Consequently, the particular relationship of the characteristics
in figure 15.4 implies a stable operating point. If, however, the slopes of the
two components are reversed (for example, Pump B of figure 15.5(a) or the
operating point C of figure 15.5(b)) then the operating point is unstable
since the increase in the flow has resulted in a pump total pressure that now
exceeds the total pressure drop in the pipeline. These arguments lead to the
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Figure 15.5. Quasistatically stable and unstable flow systems.

conclusion that the operating point is stable when the slope of the system
characteristic at the operating point (figure 15.3) is positive or

dΔpT
s

dṁs
> 0 or R∗

s > 0 (15.2)

The same criterion can be derived in a somewhat more rigorous way by
using an energy argument. Note that the net flux of flow energy out of each
component is ṁkΔpT

k . In a straight pipe this energy is converted to heat
through the action of viscosity. In a pump ṁk(−ΔpT

k ) is the work done on
the flow by the pump impeller. Thus the net energy flux out of the whole
system is ṁsΔpT

s and, at the operating point, this is zero (for simplicity we
discuss a closed loop system) since ΔpT

s = 0. Now, suppose, that the flow
rate is perturbed by an amount dṁs. Then, the new net energy flux out of
the system is ΔE where

ΔE = (ṁs + dṁs)
{

ΔpT
s + dṁs

dΔpT
s

dṁs

}
≈ ṁsdṁs

dΔpT
s

dṁs
(15.3)

Then we argue that if dṁs is positive and the perturbed system therefore
dissipates more energy, then it must be stable. Under those circumstances
one would have to add to the system a device that injected more energy
into the system so as to sustain operation at the perturbed state. Hence the
criterion 15.2 for quasistatic stability is reproduced.
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15.4 QUASISTATIC INSTABILITY EXAMPLES

15.4.1 Turbomachine surge

Perhaps the most widely studied instabilities of this kind are the surge insta-
bilities that occur in pumps, fans and compressors when the turbomachine
has a characteristic of the type shown in figure 15.5(b). When the machine is
operated at points such as A the operation is stable. However, when the tur-
bomachine is throttled (the resistance of the rest of the system is increased),
the operating point will move to smaller flow rates and, eventually, reach the
point B at which the system is neutrally stable. Further decrease in the flow
rate will result in operating conditions such as the point C that are qua-
sistatically unstable. In compressors and pumps, unstable operation results
in large, limit-cycle oscillations that not only lead to noise, vibration and
lack of controllability but may also threaten the structural integrity of the
machine. The phenomenon is known as compressor, fan or pump surge and
for further details the reader is referred to Emmons et al.(1955), Greitzer
(1976, 1981) and Brennen (1994).

15.4.2 Ledinegg instability

Two-phase flows can exhibit a range of similar instabilities. Usually, however,
the instability is the result of a non-monotonic pipeline characteristic rather
than a complex pump characteristic. Perhaps the best known example is the

Figure 15.6. Sketch illustrating the Ledinegg instability.
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Ledinegg instability (Ledinegg 1983) which is depicted in figure 15.6. This
occurs in boiler tubes through which the flow is forced either by an imposed
pressure difference or by a normally stable pump as sketched in figure 15.6. If
the heat supplied to the boiler tube is roughly independent of the flow rate,
then, at high flow rates, the flow will remain mostly liquid since, as discussed
in section 8.3.2, dX/ds is inversely proportional to the flow rate (see equation
8.24). Therefore X remains small. On the other hand, at low flow rates, the
flow may become mostly vapor since dX/ds is large. In order to construct
the ΔpT

k (ṁk) characteristic for such a flow it is instructive to begin with
the two hypothetical characteristics for all-vapor flow and for all-liquid flow.
The rough form of these are shown in figure 15.6; since the frictional losses
at high Reynolds numbers are proportional to ρu2 = ṁ2

k/ρ, the all-vapor
characteristic lies above the all-liquid line because of the different density.
However, as the flow rate, ṁk, increases, the actual characteristic must make
a transition from the all-vapor line to the all-liquid line, and may therefore
have the non-monotonic form sketched in figure 15.6. This may lead to
unstable operating points such the point O. This is the Ledinegg instability
and is familiar to most as the phenomenon that occurs in a coffee percolator.

15.4.3 Geyser instability

The geyser instability that is so familiar to visitors to Yellowstone National
Park and other areas of geothermal activity, has some similarities to the
Ledinegg instability, but also has important differences. It has been studied
in some detail in smaller scale laboratory experiments (see, for example,
Nakanishi et al. 1978) where the parametric variations are more readily
explored.

The geyser instability requires the basic components sketched in figure
15.7, namely a buried reservoir that is close to a large heat source, a vertical
conduit and a near-surface supply of water that can drain into the conduit
and reservoir. The geyser limit cycle proceeds as follows. During the early
dormant phase of the cycle, the reservoir and conduit are filled with water
that is being heated by the geothermal source. Once the water begins to boil
the vapor bubbles rise up through the conduit. The hydrostatic pressure in
the conduit and reservoir then drop rapidly due to the reduced mixture
density in the conduit. This pressure reduction leads to explosive boiling
and the eruption so widely publicized by Old Faithful. The eruption ends
when almost all the water in the conduit and reservoir has been ejected.
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Figure 15.7. Left: The basic components for a geyser instability. Right:
Laboratory measurements of geysering period as a function of heat supply
(200W : �, 330W : ©, 400W : �) from experiments (open symbols) and
numerical simulations (solid symbols). Adapted from Tae-il et al. (1993).

The reduced flow then allows sub-cooled water to drain into and refill the
reservoir and conduit. Due to the resistance to heat transfer in the rock
surrounding the reservoir, there is a significant time delay before the next
load of water is heated to boiling temperatures. The long cycle times are
mostly the result of low thermal conductivity of the rock (or other solid
material) surrounding the reservoir and the consequent low rate of transfer
of heat available to heat the sub-cooled water to its boiling temperature.

The dependence of the geysering period on the strength of the heat source
and on the temperature of the sub-cooled water in the water supply is exem-
plified in figure 15.7 which presents results from the small scale laboratory
experiments of Tae-il et al. (1993). That figure includes both the experimen-
tal data and the results of a numerical simulation. Note that, as expected,
the geysering period decreases with increase in the strength of the heat
source and with the increase in the temperature of the water supply.

15.5 CONCENTRATION WAVES

There is one phenomenon that is sometimes listed in discussions of multi-
phase flow instabilities even though it is not, strictly speaking, an instability.
We refer to the phenomenon of concentration wave oscillations and it is valu-
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Figure 15.8. Sketch illustrating a concentration wave (density wave) oscillation.

able to include mention of the phenomenon here before proceeding to more
complex matters.

Often in multiphase flow processes, one encounters a circumstance in
which one part of the circuit contains a mixture with a concentration that is
somewhat different from that in the rest of the system. Such an inhomogene-
ity may be created during start-up or during an excursion from the normal
operating point. It is depicted in figure 15.8, in which the closed loop has
been arbitrarily divided into a pipeline component and a pump component.
As indicated, a portion of the flow has a mass quality that is larger by ΔX
than the mass quality in the rest of the system. Such a perturbation could
be termed a concentration wave though it is also called a density wave or a
continuity wave; more generally, it is known as a kinematic wave (see chap-
ter 16). Clearly, the perturbation will move round the circuit at a speed that
is close to the mean mixture velocity though small departures can occur in
vertical sections in which there is significant relative motion between the
phases. The mixing processes that would tend to homogenize the fluid in
the circuit are often quite slow so that the perturbation may persist for an
extended period.

It is also clear that the pressures and flow rates may vary depending
on the location of the perturbation within the system. These fluctuations
in the flow variables are termed concentration wave oscillations and they
arise from the inhomogeneity of the fluid rather than from any instability
in the flow. The characteristic frequency of the oscillations is simply related
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to the time taken for the flow to complete one circuit of the loop (or some
multiple if the number of perturbed fluid pockets is greater than unity). This
frequency is usually small and its calculation often allows identification of
the phenomenon.

One way in which concentration oscillations can be incorporated in the
graphical presentation we have used in this chapter is to identify the compo-
nent characteristics for both the mass quality, X , and the perturbed quality,
X + ΔX , and to plot them using the volume flow rate rather than the mass
flow rate as the abscissa. We do this because, if we neglect the compressibil-
ity of the individual phases, then the volume flow rate is constant around the
circuit at any moment in time, whereas the mass flow rate differs according
to the mass quality. Such a presentation is shown in figure 15.8. Then, if the
perturbed body of fluid were wholly in the pipeline section, the operating
point would be close to the point A. On the other hand, if the perturbed
body of fluid were wholly in the pump, the operating point would be close
to the point B. Thus we can see that the operating point will vary along a
trajectory such as that shown by the dotted line and that this will result in
oscillations in the pressure and flow rate.

In closing, we should note that concentration waves also play an important
role in other more complex unsteady flow phenomena and instabilities.

15.6 DYNAMIC MULTIPHASE FLOW INSTABILITIES

15.6.1 Dynamic instabilities

The descriptions of the preceding sections were predicated on the frequency
of the oscillations being sufficiently small for all the components to track up
and down their steady state characteristics. Thus the analysis is only appli-
cable to those instabilities whose frequencies are low enough to lie within
some quasistatic range. At higher frequency, the effective resistance could
become a complex function of frequency and could depart significantly from
the quasistatic resistance. It follows that there may be operating points at
which the total dynamic resistance over some range of frequencies is nega-
tive. Then the system would be dynamically unstable even though it may be
quasistatically stable. Such a description of dynamic instability is instructive
but overly simplistic and a more systematic approach to this issue will be de-
tailed in section 15.7. It is nevertheless appropriate at this point to describe
two examples of dynamic instabilities so that reference to these examples
can be made during the description of the transfer function methodology.
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15.6.2 Cavitation surge in cavitating pumps

In many installations involving a pump that cavitates, violent oscillations
in the pressure and flow rate in the entire system can occur when the cavi-
tation number is decreased to a value at which the volume of vapor bubbles
within the pump becomes sufficient to cause major disruption of the flow and
therefore a decrease in the total pressure rise across the pump (see section
8.4.1). While most of the detailed investigations have focused on axial pumps
and inducers (Sack and Nottage 1965, Miller and Gross 1967, Kamijo et al.
1977, Braisted and Brennen 1980) the phenomenon has also been observed
in centrifugal pumps (Yamamoto 1991). In the past this surge phenomenon
was called auto-oscillation though the modern term cavitation surge is more
appropriate. The phenomenon is described in detail in Brennen (1994). It
can lead to very large flow rate and pressure fluctuations. For example in
boiler feed systems, discharge pressure oscillations with amplitudes as high
as 14 bar have been reported informally. It is a genuinely dynamic instability
in the sense described in section 15.6.1, for it occurs when the slope of the
pump total pressure rise/flow rate characteristic is still strongly negative
and the system is therefore quasistatically stable.

As previously stated, cavitation surge occurs when the region of cavitation
head loss is approached as the cavitation number is decreased. Figure 15.9

Figure 15.9. Cavitation performance of a SSME low pressure LOX pump
model showing the approximate boundaries of the cavitation surge region
for a pump speed of 6000 rpm (from Braisted and Brennen 1980). The flow
coefficient, φ1, is based on the impeller inlet area.
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Figure 15.10. Data from Braisted and Brennen (1980) on the ratio of
the frequency of cavitation surge, ωi, to the frequency of shaft rotation, Ω,
for several axial flow pumps: for SSME low pressure LOX pump models:
7.62 cm diameter: × (9000 rpm) and + (12000 rpm), 10.2 cm diameter: �
(4000 rpm) and � (6000 rpm); for 9◦ helical inducers: 7.58 cm diameter:
∗ (9000 rpm): 10.4 cm diameter: � (with suction line flow straightener)
and � (without suction line flow straightener). The flow coefficients, φ1,
are based on the impeller inlet area.

provides an example of the limits of cavitation surge taken from the work
of Braisted and Brennen (1980). However, since the onset is sensitive to the
detailed dynamic characteristics of the system, it would not even be wise
to quote any approximate guideline for onset. Our current understanding
is that the methodologies of section 15.7 are essential for any prediction of
cavitation surge.

Unlike compressor surge, the frequency of cavitation surge, ωi, scales with
the shaft speed of the pump, Ω (Braisted and Brennen 1980). The ratio,
ωi/Ω, varies with the cavitation number, σ (see equation 8.31), the flow
coefficient, φ (see equation 8.30), and the type of pump as illustrated in
figure 15.10. The most systematic variation is with the cavitation number
and it appears that the empirical expression

ωi/Ω = (2σ)
1
2 (15.4)

provides a crude estimate of the cavitation surge frequency. Yamamoto
(1991) demonstrated that the frequency also depends on the length of the
suction pipe thus reinforcing the understanding of cavitation surge as a sys-
tem instability.
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15.6.3 Chugging and condensation oscillations

As a second example of a dynamic instability involving a two-phase flow we
describe the oscillations that occur when steam is forced down a vent into a
pool of water. The situation is sketched in figure 15.11. These instabilities,
forms of which are known as chugging and condensation oscillations, have
been most extensively studied in the context of the design of pressure sup-
pression systems for nuclear reactors (see, for example, Wade 1974, Koch
and Karwat 1976, Class and Kadlec 1976, Andeen and Marks 1978). The
intent of the device is to condense steam that has escaped as a result of
the rupture of a primary coolant loop and, thereby, to prevent the build-
up of pressure in the containment that would have occurred as a result of
uncondensed steam.

The basic components of the system are as shown in figure 15.11 and
consist of a vent or pipeline of length, �, the end of which is submerged
to a depth, h, in the pool of water. The basic instability is illustrated in
figure 15.12. At relatively low steam flow rates the rate of condensation
at the steam/water interface is sufficiently high that the interface remains
within the vent. However, at higher flow rates the pressure in the steam
increases and the interface is forced down and out of the end of the vent.
When this happens both the interface area and the turbulent mixing in
the vicinity of the interface increase dramatically. This greatly increases the

Figure 15.11. Components of a pressure suppression system.
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Figure 15.12. Sketches illustrating the stages of a condensation oscillation.

condensation rate which, in turn, causes a marked reduction in the steam
pressure. Thus the interface collapses back into the vent, often with the same
kind of violence that results from cavitation bubble collapse. Then the cycle
of growth and collapse, of oscillation of the interface from a location inside
the vent to one outside the end of the vent, is repeated. The phenomenon is
termed condensation instability and, depending on the dominant frequency,
the violent oscillations are known as chugging or condensation oscillations
(Andeen and Marks 1978).

The frequency of the phenomenon tends to lock in on one of the natural
modes of oscillation of the system in the absence of condensation. There are
two obvious natural modes. The first, is the manometer mode of the liquid
inside the end of the vent. In the absence of any steam flow, this manometer
mode will have a typical small amplitude frequency, ωm = (g/h)

1
2 , where g is

the acceleration due to gravity. This is usually a low frequency of the order
of 1Hz or less and, when the condensation instability locks into this low
frequency, the phenomenon is known as chugging. The pressure oscillations
resulting from chugging can be quite violent and can cause structural loads
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Figure 15.13. The real part of the input impedance (the input resistance)
of the suppression pool as a function of the perturbation frequency for
several steam flow rates. Adapted from Brennen (1979).

that are of concern to the safety engineer. Another natural mode is the first
acoustic mode in the vent whose frequency, ωa, is approximately given by
πc/� where c is the sound speed in the steam. There are also observations
of lock-in to this higher frequency. The oscillations that result from this are
known as condensation oscillations and tend to be of smaller amplitude than
the chugging oscillations.

Figure 15.13 illustrates the results of a linear stability analysis of the sup-
pression pool system (Brennen 1979) that was carried out using the transfer
function methodology described in section 15.7. Transfer functions were con-
structed for the vent or downcomer, for the phase change process and for
the manometer motions of the pool. Combining these, one can calculate the
input impedance of the system viewed from the steam supply end of the
vent. A positive input resistance implies that the system is absorbing fluc-
tuation energy and is therefore stable; a negative input resistance implies
an unstable system. In figure 15.13, the input resistance is plotted against
the perturbation frequency for several steam flow rates. Note that, at low
steam flow rates, the system is stable for all frequencies. However, as the
steam flow rate is increased, the system first becomes unstable over a narrow
range of frequencies close to the manometer frequency, ωm. Thus chugging is
predicted to occur at some critical steam flow rate. At still higher flow rates,
the system also becomes unstable over a narrow range of frequencies close
to the first vent acoustic frequency, ωa; thus the possibility of condensation
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oscillations is also predicted. Note that the quasistatic input resistance at
small frequencies remains positive throughout and therefore the system is
quasistatically stable for all steam flow rates. Thus, chugging and conden-
sation oscillations are true, dynamic instabilities.

It is, however, important to observe that a linear stability analysis can-
not model the highly non-linear processes that occur during a chug and,
therefore, cannot provide information on the subject of most concern to the
practical engineer, namely the magnitudes of the pressure excursions and
the structural loads that result from these condensation instabilities. While
models have been developed in an attempt to make these predictions (see, for
example, Sargis et al. 1979) they are usually very specific to the particular
problem under investigation. Often, they must also resort to empirical infor-
mation on unknown factors such as the transient mixing and condensation
rates.

Finally, we note that instabilities that are similar to chugging have been
observed in other contexts. For example, when steam was injected into the
wake of a streamlined underwater body in order to explore underwater jet
propulsion, the flow became very unstable (Kiceniuk 1952).

15.7 TRANSFER FUNCTIONS

15.7.1 Unsteady internal flow methods

While the details are beyond the scope of this book, it is nevertheless of
value to conclude the present chapter with a brief survey of the transfer
function methods referred to in section 15.6. There are two basic approaches
to unsteady internal flows, namely solution in the time domain or in the fre-
quency domain. The traditional time domain or water-hammer methods for
hydraulic systems can and should be used in many circumstances; these
are treated in depth elsewhere (for example, Streeter and Wylie 1967, 1974,
Amies et al. 1977). They have the great advantage that they can incorporate
the nonlinear convective inertial terms in the equations of fluid flow. They
are best suited to evaluating the transient response of flows in long pipes
in which the equations of the flow and the structure are well established.
However, they encounter great difficulties when either the geometry is com-
plex (for example inside a pump), or the fluid is complex (for example in
a multiphase flow). Under these circumstances, frequency domain methods
have distinct advantages, both analytically and experimentally. Specifically,
unsteady flow experiments are most readily conducted by subjecting the
component or device to fluctuations in the flow over a range of frequen-

359



cies and measuring the fluctuating quantities at inlet and discharge. The
main disadvantage of the frequency domain methods is that the nonlin-
ear convective inertial terms cannot readily be included and, consequently,
these methods are only accurate for small perturbations from the mean flow.
While this permits evaluation of stability limits, it does not readily allow
the evaluation of the amplitude of large unstable motions. However, there
does exist a core of fundamental knowledge pertaining to frequency domain
methods (see for example, Pipes 1940, Paynter 1961, Brown 1967) that is
summarized in Brennen (1994). A good example of the application of these
methods is contained in Amies and Greene (1977).

15.7.2 Transfer functions

As in the quasistatic analyses described at the beginning of this chapter,
the first step in the frequency domain approach is to identify all the flow
variables that are needed to completely define the state of the flow at each
of the nodes of the system. Typical flow variables are the pressure, p, (or
total pressure, pT ) the velocities of the phases or components, the volume
fractions, and so on. To simplify matters we count only those variables that
are not related by simple algebraic expressions. Thus we do not count both
the pressure and the density of a phase that behaves barotropically, nor
do we count the mixture density, ρ, and the void fraction, α, in a mixture
of two incompressible fluids. The minimum number of variables needed to
completely define the flow at all of the nodes is called the order of the system
and will be denoted by N . Then the state of the flow at any node, i, is
denoted by the vector of state variables, {qn

i }, n = 1, 2 → N . For example,
in a homogeneous flow we could choose q1i = p, q2i = u, q3i = α, to be the
pressure, velocity and void fraction at the node i.

The next step in a frequency domain analysis is to express all the flow
variables, {qn

i }, n = 1, 2 → N , as the sum of a mean component (denoted by
an overbar) and a fluctuating component (denoted by a tilde) at a frequency,
ω. The complex fluctuating component incorporates both the amplitude and
phase of the fluctuation:

{qn(s, t)} = {q̄n(s)} +Re
{{q̃n(s, ω)}eiωt

}
(15.5)

for n = 1 → N where i is (−1)
1
2 and Re denotes the real part. For example

p(s, t) = p̄(s) +Re
{
p̃(s, ω)eiωt

}
(15.6)

ṁ(s, t) = ¯̇m(s) +Re
{ ˜̇m(s, ω)eiωt

}
(15.7)
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α(s, t) = ᾱ(s) + Re
{
α̃(s, ω)eiωt

}
(15.8)

Since the perturbations are assumed linear (|ũ| � ū, | ˜̇m| � ¯̇m, |q̃n| � q̄n)
they can be readily superimposed, so a summation over many frequencies
is implied in the above expressions. In general, the perturbation quantities,
{q̃n}, will be functions of the mean flow characteristics as well as position,
s, and frequency, ω.

The utilization of transfer functions in the context of fluid systems owes
much to the pioneering work of Pipes (1940). The concept is the following.
If the quantities at inlet and discharge are denoted by subscripts m = 1 and
m = 2, respectively, then the transfer matrix, [T ], is defined as

{q̃n
2 } = [T ] {q̃n

1 } (15.9)

It is a square matrix of order N . For example, for an order N = 2 system
in which the independent fluctuating variables are chosen to be the total
pressure, p̃T , and the mass flow rate, ˜̇m, then a convenient transfer matrix
is {

p̃T
2

˜̇m2

}
=
[
T11

T21

T12

T22

]{
p̃T
1

˜̇m1

}
(15.10)

In general, the transfer matrix will be a function of the frequency, ω, of the
perturbations and the mean flow conditions in the device. Given the transfer
functions for each component one can then synthesize transfer functions for
the entire system using a set of simple procedures described in detail in
Brennen (1994). This allows one to proceed to a determination of whether
or not a system is stable or unstable given the boundary conditions acting
upon it.

The transfer functions for many simple components are readily identified
(see Brennen 1994) and are frequently composed of impedances due to fluid
friction and inertia (that primarily contribute to the real and imaginary
parts of T12 respectively) and compliances due to fluid and structural com-
pressibility (that primarily contribute to the imaginary part of T21). More
complex components or flows have more complex transfer functions that can
often be determined only by experimental measurement. For example, the
dynamic response of pumps can be critical to the stability of many internal
flow systems (Ohashi 1968, Greitzer 1981) and consequently the transfer
functions for pumps have been extensively explored (Fanelli 1972, Anderson
et al. 1971, Brennen and Acosta 1976). Under stable operating conditions
(see sections 15.3, 16.4.2) and in the absence of phase change, most pumps
can be modeled with resistance, compliance and inertance elements and they
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are therefore dynamically passive. However, the situation can be quite dif-
ferent when phase change occurs. For example, cavitating pumps are now
known to have transfer functions that can cause instabilities in the hydraulic
system of which they are a part. Note that under cavitating conditions, the
instantaneous flow rates at inlet and discharge will be different because of
the rate of change of the total volume, V , of cavitation within the pump and
this leads to complex transfer functions that are described in more detail in
section 16.4.2. These characteristics of cavitating pumps give rise to a vari-
ety of important instabilities such as cavitation surge (see section 15.6.2) or
the Pogo instabilities of liquid-propelled rockets (Brennen 1994).

Much less is known about the transfer functions of other devices involv-
ing phase change, for example boiler tubes or vertical evaporators. As an
example of the transfer function method, in the next section we consider a
simple homogeneous multiphase flow.

15.7.3 Uniform homogeneous flow

As an example of a multiphase flow that exhibits the solution structure
described in section 15.7.2, we shall explore the form of the solution for
the inviscid, frictionless flow of a two component, gas and liquid mixture
in a straight, uniform pipe. The relative motion between the two compo-
nents is neglected so there is only one velocity, u(s, t). Surface tension is
also neglected so there is only one pressure, p(s, t). Moreover, the liquid
is assumed incompressible (ρL constant) and the gas is assumed to behave
barotropically with p ∝ ρk

G. Then the three equations governing the flow are
the continuity equations for the liquid and for the gas and the momentum
equation for the mixture which are, respectively

∂

∂t
(1 − α) +

∂

∂s
[(1− α)u] = 0 (15.11)

∂

∂t
(ρGα) +

∂

∂s
(ρGαu) = 0 (15.12)

ρ

(
∂u

∂t
+ u

∂u

∂s

)
= −∂p

∂s
(15.13)

where ρ is the usual mixture density. Note that this is a system of order
N = 3 and the most convenient flow variables are p, u and α. These relations
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yield the following equations for the perturbations:

−iωα̃+
∂

∂s
[(1 − ᾱ)ũ− ūα̃] = 0 (15.14)

iωρ̄Gα̃ + iωᾱρ̃G + ρ̄Gᾱ
∂ũ

∂s
+ ρ̄Gū

∂α̃

∂s
+ ᾱū

∂ρ̃G

∂s
= 0 (15.15)

−∂p̃
∂s

= ρ̄

[
iωũ+ ū

∂ũ

∂s

]
(15.16)

where ρ̃G = p̃ρ̄G/kp̄. Assuming the solution has the simple form⎧⎨
⎩
p̃

ũ

α̃

⎫⎬
⎭ =

⎧⎨
⎩
P1e

iκ1s + P2e
iκ2s + P3e

iκ3s

U1e
iκ1s + U2e

iκ2s + U3e
iκ3s

A1e
iκ1s +A2e

iκ2s +A3e
iκ3s

⎫⎬
⎭ (15.17)

it follows from equations 15.14, 15.15 and 15.16 that

κn(1 − ᾱ)Un = (ω + κnū)An (15.18)

(ω + κnū)An +
ᾱ

kp̄
(ω + κnū)Pn + ᾱκnUn = 0 (15.19)

ρ̄(ω + κnū)Un + κnPn = 0 (15.20)

Eliminating An, Un and Pn leads to the dispersion relation

(ω + κnū)
[
1 − ᾱρ̄

kp̄

(ω + κnū)2

κ2
n

]
= 0 (15.21)

The solutions to this dispersion relation yield the following wavenumbers
and velocities, cn = −ω/κn, for the perturbations:

� κ1 = −ω/ū which has a wave velocity, c0 = ū. This is a purely kinematic wave, a
concentration wave that from equations 15.18 and 15.20 has U1 = 0 and P1 = 0
so that there are no pressure or velocity fluctuations associated with this type of
wave. In other, more complex flows, kinematic waves may have some small pres-
sure and velocity perturbations associated with them and their velocity may not
exactly correspond with the mixture velocity but they are still called kinematic
waves if the major feature is the concentration perturbation.

� κ2, κ3 = −ω/(ū ± c) where c is the sonic speed in the mixture, namely c =
(kp̄/ᾱρ̄)

1
2 . Consequently, these two modes have wave speeds c2, c3 = ū± c and

are the two acoustic waves traveling downstream and upstream respectively.
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Finally, we list the solution in terms of three unknown, complex constants
P2, P3 and A1:⎧⎨
⎩
p̃

ũ

α̃

⎫⎬
⎭ =

⎡
⎣0 eiκ2s eiκ3s

0 −eiκ2s/ρ̄c eiκ3s/ρ̄c

eiκ1s −(1 − ᾱ)eiκ2s/ρ̄c2 −(1− ᾱ)eiκ3s/ρ̄c2

⎤
⎦
⎧⎨
⎩
A1

P2

P3

⎫⎬
⎭ (15.22)

and the transfer function between two locations s = s1 and s = s2 follows by
eliminating the vector {A1, P2, P3} from the expressions 15.22 for the state
vectors at those two locations.

Transfer function methods for multiphase flow are nowhere near as well
developed as they are for single phase flows but, given the number and ubiq-
uity of instability problems in multiphase flows (Ishii 1982), it is inevitable
that these methods will gradually develop into a tool that is useful in a wide
spectrum of applications.
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