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BUBBLE GROWTH AND COLLAPSE

4.1 INTRODUCTION

Unlike solid particles or liquid droplets, gas/vapor bubbles can grow or col-
lapse in a flow and in doing so manifest a host of phenomena with techno-
logical importance. We devote this chapter to the fundamental dynamics of
a growing or collapsing bubble in an infinite domain of liquid that is at rest
far from the bubble. While the assumption of spherical symmetry is violated
in several important processes, it is necessary to first develop this baseline.
The dynamics of clouds of bubbles or of bubbly flows are treated in later
chapters.

4.2 BUBBLE GROWTH AND COLLAPSE

4.2.1 Rayleigh-Plesset equation

Consider a spherical bubble of radius, R(t) (where t is time), in an infinite
domain of liquid whose temperature and pressure far from the bubble are
T∞ and p∞(t) respectively. The temperature, T∞, is assumed to be a simple
constant since temperature gradients are not considered. On the other hand,
the pressure, p∞(t), is assumed to be a known (and perhaps controlled) input
that regulates the growth or collapse of the bubble.

Though compressibility of the liquid can be important in the context of
bubble collapse, it will, for the present, be assumed that the liquid density,
ρL, is a constant. Furthermore, the dynamic viscosity, μL, is assumed con-
stant and uniform. It will also be assumed that the contents of the bubble are
homogeneous and that the temperature, TB(t), and pressure, pB(t), within
the bubble are always uniform. These assumptions may not be justified in
circumstances that will be identified as the analysis proceeds.

The radius of the bubble, R(t), will be one of the primary results of the
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Figure 4.1. Schematic of a spherical bubble in an infinite liquid.

analysis. As indicated in figure 4.1, radial position within the liquid will
be denoted by the distance, r, from the center of the bubble; the pressure,
p(r, t), radial outward velocity, u(r, t), and temperature, T (r, t), within the
liquid will be so designated. Conservation of mass requires that

u(r, t) =
F (t)
r2

(4.1)

where F (t) is related to R(t) by a kinematic boundary condition at the bub-
ble surface. In the idealized case of zero mass transport across this interface,
it is clear that u(R, t) = dR/dt and hence

F (t) = R2dR

dt
(4.2)

This is often a good approximation even when evaporation or condensation
is occurring at the interface (Brennen 1995) provided the vapor density is
much smaller than the liquid density.

Assuming a Newtonian liquid, the Navier-Stokes equation for motion in
the r direction,

− 1
ρL

∂p

∂r
=
∂u

∂t
+ u

∂u

∂r
− νL

{
1
r2

∂

∂r
(r2

∂u

∂r
) − 2u

r2

}
(4.3)

yields, after substituting for u from u = F (t)/r2:

− 1
ρL

∂p

∂r
=

1
r2
dF

dt
− 2F 2

r5
(4.4)

Note that the viscous terms vanish; indeed, the only viscous contribution to
the Rayleigh-Plesset equation 4.8 comes from the dynamic boundary condi-
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Figure 4.2. Portion of the spherical bubble surface.

tion at the bubble surface. Equation 4.4 can be integrated to give

p− p∞
ρL

=
1
r

dF

dt
− 1

2
F 2

r4
(4.5)

after application of the condition p → p∞ as r → ∞.
To complete this part of the analysis, a dynamic boundary condition on

the bubble surface must be constructed. For this purpose consider a control
volume consisting of a small, infinitely thin lamina containing a segment of
interface (figure 4.2). The net force on this lamina in the radially outward
direction per unit area is

(σrr)r=R + pB − 2S
R

(4.6)

or, since σrr = −p+ 2μL∂u/∂r, the force per unit area is

pB − (p)r=R − 4μL

R

dR

dt
− 2S
R

(4.7)

In the absence of mass transport across the boundary (evaporation or con-
densation) this force must be zero, and substitution of the value for (p)r=R

from equation 4.5 with F = R2 dR/dt yields the generalized Rayleigh-Plesset
equation for bubble dynamics:

pB(t) − p∞(t)
ρL

= R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4νL

R

dR

dt
+

2S
ρLR

(4.8)

Given p∞(t) this represents an equation that can be solved to find R(t)
provided pB(t) is known. In the absence of the surface tension and viscous
terms, it was first derived and used by Rayleigh (1917). Plesset (1949) first
applied the equation to the problem of traveling cavitation bubbles.
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4.2.2 Bubble contents

In addition to the Rayleigh-Plesset equation, considerations of the bubble
contents are necessary. To be fairly general, it is assumed that the bubble
contains some quantity of non-condensable gas whose partial pressure is
pGo at some reference size, Ro, and temperature, T∞. Then, if there is no
appreciable mass transfer of gas to or from the liquid, it follows that

pB(t) = pV (TB) + pGo

(
TB

T∞

)(
Ro

R

)3

(4.9)

In some cases this last assumption is not justified, and it is necessary to
solve a mass transport problem for the liquid in a manner similar to that
used for heat diffusion (see section 4.3.4).

It remains to determine TB(t). This is not always necessary since, under
some conditions, the difference between the unknown TB and the known
T∞ is negligible. But there are also circumstances in which the temperature
difference, (TB(t) − T∞), is important and the effects caused by this dif-
ference dominate the bubble dynamics. Clearly the temperature difference,
(TB(t) − T∞), leads to a different vapor pressure, pV (TB), than would occur
in the absence of such thermal effects, and this alters the growth or collapse
rate of the bubble. It is therefore instructive to substitute equation 4.9 into
4.8 and thereby write the Rayleigh-Plesset equation in the following general
form:

(1) (2) (3)

pV (T∞)− p∞(t)
ρL

+
pV (TB) − pV (T∞)

ρL
+
pGo

ρL

(
TB

T∞

)(
Ro

R

)3

= R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4νL

R

dR

dt
+

2S
ρLR

(4.10)

(4) (5) (6)

The first term, (1), is the instantaneous tension or driving term determined
by the conditions far from the bubble. The second term, (2), will be referred
to as the thermal term, and it will be seen that very different bubble dy-
namics can be expected depending on the magnitude of this term. When the
temperature difference is small, it is convenient to use a Taylor expansion
in which only the first derivative is retained to evaluate

pV (TB) − pV (T∞)
ρL

= A(TB − T∞) (4.11)
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where the quantity A may be evaluated from

A =
1
ρL

dpV

dT
=

ρV (T∞)L(T∞)
ρLT∞

(4.12)

using the Clausius-Clapeyron relation, L(T∞) being the latent heat of va-
porization at the temperature T∞. It is consistent with the Taylor expansion
approximation to evaluate ρV and L at the known temperature T∞. It fol-
lows that, for small temperature differences, term (2) in equation 4.10 is
given by A(TB − T∞).

The degree to which the bubble temperature, TB, departs from the remote
liquid temperature, T∞, can have a major effect on the bubble dynamics,
and it is necessary to discuss how this departure might be evaluated. The
determination of (TB − T∞) requires two steps. First, it requires the solution
of the heat diffusion equation,

∂T

∂t
+
dR

dt

(
R

r

)2 ∂T

∂r
=

DL

r2
∂

∂r

(
r2
∂T

∂r

)
(4.13)

to determine the temperature distribution, T (r, t), within the liquid (DL is
the thermal diffusivity of the liquid). Second, it requires an energy balance
for the bubble. The heat supplied to the interface from the liquid is

4πR2kL

(
∂T

∂r

)
r=R

(4.14)

where kL is the thermal conductivity of the liquid. Assuming that all of this
is used for vaporization of the liquid (this neglects the heat used for heating
or cooling the existing bubble contents, which is negligible in many cases),
one can evaluate the mass rate of production of vapor and relate it to the
known rate of increase of the volume of the bubble. This yields

dR

dt
=

kL

ρV L
(
∂T

∂r

)
r=R

(4.15)

where kL, ρV , L should be evaluated at T = TB. If, however, TB − T∞ is
small, it is consistent with the linear analysis described earlier to evaluate
these properties at T = T∞.

The nature of the thermal effect problem is now clear. The thermal
term in the Rayleigh-Plesset equation 4.10 requires a relation between
(TB(t) − T∞) and R(t). The energy balance equation 4.15 yields a relation
between (∂T/∂r)r=R and R(t). The final relation between (∂T/∂r)r=R and
(TB(t) − T∞) requires the solution of the heat diffusion equation. It is this
last step that causes considerable difficulty due to the evident nonlinearities
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in the heat diffusion equation; no exact analytic solution exists. However,
the solution of Plesset and Zwick (1952) provides a useful approximation for
many purposes. This solution is confined to cases in which the thickness of
the thermal boundary layer, δT , surrounding the bubble is small compared
with the radius of the bubble, a restriction that can be roughly represented
by the identity

R� δT ≈ (T∞ − TB)/
(
∂T

∂r

)
r=R

(4.16)

The Plesset-Zwick result is that

T∞ − TB(t) =
(DL

π

)1
2

t∫
0

[R(x)]2(∂T
∂r )r=R(x)dx{

t∫
x

[R(y)]4dy
} 1

2

(4.17)

where x and y are dummy time variables. Using equation 4.15 this can be
written as

T∞ − TB(t) =
LρV

ρLcPLD
1
2
L

(
1
π

)1
2

t∫
0

[R(x)]2dR
dt dx

[
∫ t
x R

4(y)dy]
1
2

(4.18)

This can be directly substituted into the Rayleigh-Plesset equation to gener-
ate a complicated integro-differential equation for R(t). However, for present
purposes it is more instructive to confine our attention to regimes of bubble
growth or collapse that can be approximated by the relation

R = R∗tn (4.19)

where R∗ and n are constants. Then the equation 4.18 reduces to

T∞ − TB(t) =
LρV

ρLcPLD
1
2
L

R∗tn−
1
2C(n) (4.20)

where the constant

C(n) = n

(
4n+ 1
π

)1
2

1∫
0

z3n−1dz

(1 − z4n+1)
1
2

(4.21)

and is of order unity for most values of n of practical interest (0 < n < 1
in the case of bubble growth). Under these conditions the linearized form
of the thermal term, (2), in the Rayleigh-Plesset equation 4.10 as given by
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equations 4.11 and 4.12 becomes

(TB − T∞)
ρV L
ρLT∞

= −Σ(T∞)C(n)R∗tn−
1
2 (4.22)

where the thermodynamic parameter

Σ(T∞) =
L2ρ2

V

ρ2
LcPLT∞D

1
2
L

(4.23)

In section 4.3.1 it will be seen that this parameter, Σ, whose units are
m/sec

3
2 , is crucially important in determining the bubble dynamic behavior.

4.2.3 In the absence of thermal effects; bubble growth

First we consider some of the characteristics of bubble dynamics in the
absence of any significant thermal effects. This kind of bubble dynamic be-
havior is termed inertially controlled to distinguish it from the thermally
controlled behavior discussed later. Under these circumstances the temper-
ature in the liquid is assumed uniform and term (2) in the Rayleigh-Plesset
equation 4.10 is zero.

For simplicity, it will be assumed that the behavior of the gas in the bubble
is polytropic so that

pG = pGo

(
Ro

R

)3k

(4.24)

where k is approximately constant. Clearly k = 1 implies a constant bubble
temperature and k = γ would model adiabatic behavior. It should be un-
derstood that accurate evaluation of the behavior of the gas in the bubble
requires the solution of the mass, momentum, and energy equations for the
bubble contents combined with appropriate boundary conditions that will
include a thermal boundary condition at the bubble wall.

With these assumptions the Rayleigh-Plesset equation becomes

pV (T∞) − p∞(t)
ρL

+
pGo

ρL

(
Ro

R

)3k

= R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4νL

R

dR

dt
+

2S
ρLR
(4.25)

Equation 4.25 without the viscous term was first derived and used by Nolt-
ingk and Neppiras (1950, 1951); the viscous term was investigated first by
Poritsky (1952).

Equation 4.25 can be readily integrated numerically to find R(t) given the
input p∞(t), the temperature T∞, and the other constants. Initial conditions
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Figure 4.3. Typical solution of the Rayleigh-Plesset equation for a spher-
ical bubble. The nucleus of radius, Ro, enters a low-pressure region at a
dimensionless time of 0 and is convected back to the original pressure at a
dimensionless time of 500. The low-pressure region is sinusoidal and sym-
metric about 250.

are also required and, in the context of cavitating flows, it is appropriate to
assume that the bubble begins as a microbubble of radius Ro in equilibrium
at t = 0 at a pressure p∞(0) so that

pGo = p∞(0)− pV (T∞) +
2S
Ro

(4.26)

and that dR/dt|t=0 = 0. A typical solution for equation 4.25 under these
conditions is shown in figure 4.3; the bubble in this case experiences a pres-
sure, p∞(t), that first decreases below p∞(0) and then recovers to its original
value. The general features of this solution are characteristic of the response
of a bubble as it passes through any low pressure region; they also reflect
the strong nonlinearity of equation 4.25. The growth is fairly smooth and
the maximum size occurs after the minimum pressure. The collapse process
is quite different. The bubble collapses catastrophically, and this is followed
by successive rebounds and collapses. In the absence of dissipation mecha-
nisms such as viscosity these rebounds would continue indefinitely without
attenuation.

Analytic solutions to equation 4.25 are limited to the case of a step func-
tion change in p∞. Nevertheless, these solutions reveal some of the charac-
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teristics of more general pressure histories, p∞(t), and are therefore valuable
to document. With a constant value of p∞(t > 0) = p∗∞, equation 4.25 is in-
tegrated by multiplying through by 2R2dR/dt and forming time derivatives.
Only the viscous term cannot be integrated in this way, and what follows
is confined to the inviscid case. After integration, application of the initial
condition (dR/dt)t=0 = 0 yields

(
dR

dt

)2

=
2(pV − p∗∞)

3ρL

{
1 − R3

o

R3

}
+

2pGo

3ρL(1− k)

{
R3k

o

R3k
− R3

o

R3

}
− 2S
ρLR

{
1 − R2

o

R2

}
(4.27)

where, in the case of isothermal gas behavior, the term involving pGo becomes

2
pGo

ρL

R3
o

R3
ln
(
Ro

R

)
(4.28)

By rearranging equation 4.27 it follows that

t = Ro

R/Ro∫
1

{
2(pV − p∗∞)(1− x−3)

3ρL
+

2pGo(x−3k − x−3)
3(1− k)ρL

−2S(1− x−2)
ρLRox

}− 1
2

dx (4.29)

where, in the case k = 1, the gas term is replaced by

2pGo

x3
lnx (4.30)

This integral can be evaluated numerically to find R(t), albeit indirectly.
Consider first the characteristic behavior for bubble growth that this so-

lution exhibits when p∗∞ < p∞(0). Equation 4.27 shows that the asymptotic
growth rate for R� Ro is given by

dR

dt
→
{

2
3

(pV − p∗∞)
ρL

} 1
2

(4.31)

Thus, following an initial period of acceleration, the velocity of the interface
is relatively constant. It should be emphasized that equation 4.31 implies ex-
plosive growth of the bubble, in which the volume displacement is increasing
like t3.
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4.2.4 In the absence of thermal effects; bubble collapse

Now contrast the behavior of a bubble caused to collapse by an increase in
p∞ to p∗∞. In this case when R � Ro equation 4.27 yields

dR

dt
→ −

(
Ro

R

)3
2

{
2(p∗∞ − pV )

3ρL
+

2S
ρLRo

− 2pGo

3(k− 1)ρL

(
Ro

R

)3(k−1)
} 1

2

(4.32)
where, in the case of k = 1, the gas term is replaced by 2pGo ln(Ro/R)/ρL.
However, most bubble collapse motions become so rapid that the gas behav-
ior is much closer to adiabatic than isothermal, and we will therefore assume
k �= 1.

For a bubble with a substantial gas content the asymptotic collapse ve-
locity given by equation 4.32 will not be reached and the bubble will simply
oscillate about a new, but smaller, equilibrium radius. On the other hand,
when the bubble contains very little gas, the inward velocity will continually
increase (like R−3/2) until the last term within the curly brackets reaches a
magnitude comparable with the other terms. The collapse velocity will then
decrease and a minimum size given by

Rmin = Ro

{
1

(k − 1)
pGo

(p∗∞ − pV + 3S/Ro)

} 1
3(k−1)

(4.33)

will be reached, following which the bubble will rebound. Note that, if pGo

is small, Rmin could be very small indeed. The pressure and temperature of
the gas in the bubble at the minimum radius are then given by pm and Tm

where

pm = pGo {(k − 1)(p∗∞ − pV + 3S/Ro)/pGo}k/(k−1) (4.34)

Tm = To {(k − 1)(p∗∞ − pV + 3S/Ro)/pGo} (4.35)

We will comment later on the magnitudes of these temperatures and pres-
sures (see sections 5.2.2 and 5.3.3).

The case of zero gas content presents a special albeit somewhat hypothet-
ical problem, since apparently the bubble will reach zero size and at that
time have an infinite inward velocity. In the absence of both surface ten-
sion and gas content, Rayleigh (1917) was able to integrate equation 4.29 to
obtain the time, ttc, required for total collapse from R = Ro to R = 0:

ttc = 0.915
(

ρLR
2
o

p∗∞ − pV

) 1
2

(4.36)

It is important at this point to emphasize that while the results for bubble
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growth in section 4.2.3 are quite practical, the results for bubble collapse may
be quite misleading. Apart from the neglect of thermal effects, the analysis
was based on two other assumptions that may be violated during collapse.
Later we shall see that the final stages of collapse may involve such high
velocities (and pressures) that the assumption of liquid incompressibility
is no longer appropriate. But, perhaps more important, it transpires (see
section 5.2.3) that a collapsing bubble loses its spherical symmetry in ways
that can have important engineering consequences.

4.2.5 Stability of vapor/gas bubbles

Apart from the characteristic bubble growth and collapse processes discussed
in the last section, it is also important to recognize that the equilibrium
condition

pV − p∞ + pGe − 2S
Re

= 0 (4.37)

may not always represent a stable equilibrium state at R = Re with a partial
pressure of gas pGe.

Consider a small perturbation in the size of the bubble from R = Re to
R = Re(1 + ε) , ε� 1 and the response resulting from the Rayleigh-Plesset
equation. Care must be taken to distinguish two possible cases:

(i) The partial pressure of the gas remains the same at pGe.
(ii) The mass of gas in the bubble and its temperature, TB, remain the
same.

From a practical point of view the Case (i) perturbation is generated over
a length of time sufficient to allow adequate mass diffusion in the liquid so
that the partial pressure of gas is maintained at the value appropriate to
the concentration of gas dissolved in the liquid. On the other hand, Case
(ii) is considered to take place too rapidly for significant gas diffusion. It
follows that in Case (i) the gas term in the Rayleigh-Plesset equation 4.25
is pGe/ρL whereas in Case (ii) it is pGeR

3k
e /ρLR

3k. If n is defined as zero for
Case (i) and n = 1 for Case (ii) then substitution of R = Re(1 + ε) into the
Rayleigh-Plesset equation yields

R
d2R

dt2
+

3
2

(
dR

dt

)2

+
4νL

R

dR

dt
=

ε

ρL

{
2S
Re

− 3nkpGe

}
(4.38)
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Figure 4.4. Stable and unstable bubble equilibrium radii as a function
of the tension for various masses of gas in the bubble. Stable and unsta-
ble conditions are separated by the dotted line. Adapted from Daily and
Johnson (1956).

Note that the right-hand side has the same sign as ε if

2S
Re

> 3nkpGe (4.39)

and a different sign if the reverse holds. Therefore, if the above inequality
holds, the left-hand side of equation 4.38 implies that the velocity and/or
acceleration of the bubble radius has the same sign as the perturbation, and
hence the equilibrium is unstable since the resulting motion will cause the
bubble to deviate further from R = Re. On the other hand, the equilibrium
is stable if npGe > 2S/3Re.

First consider Case (i) which must always be unstable since the inequality
4.39 always holds if n = 0. This is simply a restatement of the fact (discussed
in section 4.3.4) that, if one allows time for mass diffusion, then all bubbles
will either grow or shrink indefinitely.

Case (ii) is more interesting since, in many of the practical engineering
situations, pressure levels change over a period of time that is short compared
with the time required for significant gas diffusion. In this case a bubble in
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stable equilibrium requires

pGe =
mGTBRG

4
3πR

3
e

>
2S

3kRe
(4.40)

where mG is the mass of gas in the bubble and RG is the gas constant.
Indeed for a given mass of gas there exists a critical bubble size, Rc, where

Rc =
{

9kmGTBRG

8πS

}1/2

(4.41)

This critical radius was first identified by Blake (1949) and Neppiras and
Noltingk (1951) and is often referred to as the Blake critical radius. All bub-
bles of radius Re < Rc can exist in stable equilibrium, whereas all bubbles
of radius Re > Rc must be unstable. This critical size could be reached by
decreasing the ambient pressure from p∞ to the critical value, p∞c, where
from equations 4.41 and 4.37 it follows that

p∞c = pV − 4S
3

{
8πS

9kmGTBRG

} 1
2

(4.42)

which is often called the Blake threshold pressure.
The isothermal case (k = 1) is presented graphically in figure 4.4 where

the solid lines represent equilibrium conditions for a bubble of size Re plot-
ted against the tension (pV − p∞) for various fixed masses of gas in the
bubble and a fixed surface tension. The critical radius for any particular
mG corresponds to the maximum in each curve. The locus of the peaks is
the graph of Rc values and is shown by the dashed line whose equation is
(pV − p∞) = 4S/3Re. The region to the right of the dashed line represents
unstable equilibrium conditions. This graphical representation was used by
Daily and Johnson (1956) and is useful in visualizing the quasistatic re-
sponse of a bubble when subjected to a decreasing pressure. Starting in the
fourth quadrant under conditions in which the ambient pressure p∞ > pV ,
and assuming the mass of gas in the bubble is constant, the radius Re will
first increase as (pV − p∞) increases. The bubble will pass through a series
of stable equilibrium states until the particular critical pressure correspond-
ing to the maximum is reached. Any slight decrease in p∞ below the value
corresponding to this point will result in explosive cavitation growth regard-
less of whether p∞ is further decreased or not. In the context of cavitation
nucleation (Brennen 1995), it is recognized that a system consisting of small
bubbles in a liquid can sustain a tension in the sense that it may be in equi-
librium at liquid pressures below the vapor pressure. Due to surface tension,
the maximum tension, (pV − p∞), that such a system could sustain would
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be 2S/R. However, it is clear from the above analysis that stable equilibrium
conditions do not exist in the range

4S
3R

< (pV − p∞) <
2S
R

(4.43)

and therefore the maximum tension should be given by 4S/3R rather than
2S/R.

4.3 THERMAL EFFECTS

4.3.1 Thermal effects on growth

In sections 4.2.3 through 4.2.5 some of the characteristics of bubble dynam-
ics in the absence of thermal effects were explored. It is now necessary to
examine the regime of validity of those analyses. First we evaluate the mag-
nitude of the thermal term (2) in equation 4.10 (see also equation 4.22) that
was neglected in order to produce equation 4.25.

First examine the case of bubble growth. The asymptotic growth rate
given by equation 4.31 is constant and hence in the characteristic case of
a constant p∞, terms (1), (3), (4), (5), and (6) in equation 4.10 are all
either constant or diminishing in magnitude as time progresses. Note that a
constant, asymptotic growth rate corresponds to the case

n = 1 ; R∗ = {2(pV − p∗∞)/3ρL} 1
2 (4.44)

in equation 4.19. Consequently, according to equation 4.22, the thermal term
(2) in its linearized form for small (T∞ − TB) will be given by

term(2) = Σ(T∞)C(1)R∗t
1
2 (4.45)

Under these conditions, even if the thermal term is initially negligible, it
will gain in magnitude relative to all the other terms and will ultimately
affect the growth in a major way. Parenthetically it should be added that
the Plesset-Zwick assumption of a small thermal boundary layer thickness,
δT , relative to R can be shown to hold throughout the inertially controlled
growth period since δT increases like (DLt)

1
2 whereas R is increasing linearly

with t. Only under circumstances of very slow growth might the assumption
be violated.

Using the relation 4.45, one can therefore define a critical time, tc1 (called
the first critical time), during growth when the order of magnitude of term
(2) in equation 4.10 becomes equal to the order of magnitude of the retained
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Figure 4.5. Values of the thermodynamic parameter, Σ, for various satu-
rated liquids as a function of the reduced temperature, T/TC .

terms, as represented by (dR/dt)2. This first critical time is given by

tc1 =
(pV − p∗∞)

ρL
· 1
Σ2

(4.46)

where the constants of order unity have been omitted for clarity. Thus tc1
depends not only on the tension (pV − p∗∞)/ρL but also on Σ(T∞), a purely
thermophysical quantity that is a function only of the liquid temperature.
Recalling equation 4.23,

Σ(T ) =
L2ρ2

V

ρ2
LcPLT∞D

1
2
L

(4.47)

it can be anticipated that Σ2 will change by many, many orders of magnitude
in a given liquid as the temperature T∞ is varied from the triple point to the
critical point since Σ2 is proportional to (ρV /ρL)4. As a result the critical
time, tc1, will vary by many orders of magnitude. Some values of Σ for a
number of liquids are plotted in figure 4.5 as a function of the reduced tem-
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perature T/TC . As an example, consider a typical cavitating flow experiment
in a water tunnel with a tension of the order of 104 kg/m s2. Since water
at 20◦C has a value of Σ of about 1 m/s

3
2 , the first critical time is of the

order of 10s, which is very much longer than the time of growth of bubbles.
Hence the bubble growth occurring in this case is unhindered by thermal
effects; it is inertially controlled growth. If, on the other hand, the tunnel
water were heated to 100◦C or, equivalently, one observed bubble growth
in a pot of boiling water at superheat of 2◦K, then since Σ ≈ 103 m/s

3
2 at

100◦C the first critical time would be 10μs. Thus virtually all the bubble
growth observed would be thermally controlled.

4.3.2 Thermally controlled growth

When the first critical time is exceeded it is clear that the relative importance
of the various terms in the Rayleigh-Plesset equation, 4.10, will change. The
most important terms become the driving term (1) and the thermal term (2)
whose magnitude is much larger than that of the inertial terms (4). Hence
if the tension (pV − p∗∞) remains constant, then the solution using the form
of equation 4.22 for the thermal term must have n = 1

2 and the asymptotic
behavior is

R =
(pV − p∗∞)t

1
2

ρLΣ(T∞)C( 1
2 )

or n =
1
2

; R∗ =
(pV − p∗∞)

ρLΣ(T∞)C( 1
2 )

(4.48)

Consequently, as time proceeds, the inertial, viscous, gaseous, and surface
tension terms in the Rayleigh-Plesset equation all rapidly decline in impor-
tance. In terms of the superheat, ΔT , rather than the tension

R =
1

2C( 1
2)
ρLcPLΔT
ρV L (DLt)

1
2 (4.49)

where the group ρLcPLΔT/ρVL is termed the Jakob Number in the context
of pool boiling and ΔT = Tw − T∞, Tw being the wall temperature. We note
here that this section will address only the issues associated with bubble
growth in the liquid bulk. The presence of a nearby wall (as is the case in
most boiling) causes details and complications the discussion of which is
delayed until chapter 6.

The result, equation 4.48, demonstrates that the rate of growth of the
bubble decreases substantially after the first critical time, tc1, is reached
and that R subsequently increases like t

1
2 instead of t. Moreover, since the

thermal boundary layer also increases like (DLt)
1
2 , the Plesset-Zwick as-

sumption remains valid indefinitely. An example of this thermally inhibited
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Figure 4.6. Experimental observations of the growth of three vapor bub-
bles (©, �, �) in superheated water at 103.1◦C compared with the growth
expected using the Plesset-Zwick theory (adapted from Dergarabedian
1953).

bubble growth is including in figure 4.6, which is taken from Dergarabedian
(1953). We observe that the experimental data and calculations using the
Plesset-Zwick method agree quite well.

When bubble growth is caused by decompression so that p∞(t) changes
substantially with time during growth, the simple approximate solution of
equation 4.48 no longer holds and the analysis of the unsteady thermal
boundary layer surrounding the bubble becomes considerably more com-
plex. One must then solve the diffusion equation 4.13, the energy equation
(usually in the approximate form of equation 4.15) and the Rayleigh-Plesset
equation 4.10 simultaneously, though for the thermally controlled growth
being considered here, most of the terms in equation 4.10 become negligi-
ble so that the simplification, pV (TB) = p∞(t), is usually justified. When
p∞ is a constant this reduces to the problem treated by Plesset and Zwick
(1952) and later addressed by Forster and Zuber (1954) and Scriven (1959).
Several different approximate solutions to the general problem of thermally
controlled bubble growth during liquid decompression have been put for-
ward by Theofanous et al. (1969), Jones and Zuber (1978) and Cha and
Henry (1981). All three analyses yield qualitatively similar results that also
agree quite well with the experimental data of Hewitt and Parker (1968) for
bubble growth in liquid nitrogen. Figure 4.7 presents a typical example of
the data of Hewitt and Parker and a comparison with the three analytical
treatments mentioned above.

Several other factors can complicate and alter the dynamics of thermally
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Figure 4.7. Data from Hewitt and Parker (1968) on the growth of a vapor
bubble in liquid nitrogen (pressure/time history also shown) and compari-
son with the analytical treatments by Theofanous et al. (1969), Jones and
Zuber (1978), and Cha and Henry (1981).

controlled growth. Nonequilibrium effects (Schrage 1953) can occur at very
high evaporation rates where the liquid at the interface is no longer in ther-
mal equilibrium with the vapor in the bubble and these have been explored
by Theofanous et al. (1969) and Plesset and Prosperetti (1977) among oth-
ers. The consensus seems to be that this effect is insignificant except, per-
haps, in some extreme circumstances. There is no clear indication in the
experiments of any appreciable departure from equilibrium.

More important are the modifications to the heat transfer mechanisms at
the bubble surface that may be caused by surface instabilities or by con-
vective heat transfer. These are reviewed in Brennen (1995). Shepherd and
Sturtevant (1982) and Frost and Sturtevant (1986) have examined rapidly
growing nucleation bubbles near the limit of superheat and have found
growth rates substantially larger than expected when the bubble was in
the thermally controlled growth phase. Photographs (see figure 4.8) reveal
that the surfaces of those particular bubbles are rough and irregular. The
enhancement of the heat transfer caused by this roughening is probably re-
sponsible for the larger than expected growth rates. Shepherd and Sturtevant
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Figure 4.8. Typical photographs of a rapidly growing bubble in a droplet
of superheated ether suspended in glycerine. The bubble is the dark, rough
mass; the droplet is clear and transparent. The photographs, which are
of different events, were taken 31, 44, and 58 μs after nucleation and the
droplets are approximately 2mm in diameter. Reproduced from Frost and
Sturtevant (1986) with the permission of the authors.

(1982) attribute the roughness to the development of a baroclinic interfacial
instability similar to the Landau-Darrieus instablity of flame fronts. In other
circumstances, Rayleigh-Taylor instability of the interface could give rise to
a similar effect (Reynolds and Berthoud 1981).

4.3.3 Cavitation and boiling

The discussions of bubble dynamics in the last few sections lead, naturally,
to two technologically important multiphase phenomena, namely cavitation
and boiling. As we have delineated, the essential difference between cavita-
tion and boiling is that bubble growth (and collapse) in boiling is inhibited
by limitations on the heat transfer at the interface whereas bubble growth
(and collapse) in cavitation is not limited by heat transfer but only inertial
effects in the surrounding liquid. Cavitation is therefore an explosive (and
implosive) process that is far more violent and damaging than the corre-
sponding bubble dynamics of boiling. There are, however, many details that
are relevant to these two processes and these will be outlined in chapters 5
and 6 respectively.

4.3.4 Bubble growth by mass diffusion

In most of the circumstances considered in this chapter, it is assumed that
the events occur too rapidly for significant mass transfer of contaminant
gas to occur between the bubble and the liquid. Thus we assumed in sec-
tion 4.2.2 and elsewhere that the mass of contaminant gas in the bubble
remained constant. It is convenient to reconsider this issue at this point, for

118



the methods of analysis of mass diffusion will clearly be similar to those of
thermal diffusion as described in section 4.2.2 (see Scriven 1959). Moreover,
there are some issues that require analysis of the rate of increase or decrease
of the mass of gas in the bubble. One of the most basic issues is the fact
that any and all of the gas-filled microbubbles that are present in a subsatu-
rated liquid (and particularly in water) should dissolve away if the ambient
pressure is sufficiently high. Henry’s law states that the partial pressure of
gas, pGe, in a bubble that is in equilibrium with a saturated concentration,
c∞, of gas dissolved in the liquid will be given by

pGe = c∞He (4.50)

where He is Henry’s law constant for that gas and liquid combination
(He decreases substantially with temperature). Consequently, if the am-
bient pressure, p∞, is greater than (c∞He+ pV − 2S/R), the bubble should
dissolve away completely. Experience is contrary to this theory, and mi-
crobubbles persist even when the liquid is subjected to several atmospheres
of pressure for an extended period; in most instances, this stabilization of
nuclei is caused by surface contamination.

The process of mass transfer can be analysed by noting that the concen-
tration, c(r, t), of gas in the liquid will be governed by a diffusion equation
identical in form to equation 4.13,

∂c

∂t
+
dR

dt

(
R

r

)2 ∂c

∂r
=

D

r2
∂

∂r

(
r2
∂c

∂r

)
(4.51)

where D is the mass diffusivity, typically 2 × 10−5 cm2/sec for air in water
at normal temperatures. As Plesset and Prosperetti (1977) demonstrate,
the typical bubble growth rates due to mass diffusion are so slow that the
convection term (the second term on the left-hand side of equation 4.51) is
negligible.

The simplest problem is that of a bubble of radius, R, in a liquid at a
fixed ambient pressure, p∞, and gas concentration, c∞. In the absence of
inertial effects the partial pressure of gas in the bubble will be pGe where

pGe = p∞ − pV + 2S/R (4.52)

and therefore the concentration of gas at the liquid interface is cs = pGe/He.
Epstein and Plesset (1950) found an approximate solution to the problem
of a bubble in a liquid initially at uniform gas concentration, c∞, at time,
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t = 0, that takes the form

R
dR

dt
=

D

ρG

{c∞ − cs(1 + 2S/Rp∞)}
(1 + 4S/3Rp∞)

{
1 +R(πDt)−

1
2

}
(4.53)

where ρG is the density of gas in the bubble and cs is the saturated concen-
tration at the interface at the partial pressure given by equation 4.52 (the
vapor pressure is neglected in their analysis). The last term in equation 4.53,
R(πDt)−

1
2 , arises from a growing diffusion boundary layer in the liquid at

the bubble surface. This layer grows like (Dt)
1
2 . When t is large, the last

term in equation 4.53 becomes small and the characteristic growth is given
approximately by

{R(t)}2 − {R(0)}2 ≈ 2D(c∞ − cs)t
ρG

(4.54)

where, for simplicity, we have neglected surface tension.
It is instructive to evaluate the typical duration of growth (or shrinkage).

From equation 4.54 the time required for complete solution is tcs where

tcs ≈ ρG {R(0)}2

2D(cs − c∞)
(4.55)

Typical values of (cs − c∞)/ρG are 0.01 (Plesset and Prosperetti 1977).
Thus, in the absence of surface contaminant effects, a 10μm bubble should
completely dissolve in about 2.5s.

Finally we note that there is an important mass diffusion effect caused
by ambient pressure oscillations in which nonlinearities can lead to bubble
growth even in a subsaturated liquid. This is known as rectified diffusion
and is discussed in section 4.4.3.

4.4 OSCILLATING BUBBLES

4.4.1 Bubble natural frequencies

In this and the sections that follow we will consider the response of a bubble
to oscillations in the prevailing pressure. We begin with an analysis of bubble
natural frequencies in the absence of thermal effects and liquid compressibil-
ity effects. Consider the linearized dynamic solution of equation 4.25 when
the pressure at infinity consists of a mean value, p̄∞, upon which is super-
imposed a small oscillatory pressure of amplitude, p̃, and radian frequency,
ω, so that

p∞ = p̄∞ +Re{p̃ejωt} (4.56)
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The linear dynamic response of the bubble will be represented by

R = Re[1 +Re{ϕejωt}] (4.57)

where Re is the equilibrium size at the pressure, p̄∞, and the bubble radius
response, ϕ, will in general be a complex number such that Re|ϕ| is the
amplitude of the bubble radius oscillations. The phase of ϕ represents the
phase difference between p∞ and R.

For the present we shall assume that the mass of gas in the bubble, mG,
remains constant. Then substituting equations 4.56 and 4.57 into equation
4.25, neglecting all terms of order |ϕ|2 and using the equilibrium condition
4.37 one finds

ω2 − jω
4νL

R2
e

+
1

ρLR2
e

{
2S
Re

− 3kpGe

}
=

p̃

ρLR2
eϕ

(4.58)

where, as before,

pGe = p̄∞ − pV +
2S
Re

=
3mGTBRG

4πR3
e

(4.59)

It follows that for a given amplitude, p̃, the maximum or peak response
amplitude occurs at a frequency, ωp, given by the minimum value of the
spectral radius of the left-hand side of equation 4.58:

ωp =
{

(3kpGe − 2S/Re)
ρLR2

e

− 8ν2
L

R4
e

} 1
2

(4.60)

or in terms of (p̄∞ − pV ) rather than pGe:

ωp =
{

3k(p̄∞ − pV )
ρLR2

e

+
2(3k − 1)S
ρLR3

e

− 8ν2
L

R4
e

} 1
2

(4.61)

At this peak frequency the amplitude of the response is, of course, inversely
proportional to the damping:

|ϕ|ω=ωp =
p̃

4μL

{
ω2

p + 4ν2
L

R4
e

} 1
2

(4.62)

It is also convenient for future purposes to define the natural frequency,
ωn, of oscillation of the bubbles as the value of ωp for zero damping:

ωn =
{

1
ρLR2

e

{
3k(p̄∞ − pV ) + 2(3k− 1)

S

Re

}} 1
2

(4.63)

The connection with the stability criterion of section 4.2.5 is clear when one
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Figure 4.9. Bubble resonant frequency in water at 300◦K (S = 0.0717,
μL = 0.000863, ρL = 996.3) as a function of the radius of the bubble for
various values of (p̄∞ − pV ) as indicated.

observes that no natural frequency exists for tensions (pV − p̄∞) > 4S/3Re

(for isothermal gas behavior, k = 1); stable oscillations can only occur about
a stable equilibrium.

Note from equation 4.61 that ωp is a function only of (p̄∞ − pV ), Re, and
the liquid properties. A typical graph for ωp as a function of Re for several
(p̄∞ − pV ) values is shown in figure 4.9 for water at 300◦K (S = 0.0717, μL =
0.000863, ρL = 996.3). As is evident from equation 4.61, the second and third
terms on the right-hand side dominate at very small Re and the frequency
is almost independent of (p̄∞ − pV ). Indeed, no peak frequency exists below
a size equal to about 2ν2

LρL/S. For larger bubbles the viscous term becomes
negligible and ωp depends on (p̄∞ − pV ). If the latter is positive, the natural
frequency approaches zero like R−1

e . In the case of tension, pV > p̄∞, the
peak frequency does not exist above Re = Rc.

For typical nuclei found in water (1 to 100 μm) the natural frequencies
are of the order, 5 to 25kHz. This has several important practical conse-
quences. First, if one wishes to cause cavitation in water by means of an
imposed acoustic pressure field, then the frequencies that will be most ef-
fective in producing a substantial concentration of large cavitation bubbles
will be in this frequency range. This is also the frequency range employed
in magnetostrictive devices used to oscillate solid material samples in water
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Figure 4.10. Bubble damping components and the total damping as a
function of the equilibrium bubble radius,Re, for water. Damping is plotted
as an effective viscosity, μe, nondimensionalized as shown (from Chapman
and Plesset 1971).

(or other liquid) in order to test the susceptibility of that material to cavi-
tation damage (Knapp et al. 1970). Of course, the oscillation of the nuclei
produced in this way will be highly nonlinear and therefore peak response
frequencies will be significantly lower than those given above.

There are two important footnotes to this linear dynamic analysis of an
oscillating bubble. First, the assumption that the gas in the bubble be-
haves polytropically is a dubious one. Prosperettti (1977) has analysed the
problem in detail with particular attention to heat transfer in the gas and
has evaluated the effective polytropic exponent as a function of frequency.
Not surprisingly the polytropic exponent increases from unity at very low
frequencies to γ at intermediate frequencies. However, more unexpected be-
haviors develop at high frequencies. At the low and intermediate frequen-
cies, the theory is largely in agreement with Crum’s (1983) experimental
measurements. Prosperetti, Crum, and Commander (1988) provide a useful
summary of the issue.

A second, related concern is the damping of bubble oscillations. Chapman
and Plesset (1971) presented a summary of the three primary contributions
to the damping of bubble oscillations, namely that due to liquid viscosity,
that due to liquid compressibility through acoustic radiation, and that due
to thermal conductivity. It is particularly convenient to represent the three
components of damping as three additive contributions to an effective liquid
viscosity, μe, that can then be employed in the Rayleigh-Plesset equation in
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place of the actual liquid viscosity, μL :

μe = μL + μt + μa (4.64)

where the acoustic viscosity, μa, is given by

μa =
ρLω

2R3
e

4cL
(4.65)

where cL is the velocity of sound in the liquid. The thermal viscosity, μt,
follows from the analysis by Prosperettti (1977) mentioned in the last para-
graph (see also Brennen 1995). The relative magnitudes of the three compo-
nents of damping (or effective viscosity) can be quite different for different
bubble sizes or radii, Re. This is illustrated by the data for air bubbles in
water at 20◦C and atmospheric pressure that is taken from Chapman and
Plesset (1971) and reproduced as figure 4.10.

4.4.2 Nonlinear effects

Due to the nonlinearities in the governing equations, particularly the
Rayleigh-Plesset equation 4.10, the response of a bubble subjected to pres-
sure oscillations will begin to exhibit important nonlinear effects as the am-
plitude of the oscillations is increased. In the last few sections of this chap-
ter we briefly review some of these nonlinear effects. Much of the research
appears in the context of acoustic cavitation, a subject with an extensive
literature that is reviewed in detail elsewhere (Flynn 1964; Neppiras 1980;
Plesset and Prosperetti 1977; Prosperetti 1982, 1984; Crum 1979; Young
1989). We include here a brief summary of the basic phenomena.

As the amplitude increases, the bubble may continue to oscillate stably.
Such circumstances are referred to as stable acoustic cavitation to distinguish
them from those of the transient regime described below. Several different
nonlinear phenomena can affect stable acoustic cavitation in important ways.
Among these are the production of subharmonics, the phenomenon of rec-
tified diffusion (see section 4.4.3) and the generation of Bjerknes forces (see
section 3.4). At larger amplitudes the change in bubble size during a single
period of oscillation can become so large that the bubble undergoes a cycle
of explosive cavitation growth and violent collapse similar to that described
earlier in the chapter. Such a response is termed transient acoustic cavita-
tion and is distinguished from stable acoustic cavitation by the fact that the
bubble radius changes by several orders of magnitude during each cycle.

As Plesset and Prosperetti (1977) have detailed in their review of the sub-
ject, when a liquid that will inevitably contain microbubbles is irradiated
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with sound of a given frequency, ω, the nonlinear response results in har-
monic dispersion, that not only produces harmonics with frequencies that are
integer multiples of ω (superharmonics) but, more unusually, subharmonics
with frequencies less than ω of the form mω/n where m and n are inte-
gers. Both the superharmonics and subharmonics become more prominent
as the amplitude of excitation is increased. The production of subharmon-
ics was first observed experimentally by Esche (1952), and possible origins
of this nonlinear effect were explored in detail by Noltingk and Neppiras
(1950, 1951), Flynn (1964), Borotnikova and Soloukin (1964), and Neppiras
(1969), among others. Lauterborn (1976) examined numerical solutions for
a large number of different excitation frequencies and was able to demon-
strate the progressive development of the peak responses at subharmonic
frequencies as the amplitude of the excitation is increased. Nonlinear effects
not only create these subharmonic peaks but also cause the resonant peaks
to be shifted to lower frequencies, creating discontinuities that correspond
to bifurcations in the solutions. The weakly nonlinear analysis of Brennen
(1995) produces similar phenomena. In recent years, the modern methods of
nonlinear dynamical systems analysis have been applied to this problem by
Lauterborn and Suchla (1984), Smereka, Birnir, and Banerjee (1987), Par-
litz et al. (1990), and others and have led to further understanding of the
bifurcation diagrams and strange attractor maps that arise in the dynamics
of single bubble oscillations.

Finally, we comment on the phenomenon of transient cavitation in which
a phase of explosive cavitation growth and collapse occurs each cycle of
the imposed pressure oscillation. We seek to establish the level of pressure
oscillation at which this will occur, known as the threshold for transient cavi-
tation (see Noltingk and Neppiras 1950, 1951, Flynn 1964, Young 1989). The
answer depends on the relation between the radian frequency, ω, of the im-
posed oscillations and the natural frequency, ωn, of the bubble. If ω � ωn,
then the liquid inertia is relatively unimportant in the bubble dynamics and
the bubble will respond quasistatically. Under these circumstances the Blake
criterion (see section 4.2.5, equation 4.41) will hold and the critical condi-
tions will be reached when the minimum instantaneous pressure just reaches
the critical Blake threshold pressure. On the other hand, if ω � ωn, the is-
sue will involve the dynamics of bubble growth since inertia will determine
the size of the bubble perturbations. The details of this bubble dynamic
problem have been addressed by Flynn (1964) and convenient guidelines are
provided by Apfel (1981).
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Figure 4.11. Examples from Crum (1980) of the growth (or shrinkage) of
air bubbles in saturated water (S = 68 dynes/cm) due to rectified diffusion.
Data is shown for four pressure amplitudes as shown. The lines are the
corresponding theoretical predictions.

4.4.3 Rectified mass diffusion

When a bubble is placed in an oscillating pressure field, an important non-
linear effect can occur in the mass transfer of dissolved gas between the
liquid and the bubble. This effect can cause a bubble to grow in response
to the oscillating pressure when it would not otherwise do so. This effect is
known as rectified mass diffusion (Blake 1949) and is important since it may
cause nuclei to grow from a stable size to an unstable size and thus provide
a supply of cavitation nuclei. Analytical models of the phenomenon were
first put forward by Hsieh and Plesset (1961) and Eller and Flynn (1965),
and reviews of the subject can be found in Crum (1980, 1984) and Young
(1989).

Consider a gas bubble in a liquid with dissolved gas as described in section
4.3.4. Now, however, we add an oscillation to the ambient pressure. Gas
will tend to come out of solution into the bubble during that part of the
oscillation cycle when the bubble is larger than the mean because the partial
pressure of gas in the bubble is then depressed. Conversely, gas will redissolve
during the other half of the cycle when the bubble is smaller than the mean.
The linear contributions to the mass of gas in the bubble will, of course,
balance so that the average gas content in the bubble will not be affected
at this level. However, there are two nonlinear effects that tend to increase
the mass of gas in the bubble. The first of these is due to the fact that
release of gas by the liquid occurs during that part of the cycle when the
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Figure 4.12. Data from Crum (1984) of the threshold pressure amplitude
for rectified diffusion for bubbles in distilled water (S = 68 dynes/cm) sat-
urated with air. The frequency of the sound is 22.1kHz. The line is the
theoretical prediction.

surface area is larger, and therefore the influx during that part of the cycle
is slightly larger than the efflux during the part of the cycle when the bubble
is smaller. Consequently, there is a net flux of gas into the bubble that is
quadratic in the perturbation amplitude. Second, the diffusion boundary
layer in the liquid tends to be stretched thinner when the bubble is larger,
and this also enhances the flux into the bubble during the part of the cycle
when the bubble is larger. This effect contributes a second, quadratic term
to the net flux of gas into the bubble.

Strasberg (1961) first explored the issue of the conditions under which a
bubble would grow due to rectified diffusion. This and later analyses showed
that, when an oscillating pressure is applied to a fluid consisting of a sub-
saturated or saturated liquid and seeded with microbubbles of radius, Re,
then there will exist a certain critical or threshold amplitude above which
the microbubbles will begin to grow by rectified diffusion. The analytical
expressions for the rate of growth and for the threshold pressure amplitudes
agree quite well with the corresponding experimental measurements for dis-
tilled water saturated with air made by Crum (1980, 1984) (see figures 4.11
and 4.12).
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