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finite-dimensional real vector spaces 
norm of x 
continuous linear mapping of E to 6; 
transpose of A E L(E ,  P) 
multilinear mappings 
skew-symmetric mappings 
symmetric mappings 
open subset 
smooth ( C  ") mapping 
effect off on x  
derivatives off 
partial derivatives off 
tangent to a curve 
C" manifold 
vector bundle 
C" sections of n  
tangent space at m E M  
tangent off at m 
tangent bundle 
cotangent bundle 
tensor bundles 
exterior form bundles 
C " real-valued functions 
vector fields 
one-forms * 
tensor fields 
tensor product 
k-forms 
exterior product 
mapping of manifolds 
pullback of forms 
diffeomophism oE manifolds 
induced tensor bundle isomorphism 
induced tensor field isomorphism 
open submanifold 
local chart 
basis of E 
dual basis of E* = L ( E , R )  
induced generators of %( U )  
induced dual generators of 5% *( U) 
integral of vector field 
Lie derivative 
Lie bracket 



exterior derivative 
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volume n form 
measure of 
divergence of a vector field 
determinant of a mapping 
symplectic form 
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raising action 
Hamiltonian vector field 
symplectic group 
canonical one-form on T*M 
canonical two-form on T*M 
Poisson bracket of functions 
Poisson bracket of one-forms 
locally Hamiltonian vector fields 
globally Hamiltonian vector fields 
energy surface 
Legendre transformation 
pullback of w, by FL 
symplectic form determined by a metric 
symplectic manifold 
action of a Lie group G on P 
Lie algebra of G 
momentum mapping 
dual momentum mapping 
reduced phase space 
level surface of N X J 
amended or effective potential 
pullback of w to R x M 
time-dependent vector field 
vector field associated to X 
unit time vector field on R X M 
Cartan form 
canonical transformation 
generating function of I; 
embedding at time t 
Hamilton principal functions 
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Preface to the Second Edition 

Since the first edition of this book appeared in 1947, there has been a 
great deal of activity in the field of symplectic geometry and Hamiltonian 
systems. In addition to the recent textbooks of Arnold, hold-Avez,  
Godbillon, Guillemin-Sternberg, Siegel-Moser, and Souriau, there have been 
many research articles published. Two good collections are "Symposia 
Mathematica,'' vol. XIV, and "GeomCtrie Symplectique el Physique MathC- 
matique," CNRS, Colloque Internationaux, no. 237. There are also important 
survey articles, such as Weinstein [1977b]. The text and bibliography contain 
many of the important new references we are aware of. We have continued to 
find the classic works, especially Whittaker 119591, invaluable. 

The basic audience for the book remains the same: mathematicians, 
physicists, and engineers interested in geometrical methods in mechanics, 
assuming a background in calculus, linear algebra, some classical analysis, 
and point set topology. We include most of the basic results in manifold 
theory, as well as some key facts from point set topology and Lie group 
theory. Other things used without proof are clearly noted. 

We have updated the material on symmetry groups and qualitative theory, 
added new sections on the rigid body, topology and mechanics, and quantiza- 
tion, and other topics, and have made numerous corrections and additions. In 
fact, some of the results in this edition are new. 

We have made two major changes in notation: we now use for 
pull-back (the first edition used f*), in accordance with standard usage, and 
have adopted the "Bourbaki" convention for wedge product. The latter 
eliminates many annoying factors of 2. 



nlv PREFACE TO THE SECOND EDlTlOM 

A. N. Kolmogorov9s address at the 1954 Internationd Gngress of 
Mathematicians marked an important historical point in the developmnt of 
the theory, and is reproduced as an appedk.  The work d Kolmogorov, 
h o l d ,  and Moser and its application to Laplace's question of shbiEty of the 
solar system remains one of the goals of the exposition. For complete de tds  
of all tbe theorems needed in this direction, outside references will have to be 
consulted, such as Siegel-Moser [1971j and Moser [1973a]. 

We are pleased to achowledge valuable assistance from 
Paul Chernsf f Wodek Tulezyjew 
Morris Hirsh Man Weinsteh 

and our invaluable assistant authors 
Richard Cushmnan and Tudor Watiu 

who all contributed some of their original material for incoworation into the 
text. 

Nso, we are grateful to 
Ethan akin Kentaro Mikami 
Judy Arms Harold Naparst 
Michael Buchner Ed Nelson 
Robert Cahn Sheldon Newhouse 
Emil Chorosoff George Oster 
Andre Deprit Jean-Paul Penot 
Bob Devaney Joel Robbin 
Hans Duistermaat Clark Robinson 
John Guckenheimer David Rod 
Martin Gutzwiller William Satzer 
Richard Hansen Dieter Schmidt 
Morris Kirsch Mike Shub 
Michael Hoffman Steve Smale 
Andrei Iacob Rich Spencer 
Robert Jantzen Mike Spivak 
Therese Langer Dan Sunday 
Ken Meyer Floris Takens 

Randy Wohl 

for contributions, remarks, and corrections which we have hcluded in this 
edition. 

Further, we express our gratitude to Chris Shaw, who made exceptiond 
efforts to transfom our sketches into the graphics wGch llustrate the text, to 
Peter Coha for his assistance in orgamng the Museum and Bibliopaplmy, 
and to Ruthie Cephas, Jody Milbun, Mamie McE&raey, Ruth (Bioic 
Fingers) Suzuki, and -1kuko W o r h a n  for their superb typing job. 

neoretical mechanics is an ever-expanding subject. We d 1  appreciate 
comments from readers regarding new results and shortwcpnniplgs in this 
edition. 



Preface to the First Edition 

In the Spring of 1966, I gave a series of lectures in the Phceton 
University Department of Physics, aimed at recent mathematical results in 
mechanics, especially the work of Kolmogorov, hnold ,  and Moser and its 
application to Laplace's question of the stability of the solar system. Mr. 
Marsden's notes of the lectures, with some revision and expansion by both of 
us, became ehis book. 

Mthough the lectures were attended equally by mathematicians and 
physicists, our goal was to make the subject available to the nonspecialists. 
merefore, the mathematical background assumed was dictated by the physics 
graduate students in the audience. Hoping this would be typical of the people 
interested in this subject, I have made the same assumptions in the book. 

Thus, we take for granted basic undergraduate calculus and linear alge- 
bra, and a lirnited amount of classical analysis, point set topoloa, and 
elementary mecharnacs. Then we begn with modem advanced calculus, and 
go on to a complete and self-contained treatment of graduate level classical 
mechanics. The later chapters, dealing with the recent results, require an 
ever-increasing adeptness in general topologgr, and we have collected the 
topological topics required in Appendix A. 

To further aid the nomathematician, the proofs are unusually detailed, 
and the text is replete with cross-references "k earlier definitions and proposi- 
tions, all of which are nuranbered for ehis puvose. The extent of these is 
testimonry of Mr. Marsden's patience. 

As om goal is to make a concise exposition, we prove propositions only if 
the proofs are easy, or are not to be found readily in the literature. This 



xvl  PREFACE T O  T H E  F IRST  EDITION 

results in an irregular collection of proofs-in the first four chapters nearly 
everything is proved, being easy, and in the last three chapters there are 
several longer proofs included and many omitted. Some of those included are 
necessary because the propositions are original, and can be omitted in a first 
reading or an elementary course. 

For the mathematical reader, the proofs we have omitted can easily be 
found in books or journals, and we give complete references for each 
(References in square brackets refer to the Bibliography.) For this reason, the 
book, although not self-contained, gives a coq le te  exposition. 

In this connection we are grateful to Al Kelley for the opportunity of 
publishing two research articles of his, as Appendixes I% and C, which have 
not appeared elsewhere. In each of these he proves an original theorem that is 
important to our development of the subject. As Kolmogorov's address at the 
1954 International Congress of Mathematicians (in Russian), which inspired 
the most important of the recent results, has not been available in English, we 
include a translation of it in PLppendix D. The exercises at the end of each 
section are nearly all used in a later section, and may be read as part of the 
text. 

I am indebted to Arthur Wightman for his enthusiasm in making arrange- 
ments for my lectures and the publication of the book, to Wen6 Thom for 
discussions on structural stability and a preliminary manuscript of part of his 
book on that subject, to Jerrold Marsden for his energetic collaboration in the 
writing of this book, and to many colleagues for valuable suggestions. Some 
ot these are acknowledged in the Notes at the end of each chapter, which also 
give general historical and bibliographical information. 

We are both happy to express our gratitude to June Clausen for editing 
and typing the bulk of the manuscript, and to Patricia Clark, Bonnie Kearns, 
Elizabeth Epstein, Elizabeth Margosches, and Jerilynn Christiansen for their 
valuable assistance. 

Princeton, New Jersey 
June 1966 
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Introduction 

Mechanics begins with a long tradition of qualitative investigation 
culminating with KEPLER and GALILEO. Following this is the period of 
quantitative theory (1687-1889) characterized by concomitant developments 
in mechanics, mathematics, and the philosophy of science that are epitomized 
by the works of NEWTON, EULER, LAGRANGE, LAPLACE, HAMILTON, and 
JACOBI. Both of these periods are thoroughly described in DUGAS [1955]. 

Throughout these periods, the distinguished special case of celestial 
mechanics had a dominant role (see MOULTON I19021 for additional historical 
details). Formalized in the quantitative period as the n-body problem, it recurs 
in the writings of all of the great figures of the time. The question of stability 
was one of main concerns, and was analyzed with series expansion techniques 
by LAPLACE (1773), LAGRANGE (1776), POISSON (P809), and DIRICHLET (1858), 
all of whom claimed to have proved that the solar system was stable. 

As DIRICHLET died before writing down this proof, KING OSCAR of 
Sweden offered a prize for its discovery, which was given to PO IN CAR^ in 1889. 
The results of HARETU (1878) and PO IN CAR^ (1892), suggest that the series 
expansions of LAPLACE et al. diverge, and the discovery by BRUNS (1887) that 
no quantitative methods other than series expansions could resolve the n-body 
problem brought the quantitative period to an end. (See MOSER [1973a] for 
additional historical information.) For celestial mechanics this situation repre- 
sented a great dilemma, comparable to the crises associated with relativity and 
quantum theory in other aspects of mechanics. The resolution we owe to the 

x v l l  
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genius of P O I N C ~ ,  who resurrected the qualitative point of view, accompan- 
ied by completely new mathematical methods. The inventions of POINCARE, 
culminating in modern differential geometry and topology, constitute a recent 
and lesser known example of concomitant development of mathematics and 
mechanics, comparable to calculus, differential equations, and variational 
theory. 

The neoqualitative period in mechanics, that is, from POINCARE: to the 
present, consists primarily in the amplification of the qualitative, geometric 
methods of POINCARI?, the application of these methods to the qualitative 
questions of the previous period-for example, stability in the n-body prob- 
lem-and the consideration of new qualitative questions that could not 
previously be asked. 

POINCARFS methods are characterized first of all by the global geometric 
point of view. He visualized a dynamical system as a field of vectors on phase 
space, in which a solution is a smooth curve tangent at each of its points to 
the vector based at that point. The qualitative theory is based on geometrical 
properties of the phaseportrait: the family of solution curves, which fill up the 
entire phase space. For questions such as stability, it is necessary to study the 
entire phase portrait, including the behavior of solutions for all values of the 
time parameter. Thus it was essential to consider the entire phase space at 
once as a geometric object. Doing so, POINC& found the prevailing 
mathematical model for mechanics inadequate, for its underlying space was 
Euclidean, or a domain of several real variables, whereas for a mechanical 
problem with angular variables or constraints, the phase space might be a 
more general, nonlinear space, such as a generalized cylinder. Thus the global 
view in the qualitative theory led PO IN CAR^ to the notion of a differentiable 
manifold as the phase space in mechanics. In mechanical systems, this 
manifold always has a special geometric structure pertaining to the oc- 
currence of phase variables in canonically conjugate pairs, called a symplectic 
structure. Thus the new mathematical model for mechanics consists of a 
symplectic manifold, together with a Hamiltonian vector field, or global system 
of first-order differential equations preserving the symplectic structure. 

This model offers no natural system of coordinates. Indeed a manifold 
admits a coordinate system only locally, so it is most efficient to use the 
intrinsic calculus of CARTAN rather than the conventional calculus of NEWTON 
in the analysis of this model. The complete description of this model for 
mechanics comes quite a bit after PO IN CAR^, as the intrinsic calculus was not 
fully developed until the 1940s. One advantage of this model is that by 
suppressing unnecessary coordinates the full generality of the theory becomes 
evident. 

The second characteristic of the qualitative theory is the replacement of 
analytical methods by differential-topological ones in the study of the phase 
portrait. For many questions, for example the stability of the solar system, 
one is interested finally in qualitative information about the phase portrait. In 
earlier times, the only techniques available were analytical. By obtaining a 
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complete or approximate quantitative solution, qualitative or geometric prop- 
erties could be deduced. It was POINCARI~S idea to proceed directly to qualita- 
tive information by qualitative, that is, geometric methods. Thus P O I N C ~ ,  
BIRKHOFF, KOLMOGOROV, ARNOLD, and MOSER show the existence of periodic 
solutions in the three-body problem by applying differential-topological theo- 
rems to the phase portraits in addition to analytical methods. No analytical 
description of these orbits has been given. In some cases the orbits have been 
plotted approximately by computers, but of course the computer cannot 
prove that these solutions are periodic. 

A third aspect of the qualitative point of view is a new question that 
emerges in it-the problem of structural stability, the most comprehensive of 
many different notions of stability. This problem, first posed in 1937 by 
Andronov-Pontriagin, asks: If a dynamical system X has a known phase 
portrait P, and is then perturbed to a slightly different system X' (for 
example, changing the coefficients in its differential equation slightly), then is 
the new phase portrait P' close to P in some topological sense? This problem 
is of obvious importance, since in practice the qualitative information ob- 
tained for P is to be applied not to X, but to some nearby system X', because 
the coefficients of the equation may be determined experimentally or by an 
approximate model and therefore approximately. 

The traditional mutuality of mechanics and philosophy has declined in 
recent years, perhaps because of the justifiable interest in the problems posed 
by relativity and quantum theory. But current problems in mechanics give 
new insight into the structure of physical theories. 

At the turn of this century a simple description of physical theory evolved, 
especially among continental physicists-DWM, P O I N C ~ ,  IMAcH, EINSTEIN, 
HAD-, HILBERT-which may still be quite close to the views of 
many mathematical physicists. This description-most clearly enunciated by 
DUHEM 119541--consisted of an experimental domain, a mathematical model, 
and a conventional interpretation. The model, being a mathematical system, 
embodies the logic, or axiomatization, of the theory. The interpretation is an 
agreement connecting the parameters and therefore the conclusions of the 
model and the observables in the domain. 

Traditionally, the philosopher-scientists judge the usefulness of a theory 
by the criterion of adequacy, that is, the verifiability of the predictions, or the 
quality of the agreement between the interpreted conclusions of the model 
and the data of the experimental domain. To this DUHEM adds, in a brief 
example [1954, pp. 138 ff.], the criterion of stability. 

This criterion, suggested to him by the earliest results of qualitative 
mechanics (HADAMARD), refers to the stability or continuity of the predic- 
tions, or their adequacy, when the model is slightly perturbed. The general 
applicability of this type of criterion has been suggested by RE& THOM 
[1975]. 

This stability concerns variation of the model only, the interpretation and 
domain being fixed. Therefore, it concerns mainly the model, and is primarily 
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a mathematical or logical question. It has been studied to some extent in a 
general logical setting by the physicologicians BOULIGAND [I9351 and 
DESTOUCHES [1935], but probably it is safe to say that a clear enunciation 
of this criterion in the correct generality has not yet been made. Certainly all 
of the various notions of stability in qualitative mechanics and ordinary 
differential equations are special cases of this notion, including LAPLACE'S 
problem of the stability of the solar system and structural stability, as well as 
THOM'S stability of biological systems. 

Also, although this criterion has not been discussed very explicitly by 
physicists, it has functioned as a tacit assumption, which may be called the 
dogma of stability. For example, in a model with differential equations, in 
which stability may mean structural stability, the model depends on parame- 
ters, namely the coefficients of the equation, each value of which corresponds 
to a different model. As these parameters can be determined only approxi- 
mately, the theory is useful only if the equations are structurally stable, which 
cannot be proved at present in many important cases. Probably the physicist 
must rely on faith at this point, analogous to the faith of a mathematician in 
the consistency of set theory. 

An alternative to the dogma of stability has been offered by THOM [1975]. 
He suggests that stability, precisely formulated in a specific theory, be added 
to the model as an additional hypothesis. This formalization, despite the risk 
of an inconsistent axiomatic system, reduces the criterion of stability to an 
aspect of the criterion of adequacy, and in addition may admit additional 
theorems or predictions in the model. As yet no implications of this axiom are 
known for celestial mechanics, but THOM has described some conclusions in 
his model for biological systems. 

A careful statement of this notion of stability in the general context of 
physical theory and epistemology could be quite useful in technical applica- 
tions of mechanics as well as in the formulation of new qualitative theories in 
physics, biology, and the social sciences. 

Most of this book is devoted to a precise statement of mathematical 
models for mechanical systems and to precise definitions of various types of 
stability in this narrow context. These are illustrated by a number of exam- 
ples, but by one example in depth, namely, the restricted three-body problem 
in Chapter 10. 
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To motivate the introduction of symplectic geometry in mechanics, we 
briefly consider Hamilton's equations. The starting point is Newton's second 
law, which states that a particle of mass m > 0 moving in a potential V(q), 

1 2 3  q = (q , q ,q ) E R3, moves along a curve q(t) in R 3  in such a way that 
mq = - grad V(q). If we introduce the momentum pi = mqi and the energy 
H (q,p) = (1 /2m)llP112 + V(q), then Newton's law is equivalent to Hamilton's 
equations: 

One proceeds to study this system of first-order equations for a general 

H(q,p). To do this, we introduce the matrix J= ( - i), where I is the 

3 X 3 identity, and note that the equations become ,$'= J.gradH([), where 
[=(q,p). (In complex notation, setting z = q+ ip, they may be written as 
i = -2iaHlaF.) 

Set X ,  = J-gradH. Then ((t) satisfies Hamilton's equations iff ( ( t )  is an 
integral curve of XH, that is, $(t) = XH([(t)). The relationship between X, and 
H can be rewritten as follows: introduce the skew-symmetric bilinear form w 

x x i  
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on R x R defined by 
o(vl, v2)= v,.J.v2 

[In complex notation on c3 = R X R3, w(vl, v2)= - Im(v,, v,), where v, = x1 
+ iy ,, v, = x, + iy,, and ( , ) is the Hermitian inner product.] 

Then we-have, for all ( € R 3 x R 3  and v€R3xR3 ,  

where dH(q,p)=(aH/aqi,aH/ap*), a row vector in R3XR3, as is easily 
checked. One calls w the symplectic form on R 3  X R3, and X, the Hamiltonian 
vector field with energy H. 

Suppose we make a change of coordinates r] = f (0, where f : R X R 3 + = ~  

X R3 is smooth. If Kt )  satisfies Hamilton's equations, the equations satisfied 
by q( t )  = f (((t)) are $ =A$ = AJgradt- H (6) = AJA*grad, H (((r])), where (A)ij 
=(aqi/ae) is the Jacobian off, and A* is the transpose of A. The equations 
for r] will be Hamiltonian with energy K (r]) = H (((77)) if and only-if AJA* = J. 
A transformation satisfying this condition is called canonical or symplectic, (or 
a symplectomorphism). In terms of the symplectic form w, this condition, 
denoted f *w =w, says the transformation f leaves w unchanged. 

The space R x R of the Cs is called the phase space. For a system of N 
particles we would use R 3N x R 3N. 

For many fundamental physical systems, the phase space is a manifold 
rather than Euclidean space. For instance, manifolds often arise when con- 
straints are present. For example, the phase space for the motion of-the rigid 
body is the tangent bundle of the group SO (3) of 3 X 3 orthogonal matrices 
with determinant + 1. (See Sect. 4.4 for details.) Not only are manifolds 
important in these examples, but their terminology and notation lead to a 
clearer understanding of the basic structure of mechanics. 



PART 1 
PRELIMINARIES 

The basic tools needed for our study of mechanics are developed here. 
More specialized tools are developed later as needed. Those with the requisite 
mathematical training can of course skip this part after familiarizing them- 
selves with our notation. Obviously one cannot hope to master all the 
preliminaries if one is starting from scratch, without a massive effort. There- 
fore, it seems wise first to go through this part quickly and then, starting with 
Part 2, to come back when the occasion arises for a more serious second 
study. 



Differential Theory 

The categories of differentiable manifolds and vector bundles provide a 
useful context for the mathematics needed in mechanics, especially the new 
topological and qualitative results. This chapter develops these categories. 
The tools for this development-topology and calculus in linear spaces-are 
studied first. 

1.1 TOPOLOGY 

One of the greatest difficulties this book presents to the nonmathemati- 
cian is the reliance on point set topology. Although excellent references are 
available, the topics required cannot all be found in a single text, and the 
variation of notations and order in the different books presents a difficult 
challenge to an inexperienced reader. We assemble here for reference the 
topics needed, in a consistent notation used throughout this book. A number 
of more technical proofs that are not relevant for us are omitted and the 
reader referred to a standard text. 

This section is not meant to replace a full course in topology and the 
X reader shoulc not expect to master it on first reading. A 
G - 
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The reader is assumed to be familiar with usual notations of set theory 
such as E ,  u , n and with the concept of a mapping. If A and B are sets and 
f: A - t B  is a mapping, we often write a w f  (a )  for the effect of the mapping 
on the element a E A ;  "iff" stands for "if and only if" (="if" in definitions). 

1.1.1 Definitions. A topological space is a set S together with a collection 8 
of subsets called open sets such that 

(Tl) ~ E Q  and S E Q ;  
(T2) If U,, U 2 € 8 ,  then U , n  U 2 € 8 ;  
(T3) The union of any collection of open sets is open. 

For such a topological space the closed sets are the elements of 

where i? denotes the complement, i?A = S\A = { s  E S 1s @ A } .  (The closed sets 
then obey rules dual to those for open sets.) 

An open neighborhood of a point u in a topological space S is an open set U 
such that u E U. Similarly, for a subset A of S ,  U is an open neighborhood of A 
if U is open and A c U. 

If A is a subset of a topological space S ,  the relative topology on A is defined w 

by 

(which is a topology on A). 
-Let S be a topological space. Then a basis for the topology is a collection 3 

of open sets such that evey open set of S is a union of elements of 3.  The 
topology is calledfirst countable if for each u E S,  there is a countable collection 
{ U,) of neighborhoods of u such that for any neighborhood U of u, there is an n 
so U, c U. The topology is called second countable if it has a coun~able basis. 

Let S and T be topological spaces and S X T = {(u,  v)lu E S and v E T ) .  
The product topology on S X T consists of all subsets that are unions of sets of 
the form U X V, where U is open in S and V is open in T. Thus, these open 
rectangles form a basis for the topology. 

Let S be a topological space and {u,) a sequence of points in S.  The 
sequence is said to converge if there is a point u E S such that for evety 
neighborhood U of u, there is an N such that n > N implies u, E U. We say that 
{u,) converges to u, or u is a limit point of {u,). 

1.1.2 Example. On the real line R ,  the standard topology consists of the sets 3 
that are unions of open intervals (a,b). Then R is second countable (and 2 

9 
hence first countable) with a basis 0 vI 

r,, is rational, m E N, the positive integers 
m 
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The topology on the plane R~ is the product topology R X R. In R, the 
sequence { l / n )  converges to 0, but in the subspace (0, 11, the sequence does 
not converge. 

1.1.3 Definition. Let S be a top~logical space and A c S. Then the closure of 
A, denoted cl(A) is the intersection of all closed sets containing A. The interior 
of A, denoted int ( A )  is the union of all open sets contained in A. The boundary 
of A, denoted bd(A) is defined by 

bd ( A )  = cl ( A )  n cl (&?A) 

Thus, bd(A) is closed, and bd(A)= bd(&?A). Note that A is open iff A= 
int ( A )  and closed iff A = cl (A) .  

1.1.4 Proposition. Let S be a topological space and A c S. Then 

( i )  u E cl(A) iff for evety neighborhood U of u, U n A # 0 ;  
(ii) u E int ( A )  i f f  there is a neighborhood U of u such that U c A; 
(iii) u E bd ( A )  i f f  for evety neighborhood U of u, U n A # 0 and U n (C?A) z 

0 

This proposition follows readily from the definitions. 

1.1.5 Definition. Let S be a topological space. A point u E S is called isolated 
i f f  { u )  is open. The unique topology in which evely point is isolated is called the 
discrete topology (O = 2,, the collection of all subsets). The topology in which 
8 = (0, S ) is called the trivial topology. 

A subset A of S is called dense in S iff c l (A)  = S and is called nowhere 
dense iff C?(cl(A)) is dense in S. 

Thus, A is nowhere dense iff int(c1 (A) )  = 0. 

1.1.6 Definition. A topological space S is called Hausdoiff iff each two 
distinct points have disjoint neighborhoods (that is, with empty intersection). 
Similarly, S is called normal i f f  each two disjoint closed sets have disjoint 
neighborhoods. 

Equivalent forms of Hausdorff are the following. 

1.1.7 Proposition. ( i )  A space S is Hausdorff i f f  A, = {(u,  u)l u E S ) is closed 
in S x S in the product topology. 

-2 (ii) A first countable space S is Hausdorff i f f  all sequences have at most one 
q limit point. 
m 
8 

ProoJ: If A, Is closed and u,, u2 are distinct, there is an open rectangle 
Z U X V containing (u,, u,) and U x V c &?As. Then in S, U and V are disjoint. 

The converse is similar, and we leave (ii) as an exercise. . 
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1.1.1 0 Definition. The standard metric on R n  is defined by 

where x = ( x l ,  ..., xn) .  

Next we study continuity of mappings. 

1.1.1 1 Definition. Let S and T be topological spaces and cp: S+ T be a 
mapping. Then cp is continuous at u ES if for every neighborhood V of cp(u) 
there is a neighborhood U of u such that cp(U) c V .  If, for every open set V of T ,  
c p - ' ( v ) =  { u  E S l c p ( u ) ~  V )  is open in S ,  cp is continuous. (Thus, cp is continuous 
i f f  cp is continuous at each u E S.) 

If cp: S+ T is a bijection (that is, one-to-one and onto), cp and cp- '  are 
continuous, then cp is a homeomorphism and S and T are homeomorphic. 

It follows at once that cp: S+T is continuous iff the inverse image of 
every closed set is closed. The following is also useful. 

1.1.1 2 Proposition. Let S and T be topological spaces and cp: S+ T. Then cp 
is continuous i f f  for every A c S, cp (cl (A))  c cl ( c p  (A)). 

ProoJ: If cp is continuous, then cp - 'cl (cp(A)) is closed. But A c cp - 'cl (cp(A)) 
and hence cl (A )  c cp - 'cl (cp(A)), or cp(c1 ( A )  c cl (cp(A)). Conversely, let B c T 
be closed and A = cpP'(B). Then cl(A) ccp-'(B)= A, so A is closed. E 

From 1.1.4 we obtain the following. 

1.1.13 Proposition. Let S be a first countable space and A c S. Then u E 
cl(A) iff there is a sequence of points of A that converge to u (in the topolog~ on 
9. 

Continuity may be expressed in terms of sequences as follows: 

1.1.1 4 Proposition. Let S and T be topological spaces with S first countable 
and c p :  S+ T. Then cp is continuous iff for eveq sequence {u,) converging to u, 
{cp(un)) converges to cp(u), for all u E S. 

We leave this to the reader. In fact, the result follows from 1.1.12 and 
1.1.13. 

E 
o For metric spaces, note that cp: M,+M2 is continuous at u, E M ,  iff for 

all E > 0 there is a 6 > 0 such that d (u,, u;) < 6 implies d (cp(u,), cp(u;)) < e. 8 
00 
0 

z 1.1.1 5 Proposition. Let M and N be metric spaces with N complete. Then the 
collection C (M, N )  of all continuous maps cp : M+N forms a complete metric 
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space with the metric 

ProoJ: It is readily verified that do  is a metric. Convergence of a sequence 
f, E C (M, N) to f E C (M, N) in the metric do  is the same as uniform conver- 
gence, that is, for all E > O  there is an N such that if n > N, 

for all x E M. Now if f, is a Cauchy sequence in C(M, N), then since 

f,(x) is Cauchy for each xEM.  Thus fn converges pointwise, defining a 
function f(x). We must show that f,+f uniformly and that f is continuous. 
First of all, given E > 0, choose N such that do( f,, f,) < ~ / 2  if n, m > N. Then 
for any x EM, pick N, > N so that d( frn(x), f (x)) < e/2 if m > N,. Thus with 
n > N  andm>N,, 

d(fn (XI, f (XI) < d (fn (XI, frn (x)) + d(fm (XI, f (XI) 

< &/2 + & / 2 =  E 

so f,+f uniformly. The reader can similarly verify that f is continuous (look 
in any advanced calculus text such as Marsden [1974a] for the case in Rn if 
you get stuck). II 

We now study some deeper properties of topological spaces and then 
some topics that will be of use later in our study of manifolds. 

1 .I .16 Deflnltlon. Let S be a topological space. Then S is called compact iff 
for every covering of S by open sets U, (that is, U, U, = S)  there is a finite 
subcovering. A subset A c S is called compact iff A is compact in the relative 
topology. A space is called locally compact iff each point has a neighborhood 
'whose closure is compact. 

It follows easily that a closed subset of a compact space is compact and 
that the continuous image of a compact space is compact. 

The following is often convenient. 

1 .1.17 Theorem (Bolzano-Weierstrass). If S is a first countable space and 
is compact, then every sequence has a convergent subsequence. 

(The converse is also true in a metric space.) 5 
2 
4 

ProoJ: Suppose {u,) contains no convergent subsequences. Then we may 
assume all points are distinct. Each un has a neighborhood 8, that contains 2 
no other u,. From 1.1.13 {u,) is closed, so that (8,) together with C! {u,) 
forms an open covering of S, with no finite subcovering. . 2 

E 
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In a metric space, every compact subset is closed and bounded. In Rn, the 
converse is also true (Heine Bore1 theorem; see Marsden [1974a], p. 62). 

1.1.1 8 Proposition. Let S be a Hausdorff space. Then every compact subset 
of S is closed. Also, every compact Hausdorjf space is normal. 

Proof: Let u € (?A and v € A ,  where A is compact in S.  There are disjoint 
neighborhoods of u and v and, since A is compact, there are disjoint 
neighborhoods of u and A. Thus (?A is open. We leave the second part as an 
exercise. 

1.1.19 Proposition. Let S be a Hausdorff space that is locally homeomorphic 
to a locally compact Hausdorff space (that is, for each u € S ,  there is a 
neighborhood of S homeomolphic, in the subspace topology, to an open subset of 
a locally compact Hausdorff space). Then S is locally compact. In particular, 
Hausdorff spaces locally homeomorphic to R n  are locally compact. 

ProoJ Let U c S be homeomorphic to cp(U) c T. There is a neighborhood V 
of cp(u) so c l ( V )  ccp(U) and c l ( V )  is compact. (We leave this as an exercise; 
locally compact Hausdorff spaces are regular.) Then c p - ' ( c l ( ~ ) )  is compact, 
and hence closed in S .  By 1 .I. 12, q - l ( c l ( ~ ) )  c cl ( c p - ' v ) .  Thus cp-'(V) has 
compact closure clcp - '( V )  = cp - 'cl ( V ) .  . 
1.1.20 Definition. Let S be a topological space. A covering { U,) of S is 
called a refinement of a covering { V , )  iff for every Ua there is a V,. such that 
Ua c &. A covering { U, ) of S is called local& finite iff each point u E S has a 
neighborhood U such that U intersects only a finite number of U,. A space is 
calledparacompact ijf every open covering of S has a locally finite refinement of 
open sets, and S is Hausdorff. 

1.1.21 Theorem. Second countable, locally compact Hausdorff spaces are 
paracompact. 

Proof; S is the countable union of open sets Un such that cl(Un) is compact 
and cl ( U,) c Un + , . If W, is a covering of S by open sets, and Kn = cl( Un) - 
U,- ,, then we can cover Kn by a finite number of open sets each of which is 
contained in some W, n U,,,, and is disjoint from cl(Un-,). The union of 
such collections yields the desired refinement of { W,). H 

1.1.22 Theorem. Every paracompact space is normal. 
X 
A 

Proof; We first show that if A is closed and uEC?A, there are disjoint 
" neighborhoods of u and A (regularity). For each u € A  let U,, V, be dsjoint 8 

neighborhoods of u and u. Let W, be a locally finite refinement of the 
z covering Vo, (?A, and V =  u W,, the union over those a so W, n A #0. A 

neighborhood U, of u meets a finite number of W,. Let U denote the 
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intersection of U, and the corresponding U,,. Then V and U are the required 
neighborhoods. The case for two closed sets proceeds somewhat similarly, so 
we leave the details for the reader. . 

Later on, the notion of paracompactness will be important because it will 
guarantee the existence of partitions of unity, a tool useful to us. We will be 
mostly interested in the differentiable case and will discuss it at the ap- 
propriate time. For comparison, we state the continuous results and refer to 
J. Kelley 119751 and Choquet [1969, Sec. 61 for proofs. 

1.1.23 Theorem. If S is a Hausdorff space, the following are equiualent: 

( i )  S is normal; 
(ii)  For any two closed nonempty disjoint sets A, B there is a continuous 

function f :  S-+[O, 11 such that f ( A )  = 0 and f ( B )  = 1 (Urysohn's lemma) 
(iii) For any closed set A c S and continuous function f:  A--+[a, b] ,  there is a 

continuous extension f: S+[a, b] o f f  (Tietze extension theorem). 

These results are important for the rich supply of continuous functions 
they provide. 

1.1.24 Definition The support of a real-valued function f :  S-+R is 

A partition oy unity on S is a family of continuous mappings {cpi : S+[O, I]) such 
that 

( i )  {supp (cp,)) is locally finite. 
(ii) X,cp,(x)=l for each x E S .  

We say that a partition of unity {cp,) is subordinate to a covering (A,) of S if 
supp(cp,) is a refinement of (A,). 

The main result on partitions of unity then is the following consequence 
of 1.2.22 and 1.1.23: 

1.1.25 Theorem Let S be paracompact and { U,) be any open covering of S. 
Then there is a partition of unity {cp,) (with the same index set) subordinate to 
{ 

Later in the book we will use these ideas to prove a C" version of this, so 
we will not pursue it further here. We turn now to other basic notions from 
topology that will be needed. E! 4 

m 
;3 1.1.26 Definition. A topological space S is connected if 0 and S are the only 

subsets of S that are both open and closed. A subset of S is connected iff it is Z 
connected in the relative topology. A component A of S is a nonempty connected 
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subset of S such that the only connected subset of S containing A  is A; S is called 
locally connected iff  each point x has an open neighborhood containing a 
connected neighborhood of x. 

It follows easily that the continuous image of a connected set is con- 
nected. Equivalent forms of the definition follow. 

1.1.27 Proposition. A  space S is not connected iff either of the following 
holds. 

( i )  There is a nonempty proper subset of S that is both open and closed. 
(ii) S is the disjoint union of two nonempty open sets. 
(iii) S is the disjoint union of two nonempty closed sets, 

Also, we have the following. 

1.1.28 Proposition. Let S be a connected space and f:  S+R be continuous. 
Then f assumes every value between any two values f (u ) ,  f (0). 

ProoJ: Suppose f (u )  < a < f ( v )  and f does not assume the value a. Then 
U= {uol f (uo) < a )  is both open and closed. 

Intervals in R may be shown to be the only connected sets in R. 

1.1.29 Proposition. Let S be a topological space and B c S be connected 
Then 

( i )  i f  B c A  c cl ( B )  , then A is connected; 
(ii) i f  B, are connected and B, n B # 0, then B u (U , B,) is connected. 

ProosJ: If A  is not connected, A  is the disjoint union of U, n A and U2n A 
where U, and U2 are open in S. Then from 1.1.4(i), U, n B Z 0 ,  U2 n B # 0 ,  
so B is not connected. We leave (ii) as an exercise. 

1.4.30 Corollary. The components of a topological space are closed. Also, S is 
the disjoint union of its components. If S is locally connected, the components are 
open as well as closed. 

1.1.31 Proposition. Let S be a first countable compact Hausdorff space and 
{ A , )  a sequence of closed, connected subsets of S with A, cA,- ,. Then 
A  = n ;*A, is connected. 

X 

ProoJ; As S is normal, if A is not connected, A lies in two disjoint open 
9 subsets U, and U2 of S.  If A n n  CU, n C?U2#0 for all n, then there is a 
3 z sequence u,, € A ,  n C?U, n CU, with a subsequence converging to u. As A,, 

C? U,, CU2 are closed, u E A n C U, n C U2, a contradiction. Hence some A, is 
not connected. W 
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An intuitively more appealing, but less convenient, definition of con- 
nectedness is the following. 

1.1.32 Definition. Let S be a topological space and I=  [O, 11 c R. An arc g, in 
S is a continuous mapping g,: I-S. If cp(0) = u, g,(l) = v ,  we say cp joins u and 
v ;  S is called arcwise connected iff every two points in S can be joined by an arc 
in S.  A space is called locally arcwise connected iff each point has an arcwise 
connected neighborhood (in the relative topology). 

The relationship with connectedness is the following. 

1.1.33 Proposition. Every arcwise connected space is connected. If a space is 
connected and locally arcwise connected, it is arcwise connected. In particular, a 
space locally homeomorphic to Rn is connected iff it is arcwise connected. 

Proof; If S is arcwise connected and not connected, write S= U,  u U, where 
U,  and U, are nonempty, disjoint, and open. Let u,  € U,  and u, E U, and let 
cp be an arc joining u,  and u,. Now g,(I) is connected, and since cp(I) n U, # 
0 ,  cp(I) n U, n U2# 0. Hence U, n U,# 0 ,  a contradiction. For the second 
part, let u E S and U denote all points that can be joined to u by an arc. An 
easy argument shows U and C?U are open and so U= S ,  by 1.1.27. 

For example, disks in Rn are arcwise connected and hence are connected. 
In a metric space we already defined the distance d(u,A)  from a point to 

a set. To measure the distance between two sets, we use the following. 

1.1.34 Definltion. Let S be a metric space with metric 4 and 2S denote the 
set of all subsets of S. For a E S and B c S, B # 0 ,  define 

d ( a , ~ j =  inf (d (a ,  b ) l b € ~ )  

and for A, B cS,  A, B # 0  

As this is not symmetric, we further define 

If A # 0 and B = 9, we define d (a, B )  = ca and d(A, B )  = ca. Finally, define 
d ( 0 , 0 )  = 0. We call d the Hausdo@ metric. Y s? - - 

9 
1.1.35 Proposition. If d is a metric on S,  then d is a pseudometric on 2'. m 

8 
2 

Proof; Clearly, d:  2' x 2S+k + = [0, a], d ( ~ ,  A )  = 0 and d is symmetric. For z 
the triangle inequality, it is sufficient to show ;(A, C )  < ;(A, B )  + d ( ~ ,  C )  for a 
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A,  B, C E 2S. But d (a,  c) < d (a,  b)  + d (b ,  c) implies d (a,  C )  < d (a,  b)  + d (b,  C )  
< d (a,  b)  + c?(B, C). Hence d (a,  C) < d (a ,  B )  + ;(B, C ) ,  which yields the re- 
sult. The cases A, B, or C= (ZI are easily checked. . 

As metric spaces are normal, it follows easily that on the closed subsets of 
S ,  d is a metric. For further details, see Hausdorff [1962], J. Kelley [1975, p. 
1311, or Michael [1951, p. 1521. 

Continuity of a map f :  ~ - 2 ~  can be rephrased as follows. 

1.1.36 Proposition. Let S be a metric space and d the Hausdorff metric on 
2'. Then f: ~ 4 2 ~  is continuous at uo E S iff for all E > 0 there is a 6 > 0 such 
that d (u, uo) < 6 implies: 

( i )  for all a E f (u ) ,  there is a b E f (uo) such that d (a, b)  < E; that is 

and 
(ii) for all b E  f (u,), there is an a E  f (u )  such that d(b, a)<&; that is, 

f ('0) c aEf(U)DE(a) '  

This proposition follows at once from the definitions of continuity and the 
Hausdorff metric. 

In a number of places later in the book we are going to form new 
topological spaces by collapsing old ones. We define this process now and 
give some examples. 

1.1.37 Definition. Let S be a set. An equivalence relation-on S is a binary 
relation such that for all y v, w E S, 

( i )  u--u, 
(ii) u--v #v--u, and 
(iii) u--v and v--w implies u-- w. 

The equivalence class containing u, denoted [u] ,  is defined by 

[ u ]  = { v  E Slu-v) 

The set of equivalence classes is denoted S/--, a ~ d  the mapping n: S+S/--; 
u H [ U ]  is called the canonicalprojection. 

5 It follows easily that S is the disjoint union of its equivalence classes. s 
4 

1.1.38 Definition. Let S be a topological space and -- an equivalence relation 
on S. Then { U c s/-- 1 IT -'(u) is open in S ) is called the quotient topology on 

5 S/--. Similarly, if S /  -- has a topology, we can induce one on S by { a  - '( U)J  U 
2 is open in S/--) .  (These are clearly topologies.) 
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Figure 1.1-1 

1.1 -39 Example Consider R 2  and the relation -- defined by 

( a I a 2 ) ( b l , b 2 )  iff a,  -bl E Z  and a,- b2EZ. 

(2 denotes the integers). 
Then T2= R ~ / -  is called the 2-torus. In addition to the quotient topol- 

ogy, it inherits a group structure in the usual way: 

The n-dimensional torus Tn is defined in a similar manner. 
The torus T2 may be obtained in two other ways. First, let rn be the unit 

square in R 2  with the subspace topology. Define -- by x-y iff any of the 
following hold: 

(i) x = y; 
(ii) x, =yl,x2=0,y2= 1; 
(iii) x, =yI,x2= l,y2=0; 
(iv) x2=y2,xl=0,yl=1; or 
(v) x2=y2,x,= 1,y1=0; 

as indicated in Fig. 1.1- 1. 
Then T2 =n/-. 
Second, define T~ = s X s l, as shown in Fig. 1.1-1. 3 

P 
9 

1.1.40 Example. The Klein bottle is obtained by reversing one of the 
orientations on 0 ,  as indicated in Fig. 1.1-2. 2 

Then I12=u/-- (the equivalence relation indicated) is the Klein bottle. Z 
Although it is realizable as a subset of R', it is convenient to picture it in R3 !?! 
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as shown. Notice that K~ is not "orientable" and does not inherit a group 
structure from R ~ ,  as did T ~ .  

1.1.41 Example. On Rn\{O) define x-y if there is a nonzero real constant 
X such that x= Ay. Then Rn\{O)/-- is called realprojective (n- 1) space and 
is denoted by RPn-'. Alternatively, RPn-' can be defined as Sn-' (the unit 
sphere in Rn)  with antipodal points x and -x identified. (It is easy to see that 
this gives a homeomorphic space.) One defines complex projective space 
CPn- ' in an analogous way (see Exercise 1.1H). 

In mechanics almost every branch of mathematics gets used. Algebraic 
topology is no exception (see, e.g., Weinstein [1973b]). However, in this book 
only the simplest notions from this subject are needed. 

1.1.42 Definition. Let Z be a topological space and c: [0, 1]+Z a continuous 
map such that c(O) = c(1) =p  E Z. We call c a loop in Z based at p. The loop c 
is called condrackfQke i f  there is a continuous map H: [O, 11 X [O, 11-Z such that 
H(t, 0) = c(t) and H (t, 1) =p  for all t E [0, 11. (See Fig. 1.1-3.) 

Roughly speaking, a loop is contractible when it can be shrunk continu- 
ously top. The study of loops leads naturally to homotopy theory. In fact, the 
loops at p can easily be made into a group called the fundamental group. 

' 1.1.43 Definition. A space Z is called simply connected iff every loop in Z is 2 9 contractible. - 3 
2 In the plane R2 there is an alternate approach to simple connectedness, by 
Z way of the Jordan curve theorem: namely, that every simple (nonintersecting) 

loop in R~ divides R~ (that is, its complement bas two components). The 
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bounded component of the complement is called the interior, and a subset A 
of RZ is simply connected iff the interior of every loop in A lies in A. 

Finally, we shall need some notions that will enable us to talk about the 
idea of "genericity." 

1.1.44 Definition. Let X be a topological space and A cX. Then A is called 
residual iff A is the intersection of a countable family of open dense subsets of X. 
A space X is called a Baire space iff every residual set is dense. 

Recall from 1.1.5 that B c X is nowhere dense iff int (cl ( B ) )  = 0, so that 
X\A is residual iff A is the union of a countable collection of nowhere dense 
closed sets. Clearly, a countabl~ intersection of residual sets is residual. 

1.1.45 Lemma. Let X be a locally Baire space; that is, each point x E X has a 
neighborhood U such that cl ( U )  is a Baire space. Then X is a Baire space. 

ProoJ Let A c X be residual; 
00 

A= n o ,  
1 

where cl(0,) = X. Then 
m 

A n c l ( U ) =  n ( o , n c l ( ~ ) )  
1 

Now O,ncl(U)  is dense in cl (U)  for if u € c l ( U )  and U E O  then 0 n U f 0  
and O n  U n  O,,#Q. Hence c l ( U ) c c l ( A )  and so cl(A)=X. 

Then the Baire category theorem is as follows. 

1.1.45 Theorem. Eveiy complete pseudometric space is a Baire space. 
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Proof: Let U c X be open and A = n ;"On be residual. We must show 
U n A # 0. Now as cI (0 , )  = X, U n On # 0 and so we can choose a disk of 
diameter less than one, say V , ,  such that cl (  V , )  c U n 0,. Proceed inductively 
to obtain cl(  V,) c U n On n Vn- ,, where V, has diameter < l/n. Let xn E 
cl (Vn) .  Clearly { x , }  is a Cauchy sequence, and by completeness has a 
convergent subsequence with limit point x .  Then 

m m 

X E  n c l ( V , )  andso Un fI O n # O  H 
1 n =  l 

For the case of a locally compact regular space, see J. Kelley [1975, p. 
2001, and for applications of Baire spaces, see Choquet [1969]. 

EXERClSES 

1.1A. Let S and T be sets and f: S+T. Show that f is a biection iff there is a 
mapping g: T+S such that fog and g 0 f a r e  the identity mappings on T and 
S,  respectively. 

1.1B. Let X and Y be topological spaces with Y Hausdorff. Then show that, for any 
continuous maps f, g: X+Y,{xEXl f (x)=g(x)) is closed. [Hint: Consider 
the mapping x I-+ (f (x),g(x)) and use 1.1.7.1 

1. IC. Prove that in a Hausdorff space, single points are closed. 
1.1D. Define a topological manifold as a space locally homeomorphic to Rn.  Find a 

topological manifold that is not Hausdorff and not locally compact. (Hint: 
Consider R with "extra origins.") 

1.1E. Show that the continuous image of a connected (resp. arcwise connected) 
space is connected (resp. arcwise connected). 

1.1F. Let M be a topological space and H: M -+ R be continuous and surjective. 
Suppose e E int (H(M)). Then show H-'(e) divides M; that is, M\H-'(e) has at 
least two components. 

1. l G. (i) Show that d in 1.1.34 is not symmetric. by an example. 
(ii) Prove that d is a metric on the closed subsets (including (a). 

(iii) Express the definition of uniform convergence of a sequence of (real) 
functions in terms of the Hausdorff metric. 

(iv) If X is a compact metric space and d and d '  are equivalent metrics, then 
show d and d' are equivalent. 

(v) In case X is not compact show that (iv) can fail. 
1.1H. Show that CP' is homeomorphic to the two-sphere S 2  c R 3 .  

1.2 FINITE-DIMENSIONAL BANACH SPACES 

We shall be dealing largely with finite-dimensional real vector spaces, 
denoted E, F,. . . . However, much of the following carries over to Banach 
spaces; see Dieudonne [1960]. In this section we review the basic properties 
without proofs. 
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1.2.1 Deflnltlon. A norm on a vector space E is a mapping from E into the 
real numbers 1 1  . 11 : E + R, such that 

(Nl) 11 . 11 > 0 for all e E E and llell = 0 iff e = 0; 
(N2) llhell = lXlllell for all e E E and X E R ;  
(N3) Ile1 + e2ll llelll + lle2ll for all el, e2 E E .  

If I I . I I  is a norm on E,E becomes a metric space. That is, the map d: 
E x E+R defined by d(e,f) = Ile - f 11 satisfies (MI), (M2), and (M3) of 1.1.8. 
A nonned space whose induced metric is complete is a Banach space. 

1.2.2 Definition. Two norms on a vector space E are equivalent iff they induce 
the same topology on E. 

See Exercise 1.2C for another characterization. 

1.2.3 Theorem. Let E be a finite-dimensional real vector space. Then 

(i) there is a norm on E, 
(ii) all norms on E are equivalent, 
(iii) all norms on E are complete. 

For a proof, see DieudonnC [1960, $5.91. Regarding (iii), recall that 
(E, 11.11) is complete iff every Cauchy sequence converges. 

We emphasize real andfinite-dimensional, for 1.2.3 is false in the general 
case. For example, the rationals are not complete relative to the absolute 
value norm. For the necessity of finite dimension, the space of continuous 
functions on [0, 11 has two inequivalent norms (DieudonnC [1960, p. 1021). 

Since we are dealing with finite-dimensional real vector spaces, Theorem 
1.2.3 tells us that a unique topology is determined by norms. Also, a mapping 
f: A cE+F is continuous (that is, inverse images of open sets are open) iff 
for all eoEA and any E > O  and norm III-III on F, there is a 6 > O  and a norm 
I I  , I I  on E such that f (D,,Il.ll(eo)n A )  C De,Ill.lll(f (eo)k where 

Recall that f: El x E, x , . . x E,+F is multilinear iff it is linear in each 
variable separately. Note that this does not mean f is linear on the product 
vector space. 

1.2.4 Theorem. For finite-dimensional real vector spaces, linear and multilin- 
ear maps are continuous. X 

64 

$ 
Again, we do not need to specify the norm because of 1.2.3. The proof is a 3 

consequence of DieudonnC [1960, p. 991. 2 
The following is an immediate corollary of this, but is also true more z 

generally (DieudonnC [1960, p. 891). 2 
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1.2.5 Corollary. Addition and scalar multiplication in a (normed) vector space 
are continuous maps from E X E + = E  and R x E+E, respectively. 

1.2.6 Definition. Given E,F we let L(E,F)  denote the set of all linear maps 
from E into F together with the natural structure of finite-dimensional real 
vector space. Similarly, Lk(E,F)  denotes the space of multilinear maps from 
E x . . . x E ( k  copies) into F, L,k (E ,  F), the subspace of symmetric elements of 
L k  (E,  F )  [that is, if IT is any permutation of {1,2,. . . , k ) ,  we have f (el , .  . . ,ek) = 
f (e,(l,,...,e,(k,)] and L ,~(E,F)  the subspace of skew symmetric elements of 
L k ( E ,  F)  [that is, if n is any permutation, we have f ( e l , .  . . , ek) = 
(sign n )  f (en(,), . . . ,en(,)), where sign IT is Ifr 1 according as m is an even or odd 
permutation]. 

1.2.7 Theorem. There is a natural isomophism 

ProoJ: For ( p € L ( E , L k ( ~ , F ) )  wedef ine@€Lk+' (~ ,F)by  

It is easy to check that the association ( p ~ @  is an isomorphism (that is, a 
linear map which is bijective, or one-to-one and onto). . 

In a similar way we can identify L(R,F)  with F: to (p E L(R,F)  we 
associate ( p ( 1 )  E F. 

It is important to realize that although L(E ,R)  and E have the same 
dimension, and are therefore isomorphic, any such isomorphism requires a 
basis for its description. Hence we regard E and L(E ,R)  as distinct; they are 
not naturally isomorphic. 

EXERCISES 

1.2A. Let f E L(E, F) so that f is continuous. 
(a) Show that there is a constant K such that 11  f(e)[i < Kllell for all 

e E E. Define 1 1  f 1 1  as the greatest lower bound of such K. 
(b) Show that this is a norm on L(E, F). 
( 4  Prove that Ilf.sll llf l l  . I l  sll. 

1.2B. Suppose f E L(E,F) and dimE=dimF. Then f is an isomorphism iff it is a 
monomorphism (one-to-one) and iff it is su jective (onto). 

1.2C. Show that two norms 1 1  - 1 1  and I I I . I I I  on E are equivalent iff there is a constant 
5 M such that M-'lllelll < llell < Mlllelll for all e € E .  

1.2D. Let E be the set of all C' functions f: [O,l]+R with the norm 
9 
m 
2 
4 
0 

Ilfll= sup If(x)l+ sup If (41 
xE[O,1] xE[O, l ]  

z 
$ Prove that E is a Banach space. 
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1.3 LOCAL DIFFERENTIAL CALCULUS 

The usual approach to elementary calculus is not suitable for generaliza- 
tion to manifolds. Thus, in this section, we reinterpret the differentiation 
process in a way that will be useful for manifolds. Easy proofs which are 
standard in multivariable calculus will be omitted. 

For a differentiable function f:  U c R-R, the usual interpretation of the 
derivative at u, E U is the slope of the line tangent to the graph off at u,. 

The idea which generalizes is to interpret Df (u,) = f'(u,) as a linear map 
acting on the vector ( u  - u,). Then we can say that Df (u,) is the unique linear 
map from R into R such that the mapping 

is tangent to f at u, (see Fig. 1.3-1). This motivates the following 

1.3.1 Definition. Let E, F be two (finite-dimensional, real) vector spaces with 
maps 

where U is open in E. We say f and g are tangent at u, E U iff 

lim 
Ilf(u)-g(u)ll =o 

u+u,, I 1  2.4 - uoll 

where 1 1  1 1  represents any norm on the appropriate space. 
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1.3.2 Theorem. For f:  U c E-+F and u, E U there is at most one L E 
L(E, F) so that the map g, : U c E+F given by g,(u) = f (u,) + L(u - u,) is 
tangent to f at u,. 

W e  leave the proof as an exercise on limits. 

1.3.3 Definition. If, in 1.3.2, there is such an L E  L(E,F) we say f is 
differentiable at u,, and define the derivative o f f  at u, to be Df (u,) = L. I f f  
is differentiable at each u, E U, the map 

Df: U-+L(E,F); ut+Df(u) 

is the derivative o f f .  Moreover, if Df is a continuous map we say f is of class C' 
(or is continuously differentiable). 

1.3.4 Definition. Suppose f:  U c E+F is of class C '. Define the tangent o f f  
to be the map 

Tf: U x E - + F X F  

given by 

where Df (u).e is Df(u) applied to e E E as a linear map. 

From a geometrical point of view, T is more natural than D. I f  we think 
o f  (u,e) as a vector with base point u, then ( f  (u), Df (u).e) is the image vector 
with its basepoint. See Fig. 1.3-2. Another reason for this is its behavior under 
composition, ss given in the next theorem. (This theorem expresses the fact 
that T is a couariant functor.) 

Flgure 1.3-2 
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1.3.5 Theorem (C' composite mapping theorem). Suppose f: U c E 4  V c 
Fand g : V c F+ G are C ' maps. Then the composite g 0 f: U c E+ G is also 
C ' and 

In terms of D, this formula is equivalent to the chain rule 

For a proof, see DieudonnC [1960, p. 1451 or Marsden [1974a, p. 1681. For 
the validity of this chain rule, f and g need only be differentiable. 

We will now show how the derivative Df is related to the usual directional 
derivative. A curve in E is a C' map from I into E, where Z is an open 
interval of R. Thus, for t E I  we have Dc(t)E L(R,E), by definition. We 
identify L(R,E) with E by associating, in this case, Dc(t) with Dc(t). l 
(1 E R). Let 

For f: U c E+F of class C' we consider f oc, where c: Z+U. It follows from 
1.3.5 that 

For let c be defined by c(t)= u + te(u, e EE, t E R) for suitable I=(- A,A), 
and apply the chain rule to f 0 c. On Euclidean space the d/dt defined this 
way coincides with the usual directional derivative. More specifically, suppose 
we have f: UcRm+Rn of class C'. Now Df(u) is a linear map from 
Rm+Rn and so it is represented by its components relative to the standard 
basis el,. . . ,em of Rm. By the above formula we see 

Thus Df (u) is represented by the usual Jacobian matrix. 
If we apply the fundamental theorem of calculus to t H f (tx + ( I  - t) y), 

assume f is C' and 1) Df (tx +(1 - t) y))) < M, we obtain the mean value 
inequaliv: Ilf(x)-f(y)ll< Mllx-yll. 

We shall now define derivatives of higher order. For f: U c E+F of class 
C ' we have Df: U c E+L(E, F). If ~ 2 f  is continuous we say f is of class C2. 
Moreover, we identify L(E, L(E, F)) with L~(E,  F). Proceeding inductively, x 
we define g 

4 
D'~=D(D ' - '~ ) :  UcE+Lr(E,F)  Cr) 

8 
0 

if it exists. If D'f exists and is continuous we say f is of class Cr. The 
m symmetry of second partial derivatives appears here in the following form. 
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1.3.6 Theorem. Iff: U c E+P is C: then 

(i) D'f(u)EL,'(E,O; 
(ii) f is C4, q = 0, . . . , r. (c' = continuous.) 

For a proof of this, see DieudonnC [1960, p. 1761 or Marsden [1974a, 
p. 1781. 

In a similar way we can define T% and by induction on the C1 composite 
mapping theorem we obtain 

1.3.7 Theorem (Cr composite mapping theorem). Let f: U c E+ V c F 
andg: V C F - G  be Cr maps. Then gof is Cr and 

Note that a corresponding statement in terms of D is a good deal more 
complicated. (Exercise 1.3D.) 

For computation of higher derivatives we have, by repeated application of 
the computational rule for Dj(u).e, 

In particular, for f: U c Rm-+Rn the components of D'f(u) in terms of 
the standard basis are 

Thus f is of class C r  iff all its rth-order partial derivatives exist and are 
continuous. 

Suppose U c E is an open set. Then as + : E X E-E is continuous, there 
exists an open set f i c E  x E with (i) UX (0) c 8 ,  (ii) u+<h .hE U for all 
(u, h) E 6 and 0 < 5 < 1, and (iii) (u, h) E 6 implies u E U. For example, let 

Let us call such a set 8 ,  temporarily, a thickening of U. 

X 
1.3.8 Theorem (Taylor's theorem). A map f: U C E - F  is of class Cr iff 

9 there are continuous mappings 
CI) 

B 
2 cp,: UcE+L,P(E,F),  p = l ,  ..., r 
8 z R: O+L,'(E, F )  
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where fi is a thickening of U, such that, for all (u, h) E I?, 

where h ' = (h, . . . , h) (r times) and R (u, 0) =0. 

For the only if part choose cpp(u)= ~ P f ( u )  and see DieudonnC [1960, p. 
1851 or Marsden [1974a, p. 1771. For the converse, see Abraham-Robbin 
[1967, $21 and Nelson [1969, p. 7-81. 

Iff is C" (that is, is Cr for all r) then we may be able to extend the above 
formula into a convergent power series. If we can, we say f is of class C", or 
analytic. The standard example of a Cm function that is not analytic is the 
following function from R to R: 

6 (x) = [ex~{-l/ ; ;- lxl~)l~ lxl<l 1x1 > 1 

This function is C", and all derivatives are 0 at x =  + 1. Hence all 
coefficients of the Taylor series around these points vanish. Since the function 
is not identically 0 in any neighborhood of + 1, it cannot be analytic there. 

Leibniz' rule for derivatives has the following general form. 

1.3.9 Proposition. For f: U c E+E' and g : U c E+F' of class C ' define 
fXg:  U+E'XF' by (fXg)(u)=(f(u),g(u)). Suppose B: E'XF'+G is a 
bilinear map, and f-g = B o (f X g). Then f-g is of class C and D (f-g) =f- Dg + 
Df-g : U+ L(E, G) [where (f- Dg)(u) .e = B (f (u), Dg(u) .el]. 

This follows easily by the composite mapping theorem, the formula 
D(f Xg)= Df X Dg and the fact that the derivative of B at (e;,&) is 
(e'f) H B (e',fi) + B (eh,f). See DieudonnC [1960, p. 1441. In the case E' = F' 
= W and B is multiplication, 1.3.9 reduces to the usual product rule for 
derivatives. 

It will also be convenient to consider partial derivatives in this context. 

1.3.10 Definition. Let U, c El, U, c E2 be open, and supposef: U, X U2+F 
and f is differentiable. Then the partial derivative off with respect to the first Y 
factor El denoted Dl f is defined by 3 

m 
13 

D,f(u,, u2): E1-+F: e l + + D l f ( ~ l ,  u2).e1 = Df(ul, u2)- (el, 0) 2 
We similarly define D2 f. 

E z 
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If we identify El x E2 with El@E2,  (e,,O) with el ,  and (0,e2) with e,, we 
may write Df as the sum of its partial derivatives 

Df=D1f+D2f 

1.3.1 1 Definition. A map f:  U c E-+ V c F(U, V open) is a Cr diffeomor- 
phism i f f  f is of class Cr, is a bijection (that is, one-to-one and onto V ) ,  and f 
is also of class Cr. 

The following is a major result that will be used many times later in the 
book. Since it is one of the main pillars of nonlinear analysis, we give a 
complete proof. 

1.3.12 Theorem (Inverse mapping theorem). Let f: U c E+F be of class 
Cr, r > 1, x,E U, and suppose Df (xO) is a linear isomorphism. Then f is a Cr 
diffeomorphism of some neighborhood of x, onto some neighborhood o f f  (xo). 

It is essential to have Banach spaces in this result, rather than more 
general spaces such as topological vector spaces or FrCchet spaces, as simple 
examples show. The following example of the failure of Theorem 1.3.12 in 
FrCchet spaces was kindly pointed out by M. McCracken. 

Let %(A) denote the set of all analytic functions on the open unit disk 
with the topology of uniform convergence on compact subsets. Let F: 
%(A) + %(A) be defined by 

Then clearly F is Cm and by 1.3.9, 

If a, = O and an = 1 / n, n > 1, then DF (2 ;*z " /  n)  is a bounded, linear isomor- 
phism. However, since 

r;, 
V1 

F is not locally 1- 1.  
0 

Z (Consult Schwartz [I9671 for more sophisticated versions of the inverse 
function theorem valid in FrCchet spaces.) 
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Although our main interest is the finite-dimensional case, for Banach 
spaces keep in mind the open mapping theorem: if T: E+ F is linear, 
bijective and continuous, then T - '  is continuous. (Choquet [1969], p. 322). 

Proof of Theorem 1.3.12. We begin by assembling a few standard lemmas: 

1.3.13 Lemma. Let M be a complete metric space with distance function d :  
M X M+R. Let F: M+ M and assume there is a constant A, 0 9 X < 1 such 
that for all x, y E M, 

Then F has a unique fixed point xo E M; that is, F (xo) = x,. 

This result is usually called the contraction mapping principle and is the 
basis of many important existence theorems in analysis. The other fundamen- 
tal fixed point theorem in analysis is the Schauder fixed point theorem which 
states that a continuous map of a compact convex set (in a Banach space, 
say) to itself, has a fixed point-not necessarily unique however. 

The proof of Lemma 1.3.13 is as follows. Pick x ,  E M  and define xn 
inductively by xn+, = F(xn). By induction we clearly have 

d(xn+, ,  xn) 9 ~ " - ' d ( F ( x , ) , x , )  

and so 

j n -  I 

Thus x,, is a Cauchy sequence. Since F is obviously uniformly continuous, 
xo = limn,,xn = limn,,xn + , = limn,, F (x,) = F(xo). Since X < 1 it follows 
that F has at most one fixed point. v 

(The symbol v, a modification of the Halmos symbol . indicates that the 
lemma is proved but the proof of the theorem goes on). 

1.3.14 Lemma Let GL(E,F) denote the set of linear isomoyhisms from E 
onto F. Then GL(E, F )  c L(E, F)  is open. 

ProoJ Let 

z 
be the norm on L(E, F) relative to given norms on E and F. - 2 
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We can assume E = F. Indeed, if rpO E GL (E, F), the map + H cp,- ' o + from 
L(E,F) to L(E,E) is continuous and GL(E,F) is the inverse image of 
GL(E, E). 

For rp E GL(E, E), we shall prove that any + sufficiently near rp is also 
invertible, which will give the result. More precisely, 1 1  + - rp l l<  1 1  rp - ' 1 1  - ' 
implies +€GL(E,E). The key is that I ( . ( (  is an algebra norm. That is 
IIPOaII < IIP11 IIaII for ~ E L ( E , E )  andPEL(E,E)  (see Exercise 1.2A). Since 
+ = rp o ( I  - rp - 0 (rp - +)), rp is invertible, and our norm assumption shows 
that Ilrp-' (cp-+)I/ < 1, it is sufficient to show that 1-5 is invertible 
whenever 11511 < 1. ( I  is the identity operator). Consider the following sequence 
(called the Neumann series): 

Using the triangle inequality and the above norm inequality, we can compare 
this sequence to the sequence of real numbers, 1, 1 + 11511, 1 + IIEll+ 
1)5112,. . .,which we know is a Cauchy sequence since 11511 < 1. Because L(E, E )  
is complete, 5, must converge. The limit, say p, is the inverse of I -  5. Indeed 
( I  - 5)5, = I - (< 0 5 o . . . 0 8, so the result follows. v 

1.3.15 Lemma Let 4-': GL(E,F)+GL(F,E): r p ~ r p - ' .  Then g-' is of 
class C" and -rp-'+rp-'. 

ProoJ: We may assume GL(E,F)Z@. If we can show that D F 1 ( c p ) - + =  
-($,-lo + 0 rp-', then it will follow from Leibniz' rule that g-' is of class C", 
Since +H - rp-lh- ' is linear (+ E L(E, F)) we must show that 

l ~ + - ' - ( ~ - l - ~ - l * - ' +  
lim 

rp-'w-l)Il =o 
*+cp ' /I+-rpll 

Note 
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With this inequality, the limit above is clearly zero. 'I 
To prove the theorem it is useful to note that it is enough to prove it under 

the simplifying assumptions that x, = 0, f (x,) = 0, E =  F, and Df(0) is the 
identity. (Indeed, replace f by h(x) = Df (x,)- ' If(x + x,) - f (x,)].) 

Now let g(x)=x- f(x) so Dg(O)=O. Choose r>O such that Ilxll< r 
implies 1 1  Dg.(x)ll< i, which is possible by continuity of Dg. Thus by the mean 
value inequality, llxll < r implies 1 1  g(x)ll < r/2. Let R(O)= {x € ~111x11 < e ) .  
For y E &/,(o), let g, (x) = y + x - f (x). By the mean value inequality, if 

~E&/ , (o )  and x1,x2E&.(0) 

then 
/ 

(a) 1 1  gy(x)ll < I I Y ~ ~ +  1 1  g(~)ll  < r and 

Thus by Lemma 1.3.13, gy(x) has a unique fixed point x in &(a). This point x 
is the unique solution off (x) = y. Thus f has an inverse 

From (b) above, 1 1  f-'(yl)-f-'(y2)11 (211 yl-y211, SO f - '  is continuous. 
From Lemma 1.3.14 we can choose r small enough so that ~ f ( x ) - '  will 

exist for x E  Br(0). Moreover, by continuity, IIDf(x)-'I/< M for some M and 
all x E  Br(0) can be assumed as well. If y,, y2E B,/,(O), x, = f -'(y,), x2= 
f - '(Y,), then 

Mllf(x1) -f(x2) - Df(x,)(x, - x2)II 2 
2 
S 

This, together with @) above, shows f -' is differentiable with derivative 
Df (x)- ' at f (x). By continuity of inversion (Lemma 1.3.15) we see that f - ' is 2 
C'.AlsofromLemma1.3.15and~f-'(~)=[~f(f-'(~))]-'weseethatiffis z 
C" then Df - ' is C ' so f - ' is c2. The general case follows by induction. . a 
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In the study of manifolds and submanifolds, the argument used in the 
following is of central importance. 

1.3.1 6 Theorem (Implicit Function Theorem). Let U c E, V c F be open 
and f: U X V+ G be Cr, r >/ 1. For some xo E U, yo E V assume D, j(xo, yo) : 
F+G is an isomolphism. Then there are neighborhoods Uo of xo and 
Wo of j(xo, yo) and a unique Cr map g: Uo X Wo+ V such that for all 
(x, W) E Uo X Wo, 

Proof: Consider the map a: U X V+ E X G, (x, y ) ~  (x, f(x, y)). Then 
D@(xo, yo) is given by 

which is easily seen to be an isomorphism of E X F with E X G. Thus cP has a 
unique Cr local inverse, say @-I: Uo X Wo+ U X V, (x, w)H (x, g(x, w)). 
The g so defined is the desired map. . 

Let E be a Banach space (or more generally, a topological vector space) 
and F c E a closed subspace. Then F is said to split or be complemented if 
there is a closed subspace G c E such that E = F CB G (with the topology on E 
coinciding with the product topology on FCBG).* In finite-dimensional 
spaces, which is our main concern, any subspace is closed and splits. If E is a 
Hilbert space any closed subspace F splits, for we can choose G to be the 
orthogonal complement of F. 

1.3.1 7 Corollary. Let U c E be open and f: U+F be Cry r > 1. Suppose 
Df(xo) is surjective and kerDf(xo) is complemented. Then f(U) contains a 
neighborhood of f(xo). 

ProoJ Let E, = ker Df (x,) and E = El X E,. Then D, f (x,): E,+F is an 
isomorphism. Thus the hypotheses of Theorem 1.3.16 are satisfied and so 
f(U) contains Wo provided by that theorem. W 

We conclude with an example of the use of the implicit function theorem 
to prove an existence theorem for differential equations. For this and related 
examples we choose the spaces to be infinite dimensional. In fact, g 
E, F, G,. . .will be suitable spaces of functions. The map f will often be a 

*For example c o c I ,  is not complemented. If every closed subspace of a Banach space is 
complemented, the space must be isomorphic to a Hilbert space. See J. Lindenstrauss and L. 
Tzafriri [1971]. 
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nonlinear differential operator. The linear map Df (xo) is called the lineariza- 
tion of f about x,. (Phrases like "first variation," "first-order deformation," 
and so forth are also used.) 

1.3.1 8 Example. Let E = all C ' functions f: [O, l]+R with 

and F = all CO functions with 11 f 11, = sup, ,[,, f (x)l. These are Banach spaces 
(see Exercise 1.2D). Let F: E+F, FCf) = df/dx + f 3. It is easy to check, using 
1.3.9, that F is C" and DF(O)=d/dx: E+F. Clearly DF(0) is surjective 
(fundamental theorem of calculus). Also, ker DF(0) consists of E,=all 
constant functions. This is complemented because it is finite-dimensional; 
explicitly, a complement consists of functions with zero integral. Thus 
Corollary 1.3.17 yields : 

There is an E > O  such that if g is any continuous function, g: [0, l]+R, 
I g(x)l< E, there is a C 1  function f: [0, 1]+R such that 

EXERCISES 

1.3A. Prove Theorem 1.3.2; that is, that the derivative is unique if it exists. Also 
prove that the derivative does not depend on the choice of equivalent norm. 

1.3B. For f: UcE+F, show that 

1.3C. Define a map f: U cE+F to be of class T' if f is differentiable and its 
tangent Tf: U X E+F X F is continuous. 
(i) For E and F finite-dimensional, show that this is equivalent to c'. 

(ii) (L. Rosen) Let E be the space of real sequences x =(xl,x2,. . .) such that 
ln3/2xn1 is bounded and set 11x11 Check that E is a 
Banach space. Define f: E-+E by f(x), =f,(xn), where f,: R+R is a Y 
smooth convex function satisfying fn(y)=O if y < l/n andf,(y) =y -2/n 2 
if y > 3/n. Show that f is T1, 1 1  Df(x)ll is locally bounded, but f is not C '. 5 

m 
1.3D. (L. E. Fraenkel and T. Ratiu) Develop a formula for Dr(fig) and Dr( fg) 3 

and find the error in the formula proposed in Abraham and Robbin 3 
[1967, p. 31. (See Quart. J. Math 1 [I9001 p. 359 and Math. Proc. Camb. z 
Phil. Soc. 83 [I9781 p. 159 for the solution). a 
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1.4 MANIFOLDS AND MAPPINGS 

The basic idea of a manifold is to introduce a local object that will 
support differentiation processes and then to patch these local objects 
together smoothly. 

Before giving the formal definitions it is good to have in mind an example. 
In R "+ ' consider the n-sphere Sn; that is, all x E R "+ ' such that 11 x 11 = 1 (11 11 
is the usual Euclidean norm). We can construct, locally, bijections from Sn to 
Rn. One way is to project stereographically from the south pole onto a 
hyperplane tangent to the north pole. This is a bijection from Sn, with the 
south pole removed, onto 5" .  Similarly we can interchange the roles of the 
poles to obtain another bijection. (See Fig. 1.4-1.) These bijections are quite 
well behaved. With the usual relative topology on Sn as a subset of Rn+', 
they are homeomorphisms from their domain to Rn. Each takes the overlap 
of the domains to an open subset of Rn. If we go from Rn to the sphere by 
one of them, then back to Rn by the other, we get a smooth map from Rn to 
R". 

In this way we can assign coordinate systems to Sn. Note, however, that 
no single homeomorphism can be used between Sn and Rn, but we can cover 
Sn  using two of them. We demand that these be compatible; that is, in a 
region covered by both coordinate systems we must be able to change 
coordinates smoothly. 

For some studies of the sphere, two coordinate systems will not suffice. 
We thus allow all other coordinate systems compatible with these. 

1.4.1 Definition. Let S be a set. A local chart on S is a bijection cp from a 
subset U of S to an open subset of some (finite-dimensional, real) vector space 
F. We sometimes denote cp by ( U, cp), to indicate the, domain U of cp; F also may 

Figure 1.4-1 



depend on cp. An atlas on S is a family @ of charts {(U,,cpi): i E I )  such that 

(MA1) S =  u {U.li€ I); 
(MA2) Any two charts in @ are compatible in the sense that the overlap maps 

between members of & are Cw diffeomoyhisms: for two charts (U,,cp,) 
and (U,, q) with U, n U, + 0 we form the overlap maps: cpji = 
cpj 0 cpi- '/cpi(U, n U,), where (Pi- ' Icpi(U,. n U,) means the restriction of 
cp,- ' to the set cpi(U, n U,). We require that cp,( U, n U,) is open in 4, 
and that pi be a C" diffeomoyhism. (See Fig. 1.4-2.) 

Two atlases @, and @, are equivalent i f f  @, u @, is an atlas. A differentia- 
ble structure $ on S is an equivalence class of atlases on S. The union of the 
atlases in 9, &$ =. u { & I & E $ ) is the maximal atlas of 9, and a chart ( U, cp) E 
aq is an admissible local chart. If @ is an atlas on S, then the union of all 
atlases equivalent to & is called the differentiable structure generated by &. 

A differentiable manifold M is a pair (S, g) ,  where S is a set and 4 is a 
differentiable structure on S. 

We shall often identify M with the underlying set S. Y 
2 The reader might wish to compare these definitions with others, such as 9 

those of Sternberg [1964, p. 351. The principal difference is that S is usually 
taken as a topological space with the domain of a chart as an open subset. 
However, we can induce a topology with the same end result. See also Z 
Exercises 1.4A and 1.4D. !il 
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Flgure 1.4-3 

1.4.2 Definition. Let M be a differentiable manifold. A subset A c M is open 
i f  for each a E A there is an admissible local chart (U, cp) such that a E U and 
U c A, so M becomes a topological space (Exercise 1.4A). 

A differentiable manifold M is an n-manifold iff for every point a E M  there 
exists an admissible local chart ( U, cp) with a E U and cp( U) c Rn.  

A manifold will always mean a Hausdorff, second countable, differentiable 
manifold. 

1.4.3 Examples 

(a) Sn with a maximal atlas generated by the atlas described previously 
makes Sn into a n-manifold. The topology resulting is the same as that 
induced on Sn as a subset of Rn+' .  

(b) A set can have more than one differentiable structure. For example, R 
regarded as a set has the following incompatible charts 

They are not compatible since cp2 cp,' is not differentiable at the origin. 
Nevertheless, these two resulting structures turn out to be diffeomor- 

phic, but two structures can be essentially different on more complicated 
sets (e.g., s7).* 

(c) Essentially the only one-dimensional connected manifolds are R and S' .  
This means that all others are diffeomorphic to R or S 1  (diffeomorphic 
will be precisely defined later). For example, the circle with a knot is 
diffeomorphic to S' .  (See Fig. 1.4-3.). See Milnor [I9651 for proofs. 

Y (d) A general two-dimensional connected manifold is the sphere with "han- 
g dles" (see Fig. 1.4-4). This includes, for example, the torus.? 
S 
m 
M 0 

*That S' has two nondiffeomorphic differentiable structures is a famous result of I. Milnor 
[1956]. 
?The classification of two-manifolds is described in Massey [I9671 and Hirsch [1976]. 
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'handles" 

Flgure 1.4-4 

1.4.4 Definition. Let ( S , ,  9 , )  and (S,, g,)  be two manifolds. The product 
manifold ( S ,  x S2, 9, x g2) consists of the set S ,  X S2 together with the differen- 
tiable structure 4 ,  X g2 generated by the atlas {( U,  X U2, Q I ,  X QIJ/(  UI., cpi) is a 
chart of (Si,  $,)I. 

That this is an atlas follows from the fact that if +,: Ul c El -t Vl c Fl;  
q2: U2 c E2+ V2 c F2, then #, x 4, is a diffeomorphism iff +, and are, 
and in this case (4,  x +a-' = +;' x $1'. Note that, from 1.3.9, D(+, X #a 
= D+, x m,. It is also clear that the topology on the product manifold is the 
product topology. 

Flgure 1.4-5 
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If M is a manifold and A c M is an open subset of M, the differentiable 
structure of M naturally induces one on A .  We call A an open submanifold of 
M. We would also like to say that S n  is a submanifold of Rn+' ,  although it is 
a closed subset. To motivate the general definition notice that there are charts 
in Rn+' in which S n  appears as Rn, locally. (See Fig. 1.4.5.) 

1.4.5 Definition. A submanifold of a manifold M is a subset B c M with the 
property that for each b E B there is an admissible chart ( U, c p )  in M with b E U 
which has the submanifold property, namely, 

(SM)  cp: U-+EXf ' ,andcp(UnB)=cp(U)n(EX{O))  

An open subset of M is a submanifold in this sense. Here we merely take 
F= {O), and use any chart. 

Let B be a submanifold of a manifold M. Then B becomes a manifold 
with differentiable structure generated by the atlas 

{ ( ~ n  ~ , c p ( ~ n  ~ ) l ( ~ , c p )  is an admissible chart 

in M having property (SM)  for B ) 
Thus the topology on B is the relative topology. 

Now Sn c Rn+' is, in this sense, a submanifold of Rfl+'. Furthermore, it 
is true that any n-manifold can be realized (embedded) as a closed (in the 
topological sense) submanifold of R'"+'. For Whitney's proof, see Hirsch 
[1976]. 

1.4.6 Definition. Suppose we have f :  M-N, where M and N are manifolds 
(that is, f maps the underlying set of M into that of N) .  W e  say j is of class Cr i f  
for each x in M and admissible chart (V ,#)  of N with f ( x )  E V, there is a chart 
(U,cp) of M with x E U and f ( U )  c V and the local representative of f, 
j&=#ofocp-', is of class C r  (see Fig. 1.4-6). 

For r = 0, this is consistent with the definition of continuity off, regarded 
as a map between topological spaces (with the manifold topologies). If f is 
continuous, the requirement f ( U )  c V can always be satisfied. The impor- 
tance of property (MA2)  for the differentiable structure is seen from the 
following. 

1.4.7 Proposition. Given f :  M+N where M and N are manifolds, we have: 

( i )  If ( U, c p )  and ( U,  9') are charts in M while ( V ,  #) and ( V ,  #') are charts in 
N with j ( U ) c  V ,  then f,+ is of class C r  if and only if f,,q is of class C r ;  

(ii)  If ( U, cp) and ( V ,  #) are charts in M and N with f ( U )  c V and i f  cp" (and 
rn 
0" 4") are restrictions of cp (and 4) to open subsets of U (and V )  then f,+ is 
2 of class Cr  implies f,,,+,, is of class C r ;  

(iii) If f is of class C r  on open subsets of M (as submanifolds) it is of class C r  
E on their union. 
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Figure 1.4-6 

The proof of this is straightforward, from the smoothness of the overlap 
maps and the C r  composite mapping theorem. We leave the details as an 
exercise. Note that 1.4.7(i) implies that iff,+ is not Cr, then f is not Cr,  while 
without (MA2) this might not be the case. 

1.4.8 Definition. A map f: M-N, where M and N are manifolds, is called a 
(Cr)  diffeomotphism iff is of class Cr, is a bijection, and f -': N-+M is of class 
cr. 

EXERCISES 

1.4A. Show that the class of open sets on a manifold given in Definition 1.4.2 is a 
topology and with this topology the manifold is second countable iff it has an 
atlas with a countable family of local charts. (See Sect. 1.1.) 

1.4B. Prove that S1 is a submanifold of R2. Complete the details of examples 1.4.3A 
and 1.4.3B. 

1.4C. Prove 1.4.7 and show that (i) if ( U, rp) is a chart of M and #: rp(U)+ V c I; is a 
diffeomorphism, then (U,+ 0 cp) is an admissible chart of M and (ii) admissible 
local charts are diffeomorphisms (in the manifold sense). 

1.4D. Let & be an atlas on S.  Show that the differentiable structure generated by Y 
consists of all charts on S whose overlap maps with members of & are C". rn 

El 
1.4E. Let S =  {(x, y ) ~  R21xy=O). Construct two "charts" by mapping each axis to 2 

the real line by (x,O)bx and (0, y ) b y .  What fails in the definition of a g 
manifold? 2 

1.4F. LetS=(O,l)~(O,l)c~~andforeachs,O<s<llet~={s)~(O,1)andcp,: Z 
?T, -+R, (s, t) b t. Does this make S into a one-manifold? g 
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1.5 VECTOR BUNDLES 

Roughly speaking, a vector bundle is a manifold with a vector space 
attached to each point. During the formal definitions we may keep in mind 
the example of the n-sphere S n  c Rn+'.  The collection of tangent planes to S n  
(regarded as vector spaces) form a vector bundle. Similarly, the collection of 
normal lines to S n  form a vector bundle. 

The definitions will follow the pattern of those for a manifold. Namely, 
we obtain a vector bundle by smoothly patching together local vector 
bundles. 

1.5.1 Definition. Let E and F be (finite-dimensional, real) vector spaces with 
U an open subset of E. We call the Cartesian product U X F a local vector 
bundle. We call U the base space, which can be identified with U X {O), the zero 
section. For u E U, { u )  X F is called the fiber over u, which we can endow with 
the vector space structure of F. The map w : U x F+ U given by w(u, f) = u is 
called the projection of U X F. [Thus, for u E U, the fiber over u is .rrW'(u). Also 
note that U x F is an open subset of E X F and so is a local manifold.] 

Suppose we have a map cp: U X F+ U' X F' where U X F and U' X F' are 
local vector bundles. We say that cp is a local vector bundle isomotphism iff cp is 
a C m  diffeomorphism, and cp has the form cp(u, f)=(cp,(u),cp,(u)f), where 
cp,(u) is a linear isomolphism for each u E U. (See Fig. 1.5- 1 .) 

1.5.2 Definition. Let S be a set. A local bundle chart of S is a pair (U,cp) 
where U c S and cp : U c S+ U' X F' is a bijection onto a local bundle U' X 10'. 
(U' ,  F' depend on cp.) A vector bundle atlas on S is a family 3 = {(U,,cp,)} of 
local bundle charts satisbing: 

(VBAI)  = (MA1 of 1.4.1) (it covers S )  and, 
(VBA2) for any two local bundle charts (q.,cpi) and (U,,gii) in 3 with 

q n U. + 0, cp,(U,. n U,) = U,." x r;)c, and the overlap map = 
-J1 

cpj o qi 1 ( U, n U,) is a local vector bundle isomorphism. 
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If 43, and ?B2 are two vector bundle atlases on S ,  we sqv they are 
VB-equivalent iff 43, u 3, is a vector bundle atlas. A vector bundle structure on 
S is an equivalence class of vector bundle atlases. A vector bundle E is a pair 
( S ,  ?r), where S is a set and ?r is a vector bundle structure on S. A chart in an 
atlas of ?r is an admissible vector bundle chart of E. 

As in Sect. 1.4 we will often identify E with the underlying set S.  Also, for a 
vector bundle structure ?r on S ,  ( M A  1 )  and (MA2) hold, so Y induces a 
differentiable structure on S. In addition, we shall assume that the differentiable 
structure on a vector bundle gives rise to a Hausdorff, second countable topology 
and that the induced manifold is of constant dimension. 

For a vector bundle E = ( S ,  ?I) we define the zero section by 

~ , = { e E ~ l t h e r e  exists (U,cp)~ 'Vwi th  e=cp-'(u ' ,~))  

Hence Eo is the union of all the zero sections of the local vector bundles 
(identifying U with a local vector bundle via cp : U-+ U' X F'). 

If ( U, c p )  E Y is a vector bundle chart, and eo E U with cp(eo) = (u', 0 )  , let 

Eeo, rp denote the subset cp-'({u') X F') of S together with the structure of a real 
vector space induced by the bijection cp. 

The next few propositions derive basic properties of vector bundles that 
are sometimes included in the definition. 

1.5.3 Proposition. ( i )  If eo lies in the domains of two local bundle charts c p ,  
and cp2 , then Eeo, = Eeo, ,2, where the equality means equality as sets, and also 
as real vector spaces. 

(ii) For e E E, there is exactly one eo E Eo such that e E Eeo, ,!, for some (and 
therefore all) ( U, cp,).  

(iii) Eo is a szdbmanifold of E. 
(iv) The map w, defined by w : E+ Eo , w(e) = eo [in (ii)] is surjective and C *. 

Proof: (i) Suppose cp,(eo)=(u;,O) and cp2(eo)=(u;,0). We may assume the 
domains of c p ,  and cp2 are identical for Eeo,, is unchanged if we restrict cp to 
any local bundle chart containing eo. Then a=cp, ~cpz' is a local vector 
bundle isomorphism. But we have 

Hence Eeo, 'p = Ee, v2 as sets, and it is easily seen that addition and scalar 
multiplication in Ee and E are identical. (See Fig. 1.5-2.) ~ \ 1  5 

For (ii) note that d e E E,  cp,(e) = (u,, f,), cp2(e) = (u2,&), el = cp; ' (u,,  0), and $ 
e2 = cp2-'(u,, 0), then a(u2, f,) = (u,,  f,), so a gives a linear isomorphism { u,) X 

Fi+{u,) x F;, and therefore cp,(e2) = a(u2,0) =(ul,O) = cpl(e,), or e2= el. 2 
To prove (iii) we must verify that for eoE Eo there is an admissible chart z 

with the submanifold property (1.4.5). For such a manifold chart we choose 
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Figure 1.5.2. 

an admissible vector bundle chart, (U,cp), eo E U. Then cp(U n Eo) = U' X (0) 
= cp(U) fi (E' X (9)) (see Fig. 1.5.2). 

Finally, for (iv), from Proposition 1.4.7 we see that it is enough to check 
that a is C" using local bundle charts. But this is clear, for such a 
representative is of the form (u;, f ) ~ ( u ; , O ) .  That a is onto should be clear. 

The following summarizes the basic properties of a vector bundle. 

1.5.4 Theorem. Let E be a vector bundle. The zero section Eo of E, is a 
submanifold of E and there is a map a: E+ Eo called the projection that is of 
class C ", and is surjective (onto). Moreover, for each eOE EO,r-'(eO), called 
the jiber over e ,  has a (finite-dimensional, real) vector space structure induced 

$ by any admissible vector bundle chart, with eo the zero element. 
m 9 
2 Because of these properties we sometimes write "the vector bundle a: 
z E+E," instead of "the vector bundle (E ,  v." We now define vector bundle 
8 mappings analogously. 
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1.5.5 Definition. A map cp: U X Ei U' X P' between local vector bundles is 
called a local vector bundle mapping when cp is of class Cw and has the form 
q(u, fl=(cpl(u), cp2(u).fl, where c p ,  : U+ U' and 9,: U+L(F, 1;'). 

Let E and E f  be two vector bundles. A map f: E+E' is called a vector 
bundle mapping when for each e E  E and each admissible local bundle chart 
( V ;  t,b) of E' with f (e)  E V there is an admissible local bundle chart (U, cp) with 
f ( U )  c V so that the local representative f,, + = t,b 0 f 0 cp - ' is a local vector 
bundle mapping. 

This definition makes sense only for local vector bundle charts, and not 
for all manifold charts. Also, such a U is not guaranteed by the continuity o f  
f, nor does it imply it. However, if we first check that f is fiber preserving 
(which it must be) and is continuous, then such an open set U is guaranteed. 
This fiber preserving character is made more explicit in the following. 

1.5.6 Proposition. Suppose f:  E+ E' is a vector bundle map. Then: 

( i )  f preserves the zero section 

(ii) f induces a unique mapping f,: Eo+E; such that the following diagram 
commutes: 

f 
E-E' 

that is, sf 0 f = f, s. (Here, a and sf are the projection maps.) 
(iii) A Cm map g: E-+Ef is a vector bundle map iff there is a map go: 

Eo+ E; such that sf 0 g = go 0 s and g restricted to each fiber is a linear 
map into a fiber. 

Proof: (i) Suppose e, E E,. W e  must show f (e,) E E6. That is, for a vector 
bundle chart ( V,+) and f (e,) E V we must show +f (e,) = (vf,O). But we have a 
chart (U,  c p )  so e, E U, f ( U )  c V. Here cp(e,) = (u', 0). Hence t,bf (e,) = 
$J 0 f 0 cp-'(u',~). But this is o f  the form (vf,O) since f& is linear on each fiber. 

For (ii) let f, = f 1 E,: E,+E;. With the notations above, then 

Also, i f f &  =(a,, az), then ( fo)& = a,, so f, is C ". 
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One half of (iii) is clear from (i) and (ii). For the converse we easily see 
that in local representation g has the form 

= +ogo~- ' (u ' ,  e') 

where 

U' = ( P O ? I ( U ) ,  a 1  = +og,,o(~-' and a,(u') = (+ogoq - ' ) l  { u') X E' 

is obviously linear. Thus, the local representatives of g with respect to 
admissible local bundle charts are local bundle mappings. 1 

We shall now define a second generalization of a local C' mapping, f: 
U c E+ F, which globalizes not f but rather its graph mapping hf: U+ U X 
F: u t+ (u, f (u)). 

1.5.7 Definition. Let ?I : E+= B be a vector bundle. A C r  section of lr is a map 
5: B+E of class Cr  such that for each b E B, w($(b)) = b. Let r'(?r) denote the 
set of all C r  sections of ?I, together with the obvious real (infinite-dimensional) 
vector space structure. 

The condition on 5 merely says that 5(eo) lies in the fiber over e,,. The C r  
sections form a linear function space suitable for global linear analysis. This 
differs from the more general class of global C r  maps from one manifold to 
another, which is a nonlinear function space. (See, for example, Eells 119581, 
Palais [1968], Eliasson [1967], or Ebin-Marsden [I9701 for details.) 

EXERCISES 

1.5A. (i) Give a precise definition of the Mobius band as a vector bundle, and 
construct a vector bundle atlas [a cylinder with a half twist (see Fig. 2.5.1). 
Compare with the torus (Sect. 1.1).]. 

(ii) Complete the details of 1.5.3 and show that the differentiable structure on 
a vector bundle is larger than the vector bundle structure. 

1.50. Find an example of a fiber preserving diffeomorphism between vector bundles 
that is not a vector bundle isomorphism. 

y I.5C. Let a: E+B and a': Ef+B' be two vector bundles. Define the sum as axa': 

E! E x  E1+B x B'. Show that this is a vector bundle in a natural way, and 
4 
m 

construct a vector bundle atlas. 
;3 1.5D. If a: E+B and a': E'+B are vector bundles over B, define the Whitney sum 
z by a@at: E @ E'+B, where E @ E' has fiber over b E B equal to the direct 

i3 sum Eb@ EL. Show this is a vector bundle over B. 
1.5E. (i) Let a: E+B be a vector bundle and f: B'+B a smooth map. Define the 
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pull-back bundle f * a : f * E - i  B ' by 

and show that it is a vector bundle over B'. 
(ii) If a: E 4 B ,  a': E'+B are vector bundles and if A: B+B X B is the 

diagonal map b H (b, b), show that a Cl3 a' = A*(a X a') (see Exercises 1.5C 
and D). 

1.6 THE TANGENT BUNDLE 

Recall that for f: U c E+ V c F of class Cr+ ' we define Tf: TU+TV by 
TU= U x E, TV= V X F, and Tf (u, e) = (f (u), Df (u) e). Hence, Tf is a local 
vector bundle mapping of class Cr.  Also T(fog)= Tf 0 Tg. Moreover, for 
each open set U in some vector space E let a,: TU+ U be the projections (as 
in Sect. 1.5 we identify U with the zero section U X (0)). Then the diagram 

is commutative, that is, f 0 7, = 7, o Tf. 
We will now extend the tangent functor T from this local context to the 

category of differentiable manifolds and mappings. During the definitions it 
may be helpful to keep in mind the example of the family of tangent spaces of 
the sphere S" c R"+ '. 

A major advance in differential geometry occurred when it was realized 
how to define the tangent space to an abstract manifold independent of any 
embedding in Rn.* There are several alternative ways to do this, which can be 
used according to taste. 

(a) Coordinate approach. Using transformation properties of vectors under 
coordinate changes, one defines a tangent vector to be an equivalence class of 
triples (U, e, p), where p: U'+ U c E is a chart, u E U and e E E with two 
triples identified if they are related by the tangent of the corresponding 
overlap map (see Lang [I9721 for details). 

(b) Derivation approach. This approach characterizes a vector by specify- 
ing a map that gives the derivative of a general function in the direction of 
that vector (see, e.g., Bishop and Goldberg 119681 and Sect. 2.2 below). 

(c) The ideal approach. This is a variation of (b). Here T,M is the dual 

d 
*The history is not completely clear to us, but this idea seems to be primarily due to Riemann, 
Weyl and Levi-Cevita and was "well known" by 1920. 8 
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of ($:)/$:)), where $:) is the ideal of functions on M vanishing up to order j 
at m. 

(d) The curves approach. This is the method followed here. We abstract 
the idea that a tangent vector to a surface is the velocity vector of a curve in 
the surface. 

1.6.1 Definition. Let M be a manifold and m E M. A curve at m is a C' map 
c:  Z+M from an open interval I c R into M with OE I and c(0) = m. Let c1 
and c, be curves at m and (U ,  c p )  an admissible chart with m E U. Then we say 
c, and c, are tangent at m with respect to cp i f  and only if 9 c ,  and cp c, are 
tangent at 0 (in the sense of Sect. 1.3; we may restrict the domain of ci such that 
cp c, is defned; see Fig. 1.6-1). 

Thus two curves are tangent with respect to cp if they have identical 
tangent vectors (same direction and speed) in the chart q. 

1.6.2 Proposition. Let c, and c, be two curves at m EM.  Suppose (Up, Q) 
are admissible charts with m E Up, /3 = 1,2. Then c1 and c, are tangent at m 
with respect to c p ,  i f  and only i f  they are tangent at m with respect to cp2. 

ProoJ: Note that c, and c, are tangent at m with respect to c p ,  iff 
D ( c p ,  c,)(O) = D (cp, c,)(O). By taking restrictions if necessary we may 
suppose U, = U,. Hence we have cp, ci = (cp, cp;  l) (cp, ci). From the C ' 
composite mapping theorem it follows that D (cp, cl)(0) = D (cp, 0 c2)(0). W 

Proposition 1.6.2 guarantees that the tangency of curves at m E  M is 
independent of the chart used. Thus we say c1,c2 are tangent at m E M if c,,c, 
are tangent at m with respect to cp ,  for any local chart cp at m. It is evident 
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that tangency at m E M is an equivalence relation among curves at m. An 
equivalence class of such curves is denoted [c],, where c is a representative of 
the class. 

1.6.3 Definition. For a manifold M and m E M the tangent space of M at m 
is the set of equivalence classes of curves at m 

For a subset A c M, let TM lA = u ,,, T,(M). We call TM = TM 1 M the 
tangent bundle of M.  

The mapping 7, : TM+ M defined by T ~ ( [ c ] , ) =  m,  is the tangent bundle 
projection of M. 

Next we must show that the definition above corresponds to TU= U X E 
for the case of a local manifold. We let T3 denote T as defined in Sect. 1.3, so 
T, U= U X E, and let r6 denote T as defined in this Section. That T3(U) and 
T6(U)  can be identified is justified by the following. 

1.6.4 Proposition. Let U be an open subset of E, and c a curve at u E U. 
Then there is a unique e E E such that the curve c,,, defined by c,,,(t) = u + te 
[on some interval I such that c,,,(l) c U ]  is tangent to c at u. 

ProoJ: From Sect. 1.3, Dc(0) is the unique linear map in L(R ,E)  such that 
the curve g: R+E given by g(t)= u+ Dc(O).t is tangent to c at t =0. If 
e=Dc(O).l,theng=c,,,. . 

Define a map i: T3(U)-+T6(U) by i(u,e) = [c,,,],. Proposition 1.6.4 says i 
is a bijection. Moreover, we can define a local vector bundle structure on 
T6(U)  by means of i. For example, the fiber over u E U is i ( { u )  X E). Then i 
becomes a local vector bundle isomorphism. It will appear after 1.6.1 1 that 
this local vector bundle structure of T6U is natural. 

1.6.5 Proposition. Suppose c, and c, are curves at m E M  and are tangent at 
m. Let f: M+N be of class C 1 .  Then f 0 c ,  and f oc, are tangent at f ( m )  E N .  

ProoJ: From the C '  composite mapping theorem it follows that foe, and 
f 0 c, are of class C '. For tangency, let ( V, $) be a chart on N with f ( m )  E V. 5 
We must show that (I) cl)'(0) = ($ of  c,)'(O). But $ of  ca = 2 

P (4 0 f 0 QI ' )  (rp c,), where ( U, QI)  is a chart on M, with f ( U )  c V. Hence the g 
result follows from the C 1  composite mapping theorem. z 

z 
This justifies the following. !z 
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1.6.6 Definition. Iff: M+N is of class C', we define Tf: TM+ TN by 

We call Tf the tangent of 8 

Tf is well defined, for if we choose any other representative from [c],, say 
c,, then c and c, are tangent at m and hence foc and foc, are tangent at 
f(m). That is, [fO~If(m)=[fO~llf(m). 

The basic properties of T are summarized in the following. 

1.6.7 Theorem. (i) (C' composite mapping theorem) Suppose f: M+N and 
g : N+ K are C ' maps of manifolh. Then g 0 f : M-+ K is of class C ' and 

(ii) If h : M+M is the identity map, then Th : TM+ TM is the identity map. 
(iii) Iff: M-+N is a diffeomophism, then Tf: TM-+TN is a bijection and 

( ~ f ) - ' =  ~ ( f  -'). 

ProoJ: (i) Let (U,q), (V,+), (W,p) be charts of M,N,K, withf (U)C V and 
g(V) c W. Then we have, for the local representatives, 

By the C' cornposite mapping theorem this, and hence gof, is of class 
C I .  Moreover, T(g 0f)[c1, =Ig c3g.f(m) and Tg O Tf[clm = Tg([f elf(,))= 
[g of cIgSf(,,. Hence T(g o f )  = Tg Tf. 

Part (ii) is an immediate consequence of the definition of T. For (iii), f 
and f - ' are diffeomorphisms with f 0 f - ' the identity on N, while f - ' 0 f is the 
identity on M. But then using (i) and (ii), Tf 0 Tf -' is the identity on TN 
while Tf - ' Tf is the identity on TM. Thus (iii) follows. (See Exercise 1. IA.) 

(As in the case of local manifolds, these properties signify that T is a 
functor.) Next let us show that in the case of local manifolds, Tf as defined in 
Sect. 1.3, which we denote T3 f, coincides with Tf as defined here, which we 
denote T, f, when we identify T3 U with T,U. 

1.6.8 Proposition. Let U c E and V c F be local manifolds (open subsets) 
and f: U+ V be of class C'. Let i: T3(U)+T6(U) be the map defined in 1.6.4. 
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Then the diagram 

commutes, that is, T6 f 0 i = i T3$ 

Proof: For (u,  e )  E T3( U )  = U x E, we have 

Also, (i T3 f)(u, e )  = i( f (u), Df (u )  .e) = [cf (u),Df (u)e]f(u). These will be equal pro- 
vided the curves t H f ( u  + te) and t H f (u)  + t(Df (u )  .e) are tangent at t = 0. 
But this is clear from the definition of the derivative and the composite 
mapping theorem. II 

This theorem states that if we identify T3(U) and T6(U) by means of i 
then we can identify T3 f and T6 f. Thus we will just write T,  and will suppress 
the identification. 

1.6.9 Proposition. I f f :  U c E+ V c F is a diffeomorphism, then Tf: U X E 
+ V x F is a local vector bundle isomorphism. 

Pros$ Since Tf (u,  e) = U(u) ,  Df ( u )  .e), Tf is a local vector bundle mapping. 
But as f is a diffeomorphism, (Tf ) - '= T ( f  -') is also a local vector bundle 
mapping, and hence Tf is a vector bundle isomorphism. II 

For a chart (U,cp) on a manifold M,  we can construct Tcp: TU+TUI. By 
1.6.7, Tcp is a bijection, since cp is a diffeomorphism (Exercise 1.4C). Hence, 
on TM we can regard (TU, Tcp) as a local vector bundle chart. In the target of 
Tcp note that we have a special local vector bundle, where the fibers have the 
same dimension as the base. 

1.6.10 Theorem. Let M be a manifold and & an atlas of admissible charts. 
Then T &  = {(TU, Tcp)l(U,cp) E &}  is a vector bundle atlas of TM called a 5 
natural atlas. 2 4 m 

8 Proof: Since the union of chart domains of & is M ,  the union of the 3 
corresponding TU is TM. Thus we must verify VBA2. Hence, suppose we z 
have TU, n TU, Z 0. Then U, n U, + 0 and we can form the overlap map 8 
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pie cpj- ', by restriction of cpj- ' to q(Ui n V,). Then we must verify Tgo,o(Tv)-' 
= T(cp,oq-') is a local vector bundle isomorphism. But this is guaranteed by 
1.6.9. 

Hence TM has a natural vector bundle structure induced by the differen- 
tiable structure of M. If M is n-dimensional, Hausdorff, and second count- 
able, TM will be 2n-dimensional, Hausdorff, and second countable. 

We shall now reconcile the bundle projection 7, of 1.6.3 and the one 
given in Sect. 1.5 for an arbitrary vector bundle. 

1.6.1 1 Proposltion. If m E M, then r;'(m) = T, M is a fiber of TM and 
T,I(TM)~: (TM)o+M is a diffeomorphism. 

Proof: Let (U, p) be a local chart at m E M, with q: U 4  U' c E and 
p(m) = u'. Then Tcp: TMI U+ U' X E is a natural chart of TM, Tp- ' ( {u ' )  X 
E)  = Tp - '{[c,,, e],,le E E )  by definition of Tp, and this is exactly T,M, by 
1.6.7(iii). For the second assertion, r,I(TM), is obviously a bijection, and its 
local representative with respect to Tq and p is the natural identification 
U' X (0 )  4 U', a local diffeomorphism. 

We will often identify M with the zero section of TM, and T, with the 
bundle projection onto the zero section. 

1.6.1 2 Proposition. Let M and N be manifolds, and let f: M+N be of class 
Cr+ I.  Then Tf: TM+TN is a vector bundle mapping of class Cr. 

Proof: By Proposition 1.4.7 it is enough to check Tf using the natural atlas. 
For u E M choose charts (U,cp) and (V,V;tC/) on M and N so u E U, f(u) c V and 
f,+ = + 0 f 0 g~ - ' is of class Cr+ '. Then using (TU, Tq) for TM and (TV, T$) 
for TN, we must verify that (Tf)TV,T+ is a local vector bundle map of 
class Cr. But we have (Tf),,,,+= TV;tC/o Tfo Tq-I= T(fV+), and TfV+(uf,e)= 
(f,,(u'),Df,+(u').e), which is a local vector bundle map of class Cr. W 

Now that TM has a manifold structure we can form higher tangents. For 
mappings f: M-+N of class Cr, we define T'f: TrM+TrN inductively to be 
the tangent of Tr- t f :  Tr- 'M-+ Tr-'N. Induction readily yields the following. 

1.6.13 Theorem (Cr composite mapping theorem). Suppose f: M+N and 
g : N+ K are Cr mappings of manifolds. Then g 0 f is of class Cr and Tr ( g  ofl 

Y = Trg 0 T'f. 

s 
9 The behavior of T under products is given by the following. 
m 
8 

1.6.14 Proposltion. Let M and N be manifolds and M X N the product 
z manifold. Then T(M X N) is related to TM X TN by a vector bundle isomor- 
2 phism. If f: K+M and g : K+ N are smooth mappings, then T( f X g) = 
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Tf X Tg, if we identib T(M X N) and TM X TN. (The functor T is natural with 
respect to products.) 

Proof: Let [c],,,,, E T(M x N). Then c : I-+ M X N, c(0) = (m,n) has the 
form c(t)=(c,(t),c,(t)), where c, is a curve in M at m and cN is a curve in 
N at n. Consider the map [c](,,,, H ([c,],, [cN],) : T(M X N)-+  TM X TN. 
From the local representative we see that the mapping is well defined. Also, 
since it has an obvious inverse it is a bijection. Moreover, in local representa- 
tion, it is merely the mapping (u, v, e,f) t-+ ((u, e), (v,f)), which is a vector 
bundle isomorphism. The second part follows easily from definition 1.6.6. . 

As was the case for local manifolds, for f: M-+N of class C', we have the 
commutative diagram 

M-N 
f 

We sometimes write T ~ =  (Tf, f): TM-+TN for this diagram. A special case is the 
dual tangent rhombic, with f = 7,: 

T(TM) 

T ~ /  Y T M j  
TM TM 

As it may be shown that the set T(TM) has a vector bundle structure, in 
addition to the usual one, in which TrM is a projection, it is confusing to write 
T(TM) alone for (T(TM),TrM). But "the bundle 7,: T(TM)-+TMW is 
adequate to indicate which vector bundle structure is implied. 

The inverse mapping theorem takes the following form. 

1.6.15 Theorem. Let M and N be manifolds and f: M+N be of class Cr. 
Suppose Tf is an isomophism on the fiber over m E  M. Then f is a Cr 
diffeomo~hism from some neighborhood of m onto some neighborhood off (m). 

This follows easily from 1.3.12. Likewise the implicit function theorem 
(1.3.16) yields the following. 

0 

1.6.16 Theorem. Let M and N be rnanifolds and f: M+N be of class C ". z 
Suppose Tf restricted to the fiber TmM is surjective to q( , )N .  Then there are 3 
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charts (Qcp) and ( V ; $ )  with m E Q  f ( U ) c V ;  cp: U+UrX V', cp(m)=(O,O), 
$ : V-t  V' and f,+ : U' X V'+ V' is the projection onto the second factor. 

The condition that Tm f = Tf 1 TmM be surjective means, for f: R ~ + R " ,  
with k > n, that the rank of the Jacobian matrix off at m E M  should be n. 

1.6.1 7 Definltlon. Suppose M and N are manifoldr with f: M M-* N of class C '. 
A point n E N is called a regular value o f f  if for each m E f - '({n)), TJ is 
surjective. Let Rf denote the set of regular values o f f :  M+ N; note N \ f ( M )  c 
Rf c N.  If, for each m in a set S ,  TJ is surjective, we say f is a submersion on 
S.  (Thus n E Rf iff f is a submersion on f - '({n)). 

The next result will be important when we consider energy surfaces. 

1.6.18 Proposition. Suppose f:  M+N is of class Cm and n E Rf. Then 
f - ' ( n ) = { m l m ~ ~ , f ( m ) = n )  is a submanifold of M. 

ProoJ I f f  -'(n)= 0 the theorem is satisfied. Otherwise, for m E f -'(n) we 
find charts (U,cp), (V,$) as described in the implicit mapping theorem. 

Then it must be shown that the chart (U,cp) has the submanifold property. 
But cp(U n f -'(n)) = fG1(0) = U ' x  (0 ) .  'Phis is exactly the submanifold prop- 
erty. (See Fig. 1.6-2.) H 

This proof shows that TJ- ' (n)  = ker TJ 
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Further versions and consequences of the implicit function theorem that 
will be  used later in the book are developed in the exercises. 

T h e  following relatively deep result is  a form of Sard's theorem. See, for 
example, Abraham-Robbin [1967, Chapter 1111. 

1.6.19 Theorem (Sard). Suppose f :  M+N is of class C ". Then Rf is dense 
in N. 

EXERCISES 

1.6A. Establish 1.6.15 and 1.6.16 from the corresponding local statements in Sect. 
1.3. Deduce each o f  1.6.15 and 1.6.16 from the other. 

1.6B. Use 1.6.18 to given an alternative proof that S n  is a submanifold o f  Rn+'. 
1.6C. A vector field X on a local manifold U is a C" section o f  TU= U XE. 

Interpret geometrically and examine the condition that a curve c: I+U is 
tangent to X ,  Tc(t). 1 = X (c(t)). Show also that cf(t)  = Tc(t). 1 coincides with 
the usual derivative. 

1.6D. (a) Show that there is a map sM: T(TM)+ T ( T M )  such that sMosM = 
identity and 

commutes. [Hint: In local natural natural charts, sM(u, e ,  el, e2) = 
(u,  e l ,  e,  e2).] One calls sM the canonical involution on M and says 
that T ( T M )  is a emmetric rhombic. 

@) Verify that for f :  M+N o f  class C2, T ~ ~ O S ~ = S ~  0 ~ 2 f .  (Hint: See 
Exercise 1.3B.) 

(c) I f  X is a vector field on M, that is, a section of  7.: TM+M, show TX is 
a section o f  T T ~  : T ~ M - +  TM and X ' = s, 0 TX is a section o f  TTM : 
T~M+TM.  

1.6E. (a) Prove the following generalization o f  1.6.18 : Suppose f: M+ N is C m, and 
P c N is a subrnanifold. Suppose f is tramzrsal to P (denoted j7fi P ) ,  that 
is, if m E f - ' ( P ) ,  (Tmf)(Tm M )  f Tf(,)P = Tf(,)N. Then f - ' ( P )  is a sub- 
manifold of M, with codim P = codim f - ' ( P )  and (T,,,f)-'(Tf(,)P) = 
TmCf-'(P)). ( I f  P is a point, f is called a submersion and we reduce to 
1.6.18.) 
[Sketch. Let ( V ,  J / )  be a chart, f ( m )  E V,  with the submanifold property 
for P; +(V)= V l  X V 2 c F 1  X F2, + ( V n  P)= V 1  X (0) .  Let J/(f(m))=(O,O) 
and pr2: V l  X V2-3V2 the projection. Using a chart about m and local 
representatives, show that pr2 0 f has a surjective derivative. Use Theorem 5 
1.6.16 to find a new chart in whichpr, 0 f is a projection.] 2 

(b) Use (a) to show that if M I ,  M 2 c  M are submanifolds and TmMl + TmM2 
= Tm M for m E M ,  n M2, then M ,  n M2 is a submanifold o f  M. (Hint: 3 
Show i, $M2, where i l :  Ml+M is inclusion.) 2 

(c) Deduce from (a) that i f f :  M+ N is smooth, yo E N and T, f has constant Z 
rank in a neighborhood of each x E f - ' (yo),  then f -'(yo) is a submanifold 2 
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with 

Txf - ' (YO) = Ker Txf 

1.6F. (a) I f f :  M+N is an immersion, that is, T,,J is one-to-one at each m E M,  use 
the implicit function theorem to show that for each m E M ,  there is a 
neighborhood U of m such that j ( U )  c N is a submanifold. Show that i f f  
is 1 - 1 and is an open map onto its image, then f ( M )  is a submanifold. 
[Sketch. I f  f: U c E+FoCT3 F, where Fo is the range Df (0) and Df (0) is 
one to one, D@(O,O) is an isomorphism, where @: U x F,+F,x F,, 
( u , e , ) b  f (u) + (O,el). Apply the inverse function theorem.] 

(b) Prove the following generalization o f  (a): Let f :  N+P be a C" map of 
manifolh such that ker Tf = urn (kernel T a  c TN is a subbundle of TN; 
let d = dim (ker Tmn.  Then f ( N )  is a locally immersed submanifold of P and 
if f is open onto its image, f ( N ) c  P is a submanifold of dimension 
dim N - d. (This formulation was suggested by J. Guckenheimer.) 
[Sketch. Assume P C F  is open; 0 E N,  f (9) = 9. Write F, is the range o f  
T,  f and F= F, @F2 Let a ,  : F+F, be the projection. Use 1.6.18 to 
write N = F, CT3 F2, where a ,  0 f is constant in the second variable. Let 
i:  E ,  x ( 0 )  +N be the injection. Show a ,  0 f 0 i is a local diffeomorphism 
and the image Q o f  fo i  is locally a submanifold. Use the fact that 
ker Tf is a subbundle to show Q is locally the image o f f  as well.] 

(c) Let 

f 
E-E' 

be a smooth vector bundle mapping. W e  say that f has constant rank k i f  
for each x E M the linear map fx: Ex+Ei has rank k .  Let 

and 

Im f = {v' E E'lthere exists v E E such that fx ( v )  = u', 

where x = T, (v )  = a2(v f ) )  

Show that i f f  has constant rank, Kerf and Im f are subbundles of E and E', 
respectively. 

1.6G. (Fibration theorem). Use 1.6E and 1.6F to prove the following: Suppose that 
f :  M+N is smooth and, locally, Txf has constant rank. Let Z c M be a 

Y submanifold, x € M, y E N fixed, and assume that Tx M = T,Z + Tx f - ' (y ) .  

s Then there are neighborhoods U o f  x, V o f  y such that f ( U )  is a submanifold 
4 m 

o f  N and f induces a diffeomorphism o f f  - '( V )  n Z n U to f ( U )  n V. 

2 1.6H. I f  N is a submanifold o f  M, then for each n E N there is an open neighborhood 

2 U c M with n E U and a submersion f: U c M+Rrn-", where m = dim M and 

E n = dim N such that N n U= f -'(O). (Hint: Choose a submanifold chart and 
Z compose it with an appropriate projection.) 
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1.61. Let RPn be real projective n-space (see Sect. 1.1). Show RPn is a manifold and 
that RP' is a submanifold'of R P ~ ,  which is not the level set of any submersion 
of RP2 into RP1; in fact, there are no such submersions. (Hint: RP' is 
one-sided in RP2, that is, there is no continuous choice of normal direction to 
RP1 in R P ~ . )  

1.7 TENSORS 

Given a vector space E we can form a new vector space consisting of 
tensors on E. W e n  this is done on each fiber of a vector bundle, we obtain a 
new vector bundle structure. An important case occurs when this is applied to 
the tangent bundle of a manifold. Thus we begin with a review of tensors on 
vector spaces. 

As in Sect. 1.2, L ~ ( E , ,  . . . ,E,; F )  denotes the vector space of multilinear 
maps from El x . . . X E, into 4;: The special case L(E,R)  is denoted E*, the 
dual space of E. If d = ( e l , .  . . ,en) is an ordered basis of E, there is a unique 
ordered basis of E*, the dual basis d* = (a1,. . . , d), such that a' (ei) = 8; , 
where 6: = 1 if j = i and 0 otherwise. Furthermore, for each 

and for each 
n 

a€  E*, a= 2 a(ei)ai 
i= l 

Employing the summation convention whereby summation is implied when an 
index is repeated on upper and lower levels, these expressions become 
e = ai(e)ei and a = cu(ei)cui. 

We may map E into E** = L(E*, R )  by associating with each e E E, e** 
E E**, given by e**(a) = a(e) for all a E E*. Because E has finite dimension, 
the map e w e * *  is an isomorphism (Exercise 1.2B). 

1.7.1 Deflnltlon. For a vector space E we put T,'(E) = 
Lr+"(E*, . . . , E*, E, . . . , E; R )  (r  copies of E* and s copies of E). Elements 
of T,'(E) are called tensors on E, contravariant of order r and c m r i m t  of order 
s; or simp$, of type (i). (This classical terminology is functoralb backwardr). 

Given t ,  E T ( E )  and t2 E q ; ( E )  the tensor product of t ,  and t ,  is the 
tensor t ,  C3 t2 E T,:'zz(E) defined by 

where p, yJ E E* and 4, E E. 
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Because of the identifications discussed in Sect. 1.2, we have T,'(E)M E, 
T~(E)  = E*, T ~ ( E  m L(E; E*), and T,'(E) M L(E; E). It is easy to see that @ 
is associative and bilinear. 

1.7.2 Proposition. If dim E = n, then T,' (E) has the structure of a real vector 
space of dimension nr+". Indeed, for an ordered basis 8 = (e,, . ..,en) of E, a basis 
of T,'(E) is given by 

where 2* = (a', . . . ,a") is the dual basis of 2. 

Proof: We must show that the elements of eil €3 - . - €3 ei,.@a+ €3 - . . @a'* of 
T,'(E) are linearly independent and span T,'(E). Suppose q.' ...;I.,, €3 . . . €3ei, @ 
dl @ . @ d s  = 0. Then apply this to (d l ,  . . . , akr, ell, . . . , e4) using the identifi- 
cation ei(d) =d (e,) to give tt!::ik'=O. Next, we easily check that for t E 
T,'(E) we have 

The coefficients t,:.'.'.;! = t(ail, . . . , air, . . . , 5,) are called the compo- 
nents of t relative to 8. 

The classical operations of tensor algebra can be defined invariantly in 
this context. For example, the Kronecker delta is the tensor 6 E T,'(E) 
associated to the identity I E L(E, E)  under the canonical isomorphism 
T,'(E) w L(E, E), that is, &(a, e) = a(e) for all a E E*, e E E. Relative to any 
basis, the components of 8 are the usual 8;. An example of an interior product 
is the mapping i,: T,'(E)+ T,'(E), where e E E, defined by ie(t)(4 = t(a, e). 
An example of a contraction is the mapping tr: T,'(E)+ R, where tr(t) is the 
trace of the linear mapping associated to t by the isomorphism T,'(E)M 
L(E, E). More general contractions may be defined by composing a sequence 
of inner products with this contraction. A reader with experience in the 
classical tensor calculus may wish to translate other operations into t h i s  
language, but we will not need the full machinery in the sequel. 

If p E L(E, F), we can consider p E L(T,'(E), T,'(F)). Then we define the 
transpose of cp by p* E L ( P ,  E*) = L(T~(F), T:(E)), p*@) - e = Np(e)), 
where fi E I;1C and e E E. Unfortunately rp* maps in the wrong direction for 
some purposes, but this may be remedied if p is an isomorphism. 

Y 1.7.3 Definition. If (p E L(E, F )  is an isomorphism, let T,rp = (p,' E 
2 L ( T,' (E) , T,' (F)) be defined by 
4 m 
8 
2 9,,'t(fi1 ,..., ~ f ,  , . . . , f , )=t(cp* (PI) ,...,cp* (P') ,cp-' (f'),...,cp-'(f,)) 
z 

wheret€T,'(E),P1 ,..., p'EFC,andf, ,..., LEI;. 
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Note cpy=(cp-I)*, which maps "forward" like cp, and we identify cp with 
cp;. The next proposition asserts essentially that T,' is a covariant functor. 

1.7.4 Proposition. Let cp: E-+F and +: F+G be isomorphisms. Then 

(9  (+ "cp)rs = +,' cp; 
(ii) If i: E+E is the identity, then so is i,': T,'(E)+ T,'(E); 

(iii) 93,r: T,'(E)+ T,'(F) is an isomorphism, and (cp,')-' = (cp- I)',. 

Proof: For (i), 

where yl,. . . , y' E G*,gl, . . . ,gs E G, and t E T,'(E). We have used the fact that 
(4 cp)* = cp* 0 +* and (+ cp)- = cp-I + - I ,  which the wader can easily check. 
Part (ii) is an immediate consequence of the definition and the fact that i* = i 
and i - = i. Finally, for (iii) we have cp,' (cp - I)', = i,', the identity on T,'(F), by 
(i) and (ii). Similarly, (cp-I)', cp:= i,' the identity on T:(E). Hence (iii) 
follows. I 

The next proposition gives a connection with component notation. The 
proof is left as an easy exercise for the reader. 

1.7.5 Proposition. Let cpE L(E, F) be an isomorphism. For ordered bases 
B=(el,. . .,en) of E and f= (f,, . . . ,f,) of 1F, suppose cp(ei) = A($ and (cp-I)*(&) 
= %PI. Then B{A~ = A{Bjk = or the inverse matrix of (Aj) is (B;), and for 
t E T,'(E) with components tji':.'.? relative to t?, the components of cp,'t relative to f 
are given by 

In particular, if E =  F and cp is the identity, the above describes the $ 
components of t relative to the "new basis" $ w 

13 
We extend the tensor algebra next to local vector bundles, and finally to 

vector bundles. For U c E (open) recall that U x F is a local vector bundle. z 
Then U x T,'(F) is also a local vector bundle in view of 1.7.2. Suppose 8 
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cp: U x F+ U' x F' is a local vector bundle mapping and is an isomorphism on 
each fiber; that is, cp, = cpl{u) X F E L(F, F') is an isomorphism. Also, let cpO 
denote the restriction of cp  to the zero section. 

Then cp  induces a mapping of the local tensor bundles as follows. 

1.7.6 Definition. If cp: U x F+ U' x F' is a local vector bundle mapping such 
that for each u E U, cp, is an isomolphism, let cp; : U X T,'(F)-+ U' X T,'(F') be 
defined by 

where t E T,' (F) .  

Before proceeding we shall pause to recall some useful facts concerning 
linear isomorphisms. 

1.7.7 Proposition. Let GL(E, F )  denote the set of linear isomorphisms from E 
to E: Then GL(E, F) c L(E, F )  is open. 

This was proved in 1.3.14. Let us also recall 1.3.15. 

1.7.8 Proposition. Let $ *  : L(E, F ) - +  L ( P ,  E*); cp wcp* and $ -I: 

GL(E,F) -+GL(E;E); cp+cpP1.  Then $ *  and $ - I  are of class Cw and 

Smoothness of 4 * is clear since it is linear. 

1.7.9 Proposition. If cp: U X F+ U' x F' is a local vector bundle map and qu 
is an isomorphism for all u E U, then cpd : U X T,'(F)+ U' x T,' (F') is a local 
vector bundle map and (9,): = (cp,'), is an isomolphism for all u E U. Moreover, 
if cp  is a local vector bundle isomorphism then so is cp;. 

ProoJ: That cp; is an isomorphism on fibers *follows from the functorial 
property of cp; and the last assertion follows from the former. By 1.7.6 we 
need only establish that (cp,)', =(cp;), is of class C". Now, cp, is a smooth 
function of u, and, by 1.7.8, cp,* and cp,-' are smooth functions of u. The 
Cartesian product of smooth functions is easily seen to be smooth and (cp,): is 
a multilinear mapping on a Cartesian product of smooth functions (this is not 

2 linearity in cp ) .  Hence from the product rule (cp,); is smooth. W 
9 
r'i 
VI 0 

2 This smoothness can be verified also by using the standard bases in the 
tensor spaces as local bundle charts, and proving that the components 
(cp,,'t)>,::'.j are C " functions. 

c.l 
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We have the following commutative diagram which says that cp: preserves 
fibers: 

1.7.10 Definition. Let w: E+B be a vector bundle with Eb = w- ' (b)  the fiber 
over bEB.  Define T,'(E)= ubEBT,'(Eb) and T,': T,'(E)+B by w,'(e)=b iff 
e E T,'(Eb). Furthermore, for a subset A of B, we put T'(E)IA = u ,,, T,'(Eb). 
If w':  E'+B' is another vector bundle and (cp, cpo): w+d is a vector bundle 
mapping with cpb = cpl Eb an isomophism for all b E B, let cp:: T,'(E)+ T,'(E') 
be defined by cp: 1 T,' (E,) = (cp,)',. 

Now suppose (El U,cp) is an admissible local bundle chart of w, where 
U c B is an open set. Then the mapping cp:I[T,'(E)I U ]  is obviously a bijection 
onto a local bundle, and thus is a local bundle chart. Further, (cp:), = (cpb)', is 
a linear isomorphism, so this chart preserves the linear structure of each fiber, 
which in this case is given in advance. We shall call such a chart a natural 
chart of T,'(E). 

1.7.11 Theorem. If w: E+B is a vector bundle, then the set of all natural 
charts of q!': T,'(E)+B is a vector bundle atlas. 

ProoJ: Axiom (VBAI) is obvious. For (VBA2), suppose we have two over- 
lapping natural charts, cp,' and +:. For simplicity, let them have the same 
domain. Then cu = + 0 cp-' is a local vector bundle isomorphism, and by 1.7.4, 
+: o (cp,')- ' = 4, a local vector bundle isomorphism by 1.7.9. 

This atlas of natural charts, the natural atlas of w,', generates a vector 
bundle structure, and it is easily seen that the resulting vector bundle is 
Hausdorff, second countable, and has constant dimension. Hereafter, Ir,' will 
denote all of this structure. 

1.7.12 Proposition. I f f :  E+Ef is a vector bundle map that is an isomor- 
phism on each fiber, then f,' : T,' (E)+ T,' ( E  ') is also a vector bundle map that is 3 
an isomorphism on each fiber. 2 

9 
rA 

8 ProoJ: Let (U,cp) be an admissible vector bundle chart of E, and let (V,',rl) 2 
be one of E' so that f (U) c V and &,$ = +b 0 f 0 cp -  ' is a local vector bundle z 
mapping. Then using the natural atlas, we see that (f,')'P:,4: = (f&):. H 2 
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1.7.13 Proposition. Suppose f :  E+E1 and g: Et+E" are vector bundle 
maps that are isomorphisms on each fiber. Then so is g o f ,  and 

(0 
(ii) 

(iii) 

( g  " f  )', =g,' OK. 
Zf i :  E+E is the identity, then i,': T,'(E)+T,'(E) is the identity. 
I f f :  E+Et is a vector bundle isomorphism, then so is and (f)-'= 
u- '1;. 

ProoJ: For (i) we examine representatives of ( g o  f)', and g,'of,'. These 
representatives are the same in view of 1.7.4. Part (ii) is clear from the 
definition, and (iii) follows from (i) and (ii) by the same method as in 
1.7.4. . 

This proposition asserts that T,' is a covariant functor on vector bundles 
and vector bundle mappings that are regular on fibers. 

We now specialize to the important case where w: E+B is the tangent 
vector bundle of a manifold. 

1.7.1 4 Deflnltlon. Let M be a manifold and T,: TM+M its tangent bundle. 
We call c ( M )  = T,'(TM) the vector bundle of tensors of contravariant order r 
and cmariant order s; or simply of type C). Also T?(M) is called the cotangent 
bundle of M and is denoted by r&: T*M+M. 

Since E** can be identified with E, we may identify T,'(M) with TM, the 
tangent bundle. The zero section of T, '(M) may be identified with M. 

Recall that a section of a bundle assigns to each base point b a vector in 
the fiber over b. In the case of T,'(M) these vectors are called tensors. Also, 
the addition and scalar multiplication of sections takes place within each 
fiber. The C w  sections of w: E-+B were denoted Tw(w), or rw(E) .  

1.7.15 Definition. A tensorfield of type C )  on a manifold M is a C w  section 
of T,'(M). We denote by T: ( M )  the set rw(T,' (M)),  together with its (infinite- 
dimensional) real vector space structure. Also we let T ( M )  denote the set of 
mappings from M into R that are of class C" (the standard local manifold 
structure being used on R )  together with its structure as a ring; namely, 
f + s, cf, fg for f, g E % ( M ) ,  c E R are given by ( f  + g)(x) = f  ( x )  + g(x ) ,  
(cf )(x) = c( f ( x ) )  and ( fg) (x)  = f ( x )  .g(x). A vectorfield on M is an element of 
% ( M )  = '5 A(M). A cmector jield, or differential one-fonrt, is an element of 
% * ( M )  = 5 :(M). 

X 
d Note that for the tangent bundle TM, a natural chart is obtained by 

taking Tq, where q is an admissible chart of M. This in turn induces a natural 
chart (Tq)', = T,'q for T,'M. We shall call these the natural charts of T,M. If 

2 t tE T,'(M) and (T,'U, T,'cp) is a natural chart, we write ,t rather than tT,,, for 
z the local representative. These local representatives lead to the classical 

notion of tensor fields if we start with a chart (U,cp) of M with range 
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cp(U)= U 'C  Rn.  For if E is the standard ordered basis of R n ,  then 

where 'P t ~ ~ " ~ ~ ~ ( ~ ' ) = ~ t ( u ' ) ( a ~ ~ ,  J~".JS . . . ,%). 
The algebraic operations on tensors, such as contraction and inner prod- 

ucts, all carry over, fibenvise, to tensor fields. For example, if 6,  E T;(T,M) 
is the Kronecker delta, then 6: M-+T:(M); m -6, is obviously C", and 
6 E T ; ( M )  is also called the Kronecker delta. In addition, the mapping T,'cp 
induces an action on tensor fields. We now treat the most important of these 
extensions explicitly. 

1.7.16 Definition. If cp: M+N is a diffeomorphism and t E q ( M ) ,  let 
cp* t = (Tcp): t cp - ', the push-forward of t by cp. If t E T,'(N), the pull-back of t 
by cp is given by cp*t=(cp-'),t. 

1.7.1 7 Proposition. If cp: M+N is a diffeomorphism, and t E S : ( M ) ,  then 
( i )  cp * t E T : ( N ) ,  (ii)  c p ,  : S :(M)-+S : ( N )  is a linear isomorphism and (iii) 
(cpO+)*=cp*"+*. 

Proof: (i) The differentiability is evident from the composite mapping theo- 
rem, together with 1.7.9. (ii, iii) follow from 1.7.4 and 1.7.13. 

1.7.1 8 Definition. If f E % ( M )  and t E ( M ) ,  let ft: M+ T,'(M): m t-, 
f (m) t (m) .  If also X ; E % ( M ) ,  i = l ,  ..., s, a j € % * ( M ) ,  j=1 ,  ..., r, let 

t ( a l , .  . . , ar, xl,. . . , Xs) : M+R; m t-, t (m) (a l (m) ,  . . . , X, (m) )  

i f  also t' E T: ( M ) ,  let t @ tr  : M+ T[zs (M) ;  m H t ( m )  @ tr(m). 

1.7.19 Proposition. With f, t, Xi, aJ, and t' as in 1.7.18, ft E 9 : ( M ) ,  
t ( a l ,  ..., X s ) € % ( M ) ,  and t@tfES::::.  

Proof: The differentiability is evident in each case from the product rule in 
local representation. . 

Finally, we describe an alternative approach to tensor fields. Suppose 
S ( M )  is defined as above, and % ( M )  either our way or some equivalent way. 
With the "scalar multiplication" ( f ,  X)t+fX defined in 1.7.18, % ( M )  be- Y 
comes an 9(M)-module. That is, % ( M )  is essentially a vector space over 2 

9 S ( M ) ,  but the "scalars" 9 (M)  form only a commutative ring with identity, m 

rather than a field, as l / f  may not exist, even iff #=0. We may thus define ' 
$ 
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the F(M) linear mappings, and similarly 

the F(M) multilinear mappings. From 1.7.17, we have a natural mapping 
q r (  M)  -t Z;(M), which is an %(M) linear isomorphism. 

The direct sum S(M) of the x r ( M ) ,  including T ~ ( M )  = F(M), is a real 
vector space with @-product, including f @ t = ft, a "bigraded S(M)-alge- 
bra," called the tensor algebra of M, and if cp: M -t n is a diffeomorphism, cp,. 
S(M) + S(N) is an algebra isomorphism. 

EXERCISES 

1.7A. Show in detail that L(E, E) = T,'(E), and L(E, L(E, E)) w Tj(E). 
1.7B. Define, intrinsically, the contraction of t E c ( M )  between the ith con- 

travariant and the jth covariant indices. 
1.7C. Show that the local representative of t E T,'(M) with respect to a chart 

(U, cp) is rp,(tl U). Complete the details of 1.7.17 and 1.7.19. 
1.7D. If t E ~ O ( N )  and cp: M+ Nis Cr, r > 1, show that cp*t is defined even if cp 

is not a diffeomorphism. Prove that (cpo$)*t = (4*0cp*)t. 
1.7E. Prove 1.7.5. 



CHAPTER 2 
Calculus on Manifolds 

Certainly a mathematical topic of wide practical use is calculus. For many 
applications, and this book is an example, it is essential to use calculus in the 
large. In this chapter we outline parts of the subject that are useful in 
mechanics. The reader may wish to skip the optional topics and technical 
proofs on first reading. The most important formulas we need are 
summarized on p. 121. 

2.1 VECTOR FIELDS AS BYNAMiCAL SYSTEMS 

Recall that a vector field on a manifold M is a mapping from M to TM 
that assigns to each point m E M a vector in T,M. A vector field may be 
interpreted alternatively as the right-hand side of a system of first-order 
ordinary differential equations in the large, that is, a dynamical system. In 
this section we develop this interpretation and discuss the basic existence and 
uniqueness theorems for the integral of the system. 

The study of dynamical systems, also calledJlows, may be motivated as 
follows. Consider a physical system that is capable of assuming various 
"states" described by points in a set S. For example, S might be R3 x R3 and 
a state might be the position and momentum (q,p) of a particle. ? 

E 
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As time passes the state changes. If the state is s, at time t, and this 
changes to s, at a later time t,, we set 

and call I r f 2 , t 1  the evolution operator; it maps a state at time t, to what the state 
would be after time t, - t, has elapsed. "Determinism" is expressed by the law 
(sometimes called the Chapman-Kolmogorov law): 

By saying the evolution laws are time independent, we mean 1;,2,,1 depends 
only on t, - t,. Setting Ft2- t l  = Ft2, t l ,  the above law becomes the group prop- 
erty : 

Ft o & = Ft +s, Fo = identity 

We call 4 a flow and Ft2,,, a time-dependent flow, or as above, an evolution 
operator. If the system is nonreversible, that is, defined only for t, > t,, we 
speak of a semi-flow. 

In physics, it is usually not e 2 , , ,  that is given, but rather the laws of 
motion. In other words, some differential equations are given that we must 
solve in order to find the flow. These equations of motion have the form 

given where X is a (possibly time-dependent) vector field on S. 
Let us now turn to the elaboration of these ideas when a vector field X is 

given on a manifold M. 
Recall that a curve c at a point m of a manifold M is a C' map from an 

open interval I of R into M such that 0 E I and c(0) = m. For such a curve we 
may assign a tangent vector at each point c(A),AEI, by c f Q =  Tc(A, 1). 

2.6 .6 Definition. Let M be a manifold and X E %(M). An integral curve of 
X at m E M  is a curve c at m such that cf(A) = X(c(A)) for each A E I. 

We now express the condition that c be an integral curve of X in terms of 
local representatives with respect to natural charts. Let (U,cp) be a chart of M 
and suppose the image of c is contained in U. Then the local representative of 
c with respect to the identity of R and (U,cp) is c, = cp o c, while the local 
representative of the curve c' with respect to the identity of R and the natural 
chart (TM 1 U, Tcp) is given by 

m 
13 
"a (c'), (A) = Tcp 0 c' (A) = Tcp 0 Tc (X, 1) 
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by the composite mapping theorem. The local representative of X 0  c with 
respect to the identity of R and the natural chart Trp is 

where X, is the local representative of X. Thus c is an integral curve of X iff 
c' = Xoc iff ck = XV0 c, iff c, is an integral curve of X,. This condition takes a 
simple form if rp(U) c Rn.  Then we have X,(y) = ( y ;  X,(y), . . . , Xn(y)), 
where y E rp(U) c Rn ,  {X i (y ) )  are the components of X,, c,(A) = 
(cl(A), . . . , cn(A)), c#) = (c,(A); c;(A), . . . , cL(A)), and c; = X,oc, iff c@) = 
Xi(c,(A)) for i = 1, . . . , n and all A E I. Thus c is an integral curve of X iff 
the local representatives satisfy the system of first-order ordinary differential 
equations 

Note that A does not appear explicitly on the right. Such a system of 
equations (a local dynamical system) includes equations of higher order by 
their usual reduction to first-order systems and the Hamiltonian equations of 
motion as special cases. 

For a system of ordinary differential equations there are well-known 
existence and uniqueness theorems. The form that we shall need is the 
following. 

2.1.2 Theorem. Let X :  U c Rn+Rn be of class Cw. For each xoE U, there 
is a curve c : I+ U at xo such that cf(X) = X (c(A)) for all A E I. Any two such 
curves are equal on the intersection of their domains. Moreover, there is a 
neighborhood U, of x, E U, a real number a >O, and a Cw mapping F: 
Uo X I+R ", where I = ( - a, a)  such that c, (A) : I+R: c, (A) = F(u, A) is a curve 
at u E R n  satisfying the differential equations ci(X) = X (c,(A)) for all A E I. 

Because dynamical systems are such a central focus of the book, we shall 
include the proof. In fact, we shall prove it in Banach spaces with no added 
difficulty. The proof proceeds in several steps. We begin with the existence 
and uniqueness. 

Lemma 1. Let E be a Banach space, U c E an open set, and X :  U c E+E a 
Lipschitz map; that is IIX(x)-X(y)ll< KIIx-yll for all x ,  y E  U and a 
constant K. Let xo E U and suppose the ball of radius b, Bb(xo) = { x  E El Ilx - Y s xoll<b) lies in U, and IIX(x)II<Mfor a l l x ~ B ~ ( x ~ ) .  Let AoER and let q m a = b/  M. Then there is a unique C ' curve x(A), A E [&, - a,  &, + a ]  such that g 
(A) Bb ( ~ 0 )  and 3 

x'(A) = X(x(A)) Z 

x ( b )  = X o  
8 
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ProoJ: The conditions xf(A) = X(x(A)), x(A,) = x, are equivalent to the in- 
tegral equation 

Put x,(A) = x, and define inductively xn + ,(A) = x, + Ii0x (xn (s)) a3 . Clearly 
x, (A) E B, (x,) for all n and A E [A, - a,  A, + a] by definition of a.  We also find 
by induction that 

Thus xn(A) converges uniformly to a continuous c v e  x(A). Clearly x(A) 
satisfies the integral equation, and thus is the solution we sought. 

For uniqueness, let y(A) be another solution. By induction we find that 
Ilxn(A) - y(A)II < MK"IA-A,,I"+'/(~ + I)!; thus, letting n+m gives x ( t )  =y  (t). 

v 

Let us observe that exactly the same result holds if X depends explicitly 
on A, is jointly continuous in (A, x), and is Lipschitz in x uniformly in A. 

The next result is a basic estimate used to study the dependence on initial 
conditions. It is referred to as Gronwall's inequality. 

Lemma 2. Let f,g: [a, b)+R be continuous and nonnegative. Suppose 

Then 

f ( t ) < A e x p ( i t g ( s ) d s )  for t ~ [ a , b )  

Proof. First suppose A > 0. Let h(t) = A + Jb f ( s )  g(s) ds; thus h(t) > 0. Then 
h'(t) = f(t)g(t) < h(t)g(t). Thus h'(t)/h(t) < g(t). Integration gives h(t) < 
A exp( lr  g(s) dr). This gives the result for A > 0. If A = 0, then we have the 

result replacing A by E > 0 for every E > 0, thus h and hence f is zero. v 
Y 

Lemma 3. Let X be as in Lemma 1. Let FA(xo) denote the solution (= integral 
curve) of xf(A) = X (x(A)),x(O) = x,. Then there is a neighborhood V of x, and a 

8 z number E > O  such that for every y E V there is a unique integral curve 
x (A) = FA(y) satisfying x'(A) = X ( x  (A)) for A E [ - E ,  E ]  and x (0) = y . Moreover, 

m 



64 1 PRELIMINARIES 

ProoJ The first part is clear from Lemma 1. For the second, let f (t) = 1 1  Ft (x) 
- Ft ( y ) 1 1 .  Clearly 

so the result follows from Lemma 2. v 

This result shows that FA(x) depends in a continuous, indeed Lipschitz, 
manner on the initial condition x and is jointly continuous in (A,x). The next 
result shows that FA is ck if X is, and completes the proof of 2.1.2. 

Lemma 4. Let X in Lemma 1 be of class Ck, 1 < k < co, and let FA(x) be 
defined as above. Then locally in (A, x), FA (x) is of class ck in x and is ck+' in 
the A-variable. 

ProoJ We define +(A, x) E L(E, E), the continuous linear maps of E to E, to 
be the solution of the "linearized" equations: 

d 
+(A, X) = Dx(FA(x)). 

+(O, x) = identity 

where DX(y): E+E is the derivative of X taken at the point y. By 
Gronwall's inequality it follows that +(A,x) is continuous in (A,x) [using the 
norm topology on L(E, E); see Exercise 1.2AI. 

We claim that DFA (x) = $(A, x). To show this, set B (A, h) = FA (x + h) - 
FA(x) and write 

Since X is of Class C ', given E > 0, there is a S > 0 such that 11 h 1 1  < S implies 
the second term is dominated in norm by J> 1 1  F,(x + h) - F,(x)ll ds, which is, 
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in turn, smaller than A~l(hl1 for a positive constant A. By Gronwall's inequal- 
ity we obtain ((B(A, h) - $(A, x) .h(( < (constant)e(lh((. It follows that DFA(x). 
h = $(A, x) h. Thus both partial derivatives of FA(x) exist and are continu- 
ous; therefore, FA(x) is of class C1. 

We prove FA(x) is Ck by induction on k. Now 

and 

d -DFA (x) = DX (FA (x)).DF~ ( x )  dX 

Since the right-hand sides are ck- ' ,  SO are the solutions by induction. 
Thus F itself is Ck. . 

For another more "modern" proof of 2.1.2, see Robbin [I9681 (this is 
reproduced in Lang [1970]). (Actually this proof referred to has a technical 
advantage: it works easily for other types of differentiability on X and FA, 
such as Hijlder or Sobolev differentiability; see Ebin-Marsden [1970] for 
details.) 

The mapping F gives a locally unique integral curve c, for each u E Uo, 
and for each XE I, FA=FI(UoX {A)) maps Uo to some other set. It is 
convenient to think of each point u being allowed to "flow for time A" along 
the integral curve c, (see Fig. 2.1-1 and our opening motivation). This is a 
picture of a Uo "flowing," and the system (Uo,a,F) is a local flow of X, or 
flow box. The analogous situation on a manifold is given by the following. 
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2.1.3 Deflnltion. Let M be a manifold and X a vector field on M. A flow box 
of X at m E M is a triple (U,, a, F), where 

(i) U, c M is open, m E U,, and a E R, a > 0 or a = + oo; 
(ii) F: U, x I, -+ M is of class C ", where I, = (- a, a); 
(iii) for each u E U,, c,: I, -+ M defined by c,(A) = F(u, A) is an integral curve 

of X at u; 
(iv) if FA: U, -+ M is defined by FA(u) = F(u, A), then for A E I,, FA( U,) is 

open, and FA is a diffeomotphism onto its image. 

Before proving the existence of a flow box, it is convenient first to 
establish the following, which concerns uniqueness. 

2.1.4 Proposition. Suppose c, and c, are two integral curves of X at m € M. 
Then c, = c, on the intersection of their d m i n s .  

ProoJ This does not follow at once from 2.1.2 for c ,  and c, may lie in 
different charts. (Indeed, if the manifold is not Hausdorff, examples show 
that this proposition is false.) Suppose c,  : I,+M and c,: I,+M. Let 
I== I ,  n I,, and let K= {AIAE I and c,(A)= c,(A)). From 1.1 B ,  K is closed 
since M is Hausdorff. We will now show that K is open. From 2.1.2, K 
contains some neighborhood of 0. For A€ K consider ct and c,", where 
c" t )  = c(A + t). Then ct and c$ are integral curves at c,(A) = c,(A). Again by 
2.1.2 they agree on some neighborhood of 0. Thus some neighborhood of A 
lies in K, and so K is open. Since I is connected, K =  I. . 

The next two propositions give elementary properties of flow boxes. 

2.1.5 Propositlon. Suppose (U,, a, F )  is a triple satisfying ( i ) ,  (ii),  and (iii) 
of 2.1.3. Then for a and A + ~ E I ,  we have FA+,=FAoFP=FpoFA, and 
Fo is the identity map. Moreover, if U,= FA(Uo) and U A n  Uo#O, then 
FA I U-, n U, : U-,  n Uo-+ U, n U, is a diffeomorphism and its inverse is 
F-,I UOn UA. 

Proof: FA+,(u) = c,(A + p), where c, is the integral curve defined by F at u. 
But d (A) = FA(F, (u)) = FA(cU ( p)) is the integral curve through c, ( p), and 
f ( t )  = c,(t + p) is also an integral curve at c,(p). Hence, by 2.1.4 we have 
FA(F,(u))=c,(A+p)=FA (u). For FA+,=F,0FA merely note FA+p=F,+A 

+ P. 
= F, FA. By a similar umqueness argument, Fo is easily seen to be the 
identity. Finally, the last statement is an easy consequence of FA F-, = 
F- , o FA = identity. Note, however, that FA(Uo) n U, = (21 can occur. . 

The following will be left as an exercise for the reader. 
d 

2.1.6 Proposition. Zf (U,, a, F )  is aflow box for X, then (U,, a, F-)  is aflow z 
box for - X, where F- (u, A) = F (u, -A) and ( - X)(m) = - (X (m)). ?l 
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2.1.7 Theorem (Uniqueness of flow boxes). Suppose (Uo, a, F), (U;, a', F') 
are two flow boxes at m E M. Then F and F' are equal on ( Uo n Uh) X (I, n I,,). 

Proof: Again we emphasize that this does not follow at once from 2.1.2, for 
Uo, U; need not be chart domains. However, for each u E  Uon U; we have 
Fl {u) x I = F'l {u) x I, where I = I, n I,,. This follows from 2.1.4 and 2.1.3 
(iii). Hence F= F' on ( Uo n Ui) X I. . 

Clearly uniqueness depends only on (i) and (iii) of 2.1.3. 

2.1.8 Theorem (Existence of flow boxes). Let X be a C m  vector field on a 
manifold M. For each m E M there is a flow box of X at m. 

Proof: Let (U,rp) be a chart in M with m E  U. It is enough to establish the 
result in rp(U) by means of the local representation. That is, let (U;,a, F') be 
a flow box of X, at cp(m) as given by 2.1.2, with 

U i c U ' = q ( U )  and F'(U;XI,)CU', ~ , = r p - ' ( ~ ; )  

and let 

Since F is continuous there is a b E (0, a) c R and Vo c Uo open, m E Vo, such 
that F(Vo x I,) c U,. We contend that (V,, b, F )  is a flow box at m (where F is 
understood as the restriction of F to VoX I,). Only (iv) need be established, 
that is, FA is a diffeomorphism. For A E I,, FA has a C m  inverse, namely, FWh 
ES vAn no= vA. 

It follows that FA(VO) is open. And, since FA and are both of class 
Cm, FA is a diffeomorphism. . 

The following result, called the "straightening out theorem," shows that 
near a point m that is not a critical point, that is, X(m)#O, the flow can be 
modified by a change of variables so the integral curves become straight lines. 

Y 2.1.9 Theorem. Let X be a vector field on a manifold M and suppose, for 
m E M, X(m) Z 0. Then there is a local chart (U, rp) with m E U so that 

(i) C ~ ( U ) = V X Z C R " - ' X R ,  VCR"- '  open, a n d I = ( - a , a ) c R ,  a >  
3 
2 0; 

z (ii) cp - '1 {v) X I: I+ M is an integral curve of X at rp- '(0, O), for all u E V; 
(iii) the local representative X, has the form X,(y, A) = (y, A; 0, 1). 
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ProoJ: If X (m)#=O, there exists a local chart (Uo, w) of M at m such that 
X(mf)f 0 for all mfE Uo,w(Uo)= U ~ C  Rn, and w(m)=O. Let a be a linear 
isomorphism such that a (X, (m)) = (0, . . . , 0, l), where X, is the local repre- 
sentative of X relative to (w, Tw). Let + = a o w. Then (Uo,+) is a local chart at 
m E M and X+(O) = (0,. . . ,0,1). Now let (U;, b, F) be a flow box of X+ at 0, 
where U;= v , ,xI ,cR"-'xRwRn,I ,=(-c ,c) ,c>O,  and F(U;XI,)c Uh. If 
jo = F I( Vo x (0)) x I, : Vo x I,+ U;, we see that Djo(O, 0) is a linear isomor- 
phism because X+(O) = (0,. . . ,0, I). (The map jo substitutes the "time coordi- 
nate" X for the last coordinate in Rn.) By the inverse mapping theorem there 
is an open neighborhood V X I, of (0,O) E Vo X I, such that j = jol V X I, is a 
diffeomorphism onto an open set U'C Uh. Let U=+-'(Uf) and cp= f -'"I). 
Then (U,cp) is a chart at m E M  with cp(U)= VXI ,CR"- 'XR~R".  By 
construction, cp - ' = + - ' 0 j, so g,- '1 {v} X I, is an integral curve. 

To prove (iii) from (ii), let c = cp-'l{y) x I, be the integral curve of X at 
cp-'(y, 0) = m' E U. Then X,(y, A) = (Tcpo~ocp-')(y, A) = Tcp(~(cp-'(y, A))) 
= Tcp(cf(A)) = (cpoc)'(A) = (y, A; 0, 1) since (cpoc)(t) = (cp~cp-')(~, t) = (y, t). 

At this point we may relate the flowbox idea to the classical notion of the 
complete solution of a dynamical system by means of a "complete set of 
integrals." 

2.1.10 Definition. Let X be a vector field on a manifold M. A complete 
solution of X is a triple (V, b, q),  where V c M is an open set, b E R, b > 0 or 
b = + oo, I, = (- b, b), n = dim(M), and 

q: V x Ib+Rn 

such that if q(uo, 0) = c E Rn, then 

( u  € Vl*(u, t) =c) 

is an integral curve o j  X at u,. The component junctions of a complete solution 

*(u, t) = (+,(u, t), . -. ,rCn(~> 9) 

are known as a complete system of integrals o j  X in the domain V. 

Note that the integral curves of X are defined by the n equations 

Gi(u,t)=ci, i=1,  ..., n 

and if M is a local manifold, M c R ", we may write 

\C;.(uI ,..., un,t)=ci, i = l ,  ..., n 

which is the classical form. 
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The existence of complete solutions is provided by the Flowbox Theorem 
2.1.8. 

2.1.11 Theorem. Let X be a vector field on a manifod M, and m E M. Then 
there is a complete solution of X ,  ( V ,  b, P), with m E V .  

h o $  Let (U,  p) be a chart in M with m E U, and let (U,, a, F )  be a flow 
box at m, F, = FI Uo x { t ) ,  and U, = F,(UO), chosen such that U, c U. As in 
the proof of 2.1.8, there is a b E R, b > 0, and an open neighborhood V of 
m E M, such that 

V c U, c U for all t E I, 

Now for each t E I,, we may define a modified coordinate chart on the 
common domain V by 

P,: V + V ; ' c U ' = q ( U ) c R n  

where 
Pt=q3o~-'=cp0F-,  

Looking backwards from a point c = P,(v) in Rn,  t H 9; ' (c )  is an integral 
curve at v ,  so (V,b ,P)  is a complete solution of X, with m E X, if we define 

Note that P,  is a diffeomorphism. . 
2.1.12 Corollary. If (I/, b, P )  is a complete solution for a vector field X on M, 
then 

P,: V+V;'cRn; v ~ P ( v , t )  

is a diffeomophism for each t E I,. 

Now we shall turn our attention from local flows to global considerations. 
These ideas center on considering the flow of a vector field as a whole, 
extended as far as possible in the A-variable. 

2.1.13 Definition Given a manifold M and a vector jkld X on M, let 
0, c M X R be the set of (m, A) E M x R such that there is an integral curve 
c: I+M of X at m with A E I. The vector field X is complete if qx = 
M X R. Also, a point m E M is called o complete, where a = + , - , or 2, 

* if qx n ( { m )  X R )  contains all (m, t )  for t > 0, t < 0, or t E R, respectively. 3 
d 
Z Thus, X is complete iff each integral curve can be extended so that its 

domain becomes (- oo, ao). 
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2.1.14 Examples. For M = R ', let X be the constant vector field, (0, 1). 
Then X is complete. On R*\ (01, the same vector field X is not complete. For 
M = R, let X be the vector field for which 

c: ( - a/2, a/2) + R: 8 H c(9) = tan 8 
is the integral curve. Then X is not complete. [Here X(x) = (1 + xZ).] 

2.1.1 5 Proposition. Let M be a manifold and X E X(M). Then 

(i) qX> M x{O); 
(ii) 9, is open in M X R; 
(iii) there is a unique mapping Fx: q X + M  such that the mapping t H F X ( ~  t) 

is an integral curve at m, for all m EM. 

Pro05 Parts (i) and (ii) follow at once from the flow box existence theorem, 
and (iii) by the uniqueness of integral curves. . 

Thus, Fx is smooth, and for X complete, (M, co, Fx) is a flow box. 

2.1.1 6 Definition. Let M be a manifold and X E X(M). Then the mapping 
Fx is called the integral of X, and the curve t H Fx(m, t) is called the maximal 
integral c u m  of X at m. In case X is complete, Fx is called the flow of X. 

Thus, if X is complete with flow F, then the set {&It E R )  is a group of 
diffeomorphisms on M, sometimes called a one-parameter group of diifeomor- 
phisms. The following is a useful criterion for completeness. 

2.1.1 7 Proposition. Suppose M is a compact manifold and X is a vector field 
on M. Then X is complete. 

In fact, we shall prove the following more general result. 

2.1.18 Theorem. Let X be ck, 1 < k < co. Let c(X) be a maximal integral 
curve of X such that for evey open finite interval (a, b) in the domain of c, 
c[(a, b)] lies in a compact subset of M. Then c is defined for all t E R. 

Pro05 It suffices to show that a €1, b E I,  where I is the interval of 
definition of c. Let & E(a,b), &+b. By compactness we can assume some 
subsequence c(Lk) converges, say, to a point x in M. Since the domain of the 
flow is open, it contains a neighborhood of ( x ,  0). So there are E > 0 and r > 0 
such that integral curves starting at points [such as c(hk) for large k] closer . 
than e to x persist f o ~  a time longer than r. This serves to extend c to a time $ 
greater than b, so b E I since c is maximal. Similarly, a E I. m 

3 
0 

2.1.19 Corollary. A vector field with compact support on a manifold M is z 
complete. f4 
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Completeness is often stressed in the literature since it corresponds to 
well-defined dynamics persisting eternally. In many circumstances (shock 
waves, singularities in elasticity, general relativity, etc.) one has to live with 
incompleteness. However, because of its importance we give two additional 
criteria for it. These results look ahead slightly in notation and can be 
returned to later. In the first we use the notation X(f)=df.X for the 
derivative off in the direction X. The second uses ideas from Riemannian 
geometry, and may be deferred until Sect. 2.7 is read. 

2.1.20 Proposition. Suppose X is a Ck vector field on M, k > 1, and 
f: M-tR is a C' proper map (that is, the inverse images of compact sets are 
compact). Suppose X admits the estimate 

IX(f)(m)l<Alf(m)l+B for A,B>O,mEM 

Then the flow of X is complete. 

Proof: From the chain rule we have (d/dA) f(F,(m))= x0(FA(m))  so that 

Applying the hypothesis and Gronwall's inequality we see that I f(F,(m))l is 
bounded on any finite A-interval, so as f is proper, FA(m) lies in a compact 
set. Hence 2.1.18 applies. 1 

The next theorem gives a criterion in terms of a metric on M. 

2.1.21 Proposition. Let M be a complete Riemannian manifold and X a ck 
vector field, k > 1. Let a be any integral curve of X. Assume 11 X (~(A))l l~(~,  [the 
norm at the point a@)] is bounded on finite A-interuals. Then the flow of X is 
complete. 

Proof: Suppose 11 X (U(X>)I~,,(~, 9 A for A €(a, b). Let An+b and let d be the 
metric induced on M from the Riemannian structure. For A,, <h, we have 

Hence o(A,,) is a Cauchy sequence and therefore, converges. Now argue as in $ 2.1.18. 1 .-.. 
;I; 
0 

2 Later on in Chapter 7 we discuss stability questions rather extensively. 

z However, it is convenient to include some of the more basic ideas and the 
g useful spectral criterion of Liapunov here. 
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2.1.22 Definition. Let X be a C vector field on a manifold M. A point m, is 
called a critical point (also called a singular point or an equilibrium point) of X 
if X (m,) = 0. The linearization of X at a critical point m, is the linear map 

defined by 

where F is the flow of X. The eigenvalues of Xf(m0) are called the characteristic 
exponents of X at m,. 

Some remarks will clarify this definition. First of all, FA leaves m, fixed: 
F,(m,)= m, since c(X)= m, is the unique integral curve through m,. Con- 
versely, it is obvious that if FA(mo)= m, for all A, then m, is a critical point. 
Thus TFA(mo) is a linear map of TmoM to itself and so its X derivative at 0, 
producing another linear map of TmoM to itself, makes sense. 

Computationally, the definition above is not so convenient. The following 
is useful. 

2.1.23 Proposition. Let m, be a critical point of X and let (U, cp )  be a chart 
on M with cp (m,) = x, E R ". Let x = ( x ' ,  . . . , x " )  denote coordinates in R " and 
X ' ( x l ,  . . . , x "), . . . , X n  ( x l , .  . . , x ") the components of the local representative of 
X. Then the matrix of X'(m,) in these coordinates is 

ProoJ This follows at once from the equations 

d .  xi (F{ ( x ) )  = - d h  Fi ( x )  

after differentiating in x and setting x = x,, X=O. (See also the linearized 
equations in Lemma 4 of 2.1.2.) 5 

8 
One can also define Xf(mo) directly without reference to the flow by 

rn 
noting that if OE T m M  represents the zero vector, then T,(TM) splits into g 
TmoMCO TmoM, a horizontal and vertical space. Then Xf(mo) is the vertical 2 
projection of TX(m,). The reader can work out the details of this case 
himself. 4 



The name characteristic exponent arises as follows. We have the linear 
differential equation 

and so 

Here the exponential is defined, for example, by a power series. The actual 
computation of these exponentials is learned in differential equations courses, 
using the Jordan canonical form. (See Hirsch-Smale [1974], for instance.) In 
particular, if y,, . . .,p,, are the characteristic exponents of X at m, the 
eigenvalues of TmoF, are eApl,. . . ,eAh. 

2.1.24 Definition. Let m, be a critical point of X. Then; 

( i )  m, is stable (or Liapunoo stable) if for any neighborhood U of mo, there is 
a neighborhood V of mo such that i f  m E V,  then m is + complete and 
FA(m) E U for all h > 0. [See Fig. 2. I -2(a).] 

(ii) mo is asymptoticallly stable i f  there is a neighborhood V of mo such that i f  
m E V,  then m is + complete, F t ( V ) c  F,(V) if t > s  and 

lim F~ ( V )  = {m,) 
t-++ 00 

[i.e., for any neighborhood U of m,, there is a T such that e ( V )  c U if 
t >, TI. [See Fig. 2.1 -2(b).] 

It is obvious that asymptotic stability implies stability. The harmonic 
oscillator 

i= - x  

0 

2 (a) Stable (b) Asymptotically Stable 

Figure 2.1-2 (a) Stable. (b) Asymptotically stable. 



74 1 PRELIMINARIES 

giving a flow in the plane shows that stability need not imply asymptotic 
stability. 

The following result of Liapunov is basic. 

2.1.25 Theorem. Suppose X is C' and mo is a criticalpoint of X. Assume the 
characteristic exponents of mo have strictly negative real parts. Then mo is 
asymptotically stable. [In  a similar way, if Re(pi)>O, mo is asymptotically 
unstable; i.e., asymptotically stable as t+ - 00.1 

ProoJ: We can assume M = E is a linear space and that mo = 0. Let - .E > r = 
max(Re A,, . . . ,Re&). Then we claim there is a norm 1 )  - 11 on E in which 

If X'(0) is diagonalizable (e.g., has distinct eigenvalues) as a complex matrix, 
this is easy, for we can let 1 1  11 be the sup norm associated with a basis of 
eigenvectors. If X'(0) is not diagonalizable, we can approximate it by one and 
get the same conclusion. (If the reader is familiar with the spectral radius 
formula, choose 

llxll = SUP 
Ill e n'X'(0)(~) I I I 

n > o e rnt 

where 111 111 is any norm.) Write A = X'(0) = DX(0). 
From the local existence theory given in Theorem 2.1.2, there is a r-ball 

about 0 for which the time of existence is uniform if the initial condition x, 
lies in this ball. Let 

Find r2 < r such that JJxJJ  < r2 implies 11 R(x)ll < allxll, where a = ~ / 2 .  
Let B be the open r2/2 ball about 0. We shall show that if x, E B, then 

the integral curve starting at xo remains in B and -0 exponentially as 
t + + oo. This will prove the result. 

Let x(t) be the integral curve of X starting at x,. Suppose x(t) remains in 
B for 0 < t < T. The equation 

gives, by the variation of constants formula (Exercise 2.1G), 
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and so 

Letting f ( t )= et'IIx(t)ll, 

and so, by Gronwall's inequality, 

Thus 

Hence x(t) E B, 0 < t < T, so x(t) may be indefinitely extended in r and the 
above estimate holds. 

A critical point mo is called hyperbolic or elementary if none of its 
characteristic exponents has zero real part. Generalizations of Liapunov's 
theorem show that near a hyperbolic critical point the flow looks like that of 
its linearization. (See Sect. 7.2, Hartman [1973] and Nelson [1969], for proofs 
and for discussions.) In the plane, the possible hyperbolic flows near a critical 
point are shown in Fig. 2.1-3. (Remember that for real systems, the character- 
istic exponents occur in complex conjugate pairs.) For Hamiltonian systems, 
the nonhyperbolic case is common, so we shall have to eventually refine these 
ideas. 

If m is a hyperbolic critical point of a vector field X, the number of 
eigenvalues (counting multiplicities) with negative real part is called the index 
of m. It is denoted I(X,m). The Poincarb-Hopf index theorem states that if 
M is compact and X only has (isolated) hyperbolic critical points, then 

-x(M) x (-l)l(xm)- 
m is a 

critical point of X 

where x(M) is the Euler characteristic of M. For a proof and discussion, see 
Guillemin and Pollack (19741. We do not really use this result, but it is one 

4 - the reader should be aware of. s 
2 Another result of some importance in both theoretical and numerical 

work concerns writing a flow in terms of iterates of a known mapping. Let 
X E %(M) with flow IT;; (maximally extended). 
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( a )Rep ,  = R e p 2  < O  (b) p,  < 0, p2 < 0 (stable node) 
plp2 not real. (stable focus) 

If- 
(c) pl < 0, p2 > 0 (saddle) 

(d) Rep,  = Rep2 > 0 (ej PI > 0 , p 2  > O  
PI,  p2 not rea! (unstable node), 
(unstable focus) 

Figure 2.1-3. Hyperbolic equilibria with characteristic exponents. (a) R e p ,  = R e b  < 0, with 
p I , p 2  not real (stable focus). @) p,  < 0, ~ 4 ?  < 0 (stable node). (c) p ,  < 0, p2 > 0 (saddle). (d) 
R e  p, = R e b  > 0, with p, ,  not real (unstable focus). (e) p ,  > 0, p2 > 0 (unstable node). 

Let K,(x) be a given map defined in some open set of R x M containing 
(0) x M and taking values in M, and assume 

(i) Ko(x) = x 
(ii) K,(x) is C ' in E with derivative continuous in (E,x). 

We call K the "algorithm." 

2.1.26 Theorem. Assume that the algorithm K,(x) is consistent with X in the 
sense that 

d 
X(x)= zK(x)l,=o 

Then, i f  (t, x) is in the domain of F,(x), K;"/,(x) is defined for n sufficient& 
large and converges to E;, (x) as n+m. Conversely, if K:/,(x) is defined and 
converges for 0 < t < T, then (T, x) is in the domain of F and the limit is F,(x). 
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ProoJ First, we prove that convergence holds locally. We begin by showing 
that for any x,, the iterates K:/,(x,) are defined if t is sufficiently small. 
Indeed, on a neighborhood of x,, K,(x) = x + 0 (E),  so if KiIj(x) is defined for 
x in a neighborhood of x,, j= 1,. . . ,n - 1, 

= 0 ( t )  

This is small, independent of n for t sufficiently small; so, inductively, K:/,(x) 
is defined and remains in a neighborhood of x, for x near x,. 

Let p be a local Lipschitz constant for X so that 1 1  F,(x)- E;;(y)ll <eBltlX 
llx-yII. Now write 

where y, = K$,(x). Thus 

< neflltlo(t/n)+O as n+oo 

since & ( y )  - K,(y)= O ( E )  by the consistency hypothesis. 
Now suppose & ( x )  is defined for 0 9  t < T. We shall show K:/,(x) 

converges to F,(x). By the above proof and compactness, if N is large enough, 
&/, = lim,,,K:/,, uniformly on a neighborhood of the curve t I+ F,(x). 
Thus, for 0 < t < T, 

F I ( x ) = q N ( x ) =  Iim ( q n d N ( x )  
Y ,-+a, 

By uniformity in t ,  

FT(x)  = lim K{/j ( x )  
J-'W 

d 
Z Conversely, let K:/,(x) converge to a curve c(t), 0 < t < T. Let S =  {tlF,(x) 

is defined and c(t)= &(x)) .  From the local result, S is a nonempty open set. 
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Let t, E S, t, + t. Thus ek (x )  converges to c(t), so by local existence theory, 
F,(x) is defined, and by continuity, F,(x) = c(t). Hence S = [0, TI and the 
proof is complete. II 

2.1.27 Corollary. Let X, Y E %(M) with flows F, and G,. Let H, be the flow 
of X + Y. Then 

Ht (x) = ;y& @t/. O Gt/,)"(x) 

(Each side is defined if and only if the other is.) 

Proof: Let 4 (x) = F, G, (x) and use 2.1.26. . 
These results had their historical origins in Lie Group theory (see Exercise 

4.15). The above proofs were inspired by Nelson [I9691 and Chorin et al. 
[1978]. 

EXERCISES 

2.1A. Use the example of Exercise 1.1D to show that the Hausdorff assumption in 
2.1.4 cannot be dropped. 

2.IB Let M and N be manifolds and cp: M+N a diffeomorphism; suppose 
X E %(M) and c: Z+M is an integral curve of X at m E M. Then show cp 0 c is 
an integral curve of cp,X at cp(m). Show that the flow of cp,X is cp 0 FA 0 cp-'. 

2.1C Let F(m,A) be a C w  mapping of R x M  to M such that F,+,=F,o& and 
Fo =identity [where F,(m) = F(m, t)]. Show that there is a unique C vector 
field X whose flow is F. 

2.1D Let a(A) be an integral curve of a vector field X and let g: M+R. Let r&) 
satisfy 7'(A)=g(a(~(A))). Then show Aba(7(A)) is an integral curve of gX. 
Show by example that even if X is complete, gX need not be. 

2.1E (i) (Gradient Flows) Let f: Rn+R be C1 and let x=(af/axl,. . . , af/axn) be 
the gradient off. Let F be the flow of X. Show that f(&(x)) > f(Fs(x)) if 
t > s. 

(ii) Use (i) to find a vector field X on R " such that X (0) = 0, X'(8) = 8, yet 0 is 
globally attracting. 

2.1F If M is a manifold and V is any connection on M, show that at a critical point 
of X, X'(m,)= VX(m,,). (For the definition of a connection see Sect. 2.7.) 

2.1G. (Variation of Constants Formula) Let F, = elX be the flow of a linear vector 
field X on E. Show that the solution of the equation 

with initial condition xo satisfies the integral equation 

x(t) = e'xx0+ ~ b ( t - * ) ~ f ( x ( s ) ) ~  

2.2 VECTOR FIELDS AS DIFFERENTIAL OPERATORS 
..a 

0" 
In this section we shall show how a vector field X on a manifold induces a 2 

differential operator L, on the full tensor algebra S(M), called the Lie z 
deriuatiue. Our development of this aspect of vector fields departs from the a 
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spirit of the previous sections in that it is special to the finite-dimensional 
case. Our definition, inspired by a theorem of Willmore, is adopted for 
reasons of efficiency. For the definition and the treatment of the infinite-di- 
mensional case we refer the interested reader to Lang [1972]. At the end of 
this section, however, we show that the two definitions coincide. The Lie 
derivative seems to have first been introduced in connection with mechanics 
by Slebodzinski [1931]. 

We shall begin by defining Lx on 9(M) and %(M), and then use a 
unique extension theorem to define Lx on S(M). 

2.2.1 Definition. Let f E 9(M) so that 

Tf: TM+TR= R X R 

and 

We then define df: M+ T*(M) by df (m) = P2 o T, f, where P2 denotes the 
projection onto the second factor. We call df the differential off. 

For X E %(M), define Lxf: M+R by Lxf (m) = df (m)[X (m)]. We call L,f 
the Lie derivative off with respect to X. 

2.2.2 Proposltlon. (i) For f f E(M), df f %*(M), and for X E %(M), 
df(X) = P,o TPX; that is, df(X)(m) = P2 0 T, f(X(m)). 

(ii) For f E E(M) and X E %(M) we have L,f f E(M). 

ProoJ For (i), we need only to show df is smooth. Let (U,QI) be an 
(admissible) chart on M so that the local representative of df in the natural 
charts is ( ~ ~ ) , = ( T Q I ) ~ o ~ ~ o Q I - ' :  U'+UfXE*, where QI: UcM-+UfcE .  
Then 

Y 
by the composite mapping theorem. Hence (df), is of class C" and (i) is 

4 established. Then (ii) follows at once for Lxf = df(X). m 
8 
2 2.2.3 Proposition. (i) Suppose QI: M-+N is a diffeomophism. Then Lx is 

natural with respect to push-forward by QI. That is, for each f E E(M), 



80 1 PRELIMINARIES 

LV*,(cp* j )  = cp* L x j  or the following diagram commutes: 

(ii) Lx is natural with respect to restrictions. That is, for U open in M and 
f E S ( M ) ,  LxIuCfl U )  = (Lxf)I U; or, if I U :  T (M)+F(U)  denotes restriction 
to U, the following diagram commutes: 

ProoJ For (i), let n = f (m). Then 

Then (ii) follows from the fact that d ( f  1 U)=(df)l U, which is clear from 
the definition of d. . 

Next we show that Lx has the "Leibniz rule" of derivatives. 

2.2.4 Proposition. ( i )  Lx: T (M)+F(M)  is a derivation on the algebra 
T ( M ) .  That is, Ex is R linear and for f, g E F ( M )  , Ex( jg) = (Ex j )  g + j(L,g). 

(ii) I f  c is a constant function, Lxc = 0. 

Proof: By 2.2.3 (ii) it is enough to verify (i) in a chart (U, 9). Then the local 
representative of Lx( fg) is 

z 
by the proof of 2.2.2(i). But (fg)ocpw' = ( focp- ' )(gocp- ' )  and the result f 
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follows at once from 1.3.9. The result (ii) is a general property o f  derivations. 
Let 1 be the constant function witk value 1. Then Lx(l)  = ~ ~ ( 1 ~ )  = 1 - Lxl + 
1 Lxl .  Hence Lx(l)  = 0. Then Lx(c) = Lx(c- 1) = cLx(l) = 0 by R linearity 
o f  Lx. . 
2.2.5 Corollary. For f,g E 9 ( M )  we have d(fg)= (df )  g + f (dg), and if c is 
constant, dc = 0. 

W e  saw in Sect. 1.7 that the tensor product has a natural extension to 
S(M).  Then 2.2.4 and 2.2.5 become 

2.2.6 Proposition. If am E M, there is an f E 9 ( M )  such that df ( m )  = a,,,. 

Proof; I f  M = R n ,  so T,Rn=Rn, let f(x)=cw,(x), alinear functionon Rn.  
Then df is constant and equals am. 

The general case can be reduced to R" using a local chart and a bump 
function; the latter is described as follows: 

2.2.7 Lemma. In Rn ,  let U, be an open ball of radius r ,  about x, and U2 an 
open ball of radius r2, r, < r2. Then there is a C * function h: Rn -+ R such that 
h is one on U, and zero outside U2. We call h a bump function. [In 2.5.3 we will 
prove more generally that on a manifold M,  if U, and U, are two open sets with 
cl(U,) c U,, there is an h E % ( M )  such that h is one on U, and is zero outside 
4 - 1  

Proof: By a scaling and translation, we can assume U, and U2 are of radii 1 
and 3 and centered at the origin. Let 9: R -+ R be given by 

(See the remarks following 1.3.8.) Now set 

(;_9(t) dt 
Y 9,(s)= w 

2 
4 

1- * ~ ( t )  dt 
m 
13 

so 9,(s) is a C" function, 0 i f  s < - 1, and 1 i f  s > 1. Let 
z 
3 g2(s) = e,(s - 2) 
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so 8, is a Cw function that is 1 if s < 1 and 0 if s > 3. Finally, let 

To complete 2.2.6, let cp: U+ U' c Rn be a local chart at m with cp(m) = 0 
and such that U' contains the ball of radius 3. Let &,,, be the local representa- 
tive of a;, and let h be a bump function 1 on the ball of radius 1 and zero 
outside the ball of radius 2. Let A x )  = G,,,(x) and let 

It is easily verified that f is Cw and df(m)= am. W 

We saw in Sect. 1.7 that tensor fields can be regarded as 9(M) multilinear 
maps of %*(M), %(M) into S(M). Actually, this association is an isomor- 
phism, according to the following. 

2.2.8 Theorem. q ( M )  is isomorphic to the 9(M) multilinear maps from 
% *(M) x . . x %(M) into 9(M), regarded as S(M) modules or as real 
vector spaces. 

Pmo$ We consider then the map (M)+ L ~T&,(%*(M), . . . , %(M); 
S(M)) given by I (a ', . . . , a ', XI, . . . , Xs)(m) = I (m)(a '(m), . . . , X, (m)). This map 
is clearly S(M) linear. To show it is an isomorphism, given such a multilinear 
map I, define t by t (m)(a '(m), . . . , Xs (m)) = l (a I, . . . , Xs)(m). To show this is 
well defined we must show that, for each v, E Tm(M), there is an X E %(M) 
such that X(m)= v,, and similarly for dual vectors. Let (U,cp) be a chart at m 
and let T,cp(v,) = (cp(m),vb). Define Y E %(Uf) by Y(uf)= (u', vb) on a 
neighborhood V, of cp(m). Extend Y to U' so Y is zero outside V2, where 
cl( V,) c V2, cl( V2) c U', by means of a bump function. Then X is defined by 
X, = Y on U, ,and X = 0 outside U. Then X (m) = 0,. The construction is 
similar for dual vectors. Also, t(m) so defined is Cw; indeed, using the chart 
cp we have 

t(m) = t(m)(gil(m), . . . , % (m))4,, (m) €3 . . - €3 &(m) 

, where{e,, . . . , en) is a basis of R n  2 cp(U), g,(m) = (T,cp)-'(dm), e,) and cu_' 
is dual to g,. Since t(m)(gil(m), . . . , ~ ( m ) ) ,  gi(m), and &(m) are smooth in m, 8 
so is t itself. . g 

C A  
V) 0 

Returning to the Lie derivative, we have the following property, which is 2 
often taken as an alternative definition for %(M); see our remarks at the 2 
beginning of Sect. 1.6. $ 
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2.2.9 Proposition. The collection of operators Lx on %(M) forms a real 
vector space and S(M) module, with ( fLx)(g) = f (Lxg), and is isomorphic to 
% ( M )  as a real vector space and as an S(M) module. In particular, L,= 
O$fX=O; and Lfl= fLx. 

ProoJ: Consider the map a: XHL,. It is obviously R and S(M) linear, as 

To show that it is one-to-one, we must show Lx=O implies X=O. But if 
Lxf(m)=O, then df(m)X(m)=O for all f. Hence, cu,X(m)=O for all a m €  
T:(M). Thus X (m) = 0 . 
2.2.10 Theorem. The collection of all (R linear) derivations on F(M) form a 
real vector space isomorphic to X(M) as a real vector space. In particular, for 
each derivation 8 there is a unique X E %(M) such that 8 = Lx. 

ProoJ: It suffices to prove the last assertion. First of all, we note that 8 is a 
local operator; that is, if h E S(M) vanishes on a neighborhood V of m, then 
8 (h)(m) = 0. Indeed, let g be a bump function equal to one on a neighbor- 
hood of m and zero outside V. Thus h =(I- g)h and so 

If U is an open set in M, and f E S (  U), define (81 U)Cf)(m) = O(gf)(m), 
where g is a bump function equal to one on a neighborhood of m and zero 
outside U. By the previous remark, (81 U)Cf)(m) is independent of g, so 81 U is 
well defined. For convenience we write 8 = 81 U. 

Let (U,q) be a chart on My mE U, and f €%(M), where q: U+U'cRn; 
we can write, for x E U' and a = cp(m), 

where 
a(cp*f) 

x=(x l  ,..., xn) ,  a= (a l  ,..., an) ,  and (cp,f)j= - 
axj 

8 
5 This formula holds in some neighborhood q(V) of a. Hence, for u E V we 
Cr) 13 have 
2 n 
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where gi E 5( V) and 

Hence 

and this is independent of the chart. Now define X on U by its local 
representative 

x, ( x )  = (x,  6(cp1)(u), . . . , q c p n  )(u)) 

where x = cp(u) E U'. We leave, as an exercise, that XI U is independent of the 
chart cp and hence X E %(M).  Then, for f E 5 ( M ) ,  the local representative of 
Lxf is 

Hence Lx = 8. Finally, uniqueness follows from 2.2.6. . 
We may say that the differential operators a/axi in any chart (U,cp) form 

a basis of the space of derivations at a point m. Hence any vector field can be 
uniquely represented by 

2.2.11 Proposition. If X and Y are vector fieldr on M, then [Lx, L,]= 
Lx L, - L, Lx is an (R  linear) derivation on 5 ( M ) .  

Proof: More generally, let 8,  and O2 be two derivations on an algebra 5. 
Clearly [el, 8,] = 8,  8, - 8, 8 ,  is linear. Also 

Because of 2.2.10, we can state the following. 
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2.2.1 2 Definition. [X, Y] = Lx Y is the unique vector field such that LIx, = 
[L,, L,]. We call Lx Y the Lie derivative of Y with respect to X, or the Lie 
bracket of X and Y.  

2.2.13 Proposition. The composition [X, Y] on %(M), together with the real 
vector space structure of %(M), form a Lie algebra. That is, 

(i) [ , ] is R bilinear; 
(ii) [X, XI = O  for all X E %(M); 
(iii) [X, [ Y, Z]] + [ Y, [Z, XI] + [Z, [X, Y]] = 0 for all X, Y,  Z E %(M). 

ProoJ: More generally, the derivations on an algebra 9 form a Lie algebra. 
For them (i), (ii), and (iii) are easily verified by direct computation. The 
special case 2.2.13 results from 2.2.10 and the definition 2.2.12. . 

Note that (i) and (ii) of 2.2.13 imply that [X, Y] = - [Y,X], for 

Also, (iii) may be written in the following suggestive way: 

or, Lx is a Lie bracket derivation. 
From 2.2.10 it is easy to see in local representation, 

[ X, Y] I = D YI.XI - DXI- YI 

In components, 

a yj . axj [X, Y]j = xi---- - 
I Y' ; ax ax 

Strictly speaking we should not use the same symbol Lx for both defini- 
tions 2.2.1 and 2.2.12. However, the meaning is generally clear from the 
context. The analog of 2.2.3 on the vector field level is the following. 

2.2.14 Proposition. (i) Let 9: M+N be a diffeomophism and X E %(M). 
Then Lx : %(M)+%(M) is natural with respect to push-forward by cp. That is, 
LI,xcp* Y= cp,LxY, or [cp,X, cp, Y] = cp,[X, Y], or the following diagram com- 

y mutes: 
E 
9 X(M) A % ( N )  
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(ii) Lx is natural with respect to restrictions. That is, for U c M open, we 
have [XI U, Y I U ]  = [X, Y] I U; or the following diagram commutes: 

ProoJ: For (i), let f E 9 ( N )  and q(m)  = n E N. Then 

(ii) follows from the fact that d ( f  1 U )  = df 1 U. IO 

2.2.1 5 Proposition. For X E %(M), Lx is a derivation on (%(M),  %(M)). 
That is, L, is R linear on each, and L x ( f @ Y ) = L x f @ Y + f @ L x Y .  

ProoJ: For g E 9 ( M ) ,  we have 

[ x fr] g = Lx (LyYg) - LyYLxg 

= Lx( fLyg)  -fLyLxg 

by 2.2.4 and 2.2.9, so [X,fY] =(Lxf)Ly + f [X, Y] by 2.2.10. m 

8 
d 

Next, we shall develop machinery for extending Lx to the full tensor 
algebra. !I 



2 CALCULUS ON MANIFOLDS 87 

2.2.16 Definition. A d@krentiaI operator on the full tensor algebra S ( M )  of 
a manifold M is a collection D,'(U) of maps of T:(U) into itself for each r, 
s > 0 (T(U) = F(U))  and each open set U c M,  which we denote merely D (the 
r, s and U to be inferred from the context), such that 

(DO 1 )  D is a tensor derivation; that is, D is R linear and for t ,  E 5:; ( M ) ,  
t2E5:; ( M ) :  D(tl@t2)=Dtl@t2+tl@Dt2. 

(DO 2) D is local, or is natural with respect to restrictions. That is, for 
U c V c M open sets, and t E 5; ( V )  

or the following diagram commutes: 

(DO 3) D6 = 0, where 6 E 5; ( U )  is Kronecker's delta. 

Note that we do not demand that D be natural with respect to push-for- 
ward by diffeomorphisms. The reason is that it is not needed for the following 
unique extension theorem, and indeed, the latter can be used to extend the 
covariant derivative, which is not natural with respect to diffeomorphisms; 
see Sect. 2.6 for details. 

2.2.17 Theorem (Willmore). Suppose for each U c M, open, we have maps 
Eu: $(U)+F(U) and Fu: X ( U ) + X ( U ) ,  which are ( R  linear) tensor 
derivations and natural with respect to restrictions. That is 

(i) Eudf@g)=~Euf)@g+f@Eug f , g e F ( U ) ;  
(ii) F o r f E F ( M ) ,  Eu(flU)=(EMf )IU; 

(iii) Fu( f@X)=(Euf)@X+f@FuX; 
(iv) For X E X ( M ) ,  Fu(X I U )  = (FMX)I U. 

Then there is a unique differential operator D on 5 ( M )  that coincides with Eu 
on $( U )  and with Fu on X (  U).  

Y 
ProoJ Suppose that such a D exists. Let cp: U+ U' c Rn be a coordinate 
chart. By (DO 2) and (ii), (iv) above we may restrict attention to the chart 

8 
2 (U,cp). Let ei denote the standard basis of Rn  and let 

Z? %(u)  = ~ , c p  - '(u', ei) 
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for ail u E U, with u'= cp(u). These are a basis of T,(M). Let aij(u) denote the 
dual basis. Note that the local representatives of gi(u) and aij(u) appear as 
constant sections. We may write 

t(u)= t l l . . . . ' r (~)~~@. Jl"11. . @$r@gJ'@. . . @&(u)  

where 
t'l"'." E F(u)  
JI"% 

Then using R linearity and the derivation property of D we obtain a sum of 
terms all of which can be immediately expressed in terms of Eu, Fu except for 
DaiJ(u). However, by (DO 3), 

Applying this to (g '(u), gj(u)) gives 0 = gj(u)(FU(gi(u))) + Dgj(u)(gi(u)). 
Hence Dd(u)  is determined. Hence, such a D, if it exists, is unique. For 
existence, we define D as obtained in the foregoing uniqueness argument. We 
leave it to the reader to check that the resulting D is well defined and satisfies 
(DO l), (DO 2), and (DO 3). 

There is an invariant way to write the computation just done: 

(DO 4) Let t E (M), a,, . . . , ar EQ1(M) and XI,. . . , Xs E %(M). Then 

We sometimes refer to this by saying that D commutes with contractions. 
Given D on functions, one forms, and vector fields, this formula determines 
D. 

The equivalence of (DO 3) and (DO 4) [under the assumption of (DO 1) 
and (DO 2)] may be proved as follows. Assuming (DO I), (DO 2), and (DO 
3), we prove (DO 4) by writing t(al, . . . , ar, XI,. . . ,X,) in local coordinates as 
in the proof just given. Conversely, if (DO 4) holds, then (DO 3) follows by 
applying (DO 4) to the identity 

S ( s X > = f f ( X >  
r: 

Taking Eu and Fu to be LXIu we see that the hypotheses of Willmore's 
theorem are satisfied. Hence we can define a differential operator as follows. 

In 

2.2.18 Definition. If X E %(M), we let Lx be the unique d#erential operator $ 
on T(M), called the Lie derivative with respect to X, such that L, coincides 
with Lx as given in 2.2.1 and 2.2.12. 

zi z 
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It may be instructive for the reader to examine Lie derivatives of higher- 
order tensors in component notation; see Exercise 2.2D. 

2.2.19 Proposition. Let cp: M+N be a diffeomoiphism and X a vector jeld 
on M. Then Lx is natural with respect to gush-forward by cp; that is, L,*,cp*t = 
cp* Lxt for t E Ti ( M )  ,or the following diagram commutes : 

ProoJ: For an open set U C M  define D: Tl(U)+T:(U) by Dt= 
cp*L,txlu(cp*t), where we use the same symbol cp for cpl U. From 2.2.3(i) and 
2.2.14(i), D coincides with L X I u  on F ( U )  and %(U). Next, we show that D is 
a differential operator. For (DO 1) we use the fact that cp,(t, €3 t2) = cp,t, €3 
cp* tz, which follows from the definitions. Then 

For (DO 2) we have, if t E T r ( M ) ,  

Y Finally, (DO 3) follows from the fact that cp,6 = 6, which the reader can easily 
check. Then we have 

9 

z 
by (DO 3) for L,. The result follows by Willmore's theorem. . 
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The reader can check, by using the same reasoning, that a differential 
operator that is natural with respect to diffeomorphisms on functions and 
vector fields is natural on all tensors. 

We now turn to an alternative interpretation of the Lie derivative. For 
t E q ( M )  and X E %(M) ,  we can find a curve at t (m)  in the fiber over m by 
using the flow of X. The derivative of this curve is the Lie derivative. In spirit, 
the flow plays the same role as parallel translation in covariant differentia- 
tion. (See Fig. 2.1-1 and Sect. 2.6.) 

More precisely, for m € M and a vector field X on M let (U,a, F )  be a 
flow box at m. For each A €  I, =(- a,a) we can form the diffeomorphism 
FA = FI U X {A) : U-+ UA= FA(U). Now let t E ( M )  and define tA= q ( t l  UA) 
=(~<')*(t l  UA) E q ( U ) .  Define the map t #  (m):  Ia+T,'Tm(M): A ~ t , ( m ) .  
Using this notation we have the following. 

2.2.20 Theorem. t # ( m )  is a curve in T,'Tm(M) at t (m)  and Lxt(m)= 
t # (mI1(O). 

Proof: For smoothness of t#  (m),  we have tA(m) = (TFc1(m)xt(FA(m)). He- 
nce we need verify only that (TF;'(rn)x is a smooth function of A. Consider 
F: U x I, + M ,  which is smooth in (u,' A). Then TF: TU X (I,  X R)+ M is 
also smooth. For smoothness of TFA, note TFA = TFI T M  X {A) X (0). Then 
from 1.7.9 we see that (TFC'); is smooth in A. Since F,, is the identity, it is 
clear that t # is a curve at t(m). 

Now define Ox: ' T (M)+S(M)  by Oxt(m) = t #  (m)'l,,o. From the flow 
box existence and uniqueness theorem it is clear that Ox is well defined, and 
from smoothness of tA(m), Oxt(m) = Tt# (m)  - (0, 1) E 'T(M). Let us apply 
Willmore's theorem 2.2.17. First, Ox is R linear and is a derivation. This 
follows easily using the local representatives. Also, 8, is natural with respect 
to restrictions because it is defined locally. Moreover, 

Figure 2.2-1 
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Hence 8, is a differential operator. It remains to show that 8, coincides with 
Lx on F ( M )  and %(M). For f E F(M) ,  we have fA(m) = f 0 FA(m) and so 

Hence 8,f = Lxf. Finally, we must verify that 8, Y = [ X ,  Y ]  = Lx Y ,  or equiv- 
alently LbY = [Lx, L,]. First let us note that for f E F ( M )  there is a function 
gA(u) so f"FA = f + AgA and go = Lxh namely, take 

hgA(u) = J' if" F ( ~ x ,  u )  dt 

Then 
d 

L ~ ~ ~ f ( m ) = d f ( m ) ~  [ ' ~ F - A O  Y ° F ~ ( m ) ] I A = o  

= (LXLYf -L.Lxf)(m). 

Hence from 2.2.1 1,. 8,Y= [X, Y ] .  
Finally, by Willmore's theorem, Ox = Lx for all t E S ( M ) .  . 

2.2.21 Corollary. If t E S ( M ) ,  Lxt = 0 iff t is constant along the flow of X. 
That is, t = F,* t. 

We can write 2.2.20 in the following way: 

This key identity between flows and Lie derivatives is sometimes taken as the 
definition of the Lie derivative. 

Y As an application of the Lie derivative, we consider a partial differential 
equation on Rn of the form 
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for given smooth functions Xi(x) ,  i = 1,. . . ,n, g(x), and a scalar unknown 
f ( x ,  t). 

2.2.22 Proposltlon. Suppose X = ( X  ', . . . , X n )  has a complete flow Pi;. Then 

f (x9 t )  = g ( K  (4) 
is a solution of the above problem (P) .  (See Exercise 2.21 for uniqueness.) 

Thus one can solve this scalar equation by computing the orbits of X. 
These trajectories are called characteristics. 

These results on Lie derivatives extend to nonautonomous (i.e., time- 
dependent) systems as follows. 

2.2.23 Definition. A time-dependent vector field is a map X:  R X M+TM 
such that X (t, m )  E T, M. (As we mentioned earlier, the local existence theory 
also goes through in this case.) One defines F,,,(m) to be the integral curve of 
X, ; that is, (d /  dt) F,, , (m)  = X, (F,, , (m))  such that F ,  , ( m )  = m. In other words, 
&(m) is the solution curve starting at m at time t = s. In the time-independent, 
or autonomous case, Pi;,, = Pi;-,. We call Pi;,, the ( t in-dewntnt)  &W of X, or 
the evolution operator for X,. 

We have I;;,, o F,, , = Pi;, , replacing the flow property I;,,, = I;; 0 F,, and 
Pi;, = identity. We often write Pi; = F,, o. In general, C X ,  # X,; however we do 
have: 

2.2.24 Theorem. Let X, be of class ck, k >  1 for each t and X(t,  m) be 
continuous in f m Then &,, is of class ck and for a a temor on M, 

d - dt FtfP = Ftfs ( L x , ~ )  

The proof goes as in 2.1.2 and 2.2.20. Note that it is not true for 
time-dependent systems that the right-hand side is Lxt(qScr). 

The three main pillars supporting differential topology and calculus on 
manifolds are the implicit function theorem, the existence theorem for 
ordinary differential equations, and Frobenius' theorem,* which we discuss 
briefly here. First some definitions: 

Y 
2.2.25 Definition. Let M be a manifold and let E c TM be a subbundle of its 
tangent bundle. (So  E is a vector bundle over M and is a submanifold of TM by 
means of a vector bundle chart of E.) We call E a disin'ution on M. 8 z 

Zi wl  *According to Lawson [1977], the theorem of Frobenius is due to A. Clebsch and F. Deahna. - 
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(i)  We say E is integrable if for any two vector field X and Y defined on 
open sets of M and which take values in E, [X, Y ]  takes values in E as 
well. 

( i i )  We say E arisesfrom a regular foliation of M if for any mo E M there is a 
(local) submanifold N c M called a leaf of the foliation containing mo 
whose tangent bundle is exactly E restricted to N. 

Frobenius' theorem asserts that these two conditions are equivalent. 

2.2.26 Frobenlus' Theorem. A subbundle E of TM is integruble if and only if 
it arises from a regular foliation. 

ProoJ: The "if" part is obvious since the bracket of two vector fields on a 
manifold N is again a vector field on N. 

If E has one-dimensional fibers, Frobenius' theorem amounts to the 
existence theorem for differential equations. The proof of the "only if" part 
actually proceeds along these lines. 

By choosing a vector bundle chart, one is reduced to this local situation: E 
is a model space for the fibers of E, F is a complementary space, and 
U X V c E x F is an open neighborhood of (0,O). We have a map 

such that the fiber of E over (x,y) is 

and we can assume we are working near (0,O) and f (0,0)= identity. 
The condition of integrability is trivial to work out. One computes the 

bracket of two vector ficlds of the form 

Y (x, y ) = ( b ( x , ~ ) , f ( x , ~ ) . b ( x Y ~ ) )  

Using the local formula following 2.2.13, one finds that E is integrable iff at a 
point (x,y) 

X for all a, b E E. 
$ Consider these two time-dependent vector fields on U x V: 
S 
m 
13 X,(X,Y) = (0,f(tx,y).x) 

and 
Z 
F! Y, ( 4 ~ )  = (x,f(tx,y).tx) 
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These are chosen with the form of En,,, in mind, so Yo is simple, but 
especially so that 

Condition (2) is easily verified [it does not use (I)]. From it, we get via 2.2.24 

where 4 is the flow of Xt, Fo = identity. Since Xt(O, 0) = 0, we can assume I;, is 
defined for 0 < t < 1. Thus 

Since Y,(x, y) = (x, f(x, y)x) and Yo(x, y) = (x, 0), we expect F, to be a local 
diffeomorphism of U x V such that f l  maps E(x,y, to E X (0) and be the 
required coordinate change to complete the proof. 

Let N = F,(U x {yo)). We shall complete the proof by showing that if 
(x, Y) E N, 

Clearly, since the first component of X, is zero, 

for a map cp(t, x, y) E F. A typical tangent vector to Ft(U X {yo)) is clearly 

Thus the proof is complete if we establish this identity: 

Indeed, they are equal at t = 0 and 
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Also, 

tf(tx, (t, x, y ) ) ~  =f (tx, a(t, X ~ Y ) ) . ~  dt 

For x, y, v fixed, let 

so that $(O) = 0. Subtracting (3) and (4) and using (1) we find that 

Hence by Gronwall's inequality, or by uniqueness of solutions of differential 
equations, $(t) = 0, and the result follows. . 
Remarks. (1) The method of using the time one map of a time-dependent 
flow to provide the appropriate coordinate change will be used several times 
throughout the book. (Sometimes these are called "Lie transforms".) 

(2) For a direct proof from the implicit function theorem using mani- 
folds of maps, see Penot [1970b] 

(3) In Chapters 3 and 4 the concept of foliation will be needed again so 
we shall give the formal definition. For further information the reader is 
referred to Lawson [1977]. 

A foliation 5 of class C', 0 < r and of dimension p on the m-dimensional 
manifold M is a decomposition of M into disjoint connected subsets 9= 
{ga la,, called the leaves of the foliation, such that each point of M has a 
neighborhood U and a system of Cr coordinates (x,y): U-RP X Rm-P such 
that for each leaf Ca, the components of Un Ca are described by the 
equations 

y , = constant,. . . ,ym -, = constant 

These coordinates are said to be distinguished by the foliation 9. 
Note that each leaf Ca is a connected immersed submanifold of dimension 

p. In general, this immersion is not an embedding, that is, the induced 
f! topology on Ca from M does not necessarily coincide with the topology of Ca 4 

(the leaf Ca may accumulate on itself, for example). The topology on Ca is 8 
"P given by the basis formed by the sets {x E Vl y , (x )  = constant,. . . ,y,-, ( x )  = 
0 

constant, V open in U and (x,y) : U-+RP X Rm-P, a distinguished chart of 
5 ) .  See Fig. 2.2-2. 



Figure 2.2-2 

Globalizing the Frobenius theorem, one can show that an integrable 
distribution determines a foliation in the sense defined above (2.2.26 was 
local); see Exercise 2.2K. 

Here are some simple examples of foliations. 

(1) 5= {M) is the only dimension m foliation; it has one leaf, the whole 
manifold M. 

(2) Let f: M+N be a submersion. Let 5 be the collection of connected 
components of the manifolds f y EN. This is a dimension m - n 
foliation of M. 

(3) The orbits of a nowhere zero vector field on M define a dimension 1 
foliation. (This result can be generalized to Lie group actions with the 
condition that the isotropy group has constant dimension on M.) 

Foliations are by no means the only way to decompose a topological 
space into connected submanifolds. Stratijications, a concept generalizing 
foliations, turn out to be the natural tool to describe the topology of orbit 
spaces of compact Lie group actions (see, for instance, Levine [1959], Bredon 
[1972], Burghelea, Albu, Ratiu [1975], and Fischer [1970].) 

Finally in this section we consider two miscellaneous (optional) topics; the 
first concerns convergence of flows. Often it is useful to know that the flows of 
a sequence of vector fields converge if the vector fields themselves converge. 

2.2.27. Proposltlon. Let Xu be locally Lipschitz vector fiela3 on M for a in 
some topological space. Suppose the Lipschitz constants of Xu are locally 
bounded as a+a, and Xa+X, IocaNy uniformly. Let c(t) be an integral nuw 2 
of Xx,, 0 < t < T and E > 0. Then the integral curves cu(t) of Xu with ca(0) = $ 
c(0) are defined for t E [0, T - E ]  for a sufficiently close to a, and c,(t)+c(t) g 
uniformly in t E[O, T- E] as a+aW If the flows are complete, I;;a+I;t locally 2 
uniformly. (The vector fieldr may be time dependent if the estimates are locally z 
t-uniform.) !3 
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ProoJ: We have, in charts, 

where pa,ao+O. From Gronwall's inequality ca(t)+c(t), as a+ao. This esti- 
mate shows that ca(t) exists as long as c(t) does on any compact subinterval 
of [0, T). The result follows. H 

Next we consider invariant sets. If X is a smooth vector field on M and 
N c M is a submanifold, the flow of X will leave N invariant (as a set) iff X is 
tangent to N. If N is not a submanifold (e.g., N is an open subset together 
with a smooth boundary) the situation is not so simple; however, for this 
there is a nice criterion going back to Nagumo [1942]. Our proof follows 
Brezis [l970]. 

2.2.28 Theorem. Let X be locally Lipschitz on an open set U c E, E a 
Banach space. Let G c U be relatively closed and set d (x, G) = inf (11 x - y 1 1  1 y E 
G ) . The following are equivalent: 

(1) limhJo(d (x + hX (x), G)/ h) = 0 locally uniformly in x E G (or just point- 
wise if E= Rn); and 

(2) if x(t) is an integral curve of X starting in G, then x(t) E G for all t 2 0 in 
the domain of x(.). 

Note (i) x(t) need not lie in G for t & 0; so G is + invariant. (ii) If X is 
only continuous the theorem fails. 

We give the proof assuming E= R n  for simplicity. 

Proof of 2.2.28. Assume (2) holds. Setting x(t) = F,(x), where F, is the flow 
of X, we get 

A 
2 from which (1) follows. 
4 
cn Now assume (1). It suffices to show x(t)E G for small t. Near x = x(O), 
$! sayonaballofradiusr,wehave~~X(x,)-X(~~)~~&K~~x~-~~1~andIIF~(x~) 
0 -F,(x2)ll<eKtllxl-x211. We can assume IIF,(x)-xll<r/2. Set +(t)= 

kl d(F,x, G). Since G is relatively closed, and E= Rn, d(F,x, G )  = Ilex - ytll for 
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some yt E G. (In the general case some approximation argument is needed 
here.) Thus, Ilyt-xll <r.  For small h, llFhyt-xll <I-, so 

Hence 

lim sup 
Y O  h 

As in Gronwall's inequality, we may conclude that 

For example, let X be a smooth vector field on Rn, let g: Rn+R be 
smooth, and let A E R be a regular value for g, so g- '(A) is a submanifold. Let 
G = g-  '((- oo, A]) and suppose that on g- '(A), 

( X ,  gradg) ( 0 

Then G is + invariant under I;, as may be seen by using 2.2.28. This result 
has been generalized to the case where aG might not be smooth by Bony 
[1969]. See also Redheffer [I9721 and Martin [1973]. Related references are 
Yorke [1967], Hartman [1972], and Crandall [1972]. 

EXERCISES 
Y 

2.2A. If each point m E M has a neighborhood U such that for all f € B(U), 8 
Lxf = ~ , f  (on u), show X= Y. ? 

m 
2.2B. Prove that cp, is a tensor algebra homomorphism, as indicated in the proof of 3 

2.2.19, and that cp,6 = 6. 2 
2.2C. On R, let X(x,y)=(x,y;y, -x). Find the flow of X and interpret 2.2.21 Z 

geometrically. w 9 
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2.2D. Show that, in coordinates, 

and more generally, 

2.2E. (For readers with a knowledge of Riemannian geometry. See Sect 2.7.) 
(i) Let M be a manifold with a torsion-free connection, denoted V, so that 

VxY is the covariant derivative of Y in the direction X. Show that 
Lx Y =  V, Y - V,X. Note, however, that Lx does not require a connection 
or metric for its definition. 

(ii) Show that the formula in 2.2D remains valid if partial derivatives are 
replaced by covariant derivatives. 

2.2F. Solve the following for f (t,x,y): 

if f (0, x,y) = ~(sinx). 
2.26. Let X and Y be vector fields on M with complete flows F, and GI, respectively. 

Show that the following are equivalent: 
(i) [X, Y ]  = O  
(ii) V Y = Y  

(iii) I;,oG,=G,oFI 
If [X, Y ]  =0, show that X+ Y has flow H, = F, 0 G,. 

2.2H. (i) Let x=y2a/ax and ~ = x ~ a / a y .  Show that X and Y are complete on 
R 2  butX+ Yis not. 

(ii) Prove the following: 
THEOREM Let H be a Hilbert space and let X and Y be locally Lipschitz 
vector fieldr that satis& the following: 

(a)  X and Y are bounded and Lipschitz on bounded sets; 
(b )  there is a constant j3 > 0 such that 

(c)  there is a locally Lipschitz monotone increasing jknction c(t)  > 0, t > 0 such 
that I - 2% = + m and x ( t )  is an integral nvue of k 

4 x 1  

Then X, Y are X + Y,  and are positively complete. 
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Note: Onemay assume IIX(xo)ll<c(llxoll)in(c)insteadof (d/dt)llx(t)ll< 
c(llx(t)ll).(Hint. Findadifferentialinequalityfor t(d/dt)llu(t)l12,whereu(t) 
is an integral curve of X +  Y ,  and use the following comparison lemma: 

Suppose r'(t)= c(r(t)) and ro > 0. Then r(t)  > 0 is defined for all t > 0. 
Suppose f ( t )  > 0, is continuous, and 

Then- f ( t )  < r(t)  for t E[O, T).)  
2.21. Show that, under suitable hypotheses, the solution f ( x ,  t )  = g(Ft(x)) of ( P )  

given in 22.22 is unique. (Hint. Consider the function E( t )  = /r,,lfl(x. t )  - 
f2(x,t)12dx, where f, and f2 are two solutions. Show that dE/dt < aE for a 
suitable constant a and conclude by Gronwall's inequality that E=O. The 
"suitable hypotheses" are conditions that enable integration by parts to be 
performed in the computation of dE/dt.) 

2.25. Use the method of proof of 2.2.26, especially (2), to prove the straightening-out 
theorem for flows. 

2.2K. By analogy with the maximal extendability of integral curves of vector fields, 
formulate and prove a global version of Frobenius theorem. 

2.2L. Using 2.1.26, prove that the flow H, of [X, Y ]  is given by 

where X, Y E  % ( M )  have flows E; and G,, respectively. 
2.2M. (D. Burghelea) Let f: M+N be a smooth injective map, dim M = m, dim N = n. 

Show that m < n and the set P = { x  E MI TJ is injective) is dense in M. 
(Sketch: The assertion m < n follows by the implicit function theorem. For 

the second part it suffices to work in a local chart. Use induction on k to show 
that cl Ui, . . . ik 3 V, where 

linearly independent I 
The case k = n gives then the statement of the theorem. For example, the proof 
for k = 2 goes as follows. We know that 

is open and cl U, EI V.  Gnsider the open set 

ui, = x € VI TJ - TJ -- linearly independent { ( a z J :  ( a l J I x  I 
and define 
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being open, L$' is dense in U;. and hence in V. Let 

linearly independent 

we show that Ui;. is dense in V. If this were not the case there is an open set 
W c V such that 

for a certain smooth function h nonzero on W. Let c: (-E,E)+ W be an 
integral curve of the vector field h(a/ax ') - (a/axj). Then (f 0 c)'(t) = 
T&,f (c'(t)) -0 so that f 0 c is constant on (- E ,  E )  contradicting injectivity off.) 

2.3 EXTERIOR ALGEBRA 

The calculus of Cartan concerns exterior differential forms, which are 
sections of a vector bundle of linear exterior forms on the tangent spaces of a 
manifold. We begin with the exterior algebra of a vector space and extend 
this fiberwise to a vector bundle. As with tensor fields, the most important 
case is the tangent bundle of a manifold, which is considered in the next 
section. 

2.3.1 Definition. Let E be a finite-dimensional real vector space. Let QO(E) = 
R. Q'(E) = E*, an4 in general, Q k ( ~ )  = ~ , k  (E, R ) ,  the vector space of skew 
symmetric k multilinear maps or exterior k - f o m  on E. 

We leave as an easy exercise the fact that Qk(E) is a vector subspace of 
TkO(E>. 

Recall that the permutation group on k elements, denoted Sk, consists of 
all bijections 9: {I,. .., k)+{l, ..., k) together with the structure of a group 
under composition. Clearly, Sk has order k! .  Letting (k, X )  denote R\{O) 
with :he multiplicative group structure, we have a homoomonqshism sign: 
Sk-t(R, X ) .  That is, for a, r ESk,  sign(a Or)=(~ignu)(~ignr).  The image of 
sign is the subgroup { -  1,1), while its kernel consists of the subgroup of even 
permutations. One other fact we shall need is the following, which the reader 
can easily check: If G is a group and go E G, the map Rgo : G+ G: g ~ g g ~  is a 
bijection. 

9 2.3.2 Definition. me alternation mapping A : T ~ ( E ) +  T:(E) (as before, we 

$ do not index the A )  is defined by 
m 

where the sum is over aN k! elements of Sk. 
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2.3.3 Proposition. A is a linear mapping onto Q k ( ~ ) ,  A ~ S ~ ~ ( E )  is the iden- 
tity, and A 0 A =A. 

ProoJ: Linearity of A follows at once. If t € Q k ( ~ ) ,  then 

since (sign = 1 and Sk has order k!. Second, for t E T:(E) we have 

since aHo7 is a bijection and sign is a homomorphism. This proves the first 
two assertions, and the last follows from them. . 

Then we may define the exterior product as follows. 

2.3.4 Definition. If a E Tf(E) and j.3 E c ( E ) ,  define a ~ j 3  €Qk+'(E) by 
a A p = (k + I)!/ k!l! A ( a  €9 p). (Again, we do not index A.) In particular, for 
a E T:(E) = R, we put ~ A P  =  PA^ = 4. 

There are several possible conventions for defining the wedge product A. 

The one here conforms to Spivak [1965], and Bourbaki [I9711 but not to 
Kobayashi-Nomizu [I9631 or Guillemin-Pollack [1976]. See Robbin [I9741 
for a lively discussion of what conventions are possible. 

Our definition of a A/? is the one that eliminates the largest number of 
constants later. The reader should prove that, for exterior forms, 

(aAp)(el,. -. ,ek+,) = Z'(sign @)a(eO(l), -. . ,e,(k))p(e~(k+ I), . yea(k+ I)) 

where 2' denotes the sum over all shuffles; that is, permutations a of 
{1,2, ..., k + l )  such that a ( l ) < . - .  <a(k) and o (k+ l )< -a -  <a(k+I). The 
basic properties of the operation A are given in the following. 

2.3.5 Proposition. For a E T*), P E v ( E ) ,  and y E T;(E), we have 

( i )  anP  = AaAP = ar\Ap; 
(ii) A is bilinear; 
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(iii) a~jlj = ( - l ) k l B ~ a ;  
(iu) a ~ @ ~ y )  = (ar \P)~y .  

Proof; For (i), first note that if a € Sk and at(e,, .  . . ,ek)= t(ea(l), . . .,ea(kS, 
then A (at)  = (sign u)A t for 

1 
A(at)(el,  . . . , e,) = - z (sign p)t(e,(l), . . . , e,(k)) 

k! p,, 

= (sign u)At(el,  . . . , ek) 

since p~ pa is a bijection. Then, 

A(Aa@j3)(e,,  . . . , ek, . . . , ek+1) =A(Aff(e17 . - - 7 ek)8(ek+l, . . ek+l)) 

1 = - 2 (signr)A (ra@f4)(el, .  . . ,ek+,) (linearity of A )  
k! ?ESk 

where r' E Sk+[, 

so sign r = sign r' and r a  @jlj = rt(a@jlj). Thus the above becomes 

$4 

S 
4 
m 

=A(a@P)(e l , . . . , ek+t )  
13 

Thus A(Aa@P) = A(a@jlj); that is, ( A a ) ~ p = a ~ p .  
Z The other equality in (i) is similar. 
% Now (ii) is clear since @ is bilinear and A is linear. 
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For (iii), let a, E Sk+l be given by a,(l, . . . , k + I )  = (k + 1, . . . , k + 
1, 1, . . . , k). Then a €3 &el, . . . , ek+& = P €3 a(eadl), . . . , eoo(k+,)). Hence, by 
the proof of (i), A(a C3 P) = (sign a,,)A@ €3 a). But sign a, = (- I)~'. Finally, 
(iv) follows from (i). rn 

2.3.6 Definition. The direct sum of the spaces Q k ( ~ )  (k = 0, 1, 2 . . . ) 
together with its structure as a real vector space and multiplication induced by 
A, is called the exterior algebra of E, or the Grassmann algebra of E. 

Using 2.3.5 and a simple induction argument, it follows that if a ,  
i = 1, . . . , k are one-forms, then 

We can now find a basis for O k ( ~ ) .  

2.3.7 Proposition. Let n = dim E. Then for k > n, Qk (E) = (0) , while for 
0 < k < n, Qk (E) has dimension (It). The exterior algebra over E has dimension 
2". Indeed, if 2 = (el, . . . ,en) is an ordered basis of E and 2* = (a1,. . . ,an) its dual 
basis, a basis of Q k ( ~ )  is 

ProoJ: First we show that the indicated wedge products span Qk(E). If 
t € Ok (E), then from 1.7.2 we know that 

where the summation convention indicates that this should be summed over 
all choices of i,, . . . , ik between 1 and n, not just the ordered ones of the 
proposition. Now if the linear operator A is applied to this sum, we have, 
since t E Ok (E), 

so that 



2 CALCULUS O N  MANIFOLDS 105 

by the above remark. Therefore, 

The sum still runs over all choices of the i,, . . . , ik and we want only distinct, 
ordered ones. However, since t is skew symmetric, the coefficient t(ei,, . . . ,eik) 
is 0 if i,, . . . , ik are not distinct. If they are distinct and a E Sk, then 

since both t and the wedge product change by a factor of signa. [Use 
2.3.5(iii), where cy and f3 are one-forms.] Since there are k! of these rearrange- 
ments, we are left with 

Secondly, we show 

are linearly independent. Suppose that 

For fixed i;, . . . , ii, let j L +  ,, . . . , j; denote the complementary set of indices, 
j L + ,  < - - - <jA. Then 

ti,.. . cyil ,., . . . Aa'kA&i+'A . . . ,.,&A = 0 
i l < . .  - <ik 

However, this reduces to 

ti,,. . . . . . r\d = 0 

But alr\ - . . ~cy" # 0, as a ' ~  . - . r\cyn(e1, . . . , en) = 1. Hence 

The proposition now follows. . 
s 
9 

2.3.8 Definition. The nonzero elements of the one-dimensional space Qn(E) 8 
"P are called volume elements. If w, and w, are volume elements, we scly w, and w, 
0 

z are equivalent iff there is a c>O such that w, = CW,. An equivalence class of 
volume elements on E is called an orientation on E. 
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We shall see shortly the close relationship between volume elements and 
determinants. 

2.3.9 Proposition. Let a,, . . . , cu, E E* . Then a,, . . . , ak are linearly dependent 
iff a,/,"' /,ak=O. 

ProoJ If a,, . . . ,ak are linearly dependent, then 

ai= CjCYj 
j#i 

for some i. Then, since a ~ a = O ,  we see a,,-,- /,a,=O. Conversely, if 
a,, . . .,ell, are linearly independent, extend to a basis a,, . . . , cu,. Then a,,-, . . A 

an + 0, by 2.3.7 and hence a,,-,. - - /,ak +O. . 
2.3.1 0 Propositlon. Let dim(E) = n and cp E L(E, E). Then there is a unique 
constant detq, cded  the determinant of QJ, such that cp*: Qn(E)+Qn(E), 
defined by cp*w(e,, . . . ,en) = w(q(e,), . . . , cp(en)) satisfies cp*o = (det cp)w for all 
w E an (E). 

ProoJ Clearly cp*: Qn(E)+Qn(E) is a linear mapping. But, from 2.3.7, 
Qn (E) is one-dimensional so that if wo is a basis and w = cwo, cp*w = ccp*wo= 
bw for some constant b, clearly unique. 

It is easy to see that this definition of determinant is the usual one 
(Exercise 2.3B.) However, it has the advantage of suggesting the proper global 
definition (Sect. 2.5), as well as making its basic properties trivial, as follows. 

2.3.1 1 Propositlon. Let QJ, 4 E L(E, E). Then 

( i )  det (cp d / )  = (det cp)(det +); 
(ii) if cp is the identity, det cp = 1 ; 
(iii) cp is an isomorphism iff det cp + 0, and in this case det (q - ') = (det cp) - '. 
ProoJ For (i), (cp0+)*w=det(q0+&, but (cpO+)*w=+*ocp*w as we see 
from the definitions as in 1.7.17. Hence, (cp 0 +)*w = +*(det cp)w = 
(det+)(detq)w and (i) follows. (ii) follows at once from the definition. For 
(iii), suppose cp is an isomorphism with inverse cp-I. Then, by (i) and (iii), 
1 = det (cp 0 cp - I )  = (det cp)(det cp - I), and, in particular, det cp ZO. Conversely, if 
cp is not an isomorphism there is an el +O so cp(e,)=O (Exercise 1.2B). Extend $ 
to a basis el, e,, . . . ,en. Then for all n-forms w, cp*w(e,, . . . ,en) = 9 

m 
w(0, cp(e,), . . . , cp(en)) = 0. Hence, det cp = 0. . IC) 

2 
d 

Recall from Chapter 1 that there is a unique vector space topology on 
L(E,E) since it is finite-dimensional. One convenient norm giving this 2 
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topology, which was used earlier in 1.7.7, is the following operator norm: 

where lie11 is a norm on E. (See Exercise 1.2A). Hence, for any e E E, 

IItp(e)ll 9 lltpll llell 

2.3.12 Proposition. det: L(E, E)+R is continuous. 

Proof: Note that 

is a norm on Qn(E) and Iw(e,, ..., en)l< llwll Ilelll..- Ilenll. Then, for q,+E 
L(E, E), 

Consequently, Idettp-det#l< lltp- $11 (11tp11 + II+II)"-' and the result follows. 

In 1.3.14 and 1.7.7 we saw that the isomorphisms are an open subset of 
3 L(E,F). Using the determinant, we can give a simpler proof in the finite- 

dimensional case. 
m 
3 
"P 2.3.1 3 Proposition. Suppose E and P are finite-dimensional and let GL(E, F) 
0 

denote those tp E L(E,F) that are isomorphisms. Then GL(E,F) is an open 
subset of L(E, F). 
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Proof. If GL(E,  F )  = 0 ,  the conclusion is true. If not, there is an isomor- 
phism I,L E GL(E,  F).  A map cp in L(E ,  F )  is an isomorphism if and only if 
I,L- 'QJ is also. This happens precisely when det(I,L-'cp) # 0. Therefore, GL(E, F )  
is the inverse image of R\{O) under the map taking cp to det(I,L-'cp). Since this) 
is continuous and R\{O) is open, GL(E,  F) is also open. . 

In order to define pull-back cp*t or push-forward cp,t of a general tensor t 
by a map cp, cp needs to be a diffeomorphism. For covariant tensors, however, 
pull-back makes sense if cp is merely a C' map. On the vector space level, this 
goes as follows. 

2.3.14 Deflnltlon. Let cp E L(E, F). For a E T:(Q define thepulI-back of a 
by cp; cp*a E T:(E) by cp*a(el, . . . , ek) = a(cp(e,), . . . , cp(ek)). I f  cp E 
GL(E, F), we denote by cp ,  the push-forward map defined in 1.7.3. 

2.3.15 Proposition. Let QJ E L(E, F), + E L(F G). Then 

( i )  cp* : TkO(F) + T:(E) is linear, and cp*(Qk(~)) c Qk(E); 
(ii) (+ocp)* = cp*o+*; 
(iii) If cp is the identity, so is cp*; 
(iv) I f  cp E GL(E, F), then cp* E GL(T:(F), T ~ ( E ) ) ,  (cp*)-' = (cp-I)* and 

cp*Qk(F) = Qk(E); 
(0) If cp E 0, then c p ,  E GL(T~(E) ,  T:(~F)), (cp-I)* = cp,, and 

(cp*)-' = (cp-ll*; i f+  E GL(F7 GI, (+ocp)* = +*ocp*; 
(vi) If a E Q k ( ~ ) ,  B E Q'(F), then cp*(a~P) = cp*ar\cp*f3. 

ProoJ: It is evident that (i) follows at once from the definition. For (ii), 

Then (iii) is clear and (iv) follows from (ii) and (iii). For (v), cp,B(f,, . . . ,&) 
= B(cp-'fi, . . . , c p - I f k )  = (9-')*JQ( f l ,  . . . ,&) and (cp,)-' = (cp-')*-I = cp* = 

(cp-')*. Finally, cp*(ar\P)(e,, . . . , ek+,) = ar\8(pel, . . . , cpek+,) = 
cp*ar\cp*B(e,, . . . , ek+,). I 

As in Sect. 1.7, we can consider the exterior algebra on the fibers of a 
vector bundle as follows. 5 2 

4 
2.3.1 6 Definition. Let cp : U X F+ U' X F' be a local vector bundle map that 
is an isomorphism on each fiber. Then define c p ,  : U X Qk (I;?+ U' X Qk (F') by 3 
(u, a) H ( ~ ( u ) ,  cpU*a), where cp, is the second factor of cp (an isomorphism for Z 
each u). w 8 
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2.3.1 7 Proposition. If cp : U X Ei U' x P' is a local vector bundle map that 
is an isomorphism on each fiber, then so is 9,. Moreover, i f  cp is a local vector 
bundle isomorphism, so is cp,. 

Proof. This is a special case of 1.7.9. . 
2.3.18 Definition. Suppose a :  E+B is a vector bundle. Define 

where A is a subset of B and Eb = a P 1 ( b )  is the fiber over b E B. Let 
o k ( E ) I ~ = u k ( E )  and define wk(a):  u ~ ( E ) + B  by cdk(v)(t)=bif t€ak(Eb).  

2.3.19 Theorem. Suppose { E  1 U,, cp,) is a vector bundle atlas of w, where cpi: 
E I U, + U,' X c. Then {o k ( ~ ) I  U,, cpi*) is a vector bundle atlas of wk(a): 
o k ( ~ ) +  B, where cpi*: o k ( ~ ) I  U ,  -+ Ui) X Q k ( q )  is defined by Eb = Eb), 
(as in 2.3.16). 

Proof: We must verify (VBA 1 )  and (VBA 2) of 1.5.2: (VBA 1) is clear; for 
(VBA 2) let c p , , ~  be two charts on a, so that cpi o cpil is a local vector bundle 
isomorphism. (We may assume UI.= q.) But then from 2.3.15, cpi. 9: = 
(cpi 0 cpj- l),, which is a local vector bundle isomorphism by 2.3.17. H 

Because of this theorem, the vector bundle structure of a: E+B induces 
naturally a vector bundle structure on wk(a): w k ( E ) + ~ ,  which is also 
Hausdorff, second countable, and of constant dimension. Hereafter wk(lrr) will 
denote this vector bundle. 

EXERCISES 

2.3A. If k!  is omitted in the definition of A (2.3.2), show that A fails to be 
associative. 

2.3B. Show that, in terms of components, our definition of the determinant is 
the usual one. 

2.3C. If a is a two-form and fl  is a one-form, show that 

( ~ A P ) ( ~ I ,  e2, e3) =&(el, e2)B(e3) -a(el, e3)B(ez)+a(ez, e3)P(e1) 
2.3D. Show that if el,. . .,en is a basis of E and a',. ..,a" is the dual basis, then 

( a l ~ -  - .  ~ d ) ( e ~ ,  ..., en)= I.  

8 2.4 CARTAN'S CALCULUS QF DIFFERENTIAL FORMS 
E 
4 We now specialize the exterior algebra of the preceding section to tangent 

bundles and develop a differential calculus that is special to this case. This is 
basic to the dual integral calculus of Sect. 2.6 and to the Hamiltonian 

2 mechanics of Chapter 3. 
3 
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If TM: TM+M is the tangent bundle of a manifold M, let u k ( M ) =  
a k ( ~ ~ ) ,  and w ~ = w ~ ( T , ) ,  SO a h :  uk(M)+M is the vector bundle of 
exterior k forms on the tangent spaces of M. Also, let OO(M)= F(M),  
O1(M)= T ( M ) ,  and Ok(M)=I'"(&),k=2,3,. . . . 

2.4.1 Proposition. Regarding % ( M )  as an F ( M )  module, Ok(M)  is an 
F ( M )  submodule. 

ProoJ: If t1,t2 € O k ( M )  and f E F(M) ,  we must show f @tl  + t ,  €Ok(M).  
From 1.7.19, we have f @tl  + t2 E ~ ( M ) .  But, by 2.3.1, f @tl(m)+ t,(m)E 
Ok(T, M )  and the result follows. . 
2.4.2 Proposition. If a € O k ( M )  and P €O1(M), k ,  I=0, 1 ,  . . . ,n, define aAP: 
M+a k ' l ( ~ )  by (ar\P)(m) = a(rn)AP (m). Then ar\@ €Ok+'(M), and A is 
bilinear and associative. 

ProoJ: First, A is bilinear and associative by 2.3.5. To show is of class 
C", consider the local representative of ~ A P  in natural charts. This is a map 
of the form (aAP),  = B (s x P,), with s, P,, C" and B= A, which is bilin- 
ear. Thus ( a ~ p ) ,  is C" by Leibniz' rule. II 

2.4.3 Definition. Let O(M) denote the direct sum of Ok ( M ) ,  k = 0, I , .  . . , n, 
together with its structure as an (infinite-dimensional) real vector space and with 
the multiplication A extended componentwise to Q(M). We call O(M)  the 
algebra of exterior d~zerential f o m  on M. Elements of Ok(M)  are called 
k-forms. In particular, elements of %*(M)  are called one-fom. 

Note that we generally regard O(M) as a real vector space rather than an 
F ( M )  module [as with S ( M ) ] .  The reason is that F ( M )  = OO(M) is included 
in the direct sum, and f ~ a  = f @ a  = fa. 

2.4.4 Notation. Let (U,cp) be a chart on a manifold M with U' = cp(U) c Rn. 
Let e, denote the standard basis of Rn and let g,(u) = T,(,)cp -'(cp(u), e,). Simi- 
larly let a' denote the dual basis of ei and gi(u) =(~,cp)*(cp(u),a'). [Thus, jor 
each u € U, g,(u) and ' (u )  are dual bases of the fiber T, M.] Then i f  cp(u) = 
(x l (u) ,  ..., x n ( u ) ) € R n ,  we define 

at points u E U. X 

2 
With these notations, we see dxi (u )  = g ' (u), for 4 

m 
8 

dxi ( U ) ( % ( U ) )  = p2TUxi ~,(~)cp-'(cp(u), ej) = p2TU ( x i  cp - ' ) (~ (u ) ,  ej) 3 
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Hence, 
af d f ( u ) = d f ( ~ ) ~ ' ( u ) =  -(u)dxi(u) 
ax 

Thus the components of the differential df are the partial derivatives af/axi. 
Also, for each t E 9'' ( U )  we have 

t(u)=til'..'."(u)4;.l@- / I "  JS - .  @ ~ , @ d x j l @ . . .  @dx& 

and for each w E Qk ( U) 

where 

and 

The extension of d to Q k ( ~ )  is given b y  the following. 

2.4.5 Theorem. Let M be a manifold. Then there is a unique family of 
mappings d k ( U ) :  Q k ( ~ ) + Q k + ' ( ~ )  (k  =O,1,2,. . . ,n, and U is open in M ) ,  
which we merely denote by 4 called the exterior derivative on M, such that 

( i )  d is a A antiderivation. That is, d is R linear and for a E Qk ( U) , 
P €Q'(U), 

(ii) I f f  E F( U ) ,  df = df (as defined in 2.2.1); 
(iii) dod=O (that is, d k + ' ( ~ ) o d k ( ~ ) = O ) ;  
(iv) d is natural with respect to restrictrctrons; that is, i f  U c V c M are open 

and a E Qk ( V ) ,  then d (a] U )  = (da)l U, or the following diagram com- 
mutes: 

z 
As in Sect. 2.2, condition (iv) means that d is a local operator. 
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Proof; We first establish uniqueness. Using (iv) it is sufficient to consider 
the local case w E Qk(U); U c M. By R linearity, it is sufficient to consider 
the case in which w has the form w = fO d f l ~  - . - ~ d f ~ ,  where € E(U). 
Hence, from (i), (ii), and (iii), dw = dfO~dflr - - . ~df ,  and thus, dw is 
uniquely determined. 

For existence we may again suppose w = fo d f l ~  - . . ~df, in some chart, 
and define dw = dfO~dfl,r\ . . . r\dfk, which is independent of the chart (ex- 
ercise). Then (ii) and (iv) are clear, as is R linearity. To prove (i), note that if 
p = go d g , ~  . . . ~dg, ,  then 

Finally, for (iii), it is clearly sufficient to verify d ~ d f  =0 for functions. But in 
a local chart df (u) = Df(u).eidxi so that 

by symmetry of the mixed partial derivatives. 

2.4.6 Corollary. Let w €Qk (U) , where U c E (open). Then 

where 4 denotes that ei is deleted. Also, we denote elements (u, e) of TU mere@ 
by e, for breuity. [Note that ~w(u) .e  E L ~ ( E ,  R).] 

ProoJ First note that d defined this way is a map Qk(U)+Qk+'(U). Then it 
is sufficient to verify (i)-(iv) of 2.4.5. But R linearity, (ii), and (iv) are clear, 
and as A is bilinear, D (w~p) = w~ Dp + Dw~p,  from which (i) readily follows. 
Finally, (iii) follows as in 2.4.5. . 

Y 
9 

2.4.7 Definition. Suppose F: M+N is a Cm mapping of manifolds: For 
w € s l k ( ~ ) ,  define F*w: M + ~ ~ ( M )  by F*w(m)=(T,F)*owo F(m) (see g 
2.3.14). We say FCw is thepull-back of w by F. g 

z 
Especially, note if g E Q O ( ~ ) ,  F*g = g 0 F. f! 
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2.4.8 Proposition. Let F: M+N and G: N+ W be C m  mappings of mani- 
folds. Then 

( i )  F* : O k ( N ) + O k ( ~ ) ;  
(ii) ( G  0 F)* = F* G*; 
(iii) if H :  M+M is the identity, then H* : Ok ( M ) + O ~ ( M )  is the identity; 
(iv) if F is a diffeomolphism, then F* is a vector bundle isomolphism and 

(F*) - I=(F-~)* .  

Proof: Choose charts (U ,  cp) ,  ( V ,  +) of M and N so that F(U) c V ,  then 
F& = + o ~ o c p - l  is of class C m ,  as is wJ, = ( T I C / ) , O ~ O + - ' .  Then 

Hence the local representative of F*w is 

which is of class C" by the composite mapping theorem; R linearity is clear. 
For (ii), we merely note that it holds for the local representatives by 

2.3.15; (iii) follows at once from the definition; and (iv) follows in the usual 
way from (ii) and (iii) 

As F*: Ok(N)+Ok(M) is R linear, it induces a mapping on the direct 
sums, F* : O(N)+O(M), which are differential algebras with A and d. 

2.4.9 Theorem. Let F: M+N be of class C ". Then F* : O(N)+O(M) is a 
homomolphism of differential algebras; that is, 

(i) F * ( + A ~ )  = F * + A F * ~  and 
(ii) d is natural with respect to mappings; that is, F*(dw) = d(F*w), or the 

following diagram commutes: 



114 1 PRELIMINARIES 

Proof: We first consider F* ($A~)  when $ is a function. Then 

or I;*($/\@)= F*$/\F*w, as F * $ = $ o  F if $€O0(N). Then (i) follows im- 
mediately from 2.3.15(vi). For (ii) we shall show in fact that if m EM, there is 
a neighborhood U of m E M such that d(F*ol U)= (F*dw)l U, which is 
sufficient, as F*  and d are both natural with respect to restriction. Let (V,/,cp) 
be a local chart at F(m) and U a neighborhood of m E M with F(U) c V. 
Then for w E Ok( V), we can write 

w=wil...,dxilr\. - .  /\dxik 

dw = aiowi, .. ., d x i 0 ~  . a ,,d~ik) a,=- 
ax i~ 

and by (i) above 

F*wJ u=(F*~;,  ...,) F*dx i l~ .  - . ~ F * d x k  

But if $ E OO(N), d ( F  *$) = F* d$~ by the composite mapping theorem, so 

d(F*wl u)=  F * ( ~ ~ ~ . . . , ) A F * ~ X ' ~ A . .  . ~ F * d x k  

= F*(dw)l U 

by (i) above. II 

2.4.10 Corollary. The operator d is natural with respect to diffeomorphisms. 
That is, if F: M-N is a diffeomciphism, then F,dw= dF*y or the following 
diagram commutes: 

F* 
ilk (M) - Ok (N) 

Y 
O k + I ( ~ )  -+ Ok+'(N) E 

F* 9 CC) 

8 z 
Proof: With F* defined as F* = (F)!, we see that F, = ( F  - I)*. The result z 
then follows from 2.4.9(ii). E! 



The next few propositions give some important relations between the Lie 
derivative and the exterior derivative. 

2.4.11 Theorem. Let X E %(M).  Then d is natural with respect to Lx. That 
is, for o € Q k ( M )  we have Lxw E Q k ( M )  and dLxw = Lxdw, or the following 
diagram commutes : 

ProoJ: If a ' , . . . , a k ~ Q 1 ( M )  wehave 

This follows from the fact that Lx is R linear and is a tensor derivation. Since 
locally € Qk ( M )  is a linear combination of such products, it readily follows 
that Lxw €Qk(M) .  For the second part, let (U,a, F )  be a flow box at m E M, 
so that from 2.2.20, 

But from 2.4.10 we have F,* d o  = d(F;fw). Then, since d is R linear, it 
commutes with d /dh  and so dL,w = L, dw. I 

The foregoing proof can also be carried out in terms of local representa- 
tives. 

2.4.12 Definition. Let M be a manifold, X E %(M),  and w E Qk+'(M). Then 
define ixw E % ( M )  by 

If w E QO(M), we put ixw = 0. We call i,w the inner product of X and w. 

2.4.13 Theorem. We have ix: Qk(M)+Qk-'(M), k =  1,. . .,n, and, for a E 
Qk ( M ) ,  ,8 E Q'(M), f E Q O ( ~ ) ,  

( i )  ix is a A antiderivation. That is, ix is R linear and 2 
9 - i x ( a ~ P )  = ( i x a ) ~ P  + (- l ) k a ~ ( i X P ) ;  

(ii) ifla=$xcy 
(iii) ixdf = L x j  

z (iv) Lxa = ix da + dixcy m 
(0) Lf la=fLxa+df~ixa .  
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hvloj That ixa E Qk-'(M) follows at once from 2.2.8. For (i), R linearity is 
clear. For the second part of (i) 

and 

( k + l -  l)! 
ixaA P + (- l )ka~ixf l  = 

(k - l)!l! A(ixa @ P)  

But the slum over all permutations in the last term can be replaced by the sum 
over oo,, where o, is the permutation (2, 3, . . . , k + 1, 1, k + 2, . . . , k + l)t+ 
(1, 2, 3, . . . , k + I) whose sign is (- Hence (i) follows. For (ii), we merely 
note ax is linear, and (iii) is just the definition of Lxf. 

For (iv) we proceed by induction on k. First note that for k = 0, (iv) 
reduces to (iii). Now assume that (iv) holds for k. Then a k + 1 form may be 
written as 2d4/\wi, where wi is a k form, in some neighborhood of m E M. 
But Lx(df ~ w )  = Lx df + df A Lxw and 

by our inductive assumption and (iii). Since dL,f = Lxdf, the result follows. 
Finally for (v) we have 

The behavior of inner products under diffeomorphisms is given by the 
following. 

2.4.14 Proposition. Let M and N be rnanifoldr and f: M+N a diffeomor- 
phism. Then, if w E Qk ( N )  and X E % ( N ) ,  we have 
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that is, inner products are natural with respect to diffeomophisms; that is, the 
following diagram commutes: 

f* 
Q k ( N )  -------t Q k ( M )  

Similarly for Y E % ( M )  we have the following commutative diagram: 

Proof: Let v ,  ,..., vk-,ET,(M) andn=f(m) .  Then by2.4.12 and2.4.7 

&*Xf * u ( ~ ) '  (01,. . , 0,- 1) 

= ixo(n). (Tfv,, . . . , Tfvk- 

The nexi pi~position expresses d in t ern  of the Lie derivative (Palais 
[1963]). 

2.4.15 Proposition. Let X;: E %(M) ,  i = 0, . . . , k ,  and w E @(M).  Then we 
have 
( i )  (Lx,,w)(Xl, . . . , Xk) = Lx&4Xl ,  . . . , Xk)) 

f3 (ii)  do(^, x,, . . . , x,) = x (- I)'L~J~(x,,, . . . , $, . . . , x k ) )  
9 i = O  

P + 2 (- l ) ' + j w ( ~ ~ ( q . ) ,  xo, . . . , Ti, . . . , 4, . . . , Xk) 
d O< i<j< k 
z a where denotes that Xi is deleted. 
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ProuJ Part (i) is exactly condition (DO 4) following 2.2.17. For (ii) we 
proceed by induction. For k = 0, it is merely dw(Xo) = Lxow. Assume the 
formula for k - 1. Then if w E Slk(M), we have, by 2.4.13(iv), 

But ixow E 6 k - 1 ( ~ )  and we may apply the induction assumption. This gives, 
after a simple. permutation and 2.4.12, 

Substituting this into the above easily yields the result. . 
2.4.16 Definltlon. We call w €!dk(M) closed if dw =0, and exact if there is 
an a E Qk - '(M) such that w = da. 

2.4.17 Theorem. (i) Euery exact form is closed. 
(ii) (Poimark lemma). If w is closed then for each m EM, there is a 

neighborhood U of m for which wJ U €Qk(U) is exact. 

Proof: Part (i) is clear since dod=O. Using a local chart and 2.4.9(ii) 
together with 2.4.5(iv), it is sufficient to consider the case w EQk(U), U c E a 
disk about O E  E, to prove (ii). On U we construct an R linear mapping H: 
! d k ( ~ ) + Q k - ' ( ~ )  such that d 0 H +  Hod is the identity on Qk(U). This will 5 
give the result, for dw = O  implies d (Hw) = w. !2 

4 
For el, ..., ek EE define m 

2 
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Then, by 2.4.6, 

(The interchange of D and is permissible, as w is smooth and bounded over I 
t E[O, 11.) However, we also have, by 2.4.6, 

Hence 

which proves the assertion. . 
x There is another proof of the PoincarC lemma that is useful to understand. 

This proof will help the reader master the proof of Darboux' theorem in Sect. 
4 - 3.2, and is similar in spirit to the proof of Frobenius' theorem (2.2.26). 
B 
d 
z Alternative Proof of the Poincare Lemma We again let U be a ball about 0 

in E. Let, for t>O, F,(u)=tu. Thus I;, is a diffeomorphism and, starting at 
C1 
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t = 1, is generated by the time-dependent vector field 

Xt(u)=u/t 

that is, Fl(u) = u and dl;, (u)/dt = X, (E;,(u)). Therefore, since w is closed, 

For O <  to< I ,  we get 

Letting to+O, we get w =  dp, where 

Explicitly, 

(Note that this p agrees with that in the previous proof.) . 
See Exercise 2.4E for a relative BoincarC lemma. 
It is not true that closed forms are always exact (for example, on a 

sphere). In fact, the quotient groups of closed forms by exact forms (called 
the de Rham cohomology groups of M) shed light on the manifold topology. 
A discussion may be found in Flanders [1963], Singer and Thorpe [1967], and 
in de Rham [1955]. 

In differential geometry the use of vector valued forms is important; that 
is, one replaces multilinear maps into R by multilinear maps into a vector X g space V. One can utilize the exterior calculus by taking the components of the 
form. For applications to geometry, see Kobayashi-Nomizu [1963], Chern 
[1972], or Spivak [1974]. g 

The following table summarizes some of the important algebraic identities 2 
involving differential forms that have been obtained. CI !2 



Table 2.4-1 

1. Vector fields on M with the bracket [X,  Y] form a Lie algebra; that is, [X,  Y ]  is real bilinear, 
skew symmetric, and Jacobi's identity holds: 

2. Foradiffeomorphismf,f,[X,Y]=[f*X,f+Y]and(fog),X=f,g,X. 
3. The forms on a manifold are a real associative algebra with A as multiplication. Further- 

more, ar\P =(- 1)~9r \a  for k and I forms a and /3, respectively. 
4. I f f  is a map, f * ( a ~ P ) =  f *anf*P, ( f  og)*a=g*f*a. 
5. d is a real linear map on forms and: 

dda =0, d(aAP)= d a ~ ~ + ( -  1 ) ~ a ~ d / 3  for a a k-form. 

6. For a a k-form and Xo, . . . , Xk vector fields: 

7. For a map f, f*da=df*a. 
8. (Poincark lemma) If da=O, then a is locally exact; that is, there is a neighborhood U 

about each point on which a = dB. 
9. ixa is a real bilinear in X, a and for h : M+ R, ihXa = hixa = ixhcw. Also ixixa = 0, and 

10. For a diffeomorphism f, f*ixa=ifeXf*a. 
1 1. Lxa = &a + ixda. 
12. LXa is real bilinear in X,a and LX(ar\P)= LxaAP+ ~ A L ~ P .  
13. Foradiffeomorphismf, f*LXa=Lf.,f*a. 
14. (L,~)(X,, . . . , xk )=x( f f (x1 , .  . .,xk))-Ef= l ~ ( x l , .  . .,[x,xi], 0 .  .,xk). 
15. Locally, 

16. The following identities hold: 

LfXa =f lxa  + dfr\ixa 

EXERCISES 

2.4A. On S1 find a closed one-form a that is not exact. What are the cohomology 
groups of S '? 

X 2.4B. Show that the following properties uniquely characterize i,: 
$ (i) ix: S2k(~)+Slk-1(~)  is a A antiderivation; 

4 (ii) ix f = 0; f E %(MI; 
8 (iii) i,w=w(X) for w EP'(M); 
g (iv) ix is natural with respect to restrictions. 

i2 Hence show ilx, = LXiy - iYLX. Finally, show ix 0 ix =O. 
g 2.4C. If w E S ~ ~ ( M ) ,  and if, for some f ?! B(M),f (m)#O for all m E M and f w  is 
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exact, there is a 0 €Q1(U) with do = 0 ~ w  and d o ~ o  =0. Interpret as a 
necessary condition for integrability of a total differential equation. Such a 
function f is an integrating factor of o. For a partial converse, see Flanders 
[1963, p. 941. 

2.4D. Let s: T'M+T'M be the canonical involution of the second tangent bundle 
(see Exercise 1.6D). 
(i) If X is a vector field on M, show that s 0 TX is a vector field on TM. 
(ii) If 4 is the flow of X, T 4  is a flow on TM generated by s 0 TX. 
(iii) If p is a one form on M, fi: TM+R the corresponding function, and 

w E T 2 ~ ,  then show that 

df i (sw)=d~( . r~~(w) ,  T%(w))+dfi(w) 

2.4E. Prove the following relative Poincark lemma: Let o be a closed k-form on a 
manifold M and let N c M be a closed submanifold. Assume that the pull- 
back of o to N is zero. Then there is a (k - 1)-form a on a neighborhood of N 
such that da=o and a vanishes on N. If o vanishes on N, then a can be 
chosen so that all its first partial derivatives vanish on N. (Hint: Let cp, be a 
homotopy of a neighborhood of N to N and construct an H operator as in the 
Poincark lemma using cp,.) 

2.4F. (Angular Variables). Let S1 denote the circle, S1mR/(2.rr)m{z E CI IzI = 1). 
Let y: R+S1: xweix,  be the exponential map. Show that y induces an 
isomorphism TS 'mS x R. Let M be a manifold and let u be an "angular 
variable," that is, a smooth map w: M+S1. Define do, a one form on M by 
taking the R-projection of To. Show that (i) if o: M+S ', then d20= 0; and 
(ii) i f f :  M+N is smooth, then f *(do) = d ( f  *a), where f *a = o 0 f. 

2.5 ORIENTABLE MANIFOLDS 

The purpose of this section is to globalize the definitions of orientation 
and determinant discussed in Sect. 2.3. This leads naturally to the definition 
of the divergence of a vector field. First, we discuss partitions of unity, which 
are used in some proofs of this section, and which are essential for the 
definition of the integral (Sect. 2.6). \ 

2.5.1 Definitions. If t is a tensorfield on a manifold M, the support o f t  is the 
closure of the set of m E M  for which t(m)ZO, and is denoted supp t. Also, we 
say t has compact support if supp t is compact in M. 

A collection of subsets {C,) of a manifod M (or, more generally, a 
topological space) is called locally finite if for each m E M  there is a neighbor- 
hood U of m such that U n Ca = 0 except for finitely many indices a. 

2.5.2 Definition. A partition of unity on a manifod M is a collection 
{( U,., gi) > , where Y 

f! - - 
( i )  {(U,)) is a locally finite open covering of M; 4 

rn 
(ii) gi E %(M),  gi (m)  2 0 for all m E M, gi has compact support, and supp gi C 8 

U, for all i; 3 
(iii) For each m E M, 2 igi(m) = 1. g 

M 
c;l 

[By ( i ) ,  this is a finite sum.] 
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If is an atlas on M,  a partition of unity subordinate to &? is partition of 
unity {(U,,gi)) such that each open set U, is a restriction of a chart of & to an 
open subset of its domain. 

2.5.3 Theorem. If & is an atlas of M, there is apartition of unity subordinate 
to a. 

PmoJ The proof of 1.1.21 shows the following. Let M be an n manifold and 
{ W,) be an open covering. Then there is a locally finite refinement consisting 
of charts {v,+i) such that is the disk of radius 3, and such that 
+~-'(D,(o)) cover M, where D,(O) is the unit disk, centered at the origin in the 
model space. Now let & be an atlas on M and let { V,,+i) be a locally finite 
refinement with these properties. From 2.2.7 there is a nonzero function 
hi E F(M) whose support lies in and hj > 0. Let 

(the sum is finite). These are the required functions. . 
Proof of the parenthetical statement in 2.2.7. More generally, we prove a 
smooth version of Urysohn's lemma (1.1.23). Let A and B be two closed sets. 
Since manifolds are normal (see 1.1.21, and 1.1.22), there is an atlas {U,, 
such that U, n A # 0  implies U,n B =O. Let { y ,  g,} be a subordinate 
partition of unity and h = Zg,, where the sum is over those i for which 
KnA#Zm.Then hisoneon Aandzeroon B. 

2.5.4 Definition. A volume on an n-manifsd M is an n-form 9 €Pn(M) such 
that G(m)#O for all m E M; M is called orientable if there is a volume on M. 

Thus, 9 assigns an orientation, as defined in 2.3.8, to each fiber of TM. 

2.5.5 Theorem. Let M be a connected n-manifold Then ( i )  M is orientable iff 
9" ( M ) ,  regarded as am F(M) module, is one-dimmiomal (has one generator); 

(ii) M is orientable iff M has an atlas {(U,, w)) , where cp, : U,+ U,' c R", 
such that the Jacobian determinant of the overlap maps is positive (the Jacobian 
determinant being the determinant of the derivative, a linear map from R" into 
R"). 

ProoJ For (i) assume first that M is orientable, with a volume 9. Let 9' be 
any other element of Gn(M). Now each fiber of Bn(M) is one-dimensional, so 
we may define a map 5 M+ R by 

vl 
8 
OQ Q'(m) = f(m)Q(m> 
0 

We must show that f E F(M). In local representation, 
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and Q(m) = w(m) dxilr\ - - . r\dxc(m). But w(m) # 0 for all m E M. Hence 
f(m) = wt(m)/w(m) is of class Cm. Conversely, if Qn(M) is generated by $2, 
then Q(m) # 0 for all m E M since each fiber is one-dimensional. 

To prove (ii), let {(U,,cp,)) be an atlas with U,'n Rn. Also, we may assume 
that all Q' are connected by taking restrictions if necessary. Now cpi,!2 =Jdxl 
A .  - . r\dxn =A$20, where Q0 is the standard volume element on Rn. By means 
of a reflection if necessary, we may assume that J(uf) > 0 (AZO since $2 is a 
volume). However, a continuous real valued function on a connected space 
which is not zero is always > O  or always <O. Hence, for overlap maps we 
have 

But, 

+*(u)(a1r\. - .  A d ) =  &(u)* -al,,&(u)*.CyZr\. . . A & ( u ) * ' ~  

where D$(u)* - al(e) = al(D+(u) ee). Hence, by definition of determinant we 
have 

det (D (qj 0 ')(u)) = 
A(.) > o  

fi[% ocpi-'(u)] 

We leave as an exercise for the reader that the canonical isomorphism 
L(E; E)w L(E*; E*), used above, does not affect determinants. 

For the converse of (ii), let ((Va,+a)) be an atlas with the given property, 
and {(U,,cpi,g,)) a subordinate partition of unity. Let 

and let 

Since suppg, c U,, $ ESIn(M). Then let 

d 
Since this sum is finite in some neighborhood of each point, it is clear from 
local representatives that $2~!2"(M) .  Finally, as the overlap maps have 
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positive Jacobian determinant, then on U;: n U,, Qi # 0 and 

= [det ~((pioq; ' )~q~]q;(dx~~ . . - A&") 

Since Zj:igj = 1, it is clear then that Q(m)#O for each m E M. 

Thus, if M is an orientable manifold, with volume Q, 2.5.5(i) defines a 
map from 52" (M) into F(M); namely, for each 9' €Qn(M), there is a unique 
f E F(M) such that Q' =fa. 

2.5.6 Definition. Let M be an orientable manifold. Two volumes 52, and 9, on 
M are called equivalent $f there is an f E %(M) with f (m)  > 0 for all m E M  
such that Q1 =fa,. (This is clearly an equivalence relation.) An orientation of M 
is an equivalence class [Q] of volumes on M. An oriented mmuyoold, (M, [Q]), is 
an orientable manifold M together with an orientation [Q] on M. 

If [Q] is an orientation of M, then [ - Q] (which is clearly another orientation) 
is called the reverse orientation. 

The next proposition tells us when [Q] and [-Q] are the only two 
orientations. 

2.5.7 Proposition. k t  M be an orientable manifold. Then M is connected iff 
M has exactly two orientations. 

Proof: Suppose M is connected, and Q, Q' are two volumes with Q' = f 0. 
Since M is connected, and f (m)#O for all m E M, f (m)>O for all m or else 
f (m) < 0 for all m. Thus 3' is equivalent to Q or -Q. Conversely, if M is not 
connected, let U# [a or M be a subset that is both open and closed. If D is a 
volume on My define Q' by 

2 
Obviously Q' is a volume on M y  and Q' $ [Q] u [- 81. . 

3 
00 
0 

i3 A simple example of a nonorientable manifold is the Mobius band (see 
Fig. 2.5-1 
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2.5.8 Proposition. The equivalence relation in 2.5.6 is natural with respect to 
mappings and diffeomophisms. That is, i f f :  M-+N is of class C*, SIN and CN 
are equivalent volumes on N, and f *(aN) is a volume on M, then f *(CN) is an 
equivalent volume. I f f  is a diffeomophism and a,  and CM are equivalent 
volumes on M, then f,(LnM) and f,(!2h) are equivalent volumes on N. 

h o J :  This follows easily from the fact that 

which implies 

when f is a diffeomorphism. I1I 

2.5.9 Definition. Let M be an orientable manifold with orientation [a]. A 
chart (U, q )  with cp(U)= U'C Rn is called positive& oriented iff q ,  (Q(U)  is 
equivalent to the standard volume 

From 2.5.8 we see that the above definition does not depend on the choice 
of the representative from [a]. 

If M is orientable, we can find an atlas in which every chart has positive 
orientation by choosing an atlas of connected charts and, if a chart has Y 

2 negative orientation, by composing it with a reflection. Thus, in 2.5.5(ii), the 4 
atlas consists of positively oriented charts. t-n 

3 
0 

2.5.10 Definition. Let V be a submanifold of an n-manifold M. We say V has Z 
codimemion k i f f  V; considered as a manifold, has dimension n - k. 3 
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Now since a curve in V is also a curve in M, we can say To V c TOM, and 
it is clear from Sect. 1.6 that the submanifold V has codimension k iff T,V 
has dimension n - k for each v E V iff for each v E V there is a vector space 
W, of dimension k so that TOM= T, V (3 W, (direct sum). 

2.5.11 Proposltion. Suppose M is an orientable n-manifold and V is a 
submanifold of codimension k with trivial normal bundle. That is, there are C "" 
maps N, : V+ TM, i = 1,. . . , k such that N,(v) E T,(M), and N,(v) span a 
subspace W, such that T, M = T, V (3 W, for all v E I/. Then V is orientable. 

Pmoj: Let 52 be a volume on M. Form 521 V: V+Qn(M). Let us first note 
that 521 V is a smooth mapping of manifolds. (lks was obvious earlier when 
we considered open submanifolds.) This follows at once by using charts with 
the submanifold property, where the local representative is a restriction to a 
subspace. Now define 52,: ~ + 5 2 " - ~  (V) as follows: for 

(analogous to an inner product; however 4 are not vector fields on M). It is 
clear that 52,(v)#O for all v. It remains only to show that 52, is smooth, but 
this follows from the fact that 521 V is smooth. W 

For some of the following proofs it will be convenient to use a 
Riemannian metric. 

2.5.62 Definition. A R i e m e n  mtric on a manifold M is a tensor g E  
T;(M) such that for all m E M, g(m) is symmetric and positive-definite. 

2.5.13 Proposition. On any manifold there exists a Riemannian metric. 

ProoJ Let {(c.,cpi, hi)) be a partition of unity on M, with U,'= cpj(U,) cRn.  If 
Hi is the standard Riemannian metric on q!, 

Hi (u)(v,w) = 2 v'w' 

x let g, E q ( m )  be defined by 

zi 
Then g = C ,g, is a Riemannian metric on M. 
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Recall that we include second countable in our definition of a manifold. It 
is interesting that a manifold which admits a Riemannian metric (or a 
connection) must be second countable (see Abraham [1963]). 

Note that if ~ E % ( M ) ,  we may identify g with an T linear mapping 
gb E L(%, X*)  and if g is a Riemannian metric, obviously gb is an isomor- 
phism. In this case we write g# =(gb)-', and the maps g# and gb are called 
raising and lowering indices, respectively. 

2.5.14 Definition. Let M be a manifold with a Riemannian metric g. For 
j € T ( M ) ,  gradj- g# (d f )  is called the gradient o f f .  Thus, gradf E %(M).  In 
local coordinates, if gu =g(ei,q) and gu is the inverse matrix, then one checks 
that 

The above machinery allows us to obtain the following consequence of 
2.5.11. 

2.5.15 Theorem. Suppose M is an orientable manifold, H E 4 ( M )  and c E R 
is a regular value of H. Then V= H -'(c) is an orientable submanifold of M of 
codimension one, if it is nonempg. 

Proof. Suppose c is regular value of H and H-'(c)  = V# +. Then V is a 
submanifold of codimension one. Let g be a Riemannian metric on M and 
N = grad(H)l V. Then N(u)  @ T,V for u E V, because T,V is the kernel of 
dH(u),  and dH(v)[N(u)] = g(N, N) (u )  > 0 as dH(u) # 0 by hypothesis. Then 
2.5.11 applies, and so V is orientable. . 

Thus if we interpret V as the "energy surface," we see that it is an oriented 
submanifold for "almost all" energy values (Sard's theorem). 

Let us now examine the effect of volumes under maps more closely. 

2.5.16 Definition. Let M and N be two orientable n-manifolds with volumes 
0, and 0 ,  respectively. Then we call a C" map f: M+N voIume preserving 
(with respect to a, and a,) i f f  *a ,  = a,, and we call j ortentation preserving 
i f f  *(a,) €[a,], and orientation reversing if j*(a,) E[-a,]. 

From 2.5.8, [ f * a N ]  depends only on [a,]. Thus the first part of the 
definition depends explicitly on a, and a, while the last two parts depend 
only on the orientations [a,] and [a,]. Furthermore, we see from 2.5.8 that if 
f is volume preserving with respect to a,, a,, then f is volume preserving 
with respect to ha,, gS2, iff h=gof.  It is also clear that if f is volume 2 
preserving with respect to a,, a,, then f is orientation preserving with respect 
to [a,], [a,]. E 

G 
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2.5.17 Proposition. Let M and N be n-manifold with volumes Q, and Q,, 
respectively. Suppose f: M+ N is of class Cm. Then (i)f+(Q,) is a volume iff f 
is a local diffeomorphism; that is, for each m E M, there is a neighborhood V of 
m such that f 1 V: V+ f (V)  is a diffeomophism. (ii) If M is connected, then f is 
a local diffeomorphism iff f is orientation preserving or orientation reversing. 

Proof. Iff is a local diffeomorphism, then clearly f *(QN)(m)#O, by 2.4.9(ii). 
Conversely, i f f  *(aN)  is a volume, then the determinant of the derivative of 
the local representative is not zero, and hence the derivative is an isomor- 
phism. The result then follows by the inverse function theorem. (ii) follows at 
once from (i) and 2.5.7. W 

Next we consider the global analog of the determinant. 

2.5.18 Definition. Suppose M and N are orientable n-manifold with volumes 
Q ,  and Q,, respectively. I f f :  M+N is of class Cw, the unique C w  function 
det(QM, f E 9(M) such that f *a ,  = (de&, ,N f )QM is called the detemtnant 
o f f  (with respect to 8, and a,). I f f :  M+M, we write det,J= det(,M,,Mf. 

The basic properties of determinants given in Sect. 2.3 also hold in the 
global case, as follows. 

2.5.19 Proposition. In the notation of 2.5.18, f is a local diffeomorpkism 
iffdet(,M, ,Nf (m)# 0 for all m E M. 

This follows at once from 2.5.17. 

2.5.20 Proposition. Let M be an orientable manifold with volume Q. Then 

( i )  if f :  M+M, g :  M + M  are of class Cw, then det,(fog)= 
rcdet,n ~glrdet,gl; 

(ii) if h : M+M is the identity, then det, h = 1; 
(iii) i f f :  M+M is a diffeomorphism, then 

Proof. For (i), 

Y = g*(det,, f)Q = ( ( d e t d )  og) g*Q 

2 
9 
rn 

= ( ( d e t J )  og)(detag>Q 
13 

Part (ii) follows since, by 2.4.8 (iii), h* is the identity. For (iii) we have 
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I f f :  U c E+E, then det f is the Jacobian determinant o f f  [that reduces to 
the determinant o f f  i f f  is linear since Df(u)= f i f f  is linear]. Then in this 
case, (i) above is the usual "chain rule" for Jacobian determinants. (See the 
proof o f  2.5.5.) 

2.5.21 Proposition. Let ( M ,  [a,]) and ( N ,  [Q,]) be oriented manifolds and f: 
M+ N be of class C ". Then f is orientation preserving iff detcnM, ,,f(m) > 0 for 
all m E M,  and orientation reversing iff det(,M,,nf(m) < 0 for all m E M .  Also, f 
is volume preserving with respect to Q,, Q, iff det(,M,,Nf = 1. 

This proposition follows at once from the definitions. Note that the first 
two assertions depend only on the orientations [a,] and [a,] since 

which the reader can easily check. Here g~ %(N), h E %(M), g(n)#O, and 
h(m)#O for all n E N ,  m E M. 

Suppose that X is a vector field on Rn and Q0=dx'r\. . . r\dxn is the 
standard volume on Rn. Then LxQo=L,dx'Adx2~- . - r\dxn + . - . + dx' 
A. . . r\LX dxn (since Lx is a derivation). But Lx dxi = dLx x i  and Lxx i  = 
dx ' ( X )  = Xi, the components of  X. Hence 

axi axi Lxdxi=dXi=(- XI axj and L ~ ~ = ( , ) ~  

since dx 'r\dx ' = 0. That is, Lx $2, = (div X)Qo where div X is the usual diver- 
gence o f  a vector field on Rn. The generalization o f  this is as follows. 

2.5.22 Definition. Let M be an orientable manifold with volume a, and X a 
vector field on M. Then the unique function div,X E ~ ( M ) ,  such that LXa= 
(div,X)Q is called the divergence of X. We say X is incompressibble (with 
respect to Q) ifl diva X = 0. 

2.5.23 Proposition. Let M be an orientable manifold with volume Q, and X a 
vector field on M. Then: 

( i )  i f f E 9 ( M ) a n d f ( m ) # O f o r a I l m E M ,  then 

(ii) for g E %(M),  div,gX = g div, X + Lxg. 

ProoJ Since Lx is a derivation, we have 
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As f D is a volume, (diuf, X)( f D) = (L, f )Q + f (div,X)Q. Then (i) fol- 
lows. For (ii), we have, by 2.4.13, L,,Q = gL,D + dg A i,Q. Now from the 
antiderivation property of i,, dg A i,D = - i,(dg A Q)+ i, dg A Q. But dg A 

D E D"+'(M), and hence dg A D = 0. Also, i, dg = L,g and so L,,D = gL,D 
+(L,g)D. The result follows at once from this. 

2.5.24 Proposition. Let M be a manifold with volume D and X a vector field 
on M. Then X is incompressible (with respect to D) iff every flow box of X is 
volume preserving; that is, for the diffeomorphism FA : U+ V,  FA is volume 
preserving with respect to S2I U and Dl V. 

ProoJ: If X is incompressible, LxS2 = 0, D is constant along integral curves of 
X; S2(m)=(FA)*D(m). Hence FA is volume preserving. Conversely, if 
(FA)*Q(m) = Q(m), then LxQ = 0. H 

2.5.25 Corollary. Let M be an orientable manifold with volume $2, and X a 
complete vector field with flow F on M. Then X is incompressible iff detn FA = 1 
for all X E R. 

EXERCISES 

2.5A. Let f: Rn+ R" be a diffeomorphism with positive Jacobian and f(0) = 0. 
Prove that there is a continuous curve f, of diffeomorphisms joining f to 
the identity. [Hint: first join f to Df(0) by g,(x) = f(tx)/t.] 

2.5B. If t is a tensor density of M, that is, t = t' €3 y, where y is a volume, show 
that 

Lxt = (LXtt) €3 y + (divp X)t €3 y 

2.5C. (T. Hughes) A map A : E+E is said to be derived from a variational principle 
if there is a function L: E+R such that 

dL ( x ) ~  = (A (x) , u) 

where (,) is an inner product on E. Prove Vainberg's theorem: A comes from a 
variational principle if and only if DA (x) is a symmetric linear operator. Do this 
by applying the Poincarb lemma to the one form a(x) .v = (A (x), v). 

2.6 INTEGRATION ON MANIFOLDS 

The aim of this section is to define the integral of an n-form on an 
n-manifold M. We begin with a summary of the basic results on Rn. 

Suppose f: Rn+R is continuous and has compact support. Then 
f dx ' - . . dx " is defined as the Riemann integral over any rectangle contain- 

ing the support off (see Marsden [1974a, Chapter 91). 
F. 

2.6.1 Daflnltlon. Let U c R n  be open and o e W ( U )  have compact support. 
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If, relative to the standard basis of R", 

where 

wi ,... , ( u )  = w(u)(eil, . . . ,ein) 

we define 

Clearly, if we regard w E !2" (R "), the integral is unchanged. 
The change of variables rule takes the following form. 

2.6.2 Theorem. Let U, V be open subsets of R n  and suppose f: U+ V is an 
orientation preserving diffeomorphism. Then if w E an ( V) has cornpact support, 
f *w E f in  ( U )  has compact support and f *w = lo, that is, the following diagram 
commutes: 

Proof. If w = o dxl A - . .  A dxn, then f*w = (w ,...,, 0 f )(detQ,f) f io,  
where &I, = dxl A . . - A dxn is the standard volume on Rn. Since f is a 
diffeomorphism, the support of f * o is compact. Then 

As was discussed in Sect. 2.5, detQo f >0 is the Jacobian determinant of f .  
Now by covering the support of w by a finite number of disks, we see that the 
usual change of variables formula applies in this case (Marsden [1974a, 
Chapter 9]), namely, Y s 

J 
4 

Iwl . . . ndx l - - .dxn= (wl...nof)(det~)dxl~~~dx" cn 3 
2 

which implies 1 f *w = l w .  . 8 
E? 
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Suppose that (U,cp) is a chart on a manifold M, and o E Q n ( M ) .  Then if 
supp w c U,  we may form wl U,  which has the same support. Then cp,(w) U) has 
compact support, and we may state the following. 

2.6.3 Definition. Let M be an orientable n-manifold with orientation Q. 
Suppose w E Qn ( M )  has compact support C c U, where (U, cp) is a positively 
oriented chart. Then we define hq)w = / cp,(ol U) .  

2.6.4 Proposition. Suppose w E Qn ( M )  has compact support C c U n V,  
where (U, cp), ( V ,  rl/) are two positively oriented charts on the oriented manifold 
M. Then 

Proof: By 2.6.2, /q~,(wJ U )  = I ( $  o rp-'),cp,(wl U) .  Hence /cp.(wl U )  = 

/+,(wl U) .  [Recall that for diffeomorphisms f. =(f-')* and ( fog ) ,  = f ,  og,.] 

e 

Thus we merely define I w  = /(q)w, where (U,cp) is any positively oriented 
chart containing the compact support of o (if one exists). 

More generally, we can define / w  where w has compact support as 
follows. 

2.6.5 Definition. Let M be an oriented manifold and an atlas of positively 
oriented charts. Let P = {(U,, cpa, g,)) be a partition of unity subordinate to a. 
Define wa = gaw (so wa has compact support in some q.). Then define 

2.6.6 Proposition. ( i )  The above sum contains only a finite number of non- 
zero terms, and hence /*w E R. 

(ii) For any other atlas of positively oriented charts and subordinate 
partition of unity Q we have / w = / w. 

P Q 

The common value is denoted l a ,  the integral of w€Qn(M) .  
X 

f! o f :  For any m e  M,  there is a neighborhood U such that only a finite 
4 
m number of ga are nonzero on U. By compactness of supp w, a finite number of 
8 z such neighborhoods cover supp w. Hence only a finite number of ga are 

nonzero on the union of these U.  For (ii), let P= {(Ua,cp,,ga)} and Q= 
3 {(Vfl,+P,hp)) be two partitions of unity with positively oriented charts. Then 
CI 
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the functions {gahp)  have gahp(m)=O except for a finite number of indices 
(a, p), and ZaZpga hp(m) = 1 ,  for all m EM. Hence, since Z php = 1 ,  

The globalization of the change of variables formula is as follows. 

2.6.7 Theorem. Suppose M and N are oriented n-manifoldr and f:  M-+N is 
an orientation preserving diffeomolphism. If w EQn(N)  has compact support 
then f *o has compact support and l o  = I f  *w 

Proof: First, supp f *a = f - '(supp w), which is compact. For the second part, 
let { q.,q+) be an atlas of positively oriented charts of M and let P = { g,) be a 
subordinate partition of unity. Then { f (U,), qi 0 f - ' )  is an atlas of positively 
oriented charts of N and Q = { gi 0 f - ' )  is a partition of unity subordinate to 
the covering { f ( U;.)} Then 

As in 2.6.2, we have the following commutative diagram: 
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We also can integrate functions of compact support as follows. 

2.6.8 Definition. Let M be an orientable manifod with volume Q. Suppose 
f E F(M) and f has compact support. Then we define I f = I f  Q, the integral of 

n 
f with respect to O. 

The reader can easily check that since the Riemann integral is R linear, so 
is the integral above. 

The next theorem will show that the foregoing integral can be obtained in 
a unique way from a measure on M. (The reader unfamiliar with measure 
theory can find the necessary background in Royden [1963]. However, this 
will not be essential for future sections.) The integral we have described can 
clearly be extended to all continuous functions with compact support. Then 
we have the following. 

2.6.9 Theorem (Riesz representation theorem). Let M be an orientable 
manifold with volume Q. Let 9 denote the Bore1 sets of M, the a algebra 
generated by the open (or closed, or compact) subsets of M. Then there is a 
unique measure h on '91 (and hence a completion &) such that for evey 

continuous function of compact support, i f  dh = I j: 
n 

Proof Existence of such a h is proved in Royden [1963, p. 2511. For 
uniqueness, it is enough to consider bounded open sets (by the Hahn 
extension theorem). Thus, let U be open in M, and let C, be its characteristic 
function. We can construct a sequence of C m  functions of compact support 
cp, such that cp,JC,, pointwise. Hence from the monotone convergence 
theorem IQ q,, = dk+I C,dpQ = pn(U). Thus, pQ is unique. . 

Then one can define the space LP (M, Q), p E R, consisting of all measur- 
able functions f such that 1 flP is integrable. For p > 1, the norm 11 flip= 
( I (  f I p  dpQ)'h makes LP(M, S'Q into a Banach space (functions that differ only 
on a set of measure zero are identified). 

The behavior of these spaces under mappings can give information about 
the manifold. In particular, the effect under flows is of importance in 
statistical mechanics. In this connection we have the following. 

2.6.10 Proposition. Let M be an orientable manifod with volume O. Suppose 

X 
X is a complete vector field on M with flow F. l%en X is incompressible iff h is 
F invariant, that is, I f dpQ = I f o F A d h  for all A, and f E L'(M, O). 2 

0 
A 
8 Proof If X is incompressible, and f is continuous with compact support, 

then / ( f o  F,)Q = 00 FA(FA)* = J(F,)*(fO) =)=lf O. Hence, by uniqueness in ' Z 2.6.9, we have i f d p n  =/ ( foF , )dp ,  for all integrable f. Conversely, if 
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IVo FA)dh = If dpQ, then taking f continuous with compact support, we see 

Thus, for every integrable f, I f dpQ = IUdet, FA) dk. Hence, det, FA = 1, 
which implies X is incompressible. . 

We now make a number of remarks and definitions preparatory to 
proving Stokes' theorem. 

Let R: = {x = (x,, . . . , x,) E R " IXn > 0) denote the upper half-space of 
Rn  and let U c R: be an open set (in the topology induced on R: from Rn). 
Call Int U= U n {x E Rnlxn >0)  the interior of U and aU= U n (Rn-' x 
(0)) the boundary of U. We clearly have U = Int U u a U, Int U is open in U, 
a U closed in U (not in R "), and a U n Int U = 0. 

Let U, V be open sets in R: and$ U+ V. We shall say that f is smooth if 
for each point x E U there exist open neighborhoods U, of x and V, of f(x) 
in Rn  and a smooth map f,: Ul+ V, such that flU n U, = fllU n U,. We 
then define Df(x) = Df,(x). We must prove that this definition is independent 
of the choice off,, that is, we have to show that if cp: W+Rn is a smooth 
map with W open in Rn  such that cpl W n R: = 0, then DHx) = 0 for all 
x E W n R: . If x E Int( W n R:), there is nothing to prove. If x E a( W n 
R:), choose a sequence xn E Int(W n R:) such that x,+ x; but then 0 = 
Dcp(x,)+ DHx) and hence D+(x) = 0, which proves our claim. 

Let U c R: be open, cp: U+R: be a smooth map, and assume that for 
some q, E Int U, Hx0) E aR:. We claim that Dcp(xJ(Rn) c aW:. To see this, 
letp,: Rn + R be the canonical projection onto the nth factor and notice that 
the relation 

+(x0 + tx) =+(x0) + D+(xO)-tx + ~ ( t x )  

where lim,,oo(tx)/t =0, together with the hypothesis (p, o+)(Y) > 0 for all 
y E U, implies 0 < (p, +)(xo + tx) = 0 + (p, D+)(xo) .tx +P, (o(tx)), whence 
for t>O 

- 
6 

Letting t+O, we get (p, D+)(xo)-x > 0 for all x E  Rn. Similarly, for t <O, m 

letting t-0, we get (p, D+)(x,).x < 0 for all x E Rn. The conclusion is 8 
2 
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We now prove the following assertion: 

Lemma. Let U, V be open sets in RI: and f: U+ V a diffeomphism. Then f 
induces diffeomophisms Int f: Int U+ Int V and af: a U+a K 

Proof: Assume first that aU = 0 ,  that is, that U n (Rn- ' X (0)) = 0. We 
shall show that aV = 0 and hence we take Int f = f. If aV # 0, there exists 
x E U such that f(x) E aV and hence by definition of smoothness in R:, 
there are open neighborhoods in Rn, U, c U, x E Ul, Vl c Rn, f(x) E Vl, 
and smooth maps f,: U, + V,, g,: V, + U, such that f 1 U, = f,, g,l V n V, = 

f - ' l ~  n V,. Let xn E U,, xn+x, y, E V,\aV, and y,, = f(xn). We have 

= lim D(fog,)(y,,) = idRm 
r.-.f(x) 

and similarly 

so that Df(x)-' exists and equals Dg,Cf(x)). But we saw above that 
Df (x)(Rn) c Rn- ' X {0}, which is impossible, Df (x) being an isomorphism. 

Assume that aU# 0. If we assume aV= a, then, working with f -' instead 
of f, the above argument leads to a contradiction. Hence aV#0. Let 
x E Int U so that x has a neighborhood U, c U, U, n aU= 0, and hence 
aU, =a. Thus, by the above argument, af(U,)=(ZI, and f(U,) is open in 
V\aV. This shows that f(Int U)cInt V. Similarly, working with f - I ,  we 
conclude f (Int U) ZI Int V and hence f: Int U+Int V is a diffeomorphism. But 
then f (a U) = a V and f la U: aU-a V is a diffeomorphism as well. w 

Now we define a mcuu~old with boundary exactly as in Sect. 1.4 with the 
following difference: if (U,+) is a chart, we require that (P(U)cR:. Let 
& = {(U,+)} be an atlas on the manifold with boundary M. Define Int M= 
u .+ - '(lnt (+( U))) and aM = u ,+ - '(a(+( U))) called, respectively, the inter- 
ior and boundary of M. Their definition makes sense by the lemma above. 
Int M is open in M and so is an n-dimensional manifold; aM is an (n - 1)- 
dimensional manifold (possibly empty) without boundary. 

If & = {(U, +)} is an atlas on M, then the atlas 9 = {(aU,pn o a+)}, 
pn a+: a U+a+(U) c Rn- ' defines the manifold structure on aM. 

X 
Summarizing, we have proved the following. 

l4 
2 2.6.11 Proposition. If M is an n-manifold with boundary, then its interior 9 

Int M and its boundary aM are smooth manifolh without boundary of dimension B 
n and n - 1, respectiuely. Moreover, iff: M+N is a diffeomophism, N being 
another n-manifold with boundary, then f induces, by restriction, two diffeomr- 
phisms Intf: Int M+Int N and df: aM+aN. 
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Figure 2.6-1. 

Our next goal is Stokes' theorem, which deals with integration, so we have 
to define orientation on a manifold with boundary. A glance at the definition 
of orientability shows that the definition extends without difficulty to the case 
of manifolds with boundary. It is convenient to have in mind the following 
geometric interpretation of an orientation on M. An orientation on M is just 
a smooth choice of orientations of all the tangent spaces, "smooth" meaning 
that for all the charts of a certain atlas, the oriented charts, the maps 
D(%O+~-')(X): R n  += Rn are orientation preserving. With this picture in mind, 
we can define the boundary orientation of aM in the following way. At every 
x E aM, Tx(aM) has codimension one in Tx(M) so that there are-in a chart 
on M intersecting aM--exactly two vectors perpendicular to xn = 0: one 
points inward, the other outward. Our assertion preceding 2.6.1 1 assures us 
that a change of chart does not affect the quality of a vector being outward or 
inward. (See Fig. 2.6-1.) 

We shall say that a basis {v,, . . . , on- ,) of T'(aM) ispositive& oriented if 
{ - a/axn, v,, . . . , vn- ,) is positively oriented in the orientation of M. This 
defines the induced orientation on aM. 

2.6.12 Stokes' Theorem. Let M be an oriented smooth n-manifold with Y s boundary and a E an-'(M) have compact support. Let i: aM+ M be the q 
inclusion map so that i*a E an- ' ( 8 ~ ) .  Then rn 

8 
"a 
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or, for short, 

ProoJ: Since integration was constructed with partitions of unity sub- 
ordinate to an atlas and both sides of the equation to be proved are linear in 
a, we may assume without loss of generality that a is a form on U c R: with 
compact support. 

There are two cases: a U = 0 and a U # 0. Write 

where A above a term means that it is deleted. Then 

and thus 

If aU= 0, we have h u a  =O. The integration of the ith term in the sum 

occurring in Juda is 

+m 
and a4/i3xi dxi = 0 since a, has compact support. Thus da = 0 as 

desired. 
Iu 

If aU #0, then we can do the same trick for each term except the last, 
which is 

A 
8 since a,, has compact support. Thus 
m 
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On the other hand, 

But Rn- ' = aR: and the usual orientation on Rn-' is not the boundary 
orientation. The outward unit normal is -en = (0, . . . , 0, - 1) and hence the 
boundary orientation has the sign of the ordered basis {-en, el, . . . , en-,), 
which is (- 1)". Thus 

as desired. . 
This fundamental theorem reduces to the usual theorems of Stokes and 

Gauss in Rn (see Exercises 2.6C and 2.7B). (For forms without compact 
support, the best result is somewhat subtle. See Gaffney [I9541 and Money 
119661. For manifolds with corners, see Lang [1972].) 

We shall now discuss a topic called "Koopmanism" (after B. 0. Koopman 
[1931]) and an important result in the subject due to Povzner [1968]. This 
material requires an acquaintance with functional analysis, specifically with 
Stone's theorem for self-adjoint operators, and may be omitted if desired. 
(Required background is obtained in almost any text on functional analysis, 
such as Reed and Simon [1975].) 

Let M be a manifold and Q a volume on M, with the corresponding 
measure. If I;, is a volume preserving flow on M, then Ft induces a linear one 
parameter group of isometries on H =  L'(M,~,) by 

The association of U, with I;, replaces a nonlinear finite-dimensional problem 
with a linear infinite-dimensional one. 

There have been several theorems that relate properties of I;, and U,. The 
best known of these is the result of Koopman himself, which shows that U, Y 
has one as a simple eigenvalue for all r if and only if I;, is ergodic. (If there S 

9 are no other eigenvalues, I;, is weakly mixing.) A few basic results on ergodic rn 
3 theory are given in Sect. 3.7 below. We also refer the reader to the excellent 2 

texts of Halmos [1956], Arnold-Avez [1967], and Bowen [1975]. The spectral 
results may also be found, with further references, in Reed and Simon [1975]. 9 
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One can also attempt to use Koopmanism to study flows generated by 
vector fields that are in some sense singular. See, for example, Marsden 
[1968]. (See also Truesdell [1974].) For Hamiltonian systems, a satisfactory 
theory of the motion of a particle in a general potential with singularities 
(including collisions with walls and other particles) remains unsolved to this 
day. In this direction, however, there is an important result of Povmer that 
we shall present. A related result of note is that of Mackey [1963], which 
states that if U, is a linear isometry on L'(M,~~),  which is multiplicative 
U,Cfg) = U,$ U,g, (where defined), then Ut is induced by some measure 
preserving flow I;,. 

To present the result of Povzner, we need a lemma due to Nelson. 

2.6.13 Lemma. Let A be an (unbounded) self-adjoint operator on a Hilbert 
space H. Let D o c  D (A) (the domain of A) be a dense linear subspace of H and 
suppose U, = eitA (the unitary one-parameter group generated by A) leaves Do 
invariant. Then A,=(A restricted to Do) is essentially self-&joint; that is, the 
closure of A, is A. 

Proof: Let & denote the closure of_A,. Since A is closed and extends A,, A 
extends A,. We need to prove that A, extends A. 

For A > 0, A - iA is surjective with a bounded inverse. First of all, we 
prove A- iA, has dense range. i f  not, there is a v E H  such that 

(v,kr-iA,x)=O forall XED, 

In particular, since Do is U, invariant, 

(v, U,x)  = eXt(v, x) 

Since Do is dense, this holds for all x E H. Since 11 U, 11 = 1 and A > 0, we 
conclude that v = 0. 

Thus (A- iA,)-' makes sense and (A- iA)-' is its closure. It follows that 
A is the closure of A,. . 
2.6.14 Proposltlon. Let X be a C" divergence-free vector field on ( M ,  8) 4 
with a complete flow I;,. Then iX is an essentially self-ac$oint operator on " CpO = the C" functions with compact support in the Hilbert space L'(M, pd. 2 

d 

i3 Proof: Let UJ= f 0 F- ,  be the unitary one-parameter group induced from 
[3 F,. A straightforward convergence argument shows UJ is continuous in t in 
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L~(M, h). In Lemma 2.6.13, choose Do = C" functions with compact sup- 
port. This is clearly invariant under U,. Iff E Do, 

so the generator of Ut is an extension of -X (as a differential operator) on 
D,. The corresponding essentially self-adjoint operator is therefore iX. rn 

Now we prove the converse of 2.6.14. That is, if iX is essentially self- 
adjoint, then X has a complete flow. This is a functional-analytic characteri- 
zation of completeness. Povzner's original proof was complicated and had 
some omissions. We give a simpler proof which was kindly communicated by 
E. Nelson. 

2.6.15 Theorem. Let M be a manifold with volume element 52 and let X be a 
Cw divergence-free vector field on M. Suppose that, as an operator on 
L 2 ( ~ , ~ ) ,  iX is essentially self-ac$oint on the Cw functions with compact 
support. Then, except possibly for a set of points x of measure zero, the flow 
F,(x) of X is defined for all t E R. 

Actually we will prove more than this. Namely, if the defect index of iX is 
zero in the upper half-plane [i.e., if (iX+ i)(CCw) is dense in L2], we shall show 
that the flow is defined, except for a set of measure zero, for all t >O. 
Similarly, if the defect index of iX is zero in the lower half-plane, the flow is 
essentially complete for t < 0. 

The converses of these more general results can be established along the 
lines of the proof of 2.6.13. 

ProoJ Suppose that there is a set E of finite positive measure such that if 
x €  E, &(x) fails to be defined for t sufficiently large. Let ET be the set of 
x E E for which 4Cx) is undefined for t > T. Since E = u ?=,E,, some ET has 
positive measure. Replacing E by ET, we may assume that all points of E 
"move to infinity" in a time < T. 

Iff is any function on M, we shall adopt the convention that f(Ft(x))=O 
if Ft(x) is undefined. For any x E M, if t < - T, 4(x)  must be either in the 
complement of E or undefined; otherwise it would be a point of E that did 
not move to infinity in time T. Hence we must have &(Ft(x))=O for t < - T, 
where X,  is the characteristic function of E. We now define a function on M 

0 
Note that the integral converges because the integrand vanishes for t < - T. 
In fact, we have 0 < g(x) < l-wT eV'dr = eT. Moreover, g is in L2. Indeed, 3 
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because 4 is measure-preserving, where defined, we have[[& o F7 11, < 11% 112 so 
that 

The function g is nonzero because E has positive measure. 
Fix a point x E M. Then Ft(x) is defined for t sufficiently small. It is easy 

to see that in this case F7(&(x)) and F7+,(x) are defined or undefined 
together, and in the former case they are equal. Hence we have xE(F,(Ft(x)) 
=xE(F7+,(x)) for t sufficiently small. Therefore, for t sufficiently small 

Now if cp is Cw with compact support, we have 

(These equalities are justified because on the support of cp the flow Ft exists 
for sufficiently small t and is measure-preserving.) 

Thus g is orthogonal to the range of X+ 1, and therefore the defect index 
of iX in the upper half-plane is nonzero. 

Y The case of completeness for t <O is similar. 
2 
9 
rc) EXERCISES 
8 

2.6A. Give the details for the construction of the sequence described in the proof of 

% 2.6.9. Give the version of 2.6.10 that applies to vector fields that are not 
3 necessarily complete. 
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2.6B. Suppose M is an orientable manifold and X E %(M) is incompressible. Let 
A c M be a measurable set and Ah = FA(A), where F is the (local) flow of X. 
Then b(A)= h(AA). Interpret physically. (Hint: Use 2.6.10.) 

2.6C. Use Stokes' theorem to derive Gauss' theorem: 

where X is a vector field on V, and D is a volume element. 
2.6D. Verify from Gauss' theorem that if X is a divergence free vector field, then, as 

an operator, X is skew sydmetric: 

2.6E. Prove the identity hLXnAfl= - h o ~ L ~ f l  if M is compact without 
boundary. 

2.6F. Consider the flow in R~ associated with a reflecting particle: for t >0, set 

and set F , ( - g , ~ ) = - F t ( ~ p ) ,  F-tGI;,-' 

Study the Koopmanism of this flow. Specifically, what is the exact generator of 
the induced unitary flow? Is it essentially self-adjoint on the Cw functions with 
compact support away from the line q = O? 

2.6G. Use the result of Mackey (see the remarks preceding 2.6.13) to give 
another proof of Povzner's theorem. 

2.6H. Let M be orientable with a volume D and X, Y E %. Prove that div[X, Y] 
= X(diu Y) - Y(div X). 

2.7 SOME RIEMANNIAN GEOMETRY 

In order to properly understand many important examples in mechanics, 
a knowledge of some Riemannian geometry is essential. In particular, this is 
needed if one wishes to understand geodesic motion as a Hamiltonian system. 
This material is treated rather quickly here. The reader who is anxious to get 
on to mechanics can merely use this section as a reference and come back to 
it as needed. 

In 2.5.12 we defined a Riemannian metric g. We shall also consider y 
pseudo-Riemannian metrics g, where we assume gm = g(m) is nondegenerate 
in place of positive-definiteness. Z 

In local coordinates, we write 8 
2 
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where summation over i and,j is implied and gg is a nonsingular symmetric 
matrix depending smoothly on x. 

For example, a submanifold M of Rn is a Riemannian manifold, where 
for each x E M, gx is the inner product induced from that of Rn. (The difficult 
theorem of J. Nash [1964] asserts that every Riemannian manifold is so 
obtained.) 

In order to proceed most smoothly, it is convenient to first define the 
notion of affine connection. Below we shall see that any pseudo-Riemannian 
metric uniquely determines a connection satisfying certain conditions. 

2.7.1 Definition. An (afJine) connection on a manifold M is a map that 
assigns to each pair of CoO vector fiela3 X and Y on M (or on an open subset of 
M )  another C " vector field V, Y such that 

(a)  V, Y is R-bilinear in X and Y ,  and 
(b)  forf: M+Rsmooth, V F Y = f V x Y a n d V x f Y = f V x Y + X ( j ) Y .  

We call Vx Y the covariant derivative of Y along X. 
In a local chart on M with coordinates x = (xl,. . . , xn) we define the n3 

functions r;k (x) by 

The rjk are called the Christoflel symbols of the connection (in the given chart). 
The summation convention is in effect here and in what follows. 

The Christoffel symbols are not the components of a tensor on M. Rather, 
they are the components of an object on the second tangent bundle, namely, 
a "spray." This will be discussed in Sect. 3.7 below. If we change coordinates 
from (x', . . . ,xn)  to ( 2 , .  . . ,xn), the transformation rule for the r's is easy to 
work out from the definition: substituting 

a axj a -=-- ax' axi axi 

(the transformation rule for vectors) and using (a) and (b) and the chain rule, 
we find 

- rk . .= : - r  axp a x q  + - -  axk axk a 2 ~ p  

" ax; azj Pq axr axP axiaxj 
- 
4 " Also from (a) and (b) we find that 3 

ayi (V, Y)'= -xj + rkxjyk 
ax' 
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2.7.2 Example. If M =  Rn with the usual inner product, we choose, in 
Euclidean coordinates 

This is also commonly denoted X-V Y. Thus, the Euclidean connection is 
characterized by the fact that in standard coordinates, the r's are zero. In 
other coordinates (cylindrical, spherical, etc.) the Christoffel symbols are not 
zero. For instance, using the above transformation law to change from 
Euclidean (x,y,z) coordinates in R~ to spherical (r,B,cp) coordinates in R ~ ,  
x = rsin Bcos cp, y = rsin Bsin cp, z = rcos 8, we find that the nonzero Christoffel 
symbols are 

Other examples will be easier to deal with after the relationship with a 
metric is introduced (see Exercise 2.7A). 

2.7.3 Definition. If y ( t )  is a curve and X is a vector fie14 define the covariant 
derivatiw of X along y by 

[This is well defined because, from the local formula for (VxY)' we see that 
(V, Y)(m) depends only on the value of X at m and not on its derivatives.] 

We say X is autoparallel along y if DX/dt =O. We call y a geodesic if I; is 
autoparallel along y. 

(The latter is well defined because, from the c h i n  rule, 

so DX/dt  depends only on the values of X along y.) 

Thus y ( t )  is a geodesic if and only if, in any coordinate system, 

These are called the geodesic equations. 2 9 
For example, in Rn it is obvious (using Euclidean coordinates) that the 

geodesics are straight lines. 2 
From the existence theorem for ordinary differential equations (see Sect. z 

2.1), given y(O), 1;(0), there is a unique geodesic y(t) defined on some 8 
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t-interval. Similarly, given a curve y(t) and XoE T,(,,M, there is a unique 
autoparallel field X (t) along y with X (t) E T,(,)M and X(0)  = X,. There are 
no limitations on the time of existence for X(t) because its differential 
equation is linear in X. Thus, for each curve y and two points y(t) and y(s) 
on it, we get a linear isomorphism 

where rt,,(v)=v(t) is v at y(s) extended to be autoparallel along y(t). The 
map r,,, is calledparallel translation along y from y(s) to y(t). See Fig. 2.7-1 
and compare with Fig. 2.2-1. From uniqueness of solutions of differential 
equations we see that the maps have the following flowlike property: 
T ~ , ~  o rt,,= r,,, and r,,, = identity. 

For example, in Euclidean space, parallel translation is exactly that in the 
Euclidean sense. On the other manifolds, the intuition is that if you were a 
creature living on the manifold (such as we are living on a sphere) and you 
carried an arrow around the manifold in a manner that seems parallel to you 
(not with respect to any containing space), then you are parallel transporting 
the vector. 

There is a basic link between parallel translation and the covariant 
derivative much like that between flows and the Lie derivative, discussed in 
Sect. 2.2, as follows: 

2.7.4 Theorem. Let X be a vector field defined along y. Then 

Prod We work in a chart. By construction v(t) = r,, ;v9, v, E T,(,)M satis- 
fies (d/dt)v % I'jkv k+j = 0. If we write (r,, ,v,)' = (r,, ,xu', we can conclude 
that 
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Now T ~ ,  , = 7,:; and T,, , = id, so using the formula for the derivative of an 
inverse matrix and the chain rule (see the proof of 1.7.8), we get 

From this formula and the property rt, ,07,., , = rt, ,, we get the more 
general formula 

d DX 
& ' ' , 'X(Y(S)) = ' t ,  $7 ( y ( s ) )  

Conversely, given a collection of parallel translation maps (satisfying the 
above flowlike property) one can use the formula in 2.7.4 to define a 
connection, just as one can define the Lie derivative in terms of a flow. 

Given a connection V and a vector field Y, VY may be regarded as a 
(1, 1) tensor since V,Y depends only on the point values of X. We write, in 
coordinates, 

where Yi .= aYi/axj. 
By ~~l lmore ' s  argument in Sect. 2.2, V extends naturally to any tensor 

field. If t is a (p, q) tensor, V t is a (p, q + 1) tensor and is given in coordinates 
by 

. . 
(vt)?:' . '' - t'l,....'f. 

I J J I  ~ ~ l k  

= til.::'.'. , + t."~:: : ipril + (all upper indices) 
JI Jq, JI Jq 

- ti.;: : 2 rb1 - (all lower indices) 

The parallel translation map also extends in an analogous way to all tensors 
and the formula in 2.7.4 extends to all tensors by a proof just like we gave in )I: 

Sect. 2.2 for the Lie derivative. 2 
9 

Given a connection V, we can define an exponential map as follows. By 
homogeneity of the equations, if y (t) is a geodesic and 6 E R, y (St) is a 2 
geodesic as well, with initial velocity Sj(0). It follows that on some neighbor- Z 
hood V of 0 E T, M; the corresponding geodesics are defined for t E [0, I]. 
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Then by definition exp, maps o E V to the point y,(l), where +,(O)= v and 
yv(t) is a geodesic. 

The homogeneity also gives ytv(s) = y,(ts). Setting s = 1 gives exp, (to) = 
yv(t). It follows also that Texp,(O) = identity, so by the implicit function 
theorem, exp, is a diffeomorphism of a neighborhood of OE TxM to a 
neighborhood of x E M. This then gives a local chart for M called normal or 
Gaussian coordinates. (The map exp is smooth because the solution of dif- 
ferential equations depends smoothly on the initial conditions; see Sect. 2.1.) 
These coordinates are often convenient for computations; for example, in 
them, rays through 0 are geodesics [from exp, (to) = y, ( t)]  and hence I'j,(O) = 0. 

If N is a submanifold of M, a tubular neighborhood of N is a neighbor- 
hood U of N that is diffeomorphic to a neighborhood of zero in a vector 
bundle over N. 

2.7.5 Theorem, If N is compact in a manifold M with a connection V ,  then N 
has a tubular neighborhood. 

Proof: The vector bundle E in question is any normal bundle of N ;  that is, 
for x E N, Ex is such that TxN CB Ex = T,M. [For instance, if M has a 
hemannian metric, Ex = (T,N)I may be chosen.] The diffeomorphism is the 
exponential map. The calculation above shows exp has a derivative at x E N 
that is the identity on each factor T,N and Ex, and thus is a local diffeomor- 
phism by the implicit function theorem. Since N is compact, and exp, (0) = x, 
it is a diffeomorphism on a neighborhood of N. . 

The theorem is also true if N is noncompact by using a partition of unity 
argument. See Lang [I9721 for details. 

Now we come to the question of how to obtain a specific connection from 
a Riemannian metric. The next result is sometimes called the "Fundamental 
Theorem of Riemannian Geometry." 

2.7.6 Theorem. Let M be a pseudo-Riemannian manifold. Then there is a 
unique connection V on M such that 

( i )  V,Y-V,X=[X,Y] and 
(ii) parallel translation preserves the inner product (i.e., is an isometry). 

Remark. Condition (i) is easily seen to be equivalent to the symmetry 
I'k =I?;, in any coordinate chart. For any connection, V ,  Y - V ,X - [ X ,  Y ]  = 
Tor(X, Y )  defines a tensor called the torsion. Thus (i) means V is torsion free. 

- 
.-( 

4 
rn 
3 Proof of 2.7.6. Condition (ii) means that 
2 
z 
fi d(.t,sx(Y(s)), dt .,, Y ( Y  ( s ) ) ) y ( t ) = ~  
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From r,,, 0 r,,, = r,,,, we see that this condition is equivalent to the same 
condition taken at t = s. Using our calculation in 2.7.4 

(at first, the left-hand side makes sense only in a chart), the condition 
becomes 

a x ,  Y) = ( V Z X ,  Y) + (X, v, Y) 

where Z = y'. Thus (ii) is equivalent to this condition for all vector fields 
X, Y, Z By substitution of this identity and (i), we verify directly that 

Z(X, Y) + ( 2 ,  [ x,  Y]) + Y(X, 2 )  + (Y, [X, Z]) 

This condition shows that V, Y is uniquely determined by the metric. Con- 
versely, reversing the steps, if we define V, Y by this formula, it verifies the 
conditions of a connection, (i) and (ii). m 

In local coordinates, this formula relating the connection and metric is 

where ghk(x) is the inverse matrix of ghk(x). 
Condition (ii) may also be written 

for vector fields X, Y defined along a curve y. This shows, in particular, that if 
y ( t )  is a geodesic, the energy, (j.,j.)/2 is constant in t. 

A Riemannian manifold admits convex neighborhoods. Precisely, if x E 
M, there is an open set U containing x such that any two points of U may be 
joined by one and only one geodesic lying in U; these geodesics are minimal 
in that if y is the unique geodesic joining x, to x, in U and a is any other 
curve from x, to x,, then l(y) < /(a), where 

Y 
!2 

is the length of a. We shall refer to Milnor [1963] for a proof. P m 

Let M be a connected, finite-dimensional Riemannian manifold. Set 8 
3 

d(x,,x2)=inf {l(a)(a is a C' curve from x, to x,) Z? !z 
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One can show that d is a (distance) metric on M yielding the same topology 
as M was originally endowed with. 

We shall leave it to the reader to fill in the proof of the next result (again, 
see Milnor I19631 for example): 

2.7.7 Theorem. The following are equivalent: 

(i) M is geodesically complete. 
(ii) d is a complete metric on M. 

(iii) Closed and bounded subsets of M are compact. 

Here, geodesically complete means that every geodesic y(t) can be ex- 
tended so as to be defined for all t E R. As in Sect. 2.1, one sees that compact 
Riemannian manifolds are complete. We shall return to these questions in 
Sect. 3.8. 

Closely related to 2.7.7 is the Hopf-Rinow theorem, which asserts that for 
M complete, any two points x,, x2 can be joined by a minimal geodesic y (not 
necessarily unique); that is, 1 (y) = d (x,, x,). 

2.7.8 Definition. A bijective map f: M+P between Riemannian (or pseudo- 
Riemannian) manifolds is called an isometry when f preserves the metric: 
(v, w), = (Tfv, T~.w)~(,) for v, w E TxM. 

It is not hard to see that this csndition is the same as asking that f map 
geodesics to geodesics or that f is an isometry for the corresponding metric 
spaces. 

Two isometries f,, f2 from a connected Riemannian manifold M to 
another P and which, together with their first derivatives agree at a point 
x E M, are actually identical. This follows by letting Q = { y E MI f, = f2) 
and observing that Q is both open and closed. For instance, it then follows 
that any isometry of Rn is a Euclidean motion, that is, a translation followed 
by an orthogonal transformation. 

2.7.9 Definition. A vector field X is called a Killing field if Lxg=O. 

In components, Lxg is easy to work out. (See Exercise 2.7F.) The most 
useful expression is 

2 
9 where X, = g,XJ, the one form associated with X. (Likewise, g, and its inverse 
m 
8 gkl are used to associate contravariant with covariant tensors.) 
2 

2.7.1 0 Proposition. A vector field is a Killing field if and only if its flow I;, 
2 consists of isornetries. 
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ProoJ: This is a consequence of the formula 

from Sect. 2.2. rn 

We now define the volume element on a Riemannian manifold. 

2.7.1 1 Definition. Let M be an oriented Riemannian n-manifold If v,, . . . , vn 
E Tx M are positively oriented set 

This is possible as det(vi, vj) is 2 0 for all v,, . . . ,vn E TxM since the metric is 
positive-definite. Now define p on all n-tuples by skew symmetly. 

Clearly p is a volume form on M. Locally, p =id= &'A . - - ,-,dxn. 
The definition is motivated from the fact that the volume spanned by vectors 
v,, . . . , vn E R " is (det vi v~)"~. 

Since we have p, we can use it to define the divergence of a vector field, 
div X. From the expression for p above, and the definition L,p = (div X)p 
from Sect. 2.5, we find, locally, if V = d G ,  

1 a 
div X = - 7(VXi) 

V ax 

For f: M+R, gradf is the vector field defined by 

( grad f (x) , vx) = df(x).u, for all vx E TxM 

In coordinates, 

The Laplace-Beltrami operator on functions is defined by 

V2 = diva grad 

From Stokes7 theorem we find that d and -div are adjoints and V2 is 
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symmetric: 

for X,j,g having compact support. 
Next we consider the Laplace-de Rham Operator. 

2.7.12 Definition. Let M be a Riemannian n-manifold and let P be a k-form. 
Define an ( n  - k)- form *P by 

where v,, . . . ,on are oriented orthonormal vectors in Tx M. We call * the Hodge 
star operator. 

For example, on R 3, *dx = d y ~ d z ,  * d y  = d x ~ d z ,  and so forth. One can 
then verify that 

defines an inner product on k-forms. 

2.7.13 Definition. Set (a ,P)  = which gives an L~ inner product on 
the sections of Q k ( ~ ) .  Also, define the codtj-Jerential operator 6 = 
(- l)n(k+ I)+ l*d*. 

It is easily checked that 6 is adjoint of d: 

(SY, P )  =(v, dP) 

[Use the fact that l M d ( ~  A * y )  = 0 and *./3 = (- l)k(n-k)p.] 

2.7.1 4 Definition. The Laplace-deRham operator is defined by 

A=d6+6d 

The operator A is symmetric, and nonnegative 

(Aa,P)=(a,AP),  (Aa,a)>O 
X 
.4 

A k-form a satisfying Aa =O is called harmonic. On functions, A differs in 
sign from the Laplace-Beltrami operator V2.  (See, for instance, Nickerson- 
Spencer and Steenrod [1959].) 

Z The operator A is at the basis of "Hodge-De Rham Theory." The central 
3 result states that on a compact manifold M without boundary, the kernel of A 
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on the k-forms is isomorphic to the kth cohomology group of M. It is easy to 
see, however, in a formal way, that the kernel of A is the quotient of closed 
k-forms by exact ones. Indeed, first of all observe that if dw=O and &=O, 
then Aw = 0. The converse is also true, since 

(Aw, w) = (do, do) + (&, &) 

from the fact that d and 6 are adjoints. Now map ker(A) to the closed forms 
by injection. We claim that if wEker(A) is exact, then w=O. Indeed, let 
w =  da; then 6da =0, so (bda,a)=O, so (da,da)=O, so w=O. Also, if w is 
closed, there is a form a such that A(@- da)=O. Indeed, formally, the 
orthogonal complement of the exact forms are the co-closed forms (6=0), so 
we orthogonally decompose w = da + P, where 6P = 0. Then, if do = 0, we get 
ap = 0. 

More generally, one has the Hodge decomposition: for any k-form w, w 
splits uniquely into three L~ orthogonal components 

where A y  = 0. This is easy to see formally as well. Indeed, the exact forms and 
co-exact forms are orthogonal and their orthogonal complement consists of 
forms y such that dy = 0 and 6 y  = 0; that is, A y  = 0. To prove thls rigorously 
requires elliptic operator theory. See Warner [I9711 and, for the case of 
manifolds with boundary, Morrey [1966]. 

We conclude this section with a few basic facts about curvature. 

2.7.15 Definition. Let V be a connection on M. The curoature tensor R of V 
is a (1,3) tensor (mapping Tx M X T, M X Tx M+ Tx M for x E M) defined 
through the formula 

I 

where X, Y,  Z are vector fields on M. 

Locally, writing 

one computes that 



2 CALCULUS O N  MANIFOLDS 155 

Fixing Y and Z, R (. , Y, Z) gives a linear map of Tx M to Tx M. Its trace is 
the Ricci tensor, Ric. In coordinates, 

R..=(Ric) r/ I /  ..= R~; (summation on I) 

Some geometric insight may be gained from the fact that R = 0 if parallel 
translation from x toy is independent of the curve joining x toy. In general, 
if S(x,y) maps R 2  to M, the curvature measures the extent to which the 
covariant derivatives in the x and y directions on S fail to commute: 

A manifold is flat if R = 0. In the Riemannian case, this is equivalent to the 
existence of coordinates in which g is constant. These coordinates are 
provided by the exponential map. 

Given two orthonormal vectors v,,.v2 E TxM on a Riemannian manifold, 
the sectional curvature of their span I' is defined by 

If K < 0, nearby geodesics starting out parallel tend to diverge, while if K > 0, 
they tend to converge. Thus the sign of the curvature is relevant for the 
stability of a geodesic. 

The scalar curvature on a Riemannian manifold is defined as the trace of 
the Ricci tensor. In coordinates: 

(Ric : T, M X T, M-R, so taking its trace involves the metric). 
Some identities satisfied by the curvature tensor are: 

(i) R ( X , Y , Z ) = - R ( Y , X , Z ) O ~ R , ~ = - R ~ ~ ~ ;  
(ii) (Bianchi's identity) R (X ,  Y,  Z) + R (2, X, Y) + R ( Y,  3 X) = 0 or R~,' is 

"cyclic" in i , j ,k;  
(iii) (R (X, Y,  Z), W )  = (R (2, W, X), Y) or R,,, = R,,,. 

For our discussions on constrained systems later on in Sect. 3.7, the 
second fundamental form plays a central role. 

Let M be an oriented (pseudo-) Riemannian n-manifold and P c M and 
(n - 1)-dimensional submanifold (i.e., a "hypersurface"). Therefore, we can, ' at least in the Riemannian case, and in the general case if P is spacelike, that 

fi is, gx > 0 on T,P, uniquely define a unit normal vector field N on P. 4 
m 
B By 2.7.6, we have a co~ect ion  on M and one on P as well, determined by 

$ the Riemannian structure. Let V denote the connection on M, 'iT that on P. 
Z For vector fields X, Y on P we can define V,Y; from its expression in 

coordinates, it depends only on their values on P. Also, we have Gauss' 
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formula: 

where S is a tensor on P, called the second fundamental form. In fact, a 
straightforward computation in coordinates shows that 

(Weingarten equation). From these two equations and the definition of the 
curvature tensor, it is straightforward to show that 

(Gauss' equation), where k is the curvature on P and X, Y, Z,  U are tangent to 
P, and that 

,, , 

(Codazzi equation). 

EXERCISES 

2.7A. Work out the metric components and Christoffel symbols using spherical 
coordinates on M =  the sphere of radius R in R 3 .  Verify that the geodesics are 
great circles. 

2.7B. (a) (Classical Gauss' Theorem) Let M be an oriented Riemannian manifold 
with boundary i3M; let a be the volume element of M and a that on aM 
determined by the Riemannian metric. If n is the outward unit normal on aM 
and X is a vector field on M, show that ixS2=(X.n)u on aM. Prove Gauss' 
theorem: 

(b) (Classical Stokes' theorem) Show that the curl on R 3  is determined by 

(cut-1~)-= * d z  

where 3 is the one form ~ = X ' & ' + X ~ ~ X ~ + X ~ & ~  associated with the 
vector field X =  X 'el + x2e2 + x3e3.  Also, show that 2 pulled back to a curve 
in R 3  is the tangential component of X .  Use these results and (a) to derive the 
classical Stokes' theorem from the general Stokes' theorem 2.6.12. That is, X 
prove that if S is an oriented smooth surface in R 3 ,  then 2 

4 
m 

where n is the unit normal to S corresponding to the given orientation. 
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2.7C. Define LxV for a connection V and show that LxV = VVX+X.R, where R is 
the curvature tensor (See Yano [1957]). 

2.7D. Let (M,g) be a Riemannian manifold and X a Killing vector field, that is, 
Lxg=O. Let x(t) be a geodesic and T =  i its tangent vector. Prove that (X, T) 
is constant along the geodesic. 

2.7E. If X is a vector field on a Riemannian manifold M, let 2 be the associated 
one-form: 

Show that 6 f =  - divX. 
2.7F. Show that Vg=O, where V is the connection of g. Show that taking the Lie 

derivative of a covariant tensor does not commute with taking the con- 
travariant form of the tensor via g, whereas this is true for V. 

2.7G. Show that a hypersurface P c M is totally geodesic (i.e., a geodesic in P 
starting tangent to P stays in P)  if and only if the second fundamental form of 
P is zero. 

2.7H. A hypersurface P c M is called minimal if trS, the trace of the second 
fundamental form of P, vanishes. Show that the "variation" of the volume of 
hypersurfaces near P vanishes on P. Compute the second variation. (See 
Almgren [I9671 or Choquet-Bruhat, Fischer, and Marsden [1978].) 



PART 2 
ANALYTICAL DYNAMICS 

This part develops most of the important theoretical topics in classical 
mechanics in the general setting of symplectic manifolds. Chapter 3 sets out 
the basic theory of Hamiltonian and Lagrangian mechanics. This is followed 
by a rather extensive chapter on systems with symmetry, including current 
accounts of reduction by algebras of integrals, and topology of invariant 
manifolds. The final chapter of this part has, as a focus, the Hamilton- 
Jacobi theory, with numerous related topics such as action angle variables 
and Lagrangian submanifolds, as well as offshoots to topics like quantization 
and the equations of mathematical physics as Hamiltonian systems. 

The use of differential forms in mechanics and its eventual formulation in 
terms of symplectic manifolds has been slowly evolving since Cartan [1922]. 

The first modern exposition of Hamiltonian systems on symplectic mani- 
folds seems to be due to Reeb [1952e]. An early version of Lagrangian 
systems in this context appears in Mackey [1963]. This formulation of 
mechanics was widely known in mathematical circles by 1962, and was 
explained in a letter by Richard Palais that circulated privately at about that 
time. The first systematic treatise concerning mechanics on Riemannian 
manifolds that we know of is Synge [1926]. The reader is referred to 
Whittaker [I9591 for additional historical details. 



CHAPTER 3 
Hamiltonian and Lagrangian Systems 

This chapter begins our study of Hamiltonian mechanics. The basic 
structure of the classical theory will be given in the context of manifolds. We 
suggest that the reader have a good classical text available for comparison 
and additional insight, such as Whittaker [1959] or Goldstein [1950]. A 
re-reading of the Preview at this time may help motivate what follows. The 
treatment may seem unnecessarily abstract, but it is of ultimate benefit for a 
thorough understanding of a rigorous analysis of the applications in the later 
chapters. 

3.1 SYMPLECTIC ALGEBRA 

Symplectic manifolds constitute the arena for Hamiltonian mechanics. 
This section considers the linear case in preparation for the next section. 

3.1.1 Definition Let E be a finite-dimensional real vector space and w E  
L ~ ( E ,  R )  a bilinear form on E, so w :  E X E+R. We say that w  is nondegener- 
ate if 

w  (e, , e,) = 0 for all e2 E  E implies e, = 0 

* s Ralph Abraham and Jerrold E. Marsden, Foundation of Mechanics, Second Edition 

4 Copyright O 1978 by The Benjamin/Cummings Publishing Company, Inc., Advanced Book 
m Program. All rights resewed. No part of this publication may be reproduced, stored in a retrieval 

system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or 
otherwise, without the prior permission of the publisher. 
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There are several equivalent ways of stating nondegeneracy. To give these, 
we need some notation: 

(a )  If 6 = (e,) is an (ordered) basis of E and (ai)  is the dual basis, wii = 4ei ,  e,) 
is the matrix of GI; it is denoted [a];. Then it is easy to see that 

w = @ aJ (summation understood ) 

(b)  The transpose w ' of w is given by 

o is symmetric i f  w ' = w and skew symmetric i f  w ' = -a. 

(c)  The linear map wb : E+E* is defined by 

w (e).ef = w(e, e') 

Note that the matrix of wb relative to the bases ei and aj is exactly wV; that is, 

w (ei) = w U a j  

The rank of w is the rank of the matrix w,j, that is, the dimension of w '(E). 

If one uses (i) the fact that in finite dimensions a one-to-one linear map 
between spaces of the same dimension is an isomorphism and (ii) the obser- 
vation that the definition of nondegeneracy is precisely that the linear map 
w b is one-to-one; that is, has trivial kernel, the following are easily seen to be 
equivalent : 

(i) w is nondegenerate; 
(ii) w' is nondegenerate; 

(iii) the matrix of w is nonsingular; 
(iv) w : E+E* is an isomorphism. 

In the infinite-dimensional case care must be taken with the type, of 
nondegeneracy assumed. In that case w is called weakly nondegenerate if w is 
one-to-one and is called nondegenerate if w b  is an isomorphism. Although 
these notions are equivalent in finite dimensions, this is not so in infinite 
dimensions and the distinction is important. Most important for a large 
number of examples such as the wave equation is the weakly nondegenerate 
case; this'is for technical reasons which will become evident in Sect. 5.5. 

In this book, however, with the exception of Sect. 5.5, ure shall deal with 
the finite-dimensional case. 

If B = (e,) and 2' = (e,') are two (ordered) bases of E with e,' =A&, then the 
matrices of w are related by congruence: [wl2=At[w];A. We have the 
following canonical form for symmetric and skew symmetric bilinear forms. 

X 
3.1.2 Proposition. Let E be a p-dimensional real vector space. Then & 

0 - 
(i) If w is symmetric of rank s, there is an ordered basis e^= (e,) of E with dual 

ordered basis ( a  ') such that 8 00 
S 

w=xqia i@ai  where q i = 2 l , s < p  
i =  1 
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or, equivalently, the matrix of w is 

(ii) If is skew symmetric of rank r, then r = 2n for an integer n and there is 
an ordered basis i=(ei) of E with dual ordered basis (a ' )  such that 

or, equivalently, the matrix of w is 

where I is the n x n identity matrix. 

ProoJ (i) is just the assertion from linear algebra that any symmetric 
bilinear form can be brought into diagonal form. 

We recall the argument. Since w is symmetric we have the polarization 
identity 

w(e,f) = $(w(e +X e + f )  - ~ ( e  -X e - f  )) 

Thus if w#O, there is an el E E such that o(el,e,)ZO. Resealing, we can 
assume w(e,,e,) = 77, = 2 1. Let E, be the span of el and E, = { e  E E I w(e,e,) = 
0).  Clearly, E,nE,={O); also E,+E,=E for if Z E E ,  

Now if w Z 0 on E,, there is an e2 E E, such that w(e2, e,) = q2 = 2 1. Continue 
inductively to complete the proof. 

3 Remark. If ( V, ( , )) is an inner product space, this is the usual 
Gram-Schmidt argument showing the existence of an orthonormal basis. .-" x 

0 

2 (ii) Let el E E, en + , E E be such that w(e,, en + ,) Z 0. This is possible 
if w ZO. Dividing el by a constant we can assume w(el,en+ ,) = 1. Since 
w(el,el) = @(en+ ,,en+ ,) =O and w is skew, the matrix of w in the plane P1 
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spanned by e,, en+, is 

Let E, be the w-orthogonal complement of PI,  that is, 

E2={zIw(z,zI)=o forall z l € P 1 )  

Clearly E2nP,={0); also, E=E,+P,, for if zEE,  
%. 

as is easily checked. Thus E =  P,@E2. Now we repeat the process on E,, 
choosing e2 and en +, such that w(e2,en+d = 1, and continue inductively. 

This shows that w has the stated matrix in the basis el,. . . ,e,. 
We conclude (ii) by showing Zl , ,oL'~a~+~=p is the same as w in this 

basis. For any a E E*, a = a(9)at' (summation), so 

But 

if ij < 2n. Thus 

In particular, the matrix of p is given by 

0 
With regard to (i) we prove for later use that if V is a finite-dimensional 

inner product space (with inner product (,)), and w is a symmetric bilinear a 
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form, then there is an orthonormal basis of V in which w is diagonal. Indeed, 
consider the isomorphism (,)b: V+ V* associated with the inner product and 
its inverse (, ) #  . Let T= (, ) 0 wb: V-+ K Then one checks that T is symmet- 
ric, that is, (Tel,e2) = (el, Te2). Then from linear algebra there is an ortho- 
normal basis of eigenvectors of T, that is, an orthonormal basis in which T, 
and hence w is diagonal. 

If we write a point z E E as 

z=x le l+ . . .  +xnen+ylen+,+-.-  +yne2n+w2n+1e2n+1+-.. +apep 

then we get a useful expression for w in 3.1.2(ii) as a bilinear form: 

w(z, 2') = w'J(z).z' 

A useful criterion for nondegeneracy is the following. 

3.1.3. Proposition. Let E be a finite-dimensional real vector space, and 
wEG2(E). Then w is nondegenerate iff E has even dimension, say 2n, and 
a n = W A -  . . ~w is a volume on E. 

ProoJ: Suppose w is nondegenerate. Choose a basis of E such that w =  
Z:= la'~ai+n. Since the rank of w is the dimension of E, we have dimE=2n. 
Then, by induction we easily verify that 

where [n/2] is the largest integer in n/2. Thus wn is a volume. Conversely, if 
wn is a volume, the rank of w is 2n. . 

2 
4 m 
8 Some of this algebra carries over directly to manifolds as follows: 

2 
z 3.1.4 Definition. Let M be a manifold, and w E 5 ;(M). Then w is nondegen- 

erate if w(m) is nondegenerate for each m EM. 
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Thus, from 3.1.3 we obtain the following. 

9.1.5 Proposition. Let M be a manifold and w € Q 2 ( ~ ) .  Then w is nondegen- 
-a,.,. . . erate iff M is men-dimensional, say 22, and wn - ~w is a volume on M. 

Thus, i f  w E ~ ~ ( M )  is nondegenerate, M is orientable. We shall use the 
starzdard volume 

The globalization of the map wb is given as follows. 

3.1.6 Dellnition. Let M be a manifold and w € 9  ;(M). Define wb : TM+ 
T*M by o b(m) = w(m) b; that is, ~ ( m ) ~ ( e ) - e '  = w(m)(e, e'), where e, e' E T,M. 
Also, for X E % ( M ) ,  define wbx:  M + P M  by wbx(rn)=wb(m).x(m). 

Note that the following proposition applies to Riemannian metrics, 
pseudo-Riemannian metrics and nondegenerate two forms. 

3.1.7 Proposition. Let M be a manifold and w € 9 :(M). Then 

( i )  w : TM+ T* M is a vector bundle mapping; 
(ii) If X E %(M) ,  then w b~ E %*(M) and w is F (M)  linear as a mapping 

%(M)+%*(M); 
(iii) If u is nondegenerate, then w : TM+ T*M is a vector bundle isomor- 

phism (in particular, a diffeomorphism). In this case we write w # = (w b ) -  '. 
ProoJ Let (U,rp) be a chart of M with q ( U )  = U' c E. The local representa- 
tive of ob with respect to the natural charts is 

where w2 is the second factor of the local representative of o, so that 
wg(u) .e(el) = ~ ( u ) ( e ,  el). To prove (i) we show that w,b: U f +  L(E, E*) is 
smooth. We may use any convenient norm on the vector space L(E, E*) such 
as ~lwku)ll = max{llwku) .ellle E E, lleil = 1) for some norms on E and E*. 
NOW we can use the norm IIw2(u)ll = ~ lw j (u )~~  on T ~ ( E ) .  Since wdu) is of class 
C ", w,b(u) is also. Indeed, the derivative of wj is the following linear map (at 
u' E U'): et+ L(e), where L(e) E L(E, E*) is defined by L(e) -el(ez) = 
Dw2(u1)(e) - (e l ,  ez). This can be readily checked. To prove (ii), note that 
S ( M )  linearity is clear from linearity of wb on each fiber, and wbx is of class 
C by (i) and 1.7.9 in local representation. Finally, for (iii), if w is nondegen- 
erate, wb is a bijection and an isomorphism on each fiber. We must show that 
wu is smooth. The local representative of o# is (u', a)t-*(uf, o,b(u)-'. a). From 
the proof of 1.7.8, however, w,b(u)-' is of class Cm. . 
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If t E 5 :(M),  we can define w bi' E 5 :; : (M)  by 

to "lower the last contravariant index." Similarly other indices or groups of 
indices may be raised or lowered. 

3.1.8 Definitlon. A symplectic form on a vector space E is a nondegenergte 
two-form w E f 1 2 ( ~ ) .  The pair (E,  w) is called a symplectic vector space. If (h', w)  
and (4 p) are symplectic vector spaces, a linear map f: E 4 F  is symplectic iff 
f*p=w. 

If (4 w) is a symplectic vector space we have an orientation defined on E by 

where E has dimension 2n. 

3.1.9 Proposition. Let (E, a) and (6 p) be symplectic vector spaces of dimen- 
sion 2% and f:  E+F be a symplectic mapping. Then f is volume preserving, is 
orientation preserving and det,Qa,Qp, f = 1. In particular, f is an isomorphism. 

Proof. We have 

f*Q,,=f* f*pA' " A f * ~ ' a ,  

Hence f is volume preserving. The last statements follow from this. . 
3.1.10 Example. A volume preserving map need not be symplectic, for 
consider R~ with vectors denoted ( x ' , ~ ~ , ~ ' , ~ ~ )  and w = c u ' ~ p ' - t - a ~ ~ j 3 ~ ,  where 
(cu1,cu2,p1,p2) is a basis dual to the standard basis (el,e2,f,, f J .  Consider the 

1 2 1 2  map ( x  , x ,y ,y ) H (- x l ,  - x2,y1,y2). This preserves the volume 9, = a1r\cw2 
A p2 but maps w H -a. On R 2, however, every orientation and area 

preserving linear map is symplectic. 

3.1.1 1 Proposition. Let (E, w) be a symplectic vector space. Then the set of 
all symplectic mappings f:  E+E forms a group under composition, called the 
sympfectic group, denoted by Sp (E, w). 

Prod Since GL(E,E) forms a group, we need only show that if f ,g€ 
Sp(E,w), then fog and f - 'ESp(E,w).  But (fog)*w=g*of*w=g*w=w, and 
(f-'>*w =(f*>- y*w= w. . 

Next we examine the condition that f E Sp(E,w) in matrix notation. As we 
saw in 3.1.2, there is an ordered basis of E such that the matrix of o is 
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~~t~ that J-'=J'= -J,  and J ~ =  -I.   or f EL(E,E) with matrix A=(A~')  
relative to this basis, the condition f *w = w, that is, w(f(e), f (e')) = w(e, e') 
becomes 

AtJA= J 

If A = [ ] , where a, b, c, d are n x n matrices, f E Sp (E, a )  iff a 'c and 

b'd are symmetric and atd - ctb = I. 
A condition on the eigenvalues off E Sp(E,w) is given by the following. 

3.1.12 Proposition. Suppose (E, w) is a symplectic vector space, f E Sp(E, w) 
a_nd A E C is an eigenvalue of $ Then 1/A, X and l / i  are eigenvalues of f 
(A denotes the complex conjugate of A). 

Proof: Let be an ordered basis of E such that [a]; = J and [fl; = A. Then 
A'JA=J, or JAJ-'= B, where B=(A')-'=(A-I)'. Let P(A)=det(A-XI), 
considered as a polynomial in the complex variable A, with real coefficients. 
Then as J - ' = - J ,  the space is even dimensional, and detA = 1, so 

if 2n = dim(E). As 0 is not an eigenvalue of A, P (A) = 0 iff P (1 /A) = 0. As P 
has real coefficients, P (A) = 0 iff P (A) = 0. . 

As a matter of fact, Sp(E, w) c GL(E,E) = GL(E) is a submanifold, and 
composition is C", so Sp(E,w) is a Lie group (see Sect. 4.1). The final 
exposition of this section is a description of the Lie algebra of Sp(E,w), 
denoted by sp(E,w)c L(E,E). The reader should come back to this point 
after reading Sect. 4.1. The space L(E, E)  is a Lie algebra with the Lie bracket 
defined by [u, v] = u o v - v 0 u. (Lie algebras were defined in 2.2.13.) This 
algebra is associated to the group GL(E) as follows. First of all, since GL(E) 
is open in L(E, E), T,GL(E) = { f )  x L(E, E). We identify T,GL(E) and 
L(E, E). Secondly, let 

I ; ( ~ ) = ~ - I u  e -to e e  tu to 
X 

where eh = I + tu + t2u2/2 + - - + is a convergent power series. Then writ- % 
ing e'" = I + tu + (t2/2)u2 + o(t2) and expanding out F(t) we find (after 8 
several lines of calculation) that 2 

z 
F(t) = I + t2[u, v ]  4- o(t2) 8 
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so that F(0) = I, F'(0) =O and ~ " ( 0 )  = [u,v]. (See Exercise 4.1 J for the 
relationship with general Lie groups). 

3.1.1 3 Deflnltlon. A  linear mapping u E L(E, E )  is infintesimally symplectic 
with respect to a symplectic form w if w(ue, e f )  + w(e, ue') = 0 for all e, e' E E, 
that is, i f  u is w-skew. Let sp(E, w) denote the set of all linear mappings in 
L(E, E )  that are infnitesimally symplectic with respect to w. 

3.1.14 Proposition. The set sp(E, w) c L(E, E )  is a Lie subalgebra. 

The proof is a simple verification. The reader may also check (or wait until 
Sect. 4.1) that u E sp(E, w)  iff eu  E Sp(E, w), which relates the Lie algebra to 
the corresponding Lie group. 

In Sect. 3.3, we will refer to infinitesimally symplectic linear mappings as 
Linear Hamiltonian mappings. I f  we choose a basis in which the matrix of w is 

and if we write 

then u is infinitesimally symplectic iff u'J + Ju = 0 iff D = - A t  and C, B are 
symmetric. 

If we proceed exactly as in 3.1.12, noting that ue = Ae implies w(e, Xe' + 
ue') = 0, we obtain the following. 

3.1.1 5 Proposltlon. If u E sp(E, a) and A is an eigenvalue of u, so are - X, & 
and -x 

The eigenvalue properties of 3.1.12 and 3.1.15 can be strengthened as 
follows. 

3.1.16 Symplectic eigenvalue theorem. Suppose (E, w) is a symplectic vec- 
tor space, f E Sp(E, w ) ,  and A is an eigenvalue off of multiplicity k. Then 1 / A  is 
an eigenvalue o f f  of multiplicity k. Moreover, the multiplicities of the eigenval- 
ues + 1 and - 1, if they occur, are even. 

Pmof: We saw that if P is the characteristic polynomial of f, then P(A)= 
P 
4 A2"p(1/A), where dim E=2n. Suppose X, occurs with multiplicity k. Then 
2 P (A)  = (A  - A o ) k ~  (A), so that 
8 



Now (bk/A2"-k)~(A) is a polynomial in 1/X, as Q is of degree 2n - k and 
k < 2n. Hence l/A,, occurs with multiplicity I > k. Reversing the roles of 
X,,l/A,, we see k>I ,  so k=I.  

Note that A,,= 1/& iff A,, is + 1 or - 1. Thus, from the above, the 
multiplicity of the eigenvalues + 1 and - 1 is even. But, as det f = 1 (the 
product of the eigenvalues) the number of each must be even. . 

In a similar way we can prove the following. (Note that if u is infinitesi- 
mally symplectic with characteristic polynomial P, then P (A) = P ( - A), so 
tr(u) = 0 = sum of the eigenvalues of u). 

3.1.1 7 lnflniteslmally symplectic eigenvalue theorem. Let (E, a )  be a sym- 
plectic vector space and u Esp(E, a). Then, if A is an eigenvalue of multiplicity 
k, -A is an eigenvalue of multiplicity k. Moreover, 0, if it occurs, has even 
multiplicity. 

cornplek saddle saddle center 

real s'addle 
I 

generic center 

3 
2 
Q 
m 

degenerate saddle identity degenerate center s 2 
z 

Flgure 3.1-1 8 
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Figure 3.1-2 

The possible eigenvalue configurations for a symplectic linear mapping 
A E Sp (R 4, wO), graphed with relation to the unit circle in the complex plane, 
are illustrated in Fig. 3.1-1. 

The corresponding configurations for an infinitesimally symplectic map- 
ping u E sp(R4, w,) are illustrated in Figure 3.1-2. 

These eigenvalue properties are basic to the qualitative theory and stabil- 
ity of Harniltonian systems. Although S~(R~",CJ,) is the fundamental group 
underlying classical mechanics, very little application of its structure seems to 
have been made beyond these elementary eigenvalue properties. For addi- 

Y tional properties of the symplectic group, see Sect. 4.1. 
~ . l  For information on how eigenvalues can move off the unit circle or 
2 imaginary axis see Krein [I9501 and Arnold and Avez [1967], Appendix 9. 
m 
8 The question of canonical forms for infinitesimally symplectic mappings 

(and by exponentiation, symplectic mappings) is of some importance in 
mechanics. We give a simple version here and discuss the question further in 

2 Sect. 5.6. 



3.1.18 Proposition. If u is an infinitesimally symplectic linear mapping with 
2n distinct purely imaginary eigenualues, then there is a bmis (el, . . . , 
en, f,, . . . ,L) of E in which w has the matrix J and the matrix of u has the 

form 

Note. The matrix of u on ej,$ is [ , 71; and a, can be positive or 
negative. 

ProoJ If u,, . . . ,un are complex eigenvectors associated to ia,, . . . ,iffn, their 
real and imaginary parts, e,, .. .,en and f,,. ..,A are elements of E satisfying 

The complex eigenvectors associated with - ia,, . . . , - iar, are iS, = 9 - $, as is 
easily checked. - 

Since the eigenvalues of u are distinct, v,, . . . ,vn,vl, . . . ,< are a basis of the 
complexification and hence e,, . . . ,en,f,, . . . ,f, are a basis of E itself. 

Since u is w-skew, the w-orthogonal complement of span(e,,f,) is u-in- 
variant; therefore, it contains e,, . . . ,e,,A,. . . ,&. Thus E; = span(e,,J) are w-or- 
thogonal and span E. Since w is nondegenerate, it is nondegenerate on each 
E,. Rescaling and relabeling the e,,Ji' if necessary, w has the matrix 

on Ei, so this is the required basis. 

In the presence of multiple eigenvalues, 1's have to be inserted in off 
diagonal spots as in the Jordan canonical form (see Sect. 5.6). 

For those interested in a basis free formulation of 3.1.2 and the infinite- 
dimensional analog, we include the following discussion. First some notation. 
Let E be a real vector space. By a complex structure on E we mean a linear 
map J: E+E such that J'= -I. By setting ie= J(e), one gives E the Y 

E structure of a complex vector space. We now show rather generally that a g 
m symplectic form is the imaginary part of a complex inner product. (This 2 

structure will come up again in our discussions of quantum mechanics.) The 2 
reader not familiar with Hilbert space theory can replace H by R2" and Z 

derive the result from 3.1.2. 8 
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3.1.19 Theorem. Let H be a real Hilbert space and B a skew symmetric 
weakly nondegenerate bilinear form on H. Then there exists a complex structure 
J on H and a real inner product s such that 

Setting 

h is a hermitian inner product. Finally, h or s is complete on H iff B is 
nondegenerate. 

Proof: Let (,) be the given complete inner product on H, By the Riesz 
theorem, B (x, y) = (Ax, y) for a bounded linear operator A : H+H. Since B 
is skew, we find A * =  -A. 

Since B is weakly nondegenerate, A is injective. Now - A ~  2 0, and from 
A = -A* we see that is injective. Let P be a symmetric nonnegative 
square root of - A ~ .  Hence P is injective. Since P= P*, P has dense range. 
Thus P-' is a well-defined (unbounded) operator. Set J=AP-' ,  so that 
A = JP. From A = -A* and p2= - A ~ ,  we find that J* = - J- J-', J is 
orthogonal, and J~ = - I. Thus J is bounded on the range of P, so extends to 
an orthogonal operator defined on all of H. Moreover, J is symplectic since 
B (Jx, Jy) = B (x, y). Define s(x, y) = - B (Jx, y) = (Px, y). Thus s is an inner 
product on H. (Note that if (Px,x)=O, then, since P= P*, P 20, 
( fl x, fl x) = 0, so fl x = 0, so Px = 0, so x = 0.) Finally, it is a straight- 
forward check to see that h is a hermitian inner product. For example; 
h(ix, y) = s(Jx,y) - iB (Jx,y) = B (x,y) + is(x,y) = ih(x, y). The theorem now 
fo!lows. . 

In particular, this shows that any symplectic form is the negative 
imaginary part of some hermitian inner product. 

If we identify Cn with R ~ "  and write 

s? 
then 
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Thus, using the formula following 3.1.2, we have 

W(Z, z') = - Im(z, 2 ' )  

The infinite dimensional analogue of 3.1.18 is a result due to Cook [I9661 
which is discussed in Sect. 5.6. 

EXERCISES 

3.1A. (i) In 3.1.1 show that w is nondegenerate iff ob is an isomorphism. Deduce 
that w is nondegenerate iff w' is nondegenerate. 

(ii) In 3.1.2(i) show that the number of - 1's and 1's is independent of the 
diagonalization procedure by supplying intrinsic definitions. 

3.1 B. (i) Show algebraically that A 'JA = J implies det A = 1. 
(ii) Show that the eigenvalue configurations shown for A E Sp(R4,wo) are the 

only ones possible (see Fig. 3.1-1). 
3.1C. Let (E,w) be a symplectic vector space. For e E E and h E R, let 7e,h: E+E 

(a) Prove re,h E Sp(E,w). One calls re,, a symplectic tramsection. (b) Show that 
Sp(E,w) is generated by the symplectic transvections. (Hint. See Jacobson 
[1974]). 

3.1D. Use 3.1C to show that the center of Sp(E,w) is I and - I. 
3.1E. Show that: Sp(E,w)/{Z, -1) is a simple group. (Hint: See Jacobson [1974].) 
3.1F. Let E be a reflexive Banach space, i.e. the natural injection i of E into E** is 

onto, and w a weak symplectic form on E. Show that wb has closed range in 
E* iff it is onto. [Hint. If F f  E* is the closed range of wb, use the 
Hahn-Banach theorem to find + E E**, C#I f 0 such that + ( F )  = 0. If $I = i ( v ) ,  
show that w ( v ,  u )  = 0 for all u E E.] 

3.2 SYMPLECTIC GEOMETRY 

The globalization of the simplectic algebra of Sect. 3.1 is symplectic 
geometry. Our first goal will be Darboux's theorem [1882], which states that 
for a nondegenerate, closed two-form w on a manifold M (u is called a 
vmplectic form), the canonical form of 3.1.2(ii) can be extended to some chart 
about each m E M. For the degenerate case, we refer the reader to 5.1.3. 

3.2.1 Deflnltlon. Let M be a manifold and w EQ*(M) be nondegenerate. Then 
wedefinethemap b : X ( ~ ) - + X * ( ~ ) : ~ c ~ ~ = i , w [ h e n e e ~ ~ = w ~ ( ~ ) ] m d  
the map # : %*(M)-+%(M): at-+a# =w#(a). g 4 

Cr) 

8 
Thus we see that (X b)# = X and (a#)b = a. 2 
The proof of Darboux's theorem we use is due to J. Moser [I9651 and A. 

Weinstein [1977b]. This proof is considerably simpler than previous proofs 
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and has several other applications (see 2.2.26, 3.2.3 below and Exercise 3.2B) 
and generalizations (see Sect. 5.3). 

3.2.2 Theorem (Darboux). Suppose w is a nondegenerate two-form on a 
2n-manifold M. Then dw = 0 iff there is a chart (U, cp) at each m E M such 
that cp(m) = 0, and with cp(u) = (xi(u), . . . , xn(u), '(u), . . . , y "(u)) we have 

ProoJ It is obvious that Z;=,dxi~dyi is closed, so the "if" part is clear. 
For the converse, it is sufficient by 3.1.2 to find a chart in which w is 

constant. 
For this purpose, we can assume that M = E, a linear space, and m =0. 
Let w, be the constant form equalling w(0). Let ij = w, - w and w, = w + tij, 

0 < t < 1. For each t, w,(O) = w(0) is nondegenerate. Hence by openness of the 
set of linear isomorphisms of E to E*, there is a neighborhood of 0 on which 
w, is nondegenerate for all 0 < t < 1. We can assume that this neighborhood is 
a ball. Thus, by the Poincare lemma, ij= da for a one form a. We can 
suppose a(0) = 0. 

Define a smooth vector field Xt by ix,w, = - a,  which is possible since wt is 
nondegenerate. Moreover, since XI (0) = 0, by the local existence theory, there 
is a ball about zero on which the "flow" of the time-dependent vector field XI 
is defined for a time at least one; see Exercise 3.2C. Call this "flow"I;, (with 
initial condition Fo = Identity). Then by the basic link between flows and Lie 
derivatives, 

Therefore, F r w ,  = F;j'wo=w, so F, provides the coordinate change transform- 
ing o to the constant form w,. . 

Notice that this proof works in infinite dimensions; see Sect. 5.1 for 
additional comments. 

X This same argument can also be used to prove the important Morse lemma 
$ (Palais [1969]). 
2 8 
2 3.2.3 Morse Lemma. Let f: M-+R be a smooth map with mo € M a nonde- 
z generate critical point; that is, df (mo) = 0 and D 2f(mo) is nondegenerate. Then 

there is a. coordinate chart about m, in which m,, is mapped to zero and the local 
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representative o f f  satisfes 

f ( x )  = f  (a) + ;D 2f(O).(~, X )  

In particular, nondegenerate critical points o f f  are isolated. 

ProoJ: We can assume that we are in R n  and m, = 0, f(mJ = 0. Let w, = df 
and define the one form w, by 

y ( x ) . h  = D 2f(O)(h, x )  

Let 

wt = tw, + ( 1  - t)w2 

Write 

a2 = dq, q ( x )  = ;D ?f(O)(x, x )  

and define a vector field Zt by 

It is easy to see that Zt exists near 0 by the nondegeneracy hypothesis. Let Ft 
be the flow of 2,. Then 

Thus F w ,  = w2, SO FI gives (near O), the coordinate change required. 

In later chapters we will have occasion to use a small amount of Morse 
theory. We therefore sapplement 3.2.3 with some additional results at the end 
of this section. We return now to our main topic of symplectic forms. 

3.2.4 Definition. A symplectic form (or a symjdectic structure) on a manifold 
M is a nondegenerate, closed* two-form w on M. A symplectic num#iM (M, w) 
is a rnanifod M together with a symplectic form w on M. As in Sect. 3.1, we let 
flu denote the volume [(- 1)["/2]/n!]wn. The charts guaranteed by Darboux's 
theorem are called symplectic charts and the component functions x f  y i  are 
called canonical coordinates. 

Thus, in a symplectic chart, 
n 

W =  d x i ~ & i  and f l , = d ~ ' ~ . . .  A ~ ~ " A & ' A .  . A&" 

*One can legitimately ask for the origin of the condition dw=O and why it plays such a central 
role. One reason, looking ahead to Sect. 3.3, is that this condition is exactly the one needed to 
make Poisson brackets into a Lie algebra. 
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From 3.2.2, we see that symplectic forms are much more flexible than 
Riemannian metrics. Indeed, the latter can be made constant in a local chart 
i f  and only i f  they are flat. 

The global analog o f  a symplectic linear map is given as follows. 

3.2.5 Definition. Let (M, w) and (N, p) be symplectic manifolds. A C "-map- 
ping F: M+N is called symplectic or a canonical transfomtion if F*p = w. 

From 2.4.9(i), 2.5.17, and 2.5.21 we obtain the following. 

3.2.6 Proposition. If (M, w) and (N, p)  are symplectic 2n-manifolds and F: 
M+N is symplectic, then F is volume preserving, det(Qw,Qp,F= 1, and F is a 
local diffeomorphism. 

It is clear that i f  (M,w) is a symplectic manifold and c p :  M+N is a 
diffeomorphism, then ( N ,  cp,w) is a symplectic manifold and cp is a symplectic 
map. 

3.2.7 Proposition. Suppose (M, w) and (N, p) are symplectic manifolds and 
F: M+N is of class C ". Suppose 9: M+M' and $ : N+Nf are diffeomor- 
phisrns. Then F is symplectic i f f  $ Fo c p -  ' is a symplectic mapping of (M' ,  cp,w) 
into (N' ,  $,p). In particular, F is symplectic iff the local representatives of F are 
~ymplectic. 

Proof: I f  F is symplectic, then ( $ o F ~ c p - ' ) * $ , ~ = c p , o j ; l r ~ $ * ~ $ * ~ =  

cp* F*p = q,w. Conversely, if $ F cp-' is symplectic, then FCp  = 
cp*~cp*~F*~$*~$*p=cp*o($~F~cp-~)*~$*~=cp*~cp*~=~. . 
3.2.8 Proposition. Let (M, u) and (N, p) be symplectic 2n-manifolds and 
f:  M+N a symplectic mapping. Then for each m € M there are symplectic 
charts ( U, cp )  at m and ( V; $) at f ( m )  such that f ( U )  = V; q ( U )  = $(I/), and the 
local representative fqJ, o f f  is the identity. 

Proof: Since f is a local diffeomorphism we can find neighborhoods U,  o f  m 
and V l  o f  f(m) such that f 1 Ul: Ul + V ,  is a diffeomorphism. Let ( V ,  #) be a 
symplectic chart at f(m) with V c V,  (Darboux's theorem). Then let U =  
( f l  Ul) - ' (V)  and cp = #of\ U. Clearly f* is the identity. Also, (U,  cp) is a 
symplectic chart, for cp,w = w, = ($of),w = $*of*@ = $*p = p$ on cp(U) = 
#(V).  [Note that if t E q ( M ) ,  the local representative o f  t in the natual ' charts is cp.t.1 . !2 

9 
0 

B The connection with Sect. 3.1 is given by  the following. 
op 
0 

3.2.9 Proposition. Let (E, w)  and (F, p) be the symplectic oector spaces, which 
also mqy be regarded as symplectic manifolds (a, p being constant sections). 
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Then a C" map F: U c E+F is symplectic iff DF(u)  E L(E, F )  is symplectic 
for each u E U. 

ProoJ: This follows at once from the definition F*p = (TF)' p F applied to 
the second factors. . 

In many mechanical problems, the basic symplectic manifold is the phase 
space of a configuration space. In fact, if the configuration space is a 
manifold Q, the momentum phase space is its cotangent bundle F Q ,  which 
has a standard symplectic form as follows. 

3.2.10 Theorem. Let Q be an n-manifold and M = T*Q. Consider 75: 
M+Q and Tr;: TM-, TQ. Let or, E M  ( q  E Q )  denote apoint of M and w% 
a point of TM in the fiber over a,. De$ne 

8 : Ta M + R: w% I-+ a,. Tr;(w%) and 8,: a, " 8% 
9 

Then E %*(M),  and oo = - deo is a symplectic form on M; do and wo are 
called the canonical fonns on M. 

ProoJ: Let ( U ,  cp) be a chart on Q with cp(U) = U' c E and let 

(T* U, Pep), T*v: T* U+ U' x E*, 

(TT* U,  TT*cp), TT*cp: TT* U-+ U' X E* X E X E* 

be the corresponding charts on F Q  = M, T M ,  and T*M respectively. 
Denote p(q) = x, T,*cp(cu,) = a, T% T*cp(w%) .= (e ,  IS). 

Denoting by pr,: U' X E* -+ U' the projection on the first factor, we get 
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Therefore 8, is given locally by 

(T* T*cp~@~oT*(cp-'))(x, 4. (x, a ,  e, 8)  = a(e) (1) 
so that 8, is smooth and hence 8, E %*(M). Since o0 = - dB,, the above 
local expression for 8, shows that 

uo (~ ,  a ) ( ( ~ ,  a ,  el, PI), (x, a ,  e2, &)I = P2(71) - Pl(e2) (2) 
Comparison with the formula for w preceding 3.1.3 concludes the proof. .I 

Note that formula (2) is independent of (x,a), reflecting the fact that the 
natural charts of P Q  are symplectic charts. 

In finite dimensions, denoting by (ql,. . . , qn) the coordinates on Q and by 
(ql,. . . , qn,pl,. . . ,pn) those on T* Q = M, the above local formulas become 

and 

As a mathematical curiosity, we note that the cotangent bundle of any 
manifold is orientable. Indeed, it carries a symplectic structure and hence a 
volume element. 

The definition of the canonical one-form can be alternatively written as 
follows: 

(@o(o~,), w,> = ( T75waq, aq) 
where ( , ) denotes the natural pairing, or contraction, between vectors and 
one-f oms. 

follo~&g proposition gives znother description of oO, wkirh d l  be af 
great utility later on. 

3.2.11 Proposition. The canonical one-form 19, on T*Q is the unique one- 
form with the property that, for any one-form P on a 

P*I90= P 
Here, regard P : Q+ T* Q. Thus P*wo = - do. 

ProoJ: Let vq E TqQ; then, by definition of pull-back, 

z 
since 7; /3 is the identity. Thus 8*&= /3. 
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This uniquely characterizes 8,, since P (q) and TP (q) .vq span all of Q 
and Tp(,,(T* Q) for variable j3 and v,. II 

The coordinate proof of 3.2.11 may aid in seeing what is going on: 
8,= 2;- ,pjdqi, and P maps q' to (q ' ,~ ,  = Pj(q)), so 

since P*pj is the ith component of p. 
A basic method for generating symplectic mappings on T*Q from map- 

pings on Q is given by the following. 

3.2.12 Theorem. Let Q be a manifold and f: Q+Q a diffeomorphism; define 
the lift off by 

where q E Q and v E Tf - ,(,)Q. Then T* f is symp lectic and in fact (T*f)*Oo = O0, 
where 8, is the canonical one-form. 

Proo$ By definition, for w E T% (T*Q) 

= 9 , (%) .~  

since, by construction, f 0 r; o T* f = I-;. II 
d 

There is a similar theorem for diffeomorphisms f: Q,-+Q2 and their lifts 8 
T*f: T*Q2+T*Q,. 2 
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In coordinates, if we write f(ql, . . . , qn) = (Q ', . . . , Q "), then T* f has 
the effect 

(Q', . . . , Qn, P,, . . . , P,)H(~', . . . qn,pi, - .  7pn) 

where 

(evaluated at the correct points). That this transformation is always canonical 
and in fact preserves the canonical one-form may be verified directly: 

Sometimes one refers to canonical transformations of this type as "point 
transformations" since they arise from general diffeomorphisms of Q to Q. 
One also speaks of a canonical transformation which preserves 8, as a 
homogeneous canonical transformation or according to Whittaker [1959, p. 
3011, a Mathieu transformation. A theorem of Robbin-Weinstein outlined in 
Exercise 3.2F shows that a canonical transformation defined on all of T* Q is 
homogeneous if and only if it is a point transformation. 

The point transformations clearly form a subgroup of the set of all 
canonical transformations. Those that are not point transformations are 
abundant and important (see Exercise 3.2E). 

Notice that lifts of diffeomorphisms satisfy 

that is, the following diagram commutes: 

Notice also that 

and compare with 
4 

d 
Z Next we consider symplectic forms induced by metrics. If g = ( . ,  -) is a 

Riemannian (or pseudo-Riemannian) metric on Q, then from 3.1.7 the map 
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gb: TQ- T*Q defined by gb(uq).wq = (u,, w,),, u,, wq E T,Q is a vector 
bundle isomorphism. Define 

where o0 = - dB, is the canonical two-form on T* Q. Clearly D = 
- d((gb)*O0) = - dO, so D is exact. 

3.2.13 Theorem. k t  g = ( - , .) be a Riemannian (or pseudo-Riemannian) 
metric on Q. In a chart (U,  rp) on Q we have 

(a )  O(x,  e)  . ( x ,  e ,  el,  e,) = ( e ,  el),, that is, O = 2 ggqi dqj, where 
(q l ,  . . . , qn, q l ,  . . . , 4") are coordinates for T@ 

(b)  Q(xy e)((x, e ,  el ,  ed,  ( x ,  e ,  e3, e4)) 
= D,(e, e,>;e3 - D,(e, e3>,-e, + (e4, e l ) ,  - (e,, e,), 

where D, denotes the derivative with respect to x ;  that is, 

Finally, 
(c )  f i  is a ~ymplectic form on TQ. 

Proof: (a) Locally gb: U X E+ U' X E*, q ( U )  = U' c E is given by gb(x, e )  
= (x ,  ( e ,  - ),), so that 

~ g ~ :  U X E X E X E + U ' X E * X E X E *  

is given by 

T g b ( r  e, e,. e2) = ( L  (e,. ),, ( ~ g ~ ) , , , , ( e ~ ,  e2)) 

= (x, (e,.),, e l ,  Dx(e,-),el +(e2,.),) 

But then 

b ( gb*~o) (~9e ) . (~ , e , e l . e2 )=~o (gb(~ , e ) ) (~ tx , e~g  (x,e,el,e2)) 

= O(x, <e,.>,)(~, (e,. ),, el ,  Dx(e,. + (e2,. ),) 

= (e, el>, 

by the local formula of 8, given in Theorem 3.2.10. 

(b) follows by taking the exterior derivative. 8 
2 

(c) Since everything is finite-dimensional, it suffices to prove weak nonde- 
generacy for Q(x, e). Suppose that Q(x, e)((x, e, e l ,  e2), ( x ,  e, e,, e,)) = 0 $ 
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for all (e,,e,). Setting e,=O and using the formula in (b), we find 
(e,, el), = 0 for all e,, whence el = 0. Then we obtain (e,, e,), = 0 for 
all e, so that e2= 0, too. . 

3.2.14 Corollary. If Q, and Q2 are Riemannian (or pseudo-Riemannian) 
manifolds and f:  Q,+ Q2 is an isometry, then Tf: TQ,+ TQ2 is gvnplectic, and 
in fact preserves O.  

ProoJ This follows from the formula 

All maps in the composition here are symplectic and hence so is Tf. 

We conclude this section with some remarks on Morse theory for later 
use. From 3.2.3, a function f :  M+R with a nondegenerate critical point at 
x,E M can be written, in suitable local coordinates about x,, as 

The number i is called the index off at x,; it is the dimension of the largest 
subspace on which the Hessian Hess f (x,) = ~ Z f ( x ~ )  is negative definite. 

3.2.15 Definition (Bott [1954]). Let N c M be a submanifold and suppose 
each point in N is a critical point o f f .  We call N a nondegenerate critical 
sub&fold iJ in addition, for each x, E N 

{ v E TxoM I Hess f (xo)(v, w) = 0 for all w E TxoM ) = TxoN 

(Note that the inclusion 3 is automatic.) 
Equivalently, this means that on a subspace of TxoM, which is a comple- 

ment to TxoN, Hess f(x,,) is nondegenerate. On a tubular neighborhood about 
N, we can apply the Morse lemma to the variables transverse to N to get a 
canonical form for f parametrized by N; thus f has a well-defined index 
relative to N. (See Gromoll and Meyer [I9691 for related results.) 

Now we shall state two results from classical Morse theory that will be 
needed later. 

3.2.16 Proposltlon. Let M be a smooth, boundaryless manifod and f E 
S ( M ) .  Let a, b E R, a < b and assume f - ' ([a,  b ] )  is compact and contains no 
critical points o f f .  Then the manifolds with boundary 

9 

f-'((-...a]) and f - I ( ( - q b ] )  
d 
z are diffeomophic and hence so are their boundaries, f -'(a) and f -'(b). 

Furthermore, f - '[a, b] , f - ' (a)  X [0, 11 and f - ' (b)  X [0, 11 are all diffeomorphic. 



smooth out corners 

(4 

Flgure 3.2-1 (a) (b) (c) 
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The idea here is to construct a diffeomorphism by following the gradient 
curves off (i.e., integral curves of -Vf); along such curves f decreases and 
since f -'([a, b]) is compact with no critical points, such a curve starting in 
f - I ( ( -  m, b]) must eventually reach f - I ( ( -  m, a]). We refer the reader to 
Milnor [I9631 and Hirsch [I9761 for details. 

Combining this with the Morse lemma one can deduce that if M is 
compact with boundary and f E 9(M) has a nondegenerate minimum on M, 
has no other critical points and f is constant on dM, then M is diffeomorphic 
to a disk. 

One can make more substantial topological deductions. To do so, we shall 
describe, without giving any proofs, the procedure of attachment of handles 
on a given manifold. The standard n-dimensional handle of index A is H",' = 
D% Dn-', where D denotes the unit ball in R ~ .  If M is an n-dimensional 
manifold with boundary aM and +: s'-' X Dn- '+i3~ a smooth embedding, 
we can form the topological space M u+H",' in the following way: Take the 
disjoint union M U  H",' and identify x E H",' with + ( x ) ~ a M ;  the quotient 
space thus obtained is denoted by M U+H",\ It can be shown (see Milnor 
[1963]) that M u+H",' admits a unique (up to diffeomorphism) smooth 
n-dimensional differentiable structure and in this way M u + H",' becomes an 
n-dimensional manifold with boundary. (This differentiable structure depends 
only on the isotopy class of +.) M U+H">' is said to be obtained by the 
attachment of the handle H",' to M via the embedding +. Similarly we define 
the manifold obtained by the simultaneous attachment of k n-dimensional 
handles HF'~, . . . , H,".& of distinct indices (see Fig. 3.2-1). 

The fundamental connection between critical points and the attachment 
of handles is given by the following theorem. 

3.2.1 7 Theorem. Let f E T ( M ) ,  aM = 0, and a E R. Assume that u(f) n 
f -'(a) = {x,, . . . , x,), where xi is a critical point of index &, i = 1, . . . , k, 
and u(f) is the set of critical points of f. Also assume that for e, > 0, 
f -'([a - E,, a + E,]) is a compact set not containing any other critical point off 
except x,, . . . , x,. Then for all E satisfying 0 < E < E, the manifold f - I ( ( -  m, a 
+ E]) is diffeomorphic to 

for some imbeddings cpi : ~ 4 - '  x Dn-k-+f -'(a - E). 

EXERCISES 
5 z 3.2A. Let (M, a) be a symplectic manifold and f: M + M a local diffeomorphism. 
9 Prove that f is symplectic iff for every compact oriented two manifold B with 
m 
8 boundary, 
2 



786 Z ANAL Y I  IC'AL DYNAMIC'S 

3.2B. (J. Moser) Use the method in 3.2.2 to prove that if M is a compact manifold 
and p,v are two volume elements with the same orientation and 

then there is a diffeomorphism f: M+M with f v = p. [Hint: Since l v ,  
p - v = da (this is a special case of de Rham's theorem). Put v, = tv +(I- t) p 
and ix,v, = a. Let cp, be the flow of X, and set f = cpl.] 

3.2C. Let X, be a C' time-dependent vector field on E with X,(O)=O. Prove there is a 
ball about 8 on which the flow F,,o(x) of X, is defined for It1 < 1. 

3.2D. If 8, is the canonical one-form on T*Q and f: Q+R with df: Q+T*Q, show 
that for any vector field X on T* Q, Bo(X) 0 df = X Cfo 75). 

3.2E. Let P be a one-form on Q and let f: T*Q+T*Q be the map that is fiberwise 
translation by P. Prove that 

Show that such f s are examples of canonical transformations that are not lifts. 
3.2F. (S. Lie, A. Weinstein and J. Robbin). Prove that a diffeomorphism cp of T*Q is 

the lift of a diffeomorphism of Q iff cp preserves BO. [Hint: Suppose cp*Bo=80. 
We claim cp= T*f for a diffeomorphism f: Q+Q. Let Xo= -Xpia/api. 

# Invariantly, Xo= Bo. Show that since cp preserves e0, cp*Xo=Xo, so cp preserves 
the integral curves of X,. But Xo is zero precisely on the zero section, so cp 
leaves the zero section invariant. This defines f. Show that f or$=r5 ocp-' 

using cp*Xo = Xo. Use this and cp,Bo = 8, to conclude that cp = T* f.] 
3.2G. (Kd-der Manifolds). Let M be a manifold and g a (pseudo-) Riemannian 

metric; let J be a complex structure on M; that is, J is an involution of TM 
with .I2 = - i ,  and .I is g-orthogonal. M is called a KZhier mnijoid if V J =  0, 
where V is the connection of g (see Sect. 2.7) and J is regarded as a 1-1 tensor. 
Define, for vector fields X, Y on M, 

(See 3.4.18.) Show that D is a symplectic structure on M (see Nelson [1967]). 
3.2H. Show that Darboux' Theorem fails for weak symplectic forms as follows. Let 

H be a real Hilbert space. Let S: H+H be a compact operator with range a 
dense, but proper subset of H, which is selfadjoint and positive: (Sx,x) > 0 for 
O# x E H. For example if H = L2(R), let S = (1 -A)- ' where A is the Lapla- 
cian; the range of S is H~(R).  Y 

Since S is positive, - 1 is clearly not an eigenvalue. Thus, by the Fredholm 
alternative, a I+  S is onto for any real scalar a >O. Define on H the weak 9 

m 
metric g(x)(e, f) = (Axe, f )  where A, = S + 1 1  x 112i. Clearly g is smooth in x, and 
is an inner product. Let D be the weak symplectic form on H X H=Hl 
induced by g, as in 3.2.13. Prove that there is no coordinate chart about 
(0,O) E HI on which D is constant, by showing that if there were such a chart, 3 



Y HAMIL l UNIAN AND LAt iKANGIAN SYSTEMS 7 8 1  

say +: U+H x H! where U is a neighborhood of (0,0), then in particular in 
this chart, the range F of o ~ ,  as a map of HI to Hf, would be constant. (See 
Marsden [I9721 and Tromba [1976].) 

3.3. HAMlLTONlAN VECTOR FIELDS AND POISSON BRACKETS 

The Hamiltonian vector field of a function H on a symplectic manifold is 
formed in a manner analogous to the gradient of a function on a Riemannian 
manifold. However, the skew symmetry of the symplectic form leads to 
conservative properties for the Hamiltonian vector field whereas the symme- 
try of a Riemannian metric leads to dissipative properties for the gradient. 

3.3.1 Definition. Let (M, a)  be a symplectic manifold and H:  M+R a given 
C r  function. The vector field XH determined by the condition 

that is, 

is called the Hamiltonian vector field with energy function H .  We call 
( M ,  u, XH) a Hamiltonian system. [Note that with our notations from 3.1.7, 
XH = u#(dH).] 

Nondegeneracy of w guarantees that XH exists. It is a Cr-' vector field. 
Clearly on a (connected) symplectic manifold any two Hamiltonians for the 
same XH have the same differential by (2), so differ by a constant. 

3.3.2 Proposition. Let (q',  . . . , q",p,, . . . ,p,) be canonical coordinates for w, so 
a = 2 t lq i~dpi .  Then in these coordizates (and droppi~g Ea~e points), 

where J = ( O I ) .  Thus (q( t )  ,p  ( t ) )  is an integral curve of XH $f Hamilton's 
- I  0 

equations hold: 

8 
4 ProoJ Let XH be defined by the formula (3). We then have to verify (2). 
2 
5 
3 
z +As is discussed in Weinstein [1977a pp. 15, 161, Hamilton's equations were first discovered in 

linearized f o m  by Lagrange in 1808. The reader may find a wealth of historical facts in 
Whittaker [1959]. 
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Now ixH dqi = aH/api, ixH dpi = - aH/aqi by construction, so 

Conservation of energy is easy to prove: 

3.3.3 Proposition. Let (My a, X,) be a Hamiltonian system and let c(t)  be an 
integral curve for X,. Then H (c(t))  is constant in t. 

ProoJ: By the chain rule and (I), 

d - H ( c  ( t ) )  = d~ (c(t)).c'(t) 
dt 

since o is skew-symmetric. H 

The reader may also prove this using 3.3.2. 
The next basic fact about Hamiltonian systems is that their flows consist 

of canonical transformations. 

3.3.4 Propositlon. Let (My oy X,) be a Hamiltonian system, and Ft be the 
flow of X,. Then for each t, e w  =q that is, 4 is symplectic (on its domain). 
Thus Ft also preserves the phase volume QU (Liouville's Theorem). 

ProoJ: We have 

Thus T o  is constant in t. Since F,= identiv, the equation q o = w  results. $ 
rn 2 

z 
Notice that this is the first instance where we use the fact that w  is closed. 
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3.3.5 Definition. A vector field X on a symplectic manifold (M, a) is called 
locally Hamiltonian i f  for every m E M  there is a neighborhood U of m such that 
X restricted to U is Hamiltonian. 

3.3.6 Proposition. ( i )  X is locally Hamiltonian iff ixw is closed. 
(ii) X is locally Hamiltonian iff Lxw = 0 iff its flow consists of symplectic 

maps. 
(iii) X is locally Hamiltonian iff in a covering by ~ymplectic charts (in 

which w is constant; see Darboux's theorem), D X ( x )  is skew symmetric with 
respect to w; that is, 

ProoJ: (i) X is locally Hamiltonian iff ixw is locally exact. By the PoincarC 
lemma, this is equivalent to d(ixw) = 0. 

(ii) As in (3.3.4) ( d / d t ) q w = T ( d i , w )  since dw=O. This vanishes iff 
di,w = 0, that is, X is locally Hamiltonian. 

(iii) Let a be the one form ixw, so locally ax.e = wx(X(x),  e). Then X is 
locally Hamiltonian iff a is closed. But from the local formula for d,  

dax (e, f) = Dnee-f- Dor,.f.e 

The last two terms that, in a general chart, equal Dwx.X(x).(e,f) since w is 
closed, vanish in a symplectic chart. 

Remarks (1) From L,x,y,w=LxLyw-LyLxw we see that the locally 
Harniltonian vector fields, form a Lie s~~balgebra of %. 9bviously a 
Hamiltonian vector field is locally Hamiltonian. The converse requires a 
topological condition sufficient to guarantee that closed one forms are exact, 
namely, the first cohomology group of M should vanish (see, e.g., Singer and 
Thorpe [1967]). 

Here is an example of a locally Harniltonian vector field that is not 
Hamiltonian. Consider the two torus T~ with periodic coordinates x and y. 
Then o = d x ~ d y  is a well-defined symplectic form on T2. Identifying the 
tangent space of T~ with R2,  let, for any two constants a, b not both zero, 

X 
$ 
4 Then 
8 
o(, 
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which is closed. Thus X is locally Hamiltonian. But any locally Harniltonian 
vector field that has no zeros on a compact symplectic manifold cannot be 
Hamiltonian. Indeed, if X = X, for some H, then since H has a critical point 
(a maximum or minimum point), X would correspondingly have a zero. 

(2) There is a simple expression for H in terms of XH and a, namely, 
locally in a chart about 0, 

This follows from 

I dH ( t x )  
H ( x ) - H ( o ) = /  o di--dt 

(3) If we specialize these results to linear vector fields X on a symplectic 
vector space (E,w), we obtain the following equivalent conditions: 

(i) X is Hamiltonian with energy 

H ( e )  = &(x ( e )  , e )  

(ii) X is w-skew 

(in the terminology of Sect. 3.1, X is infinitesimally symplectic); 
(iii) the flow of X, that is, I;, = elX, preserves w. 

In 3.1.18 we showed that if X has distinct purely imaginary eigenvalues, 
then in symplectic coordinates (x,, . . . , x,, y,, . . . , y,), X has matrix of the 
form 
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The corresponding energy is easily seen to be [by (i) above] 

n 

H (x, y ) = 4 2 ai (xi' + Y?) 
i =  1 

that is, X is the sum of n noninteracting harmonic oscillators (If ai <0, the ith 
harmonic oscillator is running backwards). 

For mechanics, one of the most important operations given by the 
symplectic structure of the phase space is that of the Poisson bracket. In fact, 
Jost [I9641 has shown that a symplectic structure can be derived from the 
Poisson brackets (see Exercise 3.3F). 

We shall first define Poisson brackets for one-forms and then for func- 
tions. If a is a one-fom, let a#  be the vector field corresponding to it via o, 
that is, i,#o = a, and for a vector field X, let xb = i,o. 

3.3.7 Deflnltion. Suppose (M, a)  is a ~ymplectic manifold and a, P P %*(M). 
The Poisson bracket of a and P is the one-form {a, BP) = - [ a  #, P # ] b. 

Note that we have the following commutative diagram: 

Since [ ,] makes % a Lie algebra and b is linear, then 9€*(M) as a real 
vector space, together with the composition { ), is a Lie algebra. 

3.3.8 Proposition. Let (M, a)  be a symplectic manifold and a, P E %*(M). 
Then {a,P)= -La#B+Lp#a+d(ia#ip#a). 

PmoJ From Table 2.4-1 we have the following formula for two-forms: 

A 

$ Setting X= a#, Y = p# and observing that @(a#, Z)  = a(Z) yields 
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Then, using formulas (6) and (14) of Table 2.4-1, this becomes 

as required. . 
3.3.9 Proposition. If a, P E %*(M) are closed, then {a ,  p )  is exact. 

Proof: If p is closed then Lxp = ixdp + dixp = dixp. Thus the result follows 
from 3.3.8. . 
3.3.10 Definition. Let %$(M) denote the set of closed one-form, and 
%$(M) the exact one-form on a manifold M. 

Since d is R linear, it is clear that % J ( M )  and %$(M) are subspaces of 
%*(M) as real vector spaces. Also, if a,P E %$(M), then (a,@) E %$(M) c 
q ( M )  by 3.3.9. It is also clear that if a ,p  E%$(M), then {a,P) E%$(M). 
Thus %J and %$ are Lie subalgebras of % *. 

3.3.11 Definition. Let ( M ,  w) be a symplectic manifod and f ,  g E g ( M ) ,  with 
X, = (dn# E % ( M )  as in 3.3.1. The Poisson bracket o f f  and g is the function 

that is, 

Some properties of Poisson brackets follow. 

3.3.12 Proposition. Let (M, w) be a synylectic mangoid and J g E %(~-j. 
Then 

{ f , s ,  = -Lx,g=Lxsf 

Proof. We have Lx,g = i3 dg = i3iXgw since dg = ixgw. Since ixiyw = 

- iyixw = w(Y,X), the last equality follows. . 
3.3.1 3 Corollary. ( i )  For fo E T ( M ) ,  the map g~ { fo, g )  is a deriuation. 

(ii) f is constant on the orbits of X, iff {f, g )  = 0 iff g is constant on the 
orbits of XY % g 
ProoJ (i) g~ { fo,g) = - Lx g is clearly a derivation. (ii) If I;, is the flow of 

Xf 9 

l o  VI 

LZ 
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which vanishes iff { f,g) =O. Since { f,g) = - { g, f ) ,  this is equivalent to 
(d/dt)( f 0 GI) = 0, where Gt is the flow of X,. H 

Note that the identity { H , H )  =O corresponds to conservation of energy 
by (ii). 

3.3.14 Corollary. In canonical coordinates (i.e., a symplectic chart) 
(41,.. . ,q:~,,. . . ,~n)> we have 

(Note: { q  f qi) = 0, {pi,pj) = 0, {q'pj}  = q.) 
Proos {f,g)=Lxsf=df-X,,so 

The following is often referred to as the equations of motion in Poisson 
bracket notation. 

3.3.1 5 Corollary. Let X, be a Hamiltonian vector field on a symplectic 
manifold (M, u) with Hamiltonian H E %(M) and flow 4. Then for f E %(M) 
we have 

g 
4 The Poisson bracket of functions relates to the bracket of one forms as 
" follows. 8 
OP 
0 

z 3.3.16 Proposition. Let (M, u) be a symplectic manifold and f, g E '?F(M). 
B Then d{ f ,  g )  = {df ;  dg ) . 



Proof. This is a simple computation. Using 3.3.8, 

{df, dg) = - L,, dg + Lx8 df + d(ixjx8w) = - d(L,,g - Lx8f - i,,ix8w) 

x = d{f, g)  + d{f, g) - d{f, g) = d{f, g)  . 
3.3.1 7 Proposltion. The real vector space T(M), together with the Poisson 
bracket {, ) , forms a Lie algebra. 

Proof. Since d and a# are R linear, the map fwXf is R linear. Hence 
{ f,g) = - ixjxsw is R bilinear. It is also clear that { f,f) =O. For Jacobi's 
identity, we have 

However, X,,,, = (d { f, g))# = {df, dg )# = - [(dB#, (dg)# 1. Hence X(f,g) = 
-[Xf, Xg] and the result follows. . 

Jacobi's identity, restated, gives this corollary. 

3.3.18 Corollary. X(f,g) = - [Xf, Xg]. In particular, the globally Hamiltonian 
vector fields %%form a Lie algebra. 

From 3.3.9 and 3.3.16 one can show that c &. Actually, 
equality holds, a result of Arnoid, Calabi, and Lichnerowicz (see Lichnero- 
wicz [1973]). 

A convenient criterion for symplectic diffeomorphisms is that they pre- 
serve the form of Hamilton's equations. 

3.3.19 Theorem. (Jacob1 [1837]) Let (M, a)  and (N, p) be symplectic mani- 
folds and f: M+N be a diffeomo~hism. Then f is symplectic iff for all 
h E T(N), f *Xh = Xhqf 

Proof. If f is symplectic, then f *(dh)# = Cf*dh)# = d (h of)# = Xh (Exercise 
3.3B). Conversely, iff * Xh = Xh a f ,  then 

d (h of) = ixh .,a 

On the other hand, 

d(h0 f)=f*dh=f*iXhp 
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Therefore, 

f*p forall h€F(N)  'xh QJw='xh O f  

Every vector in T,M has the form Xhof(m) for some h, so w = f *p and f is 
symplectic. W 

Preserving Poisson brackets also characterizes symplectic mappings as 
follows. 

3.3.20 Proposition. Let (M, w) and (N, p) be symplectic manifolds and 
F: M+N a diffeomolphism. Then F is symplectic iff F preserves Poisson 
brackets of functions (resp. one-forms) ; that is, for all j g E 9(N), { F* j  P g  ) 
= F*{J g)  (resp. for all a, /3 EQ'(N), { P a ,  F*P) =. F*(a, b}) ;  or F* is a Lie 
algebra isomolphism on 9 (resp. a'). 

ProoJ: We have 

Hence F preserves Poisson brackets iff 

iff P X g  =X,,, iff F is symplectic. We leave the second part as an exercise. 

There is a useful characterization of symplectic charts in terms of coordi- 
nates as follows. 

3.3.21 Proposition. Let (M, w) be a symplectic manifold, and (U, cp) a chart 
with cp(u) = (ql(u), . . . , qn (u),, p,(u), . . . ,pn (u)). Then ( U, cp) is a symplectic chart, 
that is, w=Zdqir\dpi #{q',qJ)=O, {pi,pj}=O, and {q',pj}=$ on U. 

ProoJ: If (U,cp) is a symplectic chart, the validity of these relations follows 
from 3.3.14. 

Conversely, assume (U,cp) is a chart with {qi,qj) = 0, (pi,pj) = 0, and 
{qi,pj) = $. In this chart, let = (wY) be the 2n x 2n matrix of w (which equals 
the matrix of wb) and let A =(ag) be its inverse matrix (which equals the 
matrix of a#). Then 

Similarly, 
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Thus, by assumption 

so fJ = J and the chart is symplectic. . 
The bracket expressions introduced by Lagrange (1808) to simplify the 

two-body problem are still important in celestial mechanics as we shall see in 
Part IV. They are closely related to the Poisson brackets (1809). 

3.3.22 Definition. If (M, w) is a symplectic manifold and X, Y E % ( M ) ,  the 
Lagrange bracket of the vector fields X and Y is the scalar function 

If (U, c p )  is a chart on M, the Lagrange bracket of cp is the matrix of functions 
on U given by 

where a/aui are the standard basis vectors associated with the chart (U, c p ) ,  
regarded as local vector fields on M. 

Notice that [IXf,X,TI = {f ,g) ,  and that a diffeomorphism f is symplectic iff 
it preserves all Lagrange brackets; that is, [If*X,f* Y l =  f *[X,  YJ. 

3.3.23 Proposltlon. Let ( M ,  a) be a 2n-dimensional symplectic manifold, 
(U ,  c p )  a chart (not necessariIy symplectic) and let q(m) = (u',  . . . , u2"). Then 

1 
(i) wl U =  7 X [ u 1 ,  U J ]  dui@duJ; 

I >  J 
(ii) (U ,  c p )  is a symplectic chart iff J = (w,.), i.e., if wV = [[ui, ul] is the matrix 

(iii) If a, = cp,w is the push-forward of wl U to U' = cp(U) c R ~ " ,  then 

where ei are the standard basis vectors in R2"; 2 
(iv) (Lugrange, 1808) i f $  M -+ M is a diffeomotphism, (U,  cp)  and ( V ,  $1 are Z 

charts on M,  f (U)  = V ,  ( U ,  c p )  being a symplectic chart, and i f  we write 
13 

cp(u) = (q l ,  . - . qn, P,, . . 7 P,) 3 
z 

#(v )  = (el, - .. , en, PI,. . . , P") 
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(f*) - ~ o ( Q ' ,  . . , Qn, PI, . , P,) = (q', . . , qny PI, . - 3 P,) 

then on &: 

where Q and P are any of (Q',.. ., Q", P ,,.. .,Pn). 
(0) ' Suppose that in (iu), f is a symplectic ddSffeomophism and ( V; $) a 

symplectic chart. Then 

Uq, PI -' = BQ, PI 

Proof: (i) to (iii) are direct verifications and are left as an exercise to the 
reader. For (iv), recall that 

This combined with the local expression in U of w, wl U= X?, ,dqi~dpi yields 

= f: (2' 2 aqi 'pi) 
i= I ap a~ 

Suppose that in (iv), f is a symplectic diffeomorphism and (U, 4) is a 
symplectic chart. Then 

I I ~ , P J J O ~ - ~ = U Q , P ~  

TO see this, notice that 

We have 
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Statement (iv) of the above proposition shows actually that the classical 
expressions of Lagrange provide an algorithm for computing the Lagrange 
brackets in the "new" coordinates (Q,P) from the "old" canonical coordi- 
nates (q,p) when these "old" coordinates are expressed as functions of the 
"new" ones. (This is one reason why the coordinate transformations in 
celestial mechanics are usually given backwards in classical texts.) 

3.3.24 Proposltion (Lagrange 1808). Let X be a locally Hamiltonian vector 
field on the symplectic manifold (M, u), (U, QI) a symplectic chart, and Ft the 
local flow of X on U. mite on &' = I;,( U), (QI F- ,)(u') = (Q,', . . . , P,,) and get, 
relative to the chart ( q, QI F- ,) , 

Then [IQ, PI, I;, (defined on U) is independent of t. 

Proof: Since X is locally Hamiltonian, I;, is a symplectic diffeomorphism, so 
that by (v) above, 

The independence of time of his brackets is Lagrange's celebrated result. 
In terms of complete integrals (see Sect. 2.1), this result may be phrased as 

follows: let X be a locally Hamiltonian vector field on a symplectic manifold 
(M,u) and (V, b, q )  a complete solution with the associated family of charts 
{Q,). Then if IQ, PI, is the Lagrange bracket of q,, [Q, PI, is independent 
of t. 

We conclude this section with an important result called the "period-en- 
ergy" relation. Let (P, u) be a symplectic manifold and H: P+R smo~th. Let 
F: D c P X R+P be the flow of XH and let f be the graph of F, that is, 
F(x,t)=(x,I;,(x)), so f: D+P X P. Let A =  {(p,p)lp E P )  be the diagonal in 
P X P and set 

which is just the collection of "periodic orbits" of XH. We now show that the 
period and energy are always functionally related on surfaces of periodic 
orbits. This may be stated as follows: Y 

8 

3.3.25 Proposition. d t~dH=O on any submanifold of per, c P X R. 
G 
m 
LCI 

2 
c; 

Proof: (A. Weinstein). On P x P, let n;. be the projection on the ith factor, 
i = 1,2. Let Q = a:u - @u. Then Q is a symplectic form, as is easily checked. 8 
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Furthermore, A c P x P is a canonical relation, that is, i*9 = 0, where 
i: A+ P X P is inclusion. Now 

from the definition of ?, so if dH(x) # 0, which we can assume (otherwise the 
conclusion is trivial), k will be p immersion; that is, T(x, ,)k is 1- 1. From this 
formula for TF, we see that F*Q = - dt AdH,  since F, is symplectic and 
TxI;;(XH(x)) = XH(F,(x)). (This computation will be left as an exercise.) Let j: 
per, + P x R be inclusion, and 6: P x R +A: (x, t ) ~ ( x ,  x). Then Poj = 
i.6, so that j*(dt A dH) = - j*$Q = - ( b j ) * ~  = - 6*i*9 = 0. 

This proof is based on Gordon [1969]; see Moser [I9701 for further 
comments and exercises 5.2G and 5.31 for a generalization. 

EXERCISES 

3.3A. Let (M,w) be a symplectic manifold. Show that the collection of symplectic 
diffeomorphisms q: M-+M form a group under composition. Guess what the 
tangent space to this group at the identity (i.e., its Lie algebra) is.* 

3.3B. Show that a diffeomorphism F between symplectic manifolds is symplectic iff 
( P a ) #  =FC(ag) for all one-forms a. 

3.3C. Let (M,w) be a symplectic manifold and (U,v) a chart on M such that if 
cp(u) = (xl(u), x2(u),y ~(u),YZ(U)), then 

for some f EF(U) [so that (U,cp) is not a symplectic chart]. Then show, by 
determining the b and # actions, 

(0 f={y1,~2)  
(ii) If H E g(M), then in local representation, 

& 
2 
4 m where (el,e2,e3,e4) is the standard basis; 
3 
2 

*That this group really is a smooth infinite-dimensional manifold is proved in Ebin-Marsden g [1970]. 
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(iii) A curve c: Z+M is an integral curve of X, iff, in local representation, 

Compare with the Hamiltonian equations if the chart is symplectic Cf=O). 
Note, however, that the integral curves are the same, irrespective of the chart 
used. That is, the above equations are canonical even if they do not look it. 

3.3D. Consider the polar coordinate diffeomorphism p from the upper half of the 
cylinder R x S1 onto R~\(O), defined by (r,B)~(rcosO, rsin8) (note that 8 is 
not defined globally on S1, but dB is). Show that d(r2/2)~dB is a volume on 
S 1  x R and, relative to this volume and the standard one on R ~ ,  p is 
symplectic. Compare with the statement: dx dy = r dr d8. 

3.3E. (i) If X E %(M), define Px : T* M+R by Px(am) = am(X (m)). Show that if 
X, YE %(M), then {Px, P,) = - P[,, in the natural symplectic structure. 
(ii) Let X E%(M) and 4 its flow. Let G,= P F - , .  Show that GI is the flow 

of Xpx. 
(iii) Suppose M is a Riemannian manifold and X is a Killing vector field (i.e., 

Lxg=O, where g is the metric). Letting 4 be the flow of X, show that 
GI = TF, is a Hamiltonian flow with H (v) = (v,X). 

3.3F. (W. Pauli, R. Jost). Let {f,g) be an R-bilinear bracket defined on %(M)X 
%(id) that makes %(MI &G a Lie algebrs. §tippose ( , ) is a derk~atian h each 
factor, and {f,g) = O  for all g implies f is constant. Show that A(df,,dgx)= 
{f,g)(x) defines a two tensor on M. Then show A is nondegenerate and that 
the corresponding two-form w is a symplectic structure. 

3.3G. (R. Jantzen). Show that a locally Hamiltonian vector field on a symplectic 
manifold (M, w) is globally Hamiltonian if and only if as a derivation on T(M) 
it is inner. (A Lie algebra derivation h: g+g is called inner if it is of the form 
h(8=[5,t01 for some 50Ee.) 

3.3H. Let Bo be the canonical one form on P Q  and f: 1"CQ+R. What is {80,df)? 
3.31. (W. Tulczyjew). A special symplectic manifold is a quintuple (P, M,s,d,a), 

where a: P+M is a differentiable fibration [i.e., locally, a-'(U) is a product 
of U with a manifold], 8 is a one-form on P and a: P + P M  is a diffeomor- 
phism over M (i.e., r$, 0 a = a)  such that a* OM = 8, where OM is the canonical 
one-form on M. Clearly a special symplectic manifold is also symplectic. 
(a) If (P, w) is a symplectic manifold and a : TP+ T* P is the map a#, let 8, 

be given by 
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Show that (TP, P, r,, O,, a)  is a special symplectic manifold 
(b) Iff: P+P is symplectic, show that Tf: TP+TP is also symplectic, using 

the symplectic structure in (a). 
(c) Let (P, M,a,O,a) be a special symplectic manifold and y a closed one- 

form on M. Then set P= a +  y oa. Show that (P, M,r,a*O, + a*y,P) is a 
special symplectic manifold with the same symplectic structure. 

(d) Show how T(T*Q) can be realized as a symplectic manifold in two ways, 
via two different special symplectic structures. 

3.35. Let (M,w) be a symplectic manifold. If Tk denotes the k-dimensional torus 
with the symplectic manifold (T(Tk), da,~dai, + . . - + dakr\daik), then define 
an "angular chart" (U,+), where U c  M is open and +: u+T(T~) is a 
diffeomorphism onto an open set. Show: 
(i) + is symplectic iff the matrix defined by the Lagrange brackets is J; 

(ii) the Lagrange brackets of + are independent of time along the flow of a 
locally Hamiltonian vector field on M. 

3.3K. (G. Marle). Let (P, w) be a symplectic manifold, H E Q(P) a Hamiltonian and 
Q a submanifold of P such that X, is tangent to Q. Let (R,D) be another 
symplectic manifold and a: Q+R a submersion such that (i) a*D= i*o, i: 
Q+P being the inclusion, and (ii) there exists H E%(R) such that NOT= 
H 0 i. Show that X,lQ and X,-ET(R) are a-related, that is, 

How are their flows related? 
3.3L. (K. Meyer) Let (E,w) be a symplectic vector space and X E L(E,E) a linear 

map. Show that X is Hamiltonian iff ( I  + X)(I - X ) -  ' is symplectic (compare 
the Cayley transform in operator theory). 

3.4. INTEGRAL INVARIANTS, ENERGY SURFACES, AND STABILITY 

With the machinery of differential forms, Lie derivatives, and Cartan's 
calcdus at haad, we caii give a condse ireailment of the integral invariants of 
PoincarB with emphasis on the symplectic context. Some other basic proper- 
ties of Hamiltonian systems will be treated as well. 

3.4.1 Definltlon. Let M be a manifold and X a vector field on M. Let 
a E Qk ( M ) .  We call a an invariant k-form of X i f f  L,a = 0. 

From the basic connection between flows and Lie derivatives, we obtain 
the following. 

3.4.2 Proposition. Let M be a manifold and X E 9C (M), a E O k ( ~ ) .  Then a 
is an invariant k-form of X i f f  a is constant along the integral curves of X, that 
is, (FA)*a is independent of A, where FA is the flaw of X. 

Thus, if we think of the integral curves of X as the motion of a system, a 
is a constant of the motion. The term integral k-form arises because of the 
following. 



3.4.3 Theorem (Polncare-Cartan). Let X be a complete vector field on a 
manifold M with flow FA, and let a E Qk (M). Then a is an invariant k-form of 
X iff for all oriented compact k-manifolh with boundary (T/, V) and C" 
mappings rp: V+M, we have /,(FA 0 rp)*a = /,rp*a, independent of h 

Proof: If a is invariant (Poincark), then (FA)*a = a, (FA)*a=a. Hence 
/,(F~ 0 rp)*a = JVrp* o (FA)*a = Jvrp*a. Note that, since V is compact and 
orientable, the integral is well defined according to Sect. 2.6. Conversely 
(Cartan), if the integral is invariant under the flow, then for any closed k disk 
(D, aD) embedded in V (a solid sphere in local representation in Rn), we have 
/,(FA o rp)*a = JDrp*a, since D is compact. But the Lebesgue integral is a 
(signed) measure, and the disks above generate the Bore1 sets on V. Hence, 
over any measurable set A we have, by the Hahn extension theorem, 
/,(FAocp)*a=/,rp*a. Thus (FAoq)*a=~*a .  Then, by choosing V to be a 
portion of various subspaces in local representation, we see that (FA 0 rp)*a = 
cp* 0 Ga = rp*a for all such rp implies G a  = a, so a is an invariant k-form 
of X. . 

Note that X need not be complete; the statement of the theorem merely 
requires that the domain of 4 should contain cp(V), 0 < t <A. 

3.4.4 Proposition. Let X be a vector field on a manifold M and a, P invariant 
forms of X. Then 

( i )  ixa is an invariant form of X 
(ii) da is an invariant form of X 
(iii) L, y is closed iff dy is an invariant form, for any y E Qk (M) ; 
(iv) ~ A P  is an invariant form of X. 

Proof: Note that Lxix = i, L,, since Lxix = dixix + i, di, = i, di, 
and ixLx = i, di, + ixixd = i, di,. This also follows from the relation iI,, = 

Lxi, - i,L,. Thus Lxixa = ixLxa = 0 and (i) holds. For (ii), L,da = dLxa = 0. 
This same relation Lxd= dL, proves (iii). Finally, (iv) follows since L, is a 
tensor, and hence a A derivation; L,(ar\P) = (L,a),$ + a,-, LxP. . 

Since L, is R linear, we obtain the following. 

3.4.5 Corollary. Let X E %(M), and let ax denote the invariant forms of I% 
Then 62, is a A subalgebra of Q(M), which is closed under d and i,. 

X 
t4 
S? 3.4.6 Definltlon. Let X be a vector field on a manifold M and a ESlk(M). 4 

Then a is called a relatively invariant k-jiorm of X iff Lxa is closed. m 
'a 
2 
d 

Thus a is a relatively invariant k-form of X iff da is an invariant Z 
( k  + 1)-form of X. 2 



For the integral properties of relatively invariant forms (Whittaker [1959, 
p. 2711) we employ Stokes' theorem. 

3.4.7 Theorem (Poincare-Cartan). Let X be a complete vector field with 
flow FA on a manifold M. Let a €ak - ' (M) .  Then a is a relatively invariant 
( k  - l)-form of X i f f  for all oriented compact k manifolds with boundary ( V, a V )  
and Cm maps cp : V+ M we have 

that is, is independent of h E R ( i  : a V-+ V is the inclusion map). 

ProoJ The form a is relatively invariant iff da is an invariant form of X. But 
then, by Stokes' theorem and 3.4.3, we have 

The converse may be proven as in 3.4.3. . 
We may now summarize the algebraic relationships between the invariant 

forms of a fixed vector field. 

3.4.8 Deflnltlon. If X E % ( M ) ,  let ax be the set of all invariant forms of X, 
ax the set of all relatively invariant forms of X, k? the set of all closed forms in 
Q ( M ) ,  and G the set of all exact form in Q(M). 

Note that ax c ax, and G c k? c ax. By 3.4.5, ax is a differential 
subalgebra of Q(M),  but is not. However, it is obviously an R subspace. 
Further relationships as R subspaces may be expressed in the convenient 
language of exact sequences of R linear mappings. 

3.4.9 Deflnitlon. Let E, be a real vector space, and a;: E,+Ei+, a linear 
mapping, i E 3 the integers. Then the diagram 

is an exact sequence i f f  for all i, Im (aiui- = Ker(cu,). 
Especially, we say EL F-0 is exact i f  a is surjective, and 

Y 0 + EA F is exact i f  a is injective. 

g 
CZ m 

Note that for any linear mapping a : E- F, we have the exact sequence 
8 i 

2' 0 - ~ e r ( a )  -EAFL ~ / l m ( a ) - 0  
5: 
fi where i is the inclusion map, and a the projection onto the quotient space. 
CI 
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With these notations the following is a trivial restatement of definitions 
and elementary properties. 

3.4.10 Proposition. If X E %(M),  the following sequences are exact: 

( i )  0 - ax- Q ( M ) ~  Q(M)& Q(M) /  I ~ ( L , )  -0 
d (ii) o - & ? ~ % ~ - ~ E ~ ~ @ ~ / &  n gx-0 

In addition, 
(iii) d (ax) c ax and ix (ax) c ax. 
The relevance of invariant forms for Hamiltonian systems is the following. 

3.4.11 Proposition. Let X be a local& Hamiltonian vector field on a Jym- 
plectic 2n-manifold (M, o). Then w, w2,. . .,on are invariant forms of X. 

This proposition fallows at once from the fact that Lxo=O and Lx is a A 

derivation. 
Next we shall discuss energy surfaces for Hamiltonian systems and obtain 

an invariant measure on them.  his will then be generalized to level surfaces 
defined by several functions. 

Let (M,w,XH) be a Hamiltonian system. Let e E  R be a regular value of 
H, that is, dH(m)+O if m E H -'(e), so that H -'(e) is a submanifold of M of 
codimension 1. We will write Z,  for a connected component of H-'(e). It 
follows easily that 2, is a codirnension one submanifold of M. Under these 
circumstances, we say Z,  is a regular energy surface. By conservation of 
energy, integral curves of XH starting in 2, stay in 2,. Thus XH is tangent to 
Z,. We write XHIZ, for the vector field XH restricted to points of 2,. 

3.4.12 Theorem. There is a volume element pe on 2, invariant under XH(Ze. 

ProoJ: Work in a neighborhood of Z,  on which dH+O. Write QW for the 
phase volume, as usual. There is a form a such that 

In fact a can be chosen in many ways; using a partition of unity, the question 
is local. Choosing local coordinates with H as one of the coordinates, possible 
sincedHf0, we can let a be a function times the wedge of the remaining co- 
ordinates. Now 

- 
4 

4 
Thus the expression of LxHa in a basis containing dH must contain dH in 3 
every term. Hence we can write z 

z 
LXHa =   HAT 4 
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Similarly if o,a' are two forms satisfying 

then 

Now let i: 2,- M be inclusion and pe = =*a. Then from a - a'= d H ~ p ,  we 
see that 

since i*dH=O, so pe does not depend on which o is chosen (so is unique in 
that sense). 

Since dHr\a#O, pe is a volume. Finally, it is invariant since 

By uniqueness, note that if f: M+M is a volume preserving diffeomor- 
phism such that H 0 f = f, then f 12, preserves pe. 

We shall now generalize this result. We shall replace the regular energy 
surface 2, by a manifold V that is the level surface of a family of constants of 
the motion (as opposed to just H)  and seek an invariant measure on V. 

3.4.13 Definition. If V c M is a submanifold and X E %(M), then V is an 
invariant manifold of X if for all v E V; X(V) E Tv V c Tv M. 

From this infinitesimal characterization of invariance follows immediately 
an integral characterization. For if V is invariant under X, then XI V E %(V). 
Thus, by the uniqueness of integral curves, we have the following. 

3.4.14 Proposition. If V c M is an invariant manifold of X E %(M), u E V; 
and c : I- M is an integral curve at v, then there is a neighborhood J of 0 E I 
such that c(J) c V; and conuersely. 

The invariant manifolds of interest to us are those defined by 

where F= { f,, . . . , f,), c E R ,, and A : M+R are constants of the motion for 
Y v 

AH' 

4 
3.4.15 Theorem. Let (M, u, X,) be a Hamiltonian system and let f,, . . . , 
fk : M-R be C " constants of the motion for XH; that is, {A, H) = 0. Let 
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and let c E R~ be a regular value of F [i.e., df,(x) A . . . r\dfk(x) #0 if 
x E F -'(c)].* Let 2, = F -'(c). Then Z ,  is an invariant manifold for X, of 
codimension k and there is an invariant volume pc defined on Z,. 

ProoJ That 2,  is a codimension k invariant manifold (or is empty) is 
immediate from 1.6.16. As in 3.4.12, we can write, in a neighborhood of Z,, 

From Liouville's theorem and {A, H ) = LXHA = 0, it follows that 

Thus, since df,,.. .,dfk may be completed to a basis, LXHq must have at least 
one d l  in each term. Therefore, 

If q' is a second form with 

then 

for similar reasons. 
We now set 

pc = ii*q 

where i : Z,+M is inclusion. Since each 1. = constant on Z,, pc is independent 
of which q is chosen. 

Also, # 0 since df, A. . . r\dfk~q Z 0, so pc is a volume. Finally, 

so pc is invariant. . 
v 

For another proof, see Exercise 4 .3g  1 3 
4 The invariant measure on energy surfaces is important in statistical m 

mechanics, for in some cases the flow there is ergodic. We shall discuss some 2 
z 

*Recall that by Sard's theorem the regular values for F form a dense set. 2 
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elementary aspects of ergodicity in Sect. 3.7 in the context of the "Virial 
Theorem," but for now the reader is referred to Exercise 3.4F. 

We conclude this section with a brief discussion of stability in the context 
of our work in Sect. 2.1. In such a discussion, energy surfaces play a key role. 
The first thing to observe is the following: 

3.4.1 6 Proposltlon. Let (M, w, XH) be a Hamiltonian system. Then a point 
X, E M is an equilibrium point if and only if xo is a critical point of H; that is, 
dH (x,) = 0. 

PmoJ The point xo is an equilibrium if and only if XH(xo)=O. Since 
XH = (dH)# and w is nondegenerate, this is equivalent to dH (x,) = 0. . 

The most elementary criterion for stability of Hamiltonian systems is as 
follows: 

3.4.1 7 Theorem. Let x, be an equilibrium point of X,. Suppose that D *H(x,,) 
is positive- (or negative-) definite; that is, for all v, E TxoM, v, # 0 

(or < 0). Then x, is stable. 

PmoJ By the Morse lemma (actually Taylor's theorem suffices here) in a 
neighborhood of x,, the level surfaces of H are diffeomorphic to concentric 
spheres. Since energy is conserved, any initial point near x, must remain on 
the associated energy sphere and hence remain in a neighborhood of x,. . 

Under the circumstances of 3.4.17, all the characteristic exponents of XH 
at x, [i.e., eigenvalues of DXH(xo)] must be purely imaginary. This can be 
seen algebraically by working in a symplectic chart. It is also consistent with 
3.4.17, for if some eigenvalue was not purely imaginary, there would be at 
least one with negative and one with positive real part by the symplectic 
eigenvalue theorem in Sect. 3.1. Thus, along some directions we would have 
asymptotic stability and along others, asymptotic instability. The situation of 
3.4.17 is called that of a pure center. These ideas will be taken up again later 
in a discussion of invariant manifolds and periodic orbits. 

Definiteness of D2H is not necessary for stability. For example on R~ 

H ( X , , X ~ , Y , , Y ~ ) = ~ ( X T + Y : ) - + ( X ~ ~ + Y ~ ~ )  
Y 

is not definite, but the flow is stable; it is two harmonic oscillators, one 4 
running backwards. (See Remark 3 following 3.3.6.) 0" 

2 In many delicate situations, D2H is not definite, but criteria due to 
Kolmogorov, Arnold, and Moser are available. These are discussed in 
Chapter 8. 
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EXERCISES 

3.4A. Prove: Let X be locally Hamiltonian on a symplectic manifold (M,o). Then 
the invariant one-forms of X form a Lie subalgebra of %*(M), and the 
invariant functions form a Lie subalgebra of d(M). 

3.4B. Let (M,w) be a symplectic 2n manifold and X a locally Hamiltonian vector 
field on M. Suppose A E $Izn (M) and A = pa,. Show A is an invariant form of 
X iff p is an invariant function. 

3.4C. Consider the symplectic manifold PQ and let Bo be the canonical one-form. 
Prove that X E%(M) is locally Hamiltonian iff Bo is a relatively invariant 
one-form of X .  

3.4D. Let H, and H2 be two Hamiltonian functions on (P,o) and suppose Z is a 
regular energy surface for both of them. Prove that the integral curves of XH, 
and XH2 are the same on Z except possibly for a reparametrization. (Hint: For 
x EX, show that Ex = {v  E T,Cli,w, =0) is one dimensional.) 

3.4E. Give an example of a Hamiltonian system on T*R2 that has an equilibrium at 
the origin, one direction is attracting, one is repelling and there is a two-dimen- 
sional manifold of closed orbits. 

3.4F. (a) (Poincark Recurrence Theorem). Let M be a compact manifold, X a 
smooth vector field on M with flow 4, and $I an X-invariant volume. For 
each open set U in M and T > 0, show that there is an S 2 T such that 
U n Fs(U) # +. [Hint: Since U, FT(U), . . . , FkT( U) have the same 
measure, they cannot be disjoint if k is large enough.] 

(b) What does (a) say in the context of 3.4.17? 

3.5 LAGRANGIAN SYSTEMS 

We saw in Sect. 3.2 that P Q  has a natural symplectic structure. There- 
fore it is possible to study Hamiltonian vector fields on the momentum phase 
space, T*Q. This section is concerned with an alternative description on the 
velocity phase space, TQ. 

Roughly, the idea is as folbws. W e  consider a function L on TQ and 
solutions to a certain second-order equation. From L we can derive an energy 
function E on TQ that, when translated to P Q  by means of the "fiber 
derivative" FL: TQ+T*Q (the derivative of L in each fiber of TQ), yields a 
suitable ~ad l ton ian .  Then the solution curves in P Q  (Hamiltonian equa- 
tions) and in TQ (Lagrangian equations) will coincide when projected to Q. 
The following diagram may help to keep the locations in mind; 
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We shall also see, in the next section, how the process may be reversed to 
allow passage from the Harniltonian formulation to the Lagrangian. 

Notice that the two formulations take place on different spaces, which in 
general cannot be canonically identified. Thus, the relation between H and L 
is not merely a change of variables. 

We begin, then, with the fiber derivative in a slightly more general 
context. 

3.5.1 Definition. Let m: E +  M and p: F + M  be vector bundles over the 
common base space M, and let f: E += F be a C m  mapping (not necessarily a 
vector bundle mapping) that is fiber preserving and such that f, is the identi@; 
that is, the following diagram commutes: 

Let f, denote f 1 E,, where E, = g- ' ( v )  is the fiber over v E M. Then the map 

Ff:  E- U L(E,, F,): e , c D f , ( e , ) ~ L ( E , , ~ , )  
, E M  

is called the jiber derivative of J 

It may be easily shown, as in Sect. 1.7 that 

is a vector bundle over M, with charts induced in a natural way from those of 
E and F. It is easy to see that F$ E + L(E, F) is smooth and fiber preserving. 
Also notice that the association f H Ff is linear. The situation that concerns us 
is f: TQ +R, so we will be content with the proofs in this case. 

3.5.2 Definition. Let Q be a manifold and L€%(TQ).  Then the map FL: 
TQ+ T* Q : w, t-t DL,(w,) E L(T,Q R )  = Q is called the jiber derivative of 
L. Again L, denotes the restriction of L to the fiber over q E Q. 

We leave it to the reader to show that FL= FL according to 3.5.1, where 
i: TQ-Q x R: w, c (q, L(w,)) and ~ ~ ( w , )  = q. Note that FL is not neces- 
sarily a vector bundle mapping. However, from our remarks following 3.5.1, 

" we have: 8 
2 
z 3.5.3 Proposition. Let Q be a manifold and L E %(TQ). Then FL: TQ- 

T* Q is a fiber preserving smooth mapping. 
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For computational purposes, we note that if L: TQ+ R is smooth and cp 
is a chart on M, then (FL), = F(L,). 

3.5.4 Notation. Let Q be a manifold and (U,  cp)  a chart on Q with cp(u) = 
(ql(u), . . . , qn(u)) E Rn.  Then we write 

Then if L E %(TQ), we write Li = D,I;,O ~ c p - '  and Lq = D,L,O ~ c p - ' ,  with 
similar notation for higher derivatives. The components in the standard basis are 
denoted Lit, and Lqi. Thus Lii, Lq, represent the usual partial derivatives of L,. 

3.5.5 Definition. Let wo be the canonical symplectic form on T*Q and let 
L E %(TQ). Let 

called the Lagrange two-fonn. 

Clearly w, is a closed two-form on TQ since 

dwL = d(FL) *oo = (FL)  * doo = 0 

The next proposition computes oL in coordinates. Let (U,cp) be a chart on M, 
with cp(U)= U'C Rn.  Then we have natural charts Tcp: TU-U'X R n  c R n  X 
R n  and Pcp: P U + U ' X R " * C R ~ X R ~ * .  Let the component functions of 
these two natural charts be (q l  ,..., qn,ql ,..., qn)  and (ql  ,..., qn,p ,,..., p,), 
respectively. Then uLI TU is a linear combination of terms dqir\dqJ, and so 
forth. In the notations of 3.5.4, we have FL: T U + P  U:  ( u , e ) ~ L i ( u , e ) .  
PJso, let 

and so forth. Thus in U, 

3.5.6 Proposition. If L E F(TM) and (U, c p )  is a chart on M, then with the 
notations above 2 

4 
m 

(summed on i, j = 1,. . . , n). 
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Proof: In terms of these coordinate functions, we have tool T* U= dqir\dpi. 
Thus 

wL) TU = (FL*wo)) TU = FL*(wol T* U) 

from which the result follows. . 
In terms of bilinear forms, the expression for wL in 3.5.6 may be written 

this way: 

uL(u, e)((e,,  e2), (e,, e 3 )  = D1D2L(u, e).e3.e1 

We leave it for the reader to check this, either from 3.5.6 or directly from the 
definition and formula (2) in the proof of 3.2.10. 

3.5.7 Proposition. Let L :  TQ-R be a given smooth function and define the 
one form 8, on TQ by 

where w E T(TQ). Then 

OL=(FL)*O0 

where 0, is the canonical one-form on T* a 

and in a chart, 

eL = L4,dqi 

8 
r4 

4 CCI Pmof. ForwET(TQ)andv=rTQ(w),wehave 
rT, 
0 

2 (FL) * e0(w) = e0( T (FL). w) 
z 
3 = (FL  (0)  , ~ 7 2 ,  ( T ( F L ) . ~ ) )  
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from the definition of 8, in 3.2.10 and the fact that the base point of T(FL)-w 
is FL(v). Thus, by the chain rule, 

This proves the first part. The second and third parts follow. Indeed, 

and 

For most, but not all, of what follows we shall be interested in regular 
Lagrangians, or nondegenerate Lagrangians. They are defined as follows. 
(For additional results on the degenerate case see Proposition 3.7.19, Ex- 
ercises 4.2B, 5.3L, Kunzle [I9691 and Fischer-Marsden [1972]). 

3.5.8 Definition. Let Q be a manifold and L E F(TQ). We call L a regular 
Lagrangian if FL is regular (at all points) in the sense of 1.6.17. 

If one considers L(x,y) = x on TR, one sees that "regular Lagrangian" is 
not the same as "L has regular values." 

3.5.9 Proposition. Let L E T(TQ) for a manifold Q. Then L is a regular 
Lagrangian iff FL is a local diffeomolphism, iff a, = FL*(w,) is a symplectic 
form on TQ. (w, denotes the canonical symplectic form on T* Q.) 

Proof: From 3.2.6 it is sufficient to prove the first assertion. However, L is a 
regular Lagrangian iff T,FL is onto for each w E TQ. Since the dimension of 
TQ and T*Q are the same, TwFL is onto iff TwFL is an isomorphism. Thus 
the result follows at once from the inverse mapping theorem. . 

From the definition of w,, if L is a regular Lagrangian on Q, then FL: 
TQ+T*Q is a symplectic mapping of the symplectic manifolds (TQ,oL), 
(T* Q, ~ 0 ) .  E 

4 
Now FL: TQ+T*Q, so according to 3.5.1, F'L= F(FL): TQ+ 

L(TQ, T*Q)- TT,"(Q). This object is used in the following. 2 
C 
k 

3.5.10 Proposition. Let L be a smooth function on the tangent bundle of a 8 
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manifold Q. Then F,L : TQ- T:(Q) is smooth and symmetric. Moreover, L is a 
regular Lagrangian iff F ~ L  is nondegenerate; that is, for each w E TQ, F,L(W) 
E L:(TQ, R)  is nondegenerate, or in charts, (Liw) is a nondegenerate matrix. 

ProoJ: It is sufficient to consider local vector bundles. Thus, assume L: 
U X E+R so that FL: U x E+ U X E*: (u,e)h(u, D,L(u,e)). Now L is a 
regular Lagrangian iff TFL is an isomorphism (in the fiber) at each point. 
This will be true iff DFL is an isomorphism at each point. A linear map 
between vector spaces of the same dimension is an isomorphism iff it is onto. 
However, DFL(u,e): E X E-E X E* for each (u,e) E U X E, is given by 
(el,e2)t+(ely DD2L(u,e).(el,eJ). But 

DD2L(u, e). (el, e,) = DlD2L(u, e)-el + D2D2L(u, e)-e, 

where we identify (el, 0) with el. 
Now DFL(u, e) is onto iff D2D2L(u, e) is onto (for example, take el = 0, 

etc.). However, 

F~L: U X E +  U X L:(E, R): (u, e) ~ ( u ,  D2D2L(u, e)) 

and F 2 ~  is nondegenerate iff D,D,L(u, e) is an isomorphism for each 
(u, el. . 

This Proposition may also be proven from the expression for wL(u,e) 
following 3.5.6 which is easily seen to be nondegenerate iff D,D,L(u,e) is 
nondegenerate. 

Remark. In the infinite-dimensional case we say L is weakly regular if F,L 
is weakly ilondegeneraie, which is equivalent to weak nondegeneracy of wL. 

3.5.1 1 Definition. Given L: TQ-+R, define the action A : TQ-R by A(vx) 
= FL(v,) .ox and the energy by E = A  - L. By a Lugrmgian vector JieId for L 
we mean a vector field XE on TQ such that ixEwL = dE. f l  XE exists we say that 
we can define consistent equations of motion 

If L is regular, XE exists; if L is weakly regular, there is at most one XE. In 
general, XE need not exist, nor need it be unique even in the finite-dimen- 
sional case. 

Notice that in local coordinates, A = qiL4,, so E = qiL4, - L. 
Y One of the main differences between the Hamiltonian and Lagrangian 

formulations is that second-order equations are possible on TQ, but not on 
S: T*Q. 
0 z 
z 3.5.12 Definition. A second-order equation on a manifold M is a vector field 

X on TM such that TQ OX is the identity on TM. 
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Thus, if X is a second-order equation on M we have the following 
commutative rhombic diagram 

TTM 

Second-order equations may be characterized in terms of their integral 
curves as follows. 

3.5.13 Proposition. Let X be a vector field on TM. Then X is a second-order 
equation on M iff for all integral curves c: I +  TM of X, (rMOc)' = C.  

Proof: From 2.1.2, for each w, E TM there is a curve c at w, such that 
cf( t )  = X (c(t))  for t E I. Then TTM X is the identity iff TTM cf(t)  = ~ ( t ) .  But 
TTM 0 ~ ' ( t )  = TrM TC ( t ,  1) = T (rM c)(t, 1) = (rM c)'(t). 

3.5.14 Definition. If c :  I-TM is an integral curve of a vector field X on 
TM, we call 7, c: I+M a base integral curve of X. Similar&, if X is a vector 
field on T* M and c : I+ T* M is an integral curve of X, 7; c : I* M is called 
a base integral curve of X. 

Thus X is a second-order equation on M iff for every integral curve c of 
X ,  c equals the derivative of its base integral curve. 

There is also a simple criterion for second-order equations in terms of 
local coordinates. 

3.5.15 Proposition. Let X E %(TM) and (U, cp)  be a chart on M with 
cp(U) = U' c E. Suppose that the local representative of X has the form 

Xv: U' X E+ U' X E X E X E; (u', e)t+(u', e, X1(uf, e) ,  X2(u', e)) 

Then X is a second-order equation iff,  for every chart; X1(uf, e )  = e for all 
e E E. 

X g 
Proof: Since ( T ~ ) ~ :  U' x E+ U', (u', e ) ~  u', and 4 m 

13 
T ( T ~ ~ )  = (T~M),: U' X E X E X E+ U' X E; (u', e, el ,  e 2 ) w ( u f ,  e l )  3 

we see that (TrM),oX, = identity if TrMoX = identity iff X1(u', e)  = e. I 
E z 
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The usual notion of second-order equation is related to ours in the 
following way. 

3.5.16 Proposition. Let X be a second-order equation on M. Suppose (U, cp )  
is a chart on M with cp(u) = (ql(u), . . . , qn (u))  E U f  c R n  and Tcp(v) = 
(ql(v) ,  ...,qn( t ~ ) , ~ ~ ( v ) , . . . , q " ( v ) ) E  U ' X R n c R n X R n .  Suppose the local rep- 
resentative of X has the form X,: U'X Rn-+U' X R n  X R n  X Rn;  (uf ,e)  I+ 

(uf ,  e, e, X2(uf, e)). Then c: I-+M is a base integral curve of X iff 

where X;' denotes the components of X2, i = 1 ,  . . . , n, and (q(c'(t)), q(c'(t))) 
standr for Tcp(cf(t)). 

The proposition follows directly from 3.5.15. 
Let us now return to the Lagrangian equations. 

3.5.17 Theorem. Let XE be a Lugrangian vector field for L :  TQ-R (not 
necessarily regular). Assume XE is a second-order equation. In a chart U X E, if 
(u( t ) ,  v(t))  is an integral curve of XE, it satisfies Lugrange's equations: 

for all w E E. In finite dimensions these are equivalent to the classical E&F- 
Lagrange equations: 

Finally, i f  L is regular, then X, is necessarily second order and always exists. 

ProoJ: Write XE ( x ,  e )  = ( Y ( x ,  e), Z ( x ,  e)). Using the definition A ( x ,  e )  = 
D2L(x,e) .e, we get 

3 DE (x,  e).(eI, e2) = D I E  (x, e)-el + D2E (x,  e)-e2 

9 m 
8 = DlD2L(x, e)-el.e- D,L(x, e)-el + D2D2L(x, e).e,-e 

z [a term D2L(x, e )  e2 has cancelled out]. The condition kEwL = dE, that is, 
8 wL(x, e)((Y, Z) ,  (el ,  ea) = DE(x, e )  - (e,, ea,  using this formula for DE and z? 
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the formula for wL following 3.5.6, becomes 

DlD2L(x, e) -e l -Y-  D,D2L(x, e)-Y-el  + D,D,L(x, e).e2.Y- D,D,L(X, e).Z.el 

= D,D2L(x, e)-el.e- DIL(x ,  e).el + D2D2L(x, e).e2.e 

If L is regular, setting el=O we see Y(x,e)=e,  so XE is second order. In 
general, if we assume Y ( x ,  e )  = e, the condition reduces to 

- D,D2L(x, e)-e.el - D2D2L(x, e).Z-el = - D,L(x, e).e, 

Setting x = u(t), e = v(t)  = u(t) we get 

DlD2L(u, ti). u-e, + D,D,L(u, u).zj-e, = DIL(u,  u)-e ,  

which is Lagrange's equation. . 
Note that when L is regular the equations may be written 

where we regard D,D,L(u,u): E-E*. In this case the coordinates q=x,  
p= D2L(x,e) are evidently canonical for oL. One calls p the conjugate 
momentum. 

On a fixed symplectic manifold P, H and I? lead to the same equations of 
motion iff H=l?+constant. The situation for Lagrangian systems is as 
follows: 

3.5.18 Proposition. Let L and L" be regular Lagrangians on TQ and XE, X i  
the corresponding Lagrangian vector Pel&. ' f ie  following two assertions are 
equivalent: 

( i )  L = L" + a + constant, where a is a closed one-form on Q, which we regard 
as a map a : TQ+R; 

(ii) X, = X i  and wL = wi. 

Proof: Assume (i). Clearly FL = EL + a o ~ ~  since a is linear on fibers. It 
follows at once that E = ,f + constant. Also, 8, = (FL)*Oo = (Fi)*O0 + a*Oo 
= O i  + "*do. Now a*@, = - d(a*OO). From 3.2.11 a*OO = a,  so as a is cJosed, 
a*wo = 0. Thus (ii) follows. If (ii) holds, E = ,f + constant, so L(v) = L(v) + 
[FL(v) - F ~ ( v ) ]  - v + constant. Since wL = wi, FL(v) - F i ( v )  is independent 2 
of v E TxQ. Thus ~r, = FL(v) - Fi(v) ,  v E TxQ is a well-defined one-form on $ 
Q. From a*wo = 0 we see, as above, that a is closed. . m 

13 
oQ 
d 

Because of this, one says that the closed one-forms on Q form the gauge Z 
group of Lagrangian mechanics. It can happen that for two Lagrangians, 8 
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E+ i+ constant, yet X, = X i .  For example, let Q = R and L(x,y)=y2, 
L"(X,~) = 2y2. Both give X,(x,y) = X ~ ( x , y )  = (y, 0). 

3.5.19 Proposition. Let L : TM+R be a Lagrangian with Lugrangian vector 
field XE. Suppose @: M+N is a diffeomo~hism Then a Lagrangian vector 
field for L"= L O  T@-' is'(T@),X,. 

PmJ: From the definitions, FL"oT@ = T@*oFL. It  follows that w, = 
(T@)*w,- and = E o  T@-I. The result now follows from 3.3.19. a 

EXERCISES 

3.5A. Show that energy is conserved for degenerate Lagrangian systems. 
3.5B. Show that a vector field X on TM is a second-order equation if and only if its 

flow F, has this homogeneity property: ~,(t;;(sv)) = T,(&(v)). 
3.5C. On TRn = Rn x Rn suppose 

where mi E R are constants and V E F(Rn). Show L is regular iff mi#O for all 
i ,  compute the action and energy of L, and write down Lagrange's equations. 

3.5D. (a) Let L: TQ+R be a Lagrangian, possibly degenerate, and let f: Q+Q be 
a diffeomorphism such that L 0 Tf = L. Show that (Tf)*8, = 8,; and, in 
particular, Tf is symplectic. 

(b) Let F, be the flow of a vector field X on Q, and suppose L 0 TF, = L for 
all t. Then prove that TF, is generated by a vector field Y that is 
Hamiltonian with energy p: u hFL(u).X; that is, i,w, = dp. (See Ex- 
ercise 3.3E.) 

( c  If g: TQ-+Tg is a diffeonorphism and L = g =  L, show &st g need not 
preserve a,. 

3.5E. Suppose w is a closed two-form of constant rank on M. Show that kero= 
{u,~w(v,, w,) = O  for all w,) is an integrable subbundle, and for functions, f,g 
constant along its leaves, { f,g) is unambiguously defined. (Ths is how one 
must define Poisson brackets.. .here called Dirac brackets.. .for degenerate 
Lagrangians. See Exercise 5.3L for further information.) 

3.5F. Let n: P+M and q :  Q+M be (smooth) submersions and f: P+Q a fibered 
map, that is, f (n- '(x)) cv - '(x). Define Fd the fiber derivative at p to be 
the tangent of f restricted to T-'(T(~)). Show that f is an immersion at p 
(resp. submersion, local diffeomorphism) if and only if F, f is injective (resp. 

X 
surjective and isomorphism). [Hint. In a "fibered chart," f looks like 
(x,y)h(x,f(x,y)). Now compute.] fi 3.50. (1. P. Penot). Let G: TM+T*M be a smooth fiber preserving map. We say G 9 

m has symmetric vertical derivative if 
8 
2 
z (FG (u)u, w) = (FG (u).w, u) 
is 
i2 for all u,u,w€ TM. Show that this occurs if G= FL where L: TM+R. 
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Prove the following proposition: 

Proposltlon. Let F: TM+ T* M have symmetric vertical derivative and let V E S(M) .  
Let OF = Po0, where oo is the canonical two-form on T* M. Then: 

( i )  there is at most one K E S ( T M )  such that K 0 {, = V ,  where lM: M+ TM is the 
zero section and dK= ixoF for some second-order equation X on TM; 

(ii) i f  G = FL, then K (0) = - L(u) + FL(v).v + V(rM(v))  + L ( { M ( ~ M ( ~ ) ) ) ;  
(iii) if FG ( v )  E L(T,M, T*,M) is injective for each u E TmM, then (TM, a,) is a weak 

symplectic manif014 if FG (v )  is an isomoiphism for each v E TmM, there is a 
unique K and X satisfying (i). 

[Hint. For (i), proceed as in 3.5.17 and show that the conditions determine 
K(x,O) and D2K(x,u) in charts, and hence K. It will be convenient to use Vainberg's 
theorem (see Exercise 2.4G) to relate existence of K to the symmetry assumption on G 
to do (ii).] 

3.6. THE LEGENDRE TRANSFORMATION 

Let us now give the relationship between the Lagrangian formulation on 
TQ and the Hamiltonian formulation on P Q .  In fact, they are equivalent in 
the hyperregular case, and are transformed one into the other by the Legendre 
transformation. 

3.6.1 Deflnltlon. Let Q be a manifold and LE?F(TQ). Then L is called a 
hyperregular Lagrangian if FL : TQ+ T* Q is a diffeomorphism. 

Recall that we define o, = (FL)*o,, where o, is the canonical two-form 
on T* Q. Hence FL becomes a sympleeiic diffeomorphism, and thus: preserves 
Poisson brackets. It is also clear that a hyperregular Lagrangian is regular. 
Notice that in coordinates, FL: (q', . . . , qn, q', . . . , q n ) w  (q', . . . , qn,p,, . . . ,p,) 
where pi = a~/aq ' .  

The transition from the Lagrangian formulation to the Hamiltonian is 
given by the following. 

3.6.2 Theorem. Let L be a hyperregular Lagrangian on Q and let H =  
E o (FL)-': T*Q+R, where E is the energy of L. Then XE and XH are FL 
related: (FL)*XE =X,. The integral curves of X, are mapped by FL onto 
integral curves of XH. Furthermore, XE and XH have the same base integral Y 
curves. S ? 

m 
8 

ProoJ: It suffices to prove that (FL),XE = XH (see Exercise 2.1B). Note that 2 
T~ = T; o FL, SO once the integral curves are FL related, the base integral 
curves are deduced to be equal. G z 
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Now writing v* = To (FL)(w) for v E TQ, w E To TQ, we get 

Since To(FL) is an isomorphism, v* is arbitrary, so 

that is, 

The transformation FL: TQ+T*Q thus maps the Lagrange equations 
into the Hamilton equations. In the literature FL itself is sometimes called the 
Legendre transformation (e.g., Sternberg [1964]), while classically the name is 
usually reserved for the map that takes 

where pi = aL/aqi (e.g., Courant and Hilbert [1962, p. 341). Using this 
coordinate notation the reader should verify 3.6.2, i.e., that the Legendre 
transformation converts Lagrange's equations to Hamilton's equations.* 

For the reverse construction we need the following. 

3.6.3 Proposltlon. Let L by a hyperregular Lagrangian on Q and H =  
E o (FL)- I, where E is the energy of L. Then Bo(XH) = A  o (FL)- ', where A  is 

- -- 

the action of L, and Bo is the canonical one-form. 
Y 

*In the differential equations literature the Legendre transform is viewed in the following way. If 
f_: V+R, and D f :  V+V* is a diffeomorphism, its Legendre transform f :  P j R  is defined by 
f =(pf - f): ( o f ) - '  where p is the radial vector field p = 2 x i a / a x i  for coordinates x i  associated 
w~th a basis ei of V. Geometrically, let cp E V* an3 let P be the unique tangent hyperplane to the 
graph off which is parallel to the graph of c p ;  f(cp) is the height that the graph of cp has to be 
raised to give P. For a Lagrangian L the Hamiltonian H is just the Legendre transform of L 
performed fiber by fiber. 
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ProoJ: We must show OO(XH) FL = A .  Let w E TQ and a = FL(w). Then 

= (a ,  Trz FL* XE ( a ) )  

= (a ,  Trz TFL XE ( w ) )  

= (a,  T (T;  0 FL) 0 xE ( w ) )  

since XE is a second-order equation. But ( a ,  w )  = (FL(w), w )  = A  (w)  b y  
definition of A. w 

The proof of 3.6.3 in coordinates goes as follows. From Oo=pidqi, we get 

We now change variables q i w q i ,  q i w p i  = aL/aqi via the Legendre trans- 
form. Thus 

Thus, since E as a function of qi,pi is just H, we get 

3.6.4 Corollary. Let L be a hyperregular Lugrangian on Q and OL = FL*Oo 
(so that aL = -doL). Then A = OL(XE), where E is the energy, and A the action 
of L. 

v 
ProoJ: A = Oo(XH) o FL. Let w E TQ and a = FL(w); then g 

5' 
m 
3 

A (w)=Oo(~,)(a) = (Oo(a) x H ( ~ ) )  = (eo(a),  FL*xE(~) )  2 
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This proposition tells us that we can recover L if we know FL and E. If 
H E T(T*Q),  note that FH: T*Q+P*QwTQ. Then, as for L, FH is a 
smooth fiber preserving map, that is, re FH = 7;. 

The following proposition is proven in the same way as the corresponding 
statement for L. 

3.6.5 Proposltlon. Let H E T(T*Q).  Then FH is a local diffeomoolphism iff 
F 2 ~  is nondegenerate. If this is the case, we call H a regular Hadtonian. 

As was the case for L,  we need the stronger condition of hyperregularity 
for transition to the Lagrangian formulation. 

3.6.6 Deflnltion. If H E T(T*Q),  we call G = Bo(XH) the action of H. Also, 
H is called a hyperregular Hamiltonian i f  FH: T* M+ TM is a diffeomotphism. 

3.6.7 Proposltlon. Let H be a hyperregular Hamiltonian on P Q .  Then 
define E = H 0 (FH)-I, A = G 0 (FH)-', and L = A  - E, Then L is a hyperregu- 
lar Lagrangian on TQ, and in fact FL = (FH)- '. 
ProoJ The easiest proof we know of is done in coordinates. As in 3.6.3, 
B0=pidqi, so G=piaH/api. Now FH is the map 

Thus 

( L  ~ J ' ~ ) ( q f p j ) =  G ( ~ : P , ) -  H(q:pj )  

Changing variables and using the chain rule, 

'Pi 

This shows that FL FH = id. However, FH is assumed to be a diffeomor- 
hism, so FL = FL (FH (FH)- ')  = (FL FH) (FH)-I = (FH)- ' ,  as re- 

[uired. . 
X 
& 
P The reader can, as an exercise, translate this proof into one that works in 
9 infinite dimensions by writing 
13 
2 
z G (e, a) =(a,  D2H (e, a ) )  

?? ( L ° F H ) ( e , a ) = ( a , D 2 H ( e , a ) ) - H ( e , a )  etc. 
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Dual to 3.6.7 is: 

3.6.8 Proposition. Let L by a hyperregular Lugrangian on TQ and let 
H = E 0 (FL)-' be defined as in 3.6.2. Then H is a hyperregular Hamiltonian 
and FH = (FL) - I .  

ProoJ Consider the map FL : (q ' ,  qj) H (qi, aL/aqj) = (q ',pj). Then 

Thus, by the chain rule, exactly as in the remarks following 3.6.3, we get 

Hence FH FL = id, so as FL is a diffeomorphism, FH = (FL)-I. . 
We are now ready to state the main result. 

3.6.9 Theorem. The hyperregular Lagrangians L on TQ and hyperregular 
Hamiltonians H on T*Q correspond in a bijective manner: H is constructed 
from L by means of 3.6.2.,and L from H by means of 3.6.7. The following 
diagram commute: 

TFH 

f R k  
T F L  

FH FH 

R 

ProoJ Let L be a given hyperregular Lagrangian and let H be constructed 
from it by 3.6.2. Thus, by 3.6.3 and 3.6.8, 

From H we construct L" using 3.6.7: 

L " = G o ( F H ) - ' -  H O ( F H ) - '  
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Conversely, let H be a given hyperregular Hamiltonian and construct L 
by 3.6.7. From L we construct a Hamiltonian I? by 3.6.2. 

We note that in 3.6.7, since (FH)-I = FL, 

so by 3.6.3, A is the action of L. Then E = H 0 FL = A - L is the energy of L. 
Therefore, from the definition of I?, 

This shows that the map L H  H from hyperregular Lagrangians to hyper- 
regular Hamiltonians given by 3.6.2 and 3.6.8 and the corresponding map 
H h L ,  given by 3.6.7 are inverses and hence each is a bijection. The 
commutativity of the diagrams now follows from what we have already 
proven. . 

The main examples will come in the next section, but for now we give this 
one : 

3.6.10 Example. Let (,) be a pseudo-Riemannian metric on a manifold Q 
and let L: TQ+R be given by L(v)= i(v,v). Then FL: TQ+T*Q is 
FL(w)-v = (w,v); that is, FL is the "flat map" associated to the metric. Thus 
L is a hyperregular Lagrangian. The action of L is A(v) = FL(v)-v = (0, v) = 
2L, so the energy is E=A-  L =  L. The corresponding Hamiltonian H: 
T* Q+R is given by H (a) = $(a , a #  ), where a # is the vector correspond- 
ing to a by (FL)-'; that is, FL(a # )  = a. In coordinates ql,. . . ,qn, 

L(v) = + goviv' 

where go is the matrix of the metric and vl,. . . ,vn are the components of v. 
Also, 

H (a) = + g%iaj 

where gU is the inverse matrix of go, as is readily checked. 

The construction of Hamiltonian systems out of degenerate Lagrangian 
systems is more complicated. This theory, due to Dirac [I9501 (in a formula- 

y tion due to W. Tulczyjew), is given in Exercise 5.3L. 

!2 
9 
2 EXERCISES 
0 

3.6A. Let (,) be a pseudo-Riemannian metric on Q and let Lbedefinedas in3.6.10. 

i3 Show that v is a critical point of E if and only if v =O. 
g 3.6B. Let (,) be a pseudo-Riemannian metric on Q, V: Q+R and Y a vector field 
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on Q. Let 

Show that L is hyperregular. What is the corresponding Hamiltonian? Write 
down Hamilton's equations in local representation. 

3.6C. (The harmonic oscillator). Let Q= R and H E%('(T+Q) be given by H(q,p) 
=f(pZ+02q2). Find X,, its flow and FH. Set up the corresponding 
Lagrangian and show that its solutions correspond to those of X, via the 
Legendre transform. 

3.6D. Show that the energy of a Lagrangian L(q,q) may be written 

where 

and 

3.7 MECHANICS ON RIEMANNIAN MANIFOLDS 

We begin this section with a simple, but rather basic result, namely, that 
geodesics are base integral curves of a Lagrangian (or Hamiltonian) system. 

3.7.1 Theorem. Let Q be a pseudo-Riemannian manifold and let L: TQ-+R 
be defined by L(v) = i (v, v) (see Example 3.6.10). Then co(t) is a base integral 
curve of XE, the Lagrangian oector jkdd of L, ij and on& if co(t) is a geodesic. 

Proof: In coordinates (q', . . . , q "), we have L(v) = igOv '19, so Lagrange's 
equations for a base integral curve co(t) = (ql(t), . . . , qn (t)), namely, 

become 

that is, 
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Relabeling indices and multiplying by g'i gives: 

These are in fact equivalent to the geodesic equations 

Indeed, from Sect. 2.7 we have the formula 

and so 

since the first two terms give the same result in view of symmetry of qjqk. 

The reader is invited to give a proof that works in infinite dimensions 
starting with the defining condition on XE(x,e) = (e, Y(x,e)) in charts given 
in 3.5.17, namely 

3.7.2 Definitions. Let (, ) be a pseudo-Riemannian metric on Q and iet XE 
be the associated Lagrangian vector fieId for L(u)= i ( v ,  0 ) .  We call XE the 
geodesic spray and its flow is called the geodesic flow. 

The characteristic property of a spray X on TQ is that it is a second-order 
equation quadratic in the velocities. Sprays are also characterized by this 
homogeneity property of their flows: rQFt(Av) = rQFtA(v), as is easily seen. 
Earlier (2.7.6) we defined tke exponential map of a metric. This can be done 
the same way for general sprays and the existence of tubular neighborhoods 
carries over unchanged (see Lang [I9721 for details). One can also use sprays, 
specifically X,, to reconstruct the connection of a metric. Indeed, in coordi- 

2 nates, 
s 
4 - x ~ ( ~ ;  q j )  = (g; - r$lqkql) 
8 
7 SO XE carries the same information as the Christoffel symbols, since T-$ = Tik. 
z In other words, one can start with the Hamiltonian approach as basic and 

define the covariant derivative, and so forth, in terms of this structure. 



One other general remark: The vector field X, shows where the rjk 
properly live as geometric objects, namely, in T ~ Q ,  since X,: TQ+T~Q. If 
the reader will write down the vector field transformation property for XE, 
the transformation rule for Christoffel symbols will result. 

3.7.3 Proposition. Let Z, = { v  E TQ 1; llvl12= e ) ,  where e>O and Q is a 
pseudo-Riemanniart. manifold. We call Z, a sphere (or pseudosphere) bundle. 
Then Z, c TQ is a smooth submanifold and is invariant under the geodesic flow. 

Proof: Consider the energy function E : TQ+ R, E ( v )  = f 1 1  v [ I 2 .  Then 
dE ( v )  -w = (0 ,  w), so if v Z 0, dE ( v )  is surjective. In particular, e > 0 is a 
regular value of E, so 2, = E -'(e) is a regular energy surface. Invariance of 
Z, is a restatement of conservation of energy. . 

For further information, see Sect. 3.4 and Problem 3.7B. We shall return 
to motion on energy surfaces in our discussion of the virial theorem below. 

Next we consider particles moving on the pseudo-Riemannian manifold Q 
in the presence of a potential V :  Q-R. We take L :  TQ+R of the form 

Then L is a hyperregular Lagrangian. In fact, as in the geodesic case, 
FL(v).w=(u,w). Thus the action is A(~)=Ilv11~ and so E = A -  L is given by 

3.7.4 Proposition. With L as just defined, co(t) is a base integral curve of X,, 
that is, satisfies kgrange's equations if and only if 

VEoEo= - (grad v ) ( c0 ( t ) )  

where V is the covariant derivative. ( I t  is understood that V stands for the 
Levi-Civit& connection of the metric, as in Sect. 2.7.) 

Proof: The quickest proof is, again, a coordinate one. If we examine the 
proof of 3.7.1, the only change necessary is to add - av/aqi to the geodesic 
equations. Thus the Lagrange equations become 

This simplifies, by the proof of 3.7.1 to 
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This is exactly a coordinate statement of the conclusion of the proposition. 
rn 

3.7.5 Deflnltlon. Let v, w E TxM. Then the vertical lip of w with respect to v 
is defined by 

(Recall that the tangent vector to a curve at a point n in a manifold N is an 
element of T, N.) The horizontal part of a vector z E Tv(TM) is TrM.z E TTMv M. 

In natural charts it is easy to see that if v = ( x ,  e)  and w = (x,e,), then 

The horizontal part of z = ( (x ,  e), (el ,  eJ) is given by 

T ~ a z  = ( x ,  e l )  

It is easy to check that a vector in TTM is the vertical lift of something if and 
only if its horizontal part is zero. 

If we let SQ denote the geodesic spray, then the result of 3.7.4 can be 
written 

by which we mean 

Remarks. In general there is no canonical way of taking the vertical part of 
a vector z E Tv TQ. However, if we use a pseudo-Riemannian structure we can 
construct such a map. Namely, let w(t) be a curve in TQ tangent to z at u. By 
parallel translation, we get a curve $(t)  E TxQ, where x = TQV and G(0) = v. 
Then (d/dt)$(t)l,=, is clearly vertical and is the vertical lift of the vertical 
part of z. In coordinates, if 

then one computes from the results of Sect. 2.7, 
Y 

ki 
0 

The maps z H z,, = T ~ Q ,  z and z I+ z,, then give an isomorphism 
Z 
@ TvTQ= TxQ @ TxQ 
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The next result will be the important theorem of Jacobi, which states that 
motion in a potential is actually geodesic motion using a modified metric. 

3.7.6 Definition. Let (, ) be apseudo-Riemannian metric on Q and V: Q+R 
be bounded above (if it is not, confine attention to a compact subset of Q). Let 
e > V (x) for x E Q. Define the Jacobi metric by 

where g(x)(-, .) = (., . ), is the original metric. 

3.7.7 Theorem. The base integral curves of the Lagrangian L(u) = i(u, v) - 
Y(rQv) with energy e are the same as geodesics of the Jacobi metric up to a 
reparametrization, with energy 1. 

We shall give a proof due to Godbillon 119691, simplified by A Weinstein. 
For a geometric proof starting from 3.7.4, see Ong [1975]. For Jacobi's proof 
using the calculus of variations, see Sect. 3.8. 

Proof: It is more convenient to prove the result on T" Q so that each system 
uses the same symplectic structure. On T*Q, let g #  denote the metric 
corresponding to g (in coordinates, g # has components g'j, the inverse matrix 
to gV). Thus, the Hamiltonian on T* Q corresponding to L is 

Similarly, the Hamiltonian for ge is 

The proof now consists of two remarks: 

(a) H-'(e)= HeV'(1) (i.e., the two energy surfaces, regular by 3.7.3, coin- 
cide). Indeed, ig# (a,a)+ V(T@)= e is the same as 

1 - 1 g#(s a )=  I 
2 [e- ~ ( r z a ) ]  

(b) If two Hamiltonians H, and H2 on a symplectic manifold (P ,w)  have 
H, '(e,) = H< '(e,) = I:, and Z is a regular energy surface, then XH, and X 
XH2 have the same integral curves on Z up to reparametrization. g 

Indeed, since I: is of codimension one and w is nondegenerate, {vE 
TI:Ji,w= 0) is one dimensional at each point of Z (see 3.1.2). But &P= dH, 8 
= 0 on Z, and similarly iGZu = 0. Thus X H I  and XH2 are parallel and thus their 0 

3 integral curves are the same up to reparametrization. (See Exercise 3.4D.) 
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Next we shall study constrained systems. (More properly, systems with 
"holonomic" constraints.) A typical constrained system consists of a collec- 
tion of particles moving subject to given forces and subject to certain 
constraining relations. For example, in R~ we might consider two particles 
connected by a (light) rod. In such cases, there arise forces of constraint such 
as centripetal forces. The constrained system par excellence is the rigid body, 
which is discussed in Sect. 4.4. Another one is the motion of an incompress- 
ible fluid in-which the pressure gradient is the force of constraint-here the 
constraint is incompressibility; see Sect. 5.6. 

From the variational point of view, the force of constraint appears as a 
Lagrange multiplier. We invite the reader to develop this method after 
reading Sect. 3.8 as an alternative to the present purely geometric approach.* 
Our set-up is as follows: 

Let M be a Riemannian manifold and N c M a submanifold. Let P: 
TM I N+ TN be the bundle map defined by letting Px : TxM+ Tx N, x E N  be 
the orthogonal projection of TxM onto TxN. Let V: M-R be given and let 
VN be its restriction to N. From the definitions one checks that at points of 
N ,  

grad V, = P. ( grad V) 

Thus a particle moving on N according to the Lagrangian L, = LIN, where 
L(u)=$(u,v)- V(rMu) feels an external force that is just the projection of 
the force in TxM onto TxN. 

Of more interest is the relationship between the geodesic sprays SM on M 
and SN on N. Although this relationship may be regarded as in the domain of 
Riemannian geometry, we can give a short proof using mechanics. 

3.7.8 Theorem. With the notations just described, 

at points of TN. 

Pmo$ Let E be the bundle TM restricted to N. Thus P: E-TN, so TP: 
TE- T~N.  Now SM : E- T ~ M  and TT SM = identity, since SM is a second- 
order equation. But TE = {w E T ~ M I  T~ (w)  E TN) as is easy to see, so .the 
composition TP SM makes sense at points of TN. 

Let OM and 0, be the one-forms on TM and TN induced by their 
Riemannian structures [note that OM =(FL)*Oo, where 6, is the canonical 

Y one-form on T* M and similarly for ON]. Thus OM(u)-w =(v, TPW) for v € 
TM, w E To TM. Let i: E- TM be inclusion and 0, = i*OM. We claim that 

4 m 
8 
4 P*ON = ti', 
0 

*Constraints also arise naturally in degenerate Lagrangian systems. This theory (the Dirac theory 
of constraints) proceeds along somewhat different lines. See Exercise 5.3L. 
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Indeed, for v E TM, w E T, E, we have 

Here we have used 7 P= 7 ,  the fact that P is symmetric and T7.w E TN 
(since 7 : E-N). 

It follows that 

where UN = - doN, UE = i*UM = - i* doM = - doE. 
In particular, we have, for v E TN, w E T, E, and z E T, TN, 

since TP-z  = z. Since SM and SN are both Hamiltonian vector fields of  
L(v) = i ( v ,  v) ,  we have 

Combining this and the previous formula gives the result. 

3.7.9 Corollary. For v E TxN, 

(a)  (SM - SN)(v) is the vertical lift of a vector Z(v)  E T,M 
(b) Z(v)  is orthogonal to TxN 
(c )  Z(v)  = - V,v + P(V,v) (='normal component of V,v) where, in the 

right-hand side, v is extended to a vector field on M tangent N. 

ProoJ (a) This is clear since TT*S,(V)= v = TT.S~(V) .  
(b) For u E TxM, we have TP.(u)L = (PU)', since 

Thus 

(PZ (v)): = TP- ( Z  (0)): = TP ( S ,  ( v )  - SN (0)) 

= TP ( S ,  ( v )  - TPS, (0 ) )  = 0 
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since P o P = P. Hence PZ (v)  = 0, so (b) holds. 
(c) Let v ( t )  be a curve of tangents to N; v(t)= i ( t ) ,  c ( t )E N. Then, from 

3.7.4, 
dv I s, (0 )  = - - (Vvv), dt 

so that by 3.7.8 

dv 
S N ( v )  = TP- - TP (v,v)f, 

dt 

This object Z(v )  is called the force of constraint. [It is also (the quadratic 
part of) the second fundamental form of N in M (if N is codirnension I)]. We 
may interpret - Z(v )  as the constraining force needed to keep particles in N. 
Clearly N is totally geodesic (i.e., geodesics in N are also geodesics in M )  iff 
Z = 0. 

For example, if N c R 2  is a circle of radius r > 0, the force of constraint 
at v is the radial vector of length ~ l v l l ~ / r ,  which is just the centrifugal force. 

The result 3.7.9(b) is the famous principle of d'Alembert: i f  a particle is 
constrained to move on a surface, the force of constraint is pevendicular to that 
surface. 

We now turn to questions of completeness for Lagrangian systems of the 
type E = K + V ,  where K is the kinetic energy, K(u) = ; ! [ v [ ! ~ ,  and V(rQv) is 
the potential energy. 

We shall begin by proving a result for Riemannian manifolds. Some 
discussion of this occurred in Sect. 2.7, but here we shall illustrate some 
methods using the Lagrangian point of view. 

3.7.10 Definitions. ( i )  A pseudo-Riemannian manifold Q is called complete 
if its geodesic spray SQ is complete in the sense of a complete vector field (Sect. 
2.1). 

(ii) A pseudo-Riemannian manifold Q is called homogeneous i f  for x, y E 
Q, there is an isometry @ : Q+= Q such that @(x) = y. 

X 

3.7.1 1 Proposition. ( i )  Any compact Riemannian manmd is complete. 
4 (ii) Any homogeneous Riemannian manifold is complete. 
8 
2 

Remark. It is also true that a compact homogeneous pseudo-Riemannian 
manifold is complete, as we shall prove in Chapter 4. 
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Proofof3.7.11 (i) L e t e > O a n d Z , = { v E ~ ~ ~ f ~ ~ v ~ ~ ~ = e ) .  Itisacompact 
subset of TQ. By conservation of energy, any integral curve of the geodesic 
spray SQ lies in such a set. Hence (i) follows from 2.1.18. 

(ii) To prove this, it is convenient to have the following property of 
sprays: 

3.7.1 2 Lemma Let S: TQ* T ~ Q  be a spray. Let U be any bounded set in 
Tx Q. Then there is an E > 0 such that for any v E U, the integral curve of S with 
initial condition v exists for a time > E. 

ProoJ: There is a neighborhood V of 0 in T,Q and a S > O  such that integral 
curves with initial data in V exist for a time > 6. There is a constant R  > O  
such that R - 'U c V since U is bounded. Thus by the homogeneity property 
of sprays, r&(kv)=rFkt(v), initial data in U are propagated for a time 
> S / R .  'I 

3.7.13 Lemma Let Q,: Q+ Q be an isomet~. Then Q, mclps geodesics to 
geodesics. 

ProoJ: Since Q, is an isometry, T@ preserves the one-form @= 8, on TQ 
associated with the metric. Thus T@ is a canonical transformation, so by 
3.3.19 (T@)*XE=XEoTa-~=XE. But the integral curves of (TQ,)*XE are the 
images of integral curves of XE, so T@ maps the geodesic flow to itself and 
hence geodesics to geodesics. v 

To prove (ii) of 3.7.11, let v E Tx Q and let U be an R-disk in Tx Q 
containing v. Choose E as in 3.7.12. By assumption there is an isometry Q, 
mapping x to x(E), the base point of v(E), where v(t) is the integral curve of 
the geodesic spray starting at v. But by 3.7.13, the geodesic starting at X(E) in 
direction V(E) is Q, applied to the geodesic at x in direction T@-'.u(E). This 
lies in U, so the geodesic exists for time > E. Thus v(2~) is defined. Repeating, 
v(t) is defined for all t E R. H 

Now we consider the effect that adding a potential to the kinetic energy of 
a complete Riemannian manifold Q has on completeness. In many examples 
involving several particles, one removes points from Q corresponding to 
collisions, thereby making Q incomplete. Here we are instead concerned with 
the behavior of V at infinity that allows completeness. 

First of all, if Q is complete Riemannian and V is bounded below, it is 
easy to see that if E= K +  V, XE is complete, at least if Q is finite dimen- Y 
sional. Indeed, let co(t) be a base integral curve of X, defined for t E(- T, T), $ 
T< ao. Since E is constant along co(t) and V is bounded below, (Ito(( is 
bounded above, say, by a. Thus co(t) lies in the ball BTa of radius Ta about 2 
co(0), so ~ o ( t ) ~ { v ~ T M ~ r ( v ) ~ B T a  and (lv(l<a). This is a compact set z 
because Q is complete. Hence the base integral curve co(t) must be extend- 4 
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able in time beyond (- T, T). Thus c, is defined for all time, by the maximal 
extendability of integral curves proved in Sect. 2.1. 

We want to prove a generalization of this to allow V to be unbounded 
below. 

3.7.1 4 Definition. Let Vo : [0, a ) +  R be given. We call it positive& complete 
if it is nonincreasing, C: and 

where e >  Vo(x) for all x. (This condition is easily seen to be independent of 
which e is chosen.) 

For example, V,(x) = - xa is positively complete if 0 < a < 2, as is Vo(x) = 
-x[log(x + 1)r, - x log(x + l)[log(log(x + 1) + 1)r etc. 

3.7.15 Theorem. Let Q be a complete Riemannian manifold, V: Q+R be c2 
and XE the Lagrangian vector field for L(v) = 3 11 v 1 l 2  - V (rQv). Suppose there is 
a positively complete function V, such that for some x, E 

and d(x, x,), the distance between x and x, is sufficiently large. Then XE is 
complete. 

Remark. This form of the theorem is due to Weinstein and Marsden [1970], 
which was, in turn, inspired by Gordon [1970b] and Ebin [1970b]. Related 
results are due to Lelong-Ferrand [I9591 and Maslov [1965, p. 3291. We shall 
prove 3.7.15 for Q finite dimensional; for the general case, see Exercise 3.7C. 

This theorem is the classical version of a quantum mechanical complete- 
ness theorem due to Ikebe and Kato [1962]. (Utilizing methods of Roeleke 
[1960], their proof extends from Rn to complete Riemannian manifolds.) 

For example, on R n  if V(x) 2 a - bllx112, then X, is complete. This in turn 
holds if 11 grad V (x) 11 < c 11  x 11. [Since V (x) = V (x,) + lo grad V.of where u is a 
path joining x to x,.] The reader can formulate similar sufficient conditions 
on a Riemannian manifold Q without difficulty. ' 
Pmof of 3.7.15. Let c(t) be an integral curve of XE and co= rp o c its base 2 

? integral curve. Let y = c,(O) and let f (t) be the solution of the differential 
m 

equation 
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with initial conditions f(0) = d(xo, y), f(0) =d2( /3 - Vo( f(0))) , where P = 
E(c(0)) > Vo( f(0)). Now P is also the energy of the curve f(t): /3 = f [ f'(t)12 + 
Vo( f(t)). Actually, we can'assume P > Vo( f(0)); that is, llC(O)ll # 0, for if C(t) 
is always zero, the problem is trivial; so start at to, where C(to) # 0. The time it 
takes for f(t) to increase from f(0) to s is Is d x / \ h m .  By our 

f(O1 
assumption. on Vo, it follows that f(t) is definid for all t > 0. 

Now let g(t) = d(co(t), xo) and t > 0. Then 

by conservation of energy. Thus by our hypothesis, 

But 

Hence by the comparison lemma (Exercise 2.2H), g(t) < f(t). Hence co(t) 
remains in a compact set for finite t-intervals, so c(t) does as well since V is 
bounded below on such a set. It follows that XE is +complete. However, 
from reversibiiity, namely, 7Q ( K t  (v)) = T~ (k.', ( - v)), it follows that XE is 
-complete as well. 

Next we shall define the concept of a dissipative system. (See also Exercise 
3.7A. and Exercise 3.8F.) 

3.7.1 6 Definition. Let Q be a Riemannian manifold and K the kinetic energy 
function, K (0) = 11 v [I2. A vector field Y on TQ is called dissipative if Y is 
vertical (i.e., T7Q o Y = 0) and dK. Y < 0. By a dissipative system we mean a 
vector field X  on TQ of the form 

X = X E +  Y 

where E (0) = K(v) + V(TQv) and Y is dissipative. 

0 
3.7.1 7 Proposition Let X =  XE + Y be a dissipative system on TQ. Then E is 
nonincreasing along integral curves of X. !!I 
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Proof: Let c(t) be an integral curve of X. Then 

d - E (C ( t)) = d~ (C ( t ) ) . ~  (C ( t)) 
dt 

= d~ (c ( t ) ) .~ ,  (c ( t)) + d~ (c ( t)). Y (c ( t)) 

= d~ (C ( t)). Y (C ( t)) 

= d~ (C (t)). Y (C (t)) g o 

since dE (c (t)) - X, (c (t)) = wL (X, (c (t)), X, (c (t))) = 0, and d ( V 0 re) . Y = 
dV.(TrQ Y) = 0 as Y is vertical. 

If E is strictly decreasing then closed orbits, common for Harniltonian 
systems, cannot occur. If E is bounded below, orbits will generally converge 
to critical points of E, i.e. to equilibria of the associated Hamiltonian system. 

3.7.18 Proposition. Let the hypotheses of 3.7.15 hold and let Y be dissipative. 
Then X = XE + Y is positively complete. 

Proof: Note that X is a second-order equation since Y is vertical. Now we 
observe that, in view of 3.7.17, the proof of 3.7.15 carries over unchanged 
(omitting the last step on reversibility). 

For example, frictional forces that depend linearly on the velocity are 
taken into account by choosing Y (v) = -(KO)!,, where K > 0 is a constant. The 
reader will see easily that Y is dissipative. 

We now show that we can pass back and forth between configuration 
spaces Q and Q x R by wing (degenerate) homogeneous iligfangians. This 
will be illustrated by considering the equations for a relativistic particle. 

Let L: TQ+R be a regular Lagrangian. Define L: T(Q X R) = TQ X TR 
-+R by 

Thus L is homogeneous (of degree one), that is, L(svx, (t, A)) = sL(vx, (t, A)). 
From Euler's theorem on homogeneous functions, or directly, we see that 
E= 0, where E is the energy of L. 

Let t: R x R = TR-t R be the projection onto the first factor, E be the 
energy of L, and 8, = (FL)* O,, as usual. 

El 
4 

3.7.1 9 Proposition. We have (i) 8,-(v, t, A) = OL (v/A) - E (v/A) dt, 3 
2 (ii) The possible second-order Lagrangian vector fields X,- for L are char- 

acterized as follows: Let 7(t) be a strictly increasing smooth function of t. Let 
(q(t), 4(t)) be an integral curve for X,, the Lagrangian vector field for L. Then 
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(q(r (t)) , q(r (t)) , r (t) , i(t)) E TQ X TR is an integral curve for XE. Different 
choices of ~ ( t )  yield the different possible choices of Xg. 

Proof of 3.7.19. The definition of L yields 

FE(v, (t, A)). (w, (t, s)) = FL(U/A).W - SE (v/A) 

for v, w E T,Q. Now 8d2, t, A) = FE(v, t, A)oT(rQ X t) and combining this 
with the expression for FL we get (i). 

To prove (ii) we use the fact that X,- is determined by Lagrange's 
equations, under the assumption that XE is second order (see 3.5.17). The 
condition that (q(r(t)), q(r(t)), r(t), i(t)) be a solution to Lagrange's equa- 
tions is 

that is, 

The first equation expresses the fact that q(t) is obtained from the Lagrange 
equations for L and the second equation expresses conservatio_n of energy, 
that is, that E is the variable canonically conjugate to t for L. The result 
follows. 

Remark, We restricted our attention to A > 0 and correspondingly to i > 0 to 
msme L be defined. One can consider the case A < 0 and i < 0 as wellll, 

3.7.20 Example A free relativistic particle is described in terms of geodesics 
of the Lorentz metric on R ~ ,  that is, 

((x, t), (Y, s)) = xey - c2ts 

where xey is the usual dot product on R and c = speed of light. Because geodes- 
ics extremise arc length as well as energy, (see Sect. 3.8) it is possible to use 
the Lagrangian 

- 
4 

to yield the same straightline geodesics in R ~ .  Here moc(mo= mass) is inserted 
for dimensional reasons. This Lagrangian is first-order homogeneous so 2 
we can use 3.7.19 to construct the corresponding three-di~ensional L z 
and recover the "physical" energy E of L. (Remember that E=O.) If we 2 
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de-homogenize we arrive at a Lagrangian on T R ~ :  

(Note that L is defined only on the open subset of TR3 corresponding to 
velocities < c). From L we compute the action and energy: 

We refer to Exercise 3.7F and books on relativity, such as Misner, Thorne 
and Wheeler [1973], for further details on these matters. 

We shall conclude this section with some ideas that are important for the 
statistical theory of classical systems. The central notion is that of ergodicity 
which is intended to capture the idea that a flow is random or chaotic. In 
dealing with the motion of molecules, the founders of statistical mechanics, 
particularly Boltzmann and Gibbs, made such hypotheses at the outset. Our 
treatment will be brief and introductory. The reader should consult Arnold 
and Avez [1967], Ruelle [1969], and Markus and Meyer [I9741 for further 
information. 

One of the earliest precise definitions of randomness of a dynamical 
system was minimality: the orbit of almost every point is dense. In order to 
prove useful theorems, von Neumann and Birkhoff in the early 1930's 
required the stronger assumption of ergodicity, defined as follows. 

3.7.21 Definition. Let S be a measure space and Ft a (measurable)flow on S. 
We call I;, ergodic if the only invariant measurable sets are 0 and all of S. 

Here, invariant means F,(A) = A for all t E R and we agree to write 
A = B if A and B differ by a set of measure zero. (It is not difficult to see that 
ergodicity implies minimality if we are on a second countable Bore1 spa-). s 

4 A measurable function f: S+ R will be called a constant of the motion iff 
f. F, = f a.e. for each t E R. 

a, 
0 

Z 3.7.22 Proposition. A flow I;, on S is ergodic iff the only constants of the 
motion are constant a.e. 
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Proof: If I;, is ergodic and f is a constant of the motion, the sets {x E Sl f(x) 
> a ) ,  {x E Sl f(x) < a )  are invariant, it follows that f must be constant a.e. 
The converse follows by taking f to be a characteristic function. . 

One sometimes hopes that, by passing to the intersection of surfaces on 
which all obvious constants of the motion take specified values, one will end 
up with an ergodic flow. However, this is usually not the case, even if one can 
show there are no further smooth constants of the motion. See Sect. 4.3 and 
Markus and Meyer [1974]. In the Hamiltonian case, the first step is to pass to 
an energy surface. Verifying ergodicity can still be very difficult. For example 
a classical model for molecular motion is a collection of "hard spheres in a 
box" and showing one has ergodicity on an energy surface is the subject of 
work of Y. Sinai (see Arnold-Avez [I9671 for references). In a spherical 
container, one would also, presumably, have to pass to a surface of constant 
total angular momentum. 

Probably the most basic example where ergodicity can be verified is the 
following. 

3.7.23 Theorem. (Hadamard) Let M be compact, Riemannian and have 
negative sectional curvatures at each point. Then the geodesic flow on each 
sphere bundle ({ vlll v 1 1  = constant # 0 )  c TM) is ergodic. 

The proof may be found in Arnold-Avez [1967, Appendix 211. Of course 
the sphere bundle is just an energy surface. The intuitive idea is this: negative 
sectional curvature implies that nearby geodesics tend to diverge apart, or to 
be "defocussed." Since one is on a compact manifold, this defocussing forces 
a randomness. Theorem 3.7.23 may be applicable to motion in a potential 
using Jacobi's theorem (3.7.7). 

The first major step in ergodic theory was taken by J. von Neumann 
[I9321 who proved the mean ergodic theorem. It remains as the most 
important basic theorem. The setting is in Hilbert space, but we shall see how 
it applies to classical systems shortly. 

3.7.24 Theorem (Mean Ergodic Theorem). Let Hbe a Hilbert space and U, : 
H-H a strong& continuous one-parameter unitary group (i.e., U, is unitary for 
each t, is a flow on H and for each x E H, t w U, x is continuous). 

Let the closed subspace Ho be defned by 

and let P be the orthogonal projection onto H,. Then for any x E H, Y 

d 
The limit in this result is called the time average of x and is customarily Z 

denoted Z. !!l 
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Proof of 3.7.24 (F. Riesz [lW]). We must show that 

If Px = x, this means x E Ho, so Us(x) = x; the result is clearly true in this 
case. We can therefore suppose that Px = 0 by decomposing x = Px + (x - 
Px). 

We remark that 

where I denotes the orthogonal complement. This is an easy verification 
using unitarity of U, and U,-' = U-,. 

It follows from this remark that kerP is the closure of the space spanned 
by elements of the form q y  -y. Indeed kerP= H:, and if A  is any set in H, 
and B = A  I ,  then B is the closure of the span of A .  

Therefore, for any E > 0, there exists t,, . . . , t,, x,, . . . , x, such that 

It follows from this, again using unitarity of U,, that it is enough to prove our 
assertion for x of the form Utoy -y. Thus we must establish that 

For t > to we may estimate this integral as follows: 

gi 
2 To apply 3.7.24 we use "Koopmanism" described in Sect. 2.6. Namely, 

Ei given a measure-preserving flow F, on S, we consider the unitary one 
parameter group = f 0 F-, on L~(s, y). We only require a minimal 
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amount of continuity on F, here, namely, we assume that if t,-+t, 4"(x) -+ 
F,(x) for a.e. x E S.  We shall also assume y ( S )  < oo for convenience. As in 
Sect. 2.6, under these hypotheses U, is a strongly continuous unitary one- 
parameter group. Again we will leave the verification as an exercise in the use 
of the dominated convergence theorem. 

3.7.25 Corollary. To the hypotheses just described, add the condition that 4 
be ergodic. Then for f E L2(S) ,  

the limit being in the mean. 

Proof: By 3.7.22, the space H, of 3.7.24 is one dimensional, consisting of 
constants. It is readily checked that 

so 3.7.24 gives the result. 

Thus, if F, is ergodic, the time average f of a function is constant a.e. and 
equals its space average. 

A refinement of 3.7.25 is the individual ergodic theorem of G. D. Birkhoff 
[1931], in which one obtains convergence almost everywhere. Also, if p(S) = 
oo but f E L 1 ( S ) n  L2(s ) ,  one still concludes a.e. convergence of the time 
average. ( I f f  is only L2, mean convergence to zero is still assured by 3.7.24.) 

One of the first things one does in statistical mechanics is introduce the 
notion of temperature. This is done by means of the principb of equipartition 
of energy, a consequence of the ergodic theorems. The result is as follows: 

3.7.26 Proposltlon. Let (P, a, H )  be a Hamiltonian system and e a regular 
value of H. Let 2, = H -'(e) and let ye be the invariant measure on 2, (see 
Sect. 3.4.) Assume 

( i )  _ 2, is compact (i.e., orbits of energy e are bounded), 
(ii) F,, the flow of X,, is ergodic on Z,, and 

(iii) f , ,  f2: Z,+R are continuous (or just L2 will do) and +: 2,-+Ze is an 
orientation preserving C ' diffeomorphism such that +*( f ye) = f2 CL,. 

Then f ,  = f,. V 2 
4 

Proof: From (iii), (i), f,, and f2 have equal space averages. Hence from (ii) 
and 3.7.25, the time averages must be equal as well. . 2 

z 
Here is how this result is applied. !z 
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3.7.27 Example. On P = R~~ = R 3N x R~~ consider a Lagrangian of the 
form 

N 

L(q, 4) = 2 imjl14;.l12 - V(q,, . . . , q,), qj, 4j E R 3  
j= 1 

where V is symmetric, with associated energy function 

Suppose Z, is compact and the flow is ergodic on 2,. Then the time averages 
of imjl14;.l12, j = 1, . . . , N are all equal. 

1 proof: Let f, = + m j l l  $ 1 1 ~  and f2 = -i m,ll qkl12 for given j ,  k. Define + on P by 

interchanging q, and q,, likewise \/;;i 4;.. and a. Thus cp leaves E 
invariant, so maps Ze to Z,. The symplectic form here is 

wL = Emi dq,"~ dqia 

It follows easily that cp leaves the phase volume y invariant (but not the 
symplectic form in general). 

Since cp leaves y and E invariant, it leaves ye invariant as well, and maps f, 
to f2. The result therefore follows from 3.7.26. il 

Note that this example also works on P = T(M X - . - X M) where M is 
a Riemannian manifold. 

The same argument can be used for the squares of individual components 
of the imillq,l12. The time average of each component is assigned a value 
k T / 2  (k is a constant-Boltwnann's constant-whose numerical value de- 
pends on the choice of units). Thus the total time average of the kinetic 
energy is 

which implicitly defines the systems' temperature T. One can treat the 
pressure in an analogous manner; see 3.7.32. 

One word of caution. We are tacitly assuming V is a C" function. In the 
case that one wants to have particles enclosed in a container with hard walls, 
this smoothness question leads to nontrivial difficulties (c.f. Sect. 2.6). 

Next we consider the classical virial theorem. Let Q be a (pseudo-) 
x Riemannian manifold, K the kinetic energy function, and V: Q+R a given 
@ potential. Let 
9 
m 
8 L(v) = K(v) - V(rQv) 
* 
0 

z be our usual Lagrangian and X, the associated Lagrangian vector field on 
TQ. 
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3.7.28 Deflnitlon. Given a vector field X  on Q, define the associated momen- 
tum function P  ( X )  by 

Define the uirial function by 

G ( X ) = { ~ , P ( X ) l  

The momentum functions P ( X )  will play an important role in our 
discussion of symmetry groups (see Chapter 4). 

The following gives G ( X )  in coordinates. 

3.7.29 Proposition. In local coordinates 8, we have 

Proof: We have G ( X )  = { K, P  ( X ) )  + { V, P ( X ) } .  Now { K, P ( X ) )  = 
- dP(X).X,. If v has components q', 

Differentiating and applying dP to X, = (q', - I''k4'4k) gives the term ( } 
above. The term involving V  is 

since X ,  = (0, - grad V ) .  . 
The virial theorem has the appearance of an ergodic theorem, but no 

ergodicity is assumed. 
X 
A 

3.7.30 Virial Theorem. Let Q, L be given as above and X  a vectorfield on Q. $ 
Let e be a regular value of E and assume 2, is compact. Then the time and 
space averages of G ( X )  on Ze are both zero. 2 

This results from the following. 
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3.7.31 Lemma. Let P 
Ze = H - ' (e )  is compact. 
{ H, f )  are zero on 2 , .  

be a symplectic manifold, H :  P-tR, and assume 
For any f :  P-tR, the time and space averages of 

Proof: Observe that the flow F, of X, is automatically complete on Ze as it 
is assumed to be compact. Now 

so that 

1 f L ' { ~ H )  o e d s = - ( f o F , - f ) + ~  t as t - tm 

since f  is bounded. 
For the space averages, note that LxHpe = 0  and hence 

{ f , H )  ~ e = ' x ~ ( f ~ e ) = d i x , ( f ~ e )  

Thus 

by Stokes' theorem. 

If 2, is not compact but G ( X )  is known to be bounded on Ze, then one 
can still conclude that G  ( X )  = O  by the same argument. 

3.7.32 Examples. (1) Let Q=Rn  with the usual metric and X = q ,  a 
coordinate vector field. In this case, from 3.7.29, G ( X ) =  aV/aqi. Thus the 
force has the time and space average of zero on any compact energy surface. 
The same is true of the momenta since P, = {q,, E). 

(2) On Q = Rn again, let X ( x )  = x .  Then we get 

which for the special case of the gravitational potential V ( x )  = - 1 / 11 x  1 1  on 
R '\ {O ) becomes 

z 
a well-known property of central force motion. 
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We can compare the result 2 K = ( a v / a q i ) q i  with the case in which the 
metric is not trivial. The terms 

act like an additional force term to be added to a v / a q i .  In other words, the 
curvature of the space will have an effect on the average kinetic energy. For 
example, the virial theorem is used in astronomy to measure masses in distant 
galaxies, and the curvature of space might conceivably have an effect for 
dense clusters. 

(3) On R~~ consider 

Here 5 represents an external potential (such as a container) and Fk are 
interaction potentials between the particles. Assume again Z, is compact. 
Letting X(x) = x in the virial theorem, we conclude that the time and space 
averages of the following are zero: 

Let 3p] V !  be the time average of the second term ( p  is the pressure and ] VI 
the volume of the "container"). Thus, if the flow is ergodic on X,, we get the 
equation of state: 

Note that on a curved space the pressure term would have to be modified by 
adding the "force" I;I: to V y., as in Example 2. 

EXERCISES 

3.7A. Let Y: TQ+ T2Q be a dissipative vector field. Define a generalized force $I: F: TQ+ TQ by B 

d 
Conversely, given P define Y(v) = [F(u)]', and show that it satisfies the Z 
same identity. 8 
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If F(v) = - k(x) .v, where k(x) is a nonnegative self-adjoint linear map 
on T,Q, x = T ~ U ,  show that (i) Y is dissipative and (ii) (See Exercise 3.8F 
for a generalization.) P is the negative velocity gradient of the Rayleigh 
dissipation function 

%(v) = f (k(x). v, v) 

3.7B. Let Q be a Riemannian manifold. Put a Riemannian structure on TQ by 
writing 

ToTQ=TxQ@TxQ, x = r ~ v  

the decomposition into horizontal and vertical subspaces, and declaring them to 
be orthogonal. 
(i) Show that the Riemannian volume element on TQ is the same as the 

volume element induced by the symplectic form. 
(ii) Show that the volume element on the sphere bundles 2, c TQ induced by 

their Riemannian structure coincides with the natural Hamiltonian volume 
pe on energy surfaces. 

3.7C. (a) If Q is a complete Riemdnnian manifold, show that TQ is as well by (i) a 
direct proof (see Ebin [1970b]), and by (ii) showing that geodesics on TQ 
are Jacobi fields along geodesics in Q. (See, e.g., Milnor [I9631 for a 
discussion of Jacobi fields.) 

(b) Observe that the result (a) holds in infinite dimensions. 
(c) Give a proof of 3.7.15 valid for infinite-dimensional manifolds. 

3.7D. Reformulate in terms of Riemannian manifolds and prove Hadarnard's theorem: 
"If a particle is free to move on a surface which is everywhere regular and has 
no infinite sheets, the potential energy function being regular at all points of the 
surface and having only a finite number of maxima and minima on it, either the 
part of the orbit described in the attractive region is of length greater than any 
assignable quantity, or else the orbit tends asymptotically to one of the positions 
of unstable equilibrium." (See Whittaker [1959, p. 4161.) 

3.7E. Consider the motion of a particle on a line under a potential V(x). Assume the 
lhe  rotates iil a plane -with constant aqgdai veloci'iji o. S3ow 'hat the coiiect 
motion of the particle is that of a particle on the line in the amendedpotential 
V,(x)= V(x) - tmco2/x2. 

3.7F. Let M be a four-manifold with (,) a Lorentz metric, that is, a pseudo- 
Riemannian metric with diagonal form (- 1, + 1, + 1, + 1). Let H (q,p) = tg$ipj 

be the Hamiltonian on TZM. If (q(t),p(t)) is an integral curve of X,, define its 
mass to be mo, where mi is the constant energy H(q(t),p(t)) along the curve 

(i) Show that two integral curves with initial data (q,(O),p,(O)) and 
(q2(0),p2(0)), which have q,(O) = q2(0) and pl(0) parallel to p2(0), have the 
same base integral curve when parametrized by arc length. 

(ii) Does this definition of mo agree with example 3.7.20 (use units with c = I)? 
(Hint. Here we are on T*M, not TM.) 

Y (iii) Let F be a closed two-form on M (an electromagnetic field) and wo the 
5 canonical two-form on T*M. For a constant e, the charge, let 
4 m 
8 wF=oo+ e(r&)*F 
2 
Z Show that co, is a symplectic form on TZM. Write down, in coordinates, 
8 the equations of motion for the Hamiltonian H relative to aF. Look up the 
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equations of motion for a relativistic particle in the presence of an 
electromagnetic field in a physics text and see if they agree (modulo units) 
with what you just derived. 

(iv) Let F be a closed two-form on a manifold M, wo the canonical symplectic 
structure on P M, and WF = wo + (T&)*F. Let H E 9(T* M). Show that the 
critical points of the two Hamiltonian vector fields formed using wo and 
a, are the same. 

3.7G. Holonomic constraints were described in 3.7.8. Sometimes constraints can be 
holonomic "without looking like it," an example being a hoop rolling without 
slipping on an inclined plane; see Goldstein [1950, p. 431. Discuss and justify 
the following definition: "A holonomic constraint on TM is an integrable 
subbundle E c TM." 

3.8 VARIATIONAL PRINCIPLES IN MECHANICS 

Historically, variational principles have played a fundamental role in the 
evolution of mathematical models in mechanics, but in the last few sections 
we have obtained the bulk of classical mechanics without reference to the 
calculus of variations. In principle, we may envision two equivalent models 
for mechanics. In the first, we take the Hamiltonian or Lagrangian equations 
as an axiom and, if we wish, obtain variational principles as theorems. In the 
second, we may assume variational principles and derive the Hamiltonian 
and Lagrangian equations as theorems. We have taken the former coufse in 
this text because a complete account of the calculus of variations can be more 
complex. Others may prefer the second model, especially those metaphysi- 
cians who hold, with Maupertuis, that nature always acts in the simplest way. 

In this section we summarize the basic ideas for the calculus of variations, 
but technicalities involving infinite-dimensional manifolds prevent us from 
presenting all the details. For these, we refer to, for example, Smale [1964], 
Palais [I9631 and Klingenberg [1977]. For the classical geometrical theory 
without the modem infinite-dimensional framework, the reader should con- 
sult, for example, Bolza [1973], Whittaker [1959], Gelfand and Fornin 119631, 
or Hermann [1968]. 

3.8.1 Definition. Let Q be a manifold and L: TQ+R a regular Lagrangian. 
Fix two points q,  and q2 in Q and an interval [a, b] and let 

q2, [a, 61) = { c :  [a, b ] - + ~ l c  is a C 2  curve, c ( a ) = q ~  andc(b)=q2) 

called the path space from q,  to qz. Define the map 

J :  q q , ,  q,, [a,  b ] ) + R  
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For certain purposes in the calculus of variations it is essential to be more 
delicate about the differentiability class chosen for the paths c; in particular, 
the Sobolev spaces Hs are often used. For our purposes, this will not be 
necessary. 

What we shall not prove is that Q(ql, q,, [a, b]) is actually a Cm infinite-di- 
mensional manifold. This is a special case of a general result in the topic of 
manifolds of mappings, wherein spaces of Cr (or Hs) maps from one 
manifold to another are shown to be smooth infinite dimensional manifolds. 
(See the above references and also Eells [1966], Eliasson [1967], Palais [1968] 
and Ebin-Marsden [ 19701.) 

Granting this, the following is easy to see. 

3.8.2 Proposition. The tangent space to Q(q,, q,, [a, b]) at a curve c € 
Q(ql, q,, [a, b]) is given as follows: 

TcQ(ql, q,, [a, b])= {v: [a, b]-TQ I v is a C2 

Idea of ProoJ: The tangent space to a manifold consists of tangents to 
curves in the manifold. Consider then a curve c, €Q(q,,q2, [a, b]) with c, = c. 
Thus a tangent vector is 

However c,(t) for each t is a curve through c,(t)=c(t). (See Fig. 3.8-1.) 
Hence (d/dh)c,(t)l,,, is a tangent vector to Q based at c(t). Hence v(t)E 
Tc(,,Q, that is, rQ v = C. The restriction c,(O)= q, and cA(l)= 9, leads to 
v(0) = 4 o(! j=O, but otherwise u is an arbitrary c2 function. 5 
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One refers to v as an infinitesimal variation of the curve c subject to fixed 
end-points. Classically, the notation v = 6c is used. 

Now we can state and sketch the proof of a main result in the calculus of 
variations. 

3.8.3 Theorem. ( Variational Principle of Hamilton). Let L be a regular 
Lagrangian on TQ. A curve c,: [a, b]-Q joining q, = c,(a) to q2= co(b) is a 
base integral curve of X,, that is, satisfies the Lagrange equations 

if and only i f  c, is a critical point of the function J :  Q(q, , q2, [a, b])+R defined 
above; that is, dl (c,) = 0. 

Classically, the condition dl (c,) = 0 is denoted 

that is, the integral is stationary when it is differentiated as if c were the 
independent variable. 

Proof of 3.8.3. We first work out dl(c) .v  in the following way. Let v= 
(d/dX)c,/,=,, that is, write v as the tangent to a curve in Q(q,,q2,[a,b]). By 
the chain rule, 

dl ( c ) ~  = - J (c,) 
dX l A = ~  

Differentiating under the integral sign, and using local coordinates we get 

Since v vanishes at both ends, the second term can be integrated by parts to 
give 2 

E: 

A 

Now dl (c) = 0 means dl (c)  mu = 0 for all v E T,O(q,, q2, [a, b]). This holds if 
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and only i f  

since v is arbitrary, except v = 0 at the ends, and the integrand is continuous.* 

Next we discuss variational principles with the constraint o f  constant 
energy imposed. T o  balance this constraint, we let the interval [a,b] be 
variable. 

3.8.4 Definition. Let L be a regular Lagrangian as above and 2, a regular 
energy surface for the energy E of L. Let ql , 4, E Q and let [a, b] be a given 
interval. Set 

O(q,, q,, [a ,  b ] ,  e )  = ( (7 ,  c ) ~ T :  [ a ,  b ]  --fR is c2, 7' > 0, C: [ ~ ( a ) ,  ~ ( b ) ]  4 Q 

is a c2 curve, c(r(a)) = q,, c(r(b))  = q2 and 

E ( c ( ~ ( t ) ) ,  P(r(t))) = e for all t E [ a ,  b ] )  

Arguing as above, differentiation o f  curves (r(h), ~ ( h ) )  in Q(q,, q,, [a, b],e) 
shows that the tangent space to Q(ql, q,, [a, b], e )  at (7, c)  consists o f  c2 maps 
a : [a, b]-R and v : [r(a), r(b)]+ TQ such that 

~ ( t )  E T&,)Q, ~ ( r ( a ) ) a ( a )  + ~ ( ' ( a ) )  = 0, t ( r ( b ) ) a ( b )  + u ( r ( b ) )  = 0 

and 

dE(c(r(t)),  d(r(t)))-  ( i ( r ( t ) )a ( t )  + v(r(t)) ,  c(r(t))ai(t) + zj(r(t))) = 0 

The Euler-Lagrange-Jacobi formulation o f  the principle of least action o f  
Maupertuis is as follows.+ 

3.8.5 Theorem. Let co(t) be a base integral curve of XE, ql = co(a) and 
4, = co(b). Let e be the energy of co(t) and assume it is a regular value of E. 

X 

2 
4 - *We use implicitly this easy lemma: if f(t) is continuous on [a,b], then f b f  (t)g(t)dt-O for all 

J a 
Cr functions g vanishing at a and b if and only iff =O. 
w e  thank M .  Spivak for helping us formulate this theorem correctly. The authors like many 
others (we were happy to learn), were confused by the standard textbook statements. For 
instance the mysterious variation "A" in Goldstein [1950, p. 2281 corresponds to our enlargement 
of the variables by c + ( ~ , c ) .  



Define 

I :  q q , ,  q,, [a, b ]  9 e)+R 

by 

I (T, c )  = lT(b)~ ( c ( t )  , i ( t ) )  dt 
~ ( a )  

where A is the action of L. Then 

dI(Id, co) = 0, where Id: [ a ,  b ]  +R; t w t .  

Conuersely, if (Id, c,) is a criticalpoint of I ,  and c, has energv e, a regular value 
of E, then c, is a solution of Lagrange's equations. 

Proof: Since all curves have energy e, 

Differentiating with respect to T and c by the method of 3.8.3 gives 

dI(Id, c,). ( a ,  u)  = a(b)(L(c,(b), C,(b)) + e) - a(a)(L(co(a), i.,(a)) + e )  

Integrating by parts as in 3.8.3 gives 

d l  ( I d  co). (4 0)  = a ( t ) ( ~ ( c ~ ( t ) ,  io( t ) )  + e)l: 

Using the boundary conditions v= -?a, noted in the description of Y 
T,,a(q,,q,, [a, b],e), and the energy constraint ( a ~ / a q ' ) i ~  - L = e, the S 
boundary terms cancel, leaving 4 m 

8 
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However we can choose v arbitrarily; notice that the presence of a in the 
linearized energy constraint means that no restrictions are placed on the 
variations u' on the open set where i.#=O. The theorem therefore follows. 

If L = K -  V, where K is the kinetic energy of a Riemannian metric, then 
3.8.5 states that a curve co is a solution of Lagrange3s equations if and only if 

where 6, indicates a variation holding the energy and endpoints but not the 
parametrization fixed; i.e. symbolic notation for the precise statement in 
3.8.5. 

Since K > 0 in the Riemannian case (for timelike curves in the pseudo- 
Riemannian case consider - K  > 0), this is the same as 

that is, arc length is extremized (subject to constant energy). This is Jacobi's 
form of the principle of least action and represents a key to linking mechanics 
and geometrical optics, which was Hamilton's original motivation. In particu- 
lar, geodesics are characterized as extremals of arc length. 

We can see the link with Jacobi's theorem (3.7.7) as follows: let L = K -  V 
so E= K +  V and let co be a solution of Lagrange's equations with energy e.  
Then along co 

that is, 

We have written the original variational principle in the form of that for the 
arc length of a geodesic in the metric ( e  - V)g, that is, in the Jacobi metric. 
This argument is essentially the original one given by Jacobi to prove 3.7.7. 

3 Because geodesics extremize curvature well as arc length, these ideas 
2 are closely related to the geometrical principles of Gauss and Hertz (see 
9 

Whittaker [1959, Chapter 1x1). 8 'z The reader who wishes to pursue the variational ideas should consult 
z Klingenberg [1977], Weinstein [ 19781, and Duistermaat [1976a] in addition to 

references already given. 



EXERCISES 

3.8A. (i) Give an example to show that J need not be minimized at a solution of 
Lagrange's equations. (Hint. Geodesics on the sphere.) 

(ii) By considering second variations, show that, locally, J is minimized for 
geodesics of a Riemannian metric. (When minimization ceases one en- 
counters conjugate points.) 

3.8B. Suppose one begins with a variational formulation as in 3.8.3 as basic and then 
discovers the Lagrange equations. Show that by multiplying these equations by 
qi and integrating you are led to the energy (Historically, this is a path to 
Hamilton's equations.) 

(m) r 
3.8C. Let L be a Lagrangian depending on qi, 4', qi, . . . , q . 

(a) Derive the corresponding Euler-Lagrange equations by a variational 
argument. 

(b) Show that these equations can be put into Hamiltonian form (see Whit- 
taker [1959, pp. 265-2671). 

(c) Formulate your results intrinsically on manifolds; you will need to find 
out about jet bundles. (See Sect. 5.5 and Rodrigues [1976].) 

3.8D. Formulate and prove a principle of least action for (hyperregular) Hamiltonian 
systems on TCQ. 

3.8E. (A. Lichnerowicz, R. Jantzen and the authors). Let (P,w) be a symplectic 
manifold and F, the flow of a Hamiltonian vector field XH. Let G, = TF, be the 
tangent flow on TP and Y  its generator. Show that Y  is Hamiltonian with 
energy H (v) = - w(v, 7,. TX,y(v)). (Use problems 1.6D and 3.31). If (q ',pi) are 
canonical coordinates on P and (qi,pi, Qi, P,) are induced coordinates on TP 
show that 

(The system X i  on TP is called the linearized Hamiltonian system of XH). 
3.8F. (S. Shahshahani). Let D €X(TM) and define its fiber d$ferential by dFD E 

%*(TM), (dFD).w, =dD-(TT,.~,)', (see 3.7.5). (a). In coordinates, show that 
aD dFD = Z, dqi. (b) Let w be a symplectic form on TM which vanishes when 
30 

pulled back to each fiber T,M. Show that A=(~,D)# is a vertical vector field. 
Let X, be a second order Hamiltonian vector field on TM so that Y =  XE + A 
is also second order; Y  is called a dissipative system with Rayleigh dissipation 
function D. (c) Show that this generalizes Exercise 3.7A(ii). (d) Let C denote 
the canonical vertical vector field on TM given by lifting vertically. Show that 
energy decreases along orbits of Y  iff C(D)>O. (e) Show that van der Pol's 
equation x + p ( ~ 2  - 1)i  + x = 0 is a dissipative system in this sense with E the 
harmonic oscillator energy and D (x,i)= $p.t2(x2 - 1). Use (d) to study when 
energy is decreasing and verify by a direct calculation. 



CHAPTER 4 
Hamiltonian Systems with Symmetry 

Associated with each one-parameter group of symmetries of a Hamilto- 
nian system is a conserved quantity. For a group of symmetries we get 
thereby a vector-valued conserved quantity called the momentum. We shall 
discuss the properties of the momentum and how to construct it in Sect. 4.2, 
after summarizing the necessary topics from Lie group theory in Sect. 4.1. 
When symmetries are present the phase space can be reduced; that is, a 
number of variables eliminated. This topic is the subject of Sect. 4.3. 
Mechanical systems on Lie groups and the rigid body are discussed in Sect. 
4.4. Smale's topological program for a mechanical system with symmetry is 
presented in Sect. 4.5 and this is applied to the Pigid body problem in Sect. 
4.6. A number of results presented in this chapter are new. 

4.1. LIE GROUPS AND GROUP ACTIONS 

In this section we develop the basic facts about Lie groups and actions of 
Lie groups on manifolds which we will need for applications to mechanics. 

4.1.1 Deflnltlon. A Lie group is a finite-dimensional smooth manijbld G that 
is a group and for which the group operations of multiplication, - : G X G + G: 

Y ( g, h) I+ g. h, and inuersion, - ' : G+ G : g I+ g- ' are smoothl. Let e = identity. 
8 - 
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Program. AU rights reserved. No part of this publication may be reproduced, stored in a retrieval 
Z system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or 

otherwise, without the prior permission of the publisher. 
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4.1.2 Example. The group of linear isomorphisms of Rn  to Rn, denoted 
Gl(n,R), is a Lie group of dimension n2. It is a smooth manifold, being an 
open subset of R"' and the group operations are smooth since the formulas 
for the product and inverse of matrices are smooth in the matrix components. 

For everygEG the maps Lg: G-+G: h ~ g h  and $: G+G: h ~ h g  are, 
respectively, left and right translation by g. Since Lg Lh = Lgh and Rh $ = 
$h, (Lg)-l = Lg-t and (Rg)-'= Rg-I. Thus both Lg and Rg are diffeomor- 
phisms. Moreover, Lg R,, = Rh Lg. 

Actually, smoothness of inversion follows automatically from smoothness 
of multiplication. This is easily seen by applying the inverse function theorem 
to the map ( g , h ) ~ ( g , g h )  of G X G to G x G. 

A vector field X on G is called left invariant if for every g E G, (Lg),X = X, 
that is, 

Th LgX (h) = X ( gh) for every h E G 

Let XL(G) be the set of left-invariant vector fields on G; then the maps 
p,: XL(G)+TeG: XwX(e) and p,: TeG+XL(G): ( w { g ~ X ~ ( g ) =  
TeLF() satisfy p, p2 = idTeG and p, p, = idx (,). Therefore, XL (G) and TeG 
are ~somorphic as vector spaces. Actually g L ( ~ )  is a Lie subalgebra of the 
set of all vector fields on G because if X, Y E XL (G), then for every g E G, 

Lg* [ X ,  Y] = [Lg*X, Lg* Y] 

Defining a Lie bracket in TeG by 

makes TeG into a Lie algebra (see 2.2.13). Note that [Xg,XT] = XfS,sl. 

4.4.3 Deflnltion. The vector space TeG with this Lie algebra structure is 
called the Lie algebra of G and is denoted by g or if there is danger of confusion, 
by QG) or G,. 

4.1.4 Example. For everyAEL(Rn,Rn), X,: Gl(n,R)+L(Rn,Rn): YH 
YA is a left-invariant vector field on Gl(n,R) because for every Z E Gl (n,R), 
XA(LzY)=ZYA=TyLzXA(Y) and L,: Gl(n,R)+Gl(n,R): YI+ZY 
is a linear mapping. $ 

Therefore, by the local formula EX, Y](x) = D Y (x) -X ( x )  - DX (x) . Y (x), g 
m 
8 

[A, B] = [XA, XB](I) 3 
Z 

= DXB(I).XA(I) - DXA(I).XB(I) E! 
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But XB ( Z )  = ZB is linear in Z, so DXB(Z) .Z = ZB. Hence DXB(I)  -XA ( I )  = 
DXB (Z).A = AB and similarly DXA (Z).X,(Z)= BA. Thus, L(Rn,  R n )  is the 
Lie algebra of Gl(n, R )  with Lie bracket given by 

4.1.5 Proposltlon. Let H and G be Lie groups and f: H+G a smooth 
homomorphism. Then Te f :  &(H)+C(G) is a Lie algebra homomolphism. 

ProoJ Since f is a homomorphism, Lf,,o f = f 0 Lh for every h E H. Dif- 
ferentiation of this relation in h yields 

X W t o f  = T f  X,. 

Even though f is not a diffeomorphism, we write this as 

Therefore, 

Tef [ L  71 = Tef [ X g ,  xV] ( e )  ( e  = e,) 

For every 5 E T, G let cPg : R+ G: t H exp t[ denote the integral curve of X6 
passing through e at t =O. Because X6 is left invariant, its flow is complete. 
Indeed, the time of existence of the integral curve of X6 with initial condition 
g is the same as that with initial condition e since if c( t )  is an integral curve at 
e, g.c(t) is an integral curve at g; see Exercise 2.1B. Therefore, +, is defined 
for all t E R. The following argument shows that 

( S  + t )  = exp ( S  + t)< = exp s5 exp t5 = +, (s)+* ( t )  (2) 

for all s, t E R ;  that is, +€ is a smooth homomorphism of the (additive) group 
R into G and is therefore called a one-parameter subgroup of G. Fix s E R and 
define JI: R + G: t I+ +€(s)+((t) = LsBQ+E(t); then J I  is an integral curve of Xt 
passing through +€(s) at t = 0 by left invariance of XE. Also 0: R+ G: 
t + t )  is an integral curve of X€ passing through +€(s) at t = 0 because 

@ 4 8(0) = e ( s )  and 
r;, 
8 do 
5' -(s+t)=- dt " ( ~ + t ) = ~ , ( O ( s + l ) )  o d(s+ t )  
z 

Therefore, 8 = + because the integral curve of X6 passing through JI[(s) at 
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t =O is unique. Consequently (2) holds. Notice that we have proven that the 
flow of XE is et(g)=gexpt5. 

If +: R+G is a one-parameter subgroup of G, then +=+(, where 
5 = d+/dt 1, =, because +(t + s)  = +(t)+(s) = L+(,#(s), which implies 

Thus + is an integral curve of Xt passing through e = +(O). But so is +t. Hence 
+ = +t by uniqueness. 

4.1.6 Definition. The function exp : TeG+G : t t+Gt(l)  is called the exponen- 
tial mapping of the Lie algebra of G into G. If there is any danger of confusion 
we will write exp,. 

The map exp is C *. Indeed, let Z be the vector field on G X g defined by 
Z ( g ,  0 = (Xt(g) ,  0). Its flow is readily verified to be <(g, 0 = (gexp t5, 0. 
From its definition, Xt(g)= TeLJ is smooth in 5 and g and thus Z and hence 
F, are smooth maps. In particular Fi(e, 0 = (exp 5, 0 is smooth in 5 and so exp 
is smooth. 

We have Toexp = idTeG because 

Therefore, by the inverse function theorem, exp is a local diffeomorphism. In 
general, exp is not a diffeomorphism onto G as is shown in Example 4.1.9(c) 
below. Before giving these examples we note a basic property of the exponen- 
tial map. 

4.1.7 Proposition. I f f :  H+ G is a smooth homomorphism of Lie groups, then 
for all 17 E Q H ) ,  f(exp,q)= exp,(TJ-rl). 

ProoJ The mapping +: R+G: ti+ f (exp, tq) is a one-parameter subgroup 
of G. Therefore, +(t) = expGt(, where 5 = (d/dt)+I ,,, = T 2 q ,  which implies 
f(exp,q)=+(l)=4(')= exp,5= exp,(T2)7). Y 

2 
4 For every g E G, let I, : G+G: h wghg- ' = R,-I L,h be the inner auto- rn 

morphism associated with g. I, is smooth and is a homomorphism because 3 
2 

I, (hk )  = ghkg - = ghg - 'gkg - ' =Ig (h)Ig ( k )  



4 HAMILTONIAN SYSTEMS WITH SYMMETRY 257 

Let Ad, = T, I, = T, (R,- IL,) : T, G+ T, G, called the adjoint mapping associated 
with g. Using proposition 4.1.7 we have: 

4.1.8 Corollary. exp(Ad,() = I, exp ( = g(exp 5) g- ' for aery (E  T,G and 
aery g € G. 

4.1.9 Examples. (a) Consider Rn  with the additive structure as a Lie 
group. Then the Lie algebra of Rn  is Rn  and exp: Rn+Rn is the identity. 

(b) For every A€L(Rn,Rn), +,: R + G ~ ( ~ , R ) c R " ~ :  t~X;=,,t"A"/n! 
is a one-parameter subgroup because +,(O) = I and 

which shows that +, is an integral curve of the left-invariant vector field XA. 
Therefore, the exponential mapping is given by exp : L(R ", R ")+ Gl (n, R) : 
A~+,(l)=2;=,,A'/n!. For PEGl(n,R), P+,P-': R+Gl(n,R): t~ 
P+,(t)P-' is an integral curve of XPAp-~ passing through I because 
P+, P - '(0) = I and 

But so is +,,,-I. Therefore, +,,, - I = PC$, P - ', that is, 

( Consider exp : L(R ', w ')+ 61 (2, R). The following argument shews 
that 

is not in the image of exp. By the real canonical form from linear algebra (see, 
e.g., Hirsch-Smale [1974], p. 129, Theorem 2) for every A E G1(2,R), there is 
a P E Gl(2, R) such that PAP - ' is either 

(i) ( t  0) for some p, A €  R, 

for someaER, B€R\{O}, or 
9 
r;, 
8 2 ( i )  ( !) for some X E  R. - 
#4 

Therefore, exp PAP - ' is either 



258 2 ANALYTICAL DYNAMICS 

(0 (" o e oP), 

i i  e"(cosp - sin p 
sin p cos /3 

(iii) ( y  :). 
Suppose that B = expA for some A E L ( R ~ , R ~ ) ;  then for any P E 

Gl(2, R), PBP - ' = P (exp A) P - ' = exdPAP - I ) .  Now cases (i) and (iii) 
cannot occur since trace B= - 3 and 

trace B = trace (PBP - ' ) = trace exp(PAP - ' ) 

which is > O  in these cases. Also, B cannot have the canonical form (ii) on p. 
257 since that form has eigenvalues A= a + iP which can never equal -2, - 1. 

Of course, whenever G is not connected, exp cannot be onto because 
exp(g) is connected. Any matrix with negative determinant is not in the 
component of the identity of Gl (n, R)  (since det > 0 on the component of the 
identity) and hence is not in the image of exp. However, in the example just 
given, B is in the component of the identity; it is joined to I by the curve 

(1 + 8/m) cos 8 - sin 0 for 0 G 8 G m 
sin 8 cos 8 

Thus, we cannot conclude that exp is onto the component of the identity. 
However, if G admits a bi-invariant Riemannian metric (e.g., if G is compact) 
then this is true. See Exercise 4.4D. [It follows that Gl(2,R) does not admit a 
bi-invariant metric.] 

4.1.1 0 Definition. A Lie subgrozq H of a Lie group G is a subgroup of G for 
which the inclusion mapping i: H+G is an immersion, that is, i(H) is an 
immersed submanifod of G. 

The next example shows that the manifold topology on i(H) need not be 
the topol~gy induced from G. In other words, i need not be an embedding. 

4.1.11 Example. L e t a ~ [ O , l ) \ Q a n d d e f i n e + : R + ~ ~ = ~ ' ~ ~ ' ~ ~ ~ : t ~  5 !2 (e2"it,e2"iut). Then + is a one-parameter subgroup ,of T ~ .  Moreover, + is 9 injective, for (e27rit, e2~iut) = (e27ris, e2~im ) if and only if for some m,n €2, 

t = s + n  and a t=m+m;  if m#O and n#O, then m=a(t-s)=an, which 2 
contradicts a fif Q; hence either m = 0 or n = 0, which implies t = s. A similar 2 
argument shows that T,+(1) = d+/dt = 2mi(e2"", ae2"iut) is injective. Therefore, fi 
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cp (R) is an injectively immersed submanifold of T2. The following argument 
shows that cl(cp(R)) = T2, that is, cp(R) is dense in T2. Letp = (e2"'",e2"'Y) E T2, 
then for all m E 2, 

where y = ax + z. It suffices to show that C = {e2"'"" E S 'lm E Z )  is dense in 
S' because then there is a sequence mk €2 such that e2"'"'ka converges to 
e2"". Hence, +(x + mk) converges top. If for each k EZ, we divide S ' into k 
arcs of length 2n/ k, then, because {e2"'"" E S ')m = 1,2,. . . , k + 1) are dis- 
tinct, for some 1 < nk < mk < k + 1, e2"'"ka and e2"'"ka belong to the same arc. 
Therefore, 1 e2"i"'ka - e2"inka 1 < 2n/ k, which implies 1 e2"&* - 11 < 2 ~ /  k, where 
pk = mk - nk. Because 

every arc of length less than 2n/k contains some e2"V*k, which proves 
cl(C)= S'. +(R) is not an embedded submanifold of T~ because it is not 
locally closed in the topology of T2. 

The difficulty in the above example is the fact that the subgroup is not 
closed. 

4.1.12 Proposition. If H is a closed subgroup of a Lie group G, then H is a 
submanifold of G and in particular is a Lie subgroup. 

Proof: (Adams [1969]). Put a norm I I - I I  on gG=TeG. Let &EgG,tn#O be 
such that exp 5, E H, tn+O and tn/ 11[,11+$ E gG. We will show that exp t t  E H 
for every t E R. Since &+0, for any t E R there is a sequence of integers mn 
such that mn ll+t as n+oo. Thus exp(m,<,)+exp tt. But exp mntn = 
(exp 5,)- E H and H is closed, so exp t t  E H. 

Next, let g ,={t~g, lexpt .$~H for all tER) .  We claim g, is a vector 
subspace of g,. Clearly g, is closed under scalar multiplication. We need to 
show it is closed under addition. Let 5,,t2 ;,E g, and suppose 5, + 5,ZO. For t 
sufficiently small, we can write exp tt,.exp tt2 = exp(f(t)) since exp is a diffeo- 
morphism of a neighborhood of e. Since 

(1 / t) f (r)*, + l2 as t+O. Therefore, letting 6 = f (l/n) and ,$ = (t, +(A/ 
116, + t211, we see that exp t[E H, that is, 5, +t2 ~ g , .  

z Write g, = g, @g' and consider the diffeomorphism +(t, 5') = exp 5-exp 5' 
z between a neighborhood of 0 in @G and a neighborhood of e in G. (It is a local 

diffeomorphism by the implicit function theorem.) We use this map to show 
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that exp maps a neighborhood of 0 in g, to a neighborhood of e in H. If not, 
there would be a sequence (tn, [A) E g, @g' with exp [;exp (A E H, exp [,,-exp [A 
+e, and [L += 0. But exp &, E H, so exp (A :, H. There is a subsequence [Ak such 
that [Ak / I],$" 1 1  -+( E 9' (by compactness). But this would imply [ E g ,, which is 
impossible. 

It follows from this that exp gives a submanifold chart for H near e 
modelled on g,. By left translation, H is a submanifold around each of its 
points. E 

4.1.13 Proposition. Let i: H+G be a Lie subgroup of G. Then for [E 
C(G), < E  Tei(e(H)) if and only if expGt( E i(H) for all t E R. 

Boo$ (Note that this was shown in the previous proof for closed sub- 
groups.) If 5 E Tei(C(H)), then 4.1.7 yields at once that expGtc E i(H). Con- 
versely, if exp,t[E i(H) for all t, write exp,t(= i+(t) for +(t) E H. Since i is 
an injective immersion, + is a smooth one-parameter subgroup of H and so 
+(t)= exp,tq for E C(H). Thus [= T,i.q. 

Proposition 4.1.12 is just one of a number of "automatic smoothness" 
results for Lie groups. (See Varadarajan [I9741 for further information.) 

One can characterize Lebesgue measure up to a multiplicative constant on 
Rn by its invariance under translations. Similarly, on a locally compact group 
there is a unique left-invariant measure, called Haar measure. For Lie groups 
the existence of such measures is especially simple. 

4.1.14 Proposltion. Let G be a Lie group. Then there is a volume form p, 
unique up to nonzero multiplicative constants, which is left invariant. If G is 
compact, y is right invariant as well. 

Proo$ Pick any n-form ye on TeG that is nonzero and define an n-form on 
T,G by 

. .,on) = I.,. (TL~-~-v,,  . . . , TL,-,.v,) 

Then is left invariant and smooth. For n=dimG, ye is unique up to a 
scalar factor, so yg is as well. 

Fix go€ G and consider R$ y. Since Rgo and Lg commute, R:oy is left 
invariant and hence R& y=  cy for a constant c. Now if G is compact, this 
relationship may be integrated and by the change of variables formula, we 
deduce that c = 1. Hence y is also right invariant. 

Y 
A 

This concludes our brief study of Lie groups as such, and we now turn to $ 
actions of groups on manifolds. Before proceeding the reader should be sure 8 
he understands some of the classical examples by consulting the exercises. 2 
For instance, later on, the fact that the Lie algebra of SO(3) is R~ with the z 
cross product as Lie bracket will be used without explicit mention. 2 
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4.1.15 Definltion. Let M be a smooth manifold. An action of a Lie group G 
on M is a smooth mapping @: G X M+M such that (i) for all x EM, 
@(e, X) = x and (ii) for every g, h E G, @(g, @(h, x)) = @(gh, x) for all x EM. * 

4.1.16 Examples. (a) A complete flow F on M is an action of R on M. 
(b) If H is a subgroup of a Lie group G, then @: H X G+G: (h,g) H hg is 

an action of H on G. 

For every g E G let a,: M + M: x I+ @(g, x); then (i) becomes @, = id, 
while (ii) becomes = Because (a,)-' = %--I, @, is a diffeomor- 
phism. Definition 4.1.15 can be rephrased by saying that the mapping g I+@, 

is a homomorphism of G into the group of diffeomorphisms of M. If M is a 
vector space and each @, is a linear transformation, the action of G on M is 
called a representation of G on M. 

The following additional terminology regarding actions is useful. 

4.1.17 Deflnltlons. Let @ be an action of G on M. For x E M, the orbit (or 
@-orbit) of x is given by 

An action is transitive if there is just one orbit. It is eflectiw (or faithw) if 
@, = identity implies g = e;thut is, g~ cP, is one-to-one. An action is free if, for 
each x E M, g H tP,(x) is one-to-one. 

The relation of belonging to the same @-orbit is an equivalence relation 
on M. We let M/ G be the set of equivalence classes, that is, M/G is the set 
of @-orbits. Let a : M+ M/ G : x H [XI, where [x] is the @-orbit containing x. 
Give M/ G the quotient topology, that is, U c M /  G is open if and only if 
T-'(u) is open in M. 

4.1.18 Example. This example shows that the topology M/ G need not be 
Hausdorff. Let @: R X R+R, (t, x) H e 'x, an action of the additive group 
G= R on M= R. There are three orbits, [ -  11, [O], and [I]. It is readily 
checked that the open sets in M/G are the empty set, the whole space, 
{[- I]), {[I]), and {[- 1],[1]}. In particular {[0]} is not open, so the topology 
is not Hausdorff. 

X 4.1.1 9 Proposition. Let @: G X M+ M be a smooth action and let R = 
$ { ( m , @ g m ) ~ M ~ M ~ ( g , m ) ~ G ~ M } . I f R i s a c l o s e d s u b s e t o f M x M , t h e n  
4 the quotient topolog~ on M/G is HausdorjJ 
r-2 

3 a *Strictly speaking, this is a left action. A right acfion is a map a :  M X G+M such that O ( x , e ) = r  
and cP(@(x,g),h)=Q(x,gh). For "automatic smoothness" results for group actions, see Bochner 
and Montgomery [I9451 and Chernoff and Marsden [1970]. 
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PtwoJ: Suppose M/G is not Hausdorff. Then there are distinct [XI, [y]E 
M/G such that for any pair of neighborhoods Ux of [x] and UY of [y], 
Ux n Uy #a. 

Let yx and y!' be nested bases of neighborhoods in M of x and y, 
i=1,2, ... . Let W:= U Q g v  and Wf= U QgV. Choosing U;'=n(yx) 

g e G  g E G  
and q!' = IT( Wf), there must be g,, hi E G and xi E yx, yi E yy such that 

Qt xi = Q4 y,, that is, y, = Qhi- 

Now y,+y and xi+x as i+m. Thus the points (X~,Q~-,~,X,)E R converge, so 
the limit lies in R, as R is assumed closed. Thus (x,y) E R; that is, y = Qgx for 
some g E G and so [x] = [y]. 

The next theorem gives a necessary and sufficient condition for M/G to 
be a smooth manifold. 

4.1.20 Theorem. Let G act on M, and R be defined as in 4.1.19. Then R is a 
closed submanifold of M x M if and only if M/G has a smooth manifold 
structure such that T: M+M/G is a submersion. 

ProoJ: Sufficiency. Suppose that R is a dosed submanifold of dimension r of 
M X M that has dimension 2n. First we show that R is locally the graph of a 
smooth submersion of M into M, that is, for every x E M  there is an open set 
U c  M with x E  U, a submanifold N c M and a smooth submersion p: 
U c M+N c M such that for every u E U, p(u) E N  if and only if (u, p(u)) E 
R. Since R is a submanifold of M x M and the map R+M: (x,Qg(x))wx 
is a submersion, by the local fibration theorem (Exercise 1.6G) find an 
open set I/, c M and a map q : Uo x Uo c M X M+Rm such that q -'(0) = 
(Uo X Uo) n R and qx = ql,x : UO c M+Rm : y ~ q ( x , y )  is a submersion. This 
implies that n > m and rl,-'(0) is a submanifold of Uo with Txrl,-'(0) = E, 
which has dimension n - m. Let F be a complement to E in TxM. Shrinking 
Uo if necessary, there is a submersion [ : Uo c M+ R "-" such that 6 - '(0) = N 
is a submanifold with x E N and Tx.$ -'(0)= F, which has dimension m. (See 
Exercise 1.6H.) Consider the mapping { : Uo X Uo c M X M+Rm x Rn  -" : 
( y , z) H (q (y , z), [(z)), then { (x, x) = (0,O) and the partial mapping {, : Uo c M 
+R:=RmXRn-m: zw(qx(z),[(z)); TxS;: TXM+TL(,,Rn is bijective be- 
cause ker TxSx = ker Txqx n ker Tx< = E n F= (0) and dim Tx M = n. Therefore, 
the implicit function theorem applied to { gives an open set U, c Uo with 
x E U, and a smooth function p : U, c M+ U, c M with p(x) = x such that 
{ - ' (~ ,O)={(U,~(~))E U, x U1c UX UIUE U,). For all u E  U,, q(u,p(u))=O, 8 

E! which implies (u, p(u)) E ( U, X U,) n R and ((p(u)) = 0, that is, p(u) E N. It q 
m remains to show that p is a submersion near x. Differentiating q(u, p(u)) =O at 3 

(x, x) = (x, P(x)) gives '3 
z 

o =  h Z X +  Trll,,~ TXP z 
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where 172,x : Ul c M+Rm : z ~ q ( z ,  x )  and similarly TJ,,,(z) = ~ ( x ,  z). Thus 

rank Tq2.x < rank Txp 

But R is invariant under the diffeomorphism j: M x M+M X M: (y,z)- 
(z,Y) and v2,x = (v  ~ j ) ' , ~ .  Therefore, 

rank Tv2,, = rank Tq = m 

But dim N = m, so rank T,p = m, that is, p is a submersion near x. 
Next we construct a chart at [x]  for M/G. Since R is closed, M/G is a 

Hausdorff space in the quotient topology. Since Txp(TxM) = TxN and p(x) = 
x, there is a chart (U,+) at x of M such that +.Po+-': +(U)= VX W C  
R m X R n - m + V X { O ) ~ R m X { O ) :  ( v ,w)~(v ,O) .  Therefore, for all uEU, 
U ' = ~ ( U )  if and only if m,+(u)=a,+(u'), where 71.': V X  W+V: ( V , W ) H V .  

Define w: V c Rm+a(U)c M/G:  vt+ao+-'(v,O). Then w is injective, for 
if n(+-'(v,o))= n(+-'(vl,O)), then (+-'(v,O), + - ' ( ~ ' , O ) ) E ( U  x U ) n  R; 
therefore, p(+ - ' (v,  0)) = + - '(v',0), which implies v = n,(+(+ - '(0, 0))) = 
a,(+(+-'(vl,O)))= vl .  Since n and + are continuous and open mappings, w is 
a homeomorphism. Thus (n(U), w- ' )  is a chart for M/G at [x]  = a(x). 

Next we show that two charts (n(U),w-') and (a(I?),&-') at [x] are 
compatible. Let Y =  n - ' ( n ( ~ ) n  a(I?))n U c U n  I? and f = n - ' ( m ( ~ ) n  
s(I?)) n I? c U n I?. The fob-g qgument shows that for every v E nl+( Y )  
= V there is a unique 6 E +'6(Y) = V such that 

where W =  a2(+(Y)), @= fi2(6(f)) and .rr,: V x W-+ W :  (v,  W )  H W .  For any 
w, w'E W,  v = nl(@-'(0, w)) = n,(@-'(v, wl)), which implies n(+-'(0, w)) = 
m(+ - ' (v,  w I)). Therefore, for any w E W, m(+ -'(v, w)) = n+- '(v,  W). Sirni- 
iariy, for any wiE @, n(6-'(5',wi))=n(6-'(5', F)). Since Y=+-'(VX W), 
F = ~ - ' ( v x  W )  and n ~ = n f ,  for every ( V , W ) E  V X  W there is (6,wi)E 
? X @ such that 

Suppose there is (6', wi') E ? x @ such that a($-'(5',wi1)) = n(6-'(5, wi)), 
which implies 5' = a1(6(6-'(v", 17')) = ?r1(36 -'(5, wi)) = 5. Thus 5 is uniquely 
determined and so we can define a function $: V c Rm+ ? c Rm: v ~ 6 .  We 
now show that $ is smooth. Since a(6-'(5,wi))= n(+-'(0, w)), 
(+- ' (v ,  w), 6 - '(5, wi)) E R. Therefore, for some g E G, Qg(+- '(0, w)) = 
$-'(ri,wi). Since Qg is a diffeomorphism, there is an open set U c M with 

2 x E U c Y and Qg U c f .  Therefore, the map 9 
rn 
3 - 
g +o@,o+-': + ( Y ) c V x  W C R " X R ~ - ~  
z 
8 ++(f)c  P X  @: (v, w)H(+(v) ,o(v ,  w) )  
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is smooth, which implies that tC, is smooth. Therefore, the charts (n(U),o-') 
and (n(fi),ij-') at [x] are compatible, that is, M/G is a smooth manifold. 

Let ( U, (p) and (n( U), o - ') be charts at x E M and [x] E M/ G, respec- 
tively, then w - ' o a o ( p - ' :  (p(U)c V x  W c R m x R n + V c R m :  ( v , w ) ~ v  is a 
smooth submersion, which implies that n: M+M/ G is a smooth submersion. 
This proves sufficiency. 

Necessity. Since AM/, = {([x], [x]) E M/ G X M/ G, [x] E M/ G ) is a 
closed submanifold of M/ G X M/ G and n x a : M x M+ M/ G X M/ G : 
(x,y) H ( ~ ( x ) ,  ~ ( y ) )  is a submersion, (n x n)-'AMIG = R is a closed submani- 
fold of M x M. . 

We note the resemblance between the construction of charts on M /  G and 
the proof of Exercise 1.6F. 

A corollary of this argument, whose proof we leave to the reader, is the 
following useful technical remark: A map (p: M/ G+ N is smooth if and only 
if +on: M-+ N is smooth. 

This yields the following criterion of smoothness on quotient manifolds. 
Assume @: G X M+ M, \k: G X N+N are two smooth actions such that 
M/ G, N/ G are manifolds and ~r,: M-+ M/ G, .~r,: N+ N/G are submer- 
sions. Let f: M+ N be equivariant, that is, f.@, = *,of for all g E G. This 
induces naturally a map M/G + N/ G. Then smoothness of f implies 
smoothness of $. This criterion is often called the passage to quotients. 

The next result is a corollary of 4.1.20 concerning Lie groups themselves. 

4.1.21 Corollary. Let H be a closed subgroup of the Lie group G. If @: 
H X G+ G : (h, g) H hg, then G/ H is a smooth manifold and n : G* G/ H is a 
submersion. 

Proof. Consider the mapping 5: G x G -+ G: (g, k) - g-lk = m(i(g), k), 
where m: G x G -+ G: (g, k) ++ gk and k: G -, G: g - g-l. Since ? , , , ( ( r ,  s)  = 

Tkmicg)T,i(r)+ Tgmk(s), where m,: G+G: kbgk=L,k and m,: G+G: 
g H gk = Rkg, T(,,,&(r, s) = TkLi(,) o T,i(r) + T,Rk(s). Therefore, T(,k)5(0, s) = 
TgRk(s). Thus T(,,)5 is surjective, because TgRk is an isomorphism. Hence .$ 
is a submersion. Since H is a closed subgroup of G, H is a closed lsubmanifold 
of G by 4.1.12. Hence 5-'(H) is a closed submanifold of G x G. But 
(g,k)€.$-'(H) if and only if kg-'EH, that is, if and only if ( g , k ) ~ R =  
{(g, hg) E G x GI g E G, h E H).  Thus 5 -'(H) = R is closed submanifold of 
G X G, which implies by Theorem 4.1.20 that G/H is a manifold and n: 
G-+G/ H is a submersion. . 

An action @: G x M -+ M is called proper if and only if 4: G X M -, M x 5 M defined by &(g, x) = (x, @(g, x)) is a proper mapping, that is, if K c M x 8 
M is compact, then 6-'(K) is compact. Equivalently, if x, converges in M 

m and @,"x, converges in M, then g, has a convergent subsequence in G. For 8 
instance, if G is compact this condition is automatically satisfied. However, the 2 
R action in Example 4.1.18 is neither free nor proper, but the same action on 8 
R\{O) is free and not proper. I?! 



If @: G X M+M is a smooth action and x € M, G, = { g E G I@,x = x }  is 
called the isotropy group of @ at x. Since G, = @ i l ( x )  and 0,: G+M: 
g I+ @( g, x )  is continuous, G, is a closed subgroup of G and hence by 4.1.12 a 
smooth submanifold. If the action is proper, G, is compact. Because @,(gh) 
= @, o @,x = @,x for every h E G,, @, induces a mapping 6,: G/Gx -+ G - x  c 
M: gG, c, @,x. This map is injective because if @,x = @,x, then g-lh E G,, 
that is, gG, = hG,. 

4.1.22 Corollary. If @: G X M+M is an action and x E M, then 6, : G/ G, 
+G.x c M is an injective immersion. If @ is proper, the orbit G-x  is a closed 
submanifold of M and 6, is a diffeomorphism. 

ProoJ First of all, 6, : G/ GX+ G.x is smooth because 6, o n = @, is (see the 
Remark following 4.1.20). As we have already noted, 6, is one-to-one. To 
show it is an immersion, we show that ~ 6 , ( [ ~ ] ) - [ 4  is one-to-one. But 
~ 6 , ( [  g]) . [[I = T@,(g). 5. Thus ~ 6 , ( [ g ] )  will be one-to-one if we can show 
that T, G, = (5  E Tg G I T@, ( g) - 5 = 0) .  The inclusion c is obvious. For the 
opposite inclusion, we first suppose g= e. Thus, let 5 E g satisfy T@,(e).<=O. 
Then 

The defining property of an action may be written as 

Differentiating at e, 

Taking g = exp tc, 

d - @, (exp t t )  = =ae,, t E ( ~ ) -  T@,(e).[ = 0 
dt 

Thus @, (exp t o  = ax (e)  = x ,  so exp t5 E G,, and thus 5 E Te G,. This shows the 
inclusion 1 for g = e. For the general case, note that the isomorphism Te Lg : 
TeG+TgG satisfies TeLg(TeGx)=TgG,, TeL,({5ETeGIT@,(e).5=0})= 
{ q  E T,G I T@,(g) .q = 0 )  and the inclusion 1 is proved. This completes the ' proof that @, is an immersion. $ 

4 If the action is proper, then 6, is a closed mapping and hence is a 
" homeomorphism onto its image. ;3 z One can alternatively prove that the orbits G.x are immersed submani- 
z folds by writing G-x = @,(G) and appealing directly to Exercise 1.6F(b). 

(Here, ker @, is a subbundle of TG since it is ker T<P,(e) made left invariant.) 
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Notice that if @ is a transitive action of G on M, then for any x E  M, 
G-x= M, so M=G/Gx. In this case M is called a homogeneous space. 
Conversely, if H is a subgroup of G and we set M =  G/H with G acting by 
left translation, M is a homogeneous space with Gx = H for any x E M. (See 
Exercises 4.1L, M.) 

4.1.23 Proposition. If @ : G x M+M is a proper free smooth action, then 
M/ G is a smooth manifold and T: M-+M/ G is a submersion. 

Proof: Let 6: G x M+ M x M: (g, x) H (x, cD,x), then the following argument 
shows that 6 has constant rank. Define the actions A: Gx(M X M)+ 
MX M: (g,(x,y))w(x,@,y) and E: Gx(GXM)+GXM: ( g , ( h , x ) ) ~  
(gh,x). Then A,: M X M+M x M: ( x , y ) ~ ( x ,  @,y) and Z,: G x M+G X M: 
(h, x) H (gh, x) are diffeomorphisms for every g E G. Also 

A ~ O & = ~ O E ,  for everygEG (1) 

because 

Taking the tangent of (1) at (e,x) gives 

which is equivalent to 

Therefore, the rank of ~(,,,,6 equals the rank of ~ ( ~ , ~ 6  since T(,,,)Ag and 
T(e,x,E, are isomorphisms. Thus the rank of T(,,,6 is independent of g E G. 
It remains hence to show that rank T(,,,6 is independent of x E M. We have 

and hence rank Tee: ,,& = n + rank TeQX, where n = dim M. But by 4.1.22, the 
map ax : G t+ G.x is a diffeomorphism (G-x being an immersed submanifold 
in M) and hence 

Y 
Te@,(TeG) = Tx (G-x) 2 

4 
m 3 

sp that rank Te@, = dim G, which is independent of x. Since @ is a free action, 2 
@ is injective, for if (x,@,x)=(y, @,y), then x = y  and @,x =@,y= Qhx, z 
which implies x =a,-lgx; hence h-'g= e. By the local fibration theorem 



(Exercise 1.6G) image 6- R is an injectively immersed submanifold of 
M x M. Because 6 is proper, it is a closed mapping. Thus R is closed and 
6-' is continuous. Therefore, 6 is a homeomorphism, which implies that R is 
a submanifold of M x M. By Theorem 4.1.20, M/G is a smooth manifold 
and n: M+M/G is a submersion. II 

Next we turn to the infinitesimal description of an action, which will be 
crucial for mechanics. 

4.1.24 Definition. Suppose @: G X M-+M is a smooth action. If (E  KG, 
then : R X M+ M: (t, x) H @(exp tt, x) is an R-action on M, that is, @5 is a 
flow on M. The corresponding vector field on M given by 

is called the infinitesimal generator of the action corresponding to t. 

Remark. From the proof of 4.1.22, we find that in the language of infinitesi- 
mal generators 

4.1.25 Examples (a) Let @: G x G+ G: (g, h ) ~ g h  = L,h, then is a 
smooth action. If 5 E TeG, then at: R X G + G: (t, h) H (exp t5)h = 
R,, exp tt. Therefore, tG(g) = TeR,5. Because @(t, R,h) = (exp tohg = 
~,@€(t ,  h), 5, is right invariant and is therefore not equal to XE(g) = TeL,t, 
which is left invariant, unless G is abelian. 

(b) Let @: G X T,G+ T,G: (g, 7)- Ad,7 = Te(R,-IL,)~, then Q, is a 
smooth action called the adjoint action of G on T,G. If 5 E Te G, we claim that 
.$,, = adt, where ad: Te G X Te G + Te G: (6, 7) H [t, 771. 

Indeed, let +?(g) = g exp t5 = Req ,€g, the flow of Xt. Then 

=- d~ R dt exp tt exp' - tnXq(exp I t  = 0 
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Therefore 

(c) Rephrasing, the result (b) says that 

d 
;iiAdexpte~lt=o= [f V ]  

that is, holding q fixed and differentiating, 

where Ad.q : G+ Te G : g H Adgq. More generally, from 

we get, by differentiating in h, 

T , ( A ~ , ~ ) - ( T ~ R , . ~ ) = [ ~ , A ~ , V ] ,  QqETeG 

that is, 

T,(A~.V)-S,=[T,R,-~-~,,A~~~], ~,ET,G, rl€TeG 

Therefore, if x(t) is a smooth curve in G and SE TeG and we let 
5(t) = Adx(,,[, the chain rule gives 

a formula that we will need in Sect. 4.3. See (d) and Exercise 4.1H for the 
version on g*. 

(d) Let @: G X (T,G)*+(T,G)* : (g,a) ~ A d t - ~ a ,  where Ad: : (TeG)*+ 
(Te G)* : j3 b {q I+ j3 (Adg$), then @ is a smooth action called the co-adjoint 
action of G on (TeG)*. If (E  TeG, then the following calculation shows that 
((TG,. = - ad;. Indeed, for q E TeG, 
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The next proposition gives the basic properties of infinitesimal generators. 

4.1.26 Proposltlon. Let @: G X M+M be a smooth action. For aery g E G 
and 5J q E TeG we have 

(i) (Adso = @,*- 16, and 
(ii) [tM,qMl =-[&VIM 

Proof: (i) For x E M 

d 
(ad&), (x) = - @(exp tAd,& x )  1 (by Definition 4.1.24) 

dt 1-0 

d 
= - GS 0 @(exp t& @s- l(x))I (because @ is an action) 

dt 1=0 

- d 
- Gg- ( exp t t  , ~ ~ - 1  (x )) 1 (chain rule) 

t = O  

(ii) Let g = exp tq in (i), so that 

Now aeXp(-.,) is the flow of - qMy SO differentiating in t at t =0, the 
right-hand side gives [tM,qM] . The derivative of the left-hand side at t =O is, 
by 4.1.250>), ( [ ~ , a ) ~ .  Thus (ii) follows. 

- 
Let f t  ( g) = Te Rst. By 4.1.25(a), $ = tG and so [gt, zq] = - 
The following ideas will play an important role in subsequent sections. 

4.1.27 Definition. Let M and N be manifolds and G a Lie group. Let @ and 
\k be actions of G on M and N, respectively, and f :  M+N a smooth map. We 
s q  f is equiuanant with respect to these actions if for all g E  G, 

X that is, the following diagram commutes. 
@ 
4 m 
8 M *N 

2 
z 
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4.1.28 Proposition. Let f: M+N be equivariant with respect to actions @ 
and of G on M and N, respectively. Then for any 5 E g, 

where tM and fN denote the infinitesimal generators on M and N, respectively, 
associated with in other words, the following diagram commutes: 

TM-TN 
Tf 

ProoJ: By equivariance, 

Differentiating with respect to t at t =O and using the chain rule gives 

that is, Tf o fM=tN ~ f .  

We conclude this section with a few supplementary remarks on actions 
that help to unify ideas. 

If we think of an action @ of G on M as a homomorphism of G to 9 ( M ) ,  
the diffeomorphism group of M, by g * a,, we can ask what the induced 
homomorphism of Lie algebras is [see 4.1.5 and Exercise 4.1G for a discussion 
of why % is the Lie algebra of q ( M ) ] .  It is exactly the map 

[In 4.1.26(ii) we saw that W is an anti-homomorphism; this is because the Lie 
algebra of 9 ( M )  is % ( M )  with bracket - [ X ,  Y]; see Exercise 4.1G.l The 
action is called essential if this homomorphism G 9 (M): g~ Qg is injec- 
tive. 

It is not difficult to see that a homomorphism of connected Lie groups is 
determined by its tangent at the identity (Chevalley [1946, p. 1131). The 
analog of this for the maps g~+@!, and Q' is the following result of Palais Y 
[1957, Chapters I1 and 1111. g 

4 
m 
3 

4.1.29 Theorem (Palais). Let G be a simply connected Lie group, M a 3 
compact manifold, and cp: g-+%(M) a Lie algebra homomorphism. Then there 2 
exists a unique action @: G-9 (M) such that @' = cp. !!! 
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It follows that in the context of this theorem, the actions of G on M are in 
bijection with the potential infinitesimal generators, or homomorphisms of Q 

into %(M). In our analogy W =  T,Q, above, it is clear that (9 should be 
essential iff W  is a monomorphism, and this is in fact made rigorous by the 
proof of 4.1.29 (omitted). Thus the essential actions of G on M are parame- 
trized by isomorphisms of Q onto subalgebras of %(M). These in turn may be 
parametrized as follows. Choose an ordered basis (x,, , . . . ,x,) for the real 
vector space Q. The constants of structure {c&) are defined by the commuta- 
tion relations 

(summed on y = 1,. . . ,k). Then a monomorphism cp: Q+%(M) is uniquely 
determined for any ordered linearly independent set (Y,, . . . , Y,) c %(M) 
satisfying the same commutation relations 

by the condition cp(x,) = Y,, and linear extension over Q. 

In this way we obtain a bijection between essential actions of G on M and 
k-tuples of vector fields on M that are linearly independent and satisfy a 
fixed system of commutation relations. In case G is not simply connected or 
M is not compact, the parametrization of essential actions is considerably 
more complicated. This aspect of the theory is not explicitly needed in the 
usual examples of actions in mechanics, but is useful for the intuition it 
provides. For more details, see Palais [1957] and Hermann [1%6]. 

Some other investigations of Palais are also worth noting. Namely, he has 
a general result which asserts that the diffeomorphisms of a manifold which 
preserve a "geometric structure" form a Lie group. This generalizes the classic 
result ~f Myers and Steenrod [1939], which states that the isometries s f  a 
Riemannian manifold form a finite-dimensional Lie group. Of course the 
Euclidean group, O(n, R) x Rn, the isometry group of Rn, is a special case. 
See Kobayashi [I9731 for the proof and discussion. 

EXERCISES 

4.1A. (i) Identify the Lie algebra of SO(3,R)= SO(3) with R3 as follows; define 
the map: 

Show that (x x y)^ = [f $1, where X is the usual vector (cross) product on 
R3. Thus the Lie algebra of SO(3) may be viewed as R3 with vector 
product as Lie bracket. Note that x-y= - f trace (29). 
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(ii) Suppose f E TeSO (3, R).  Show that exp t i  is a rotation about the axis 
X E R ~  through the angle tllxll, where llxll is the Euclidean norm on R ~ .  

(iii) Considerthelinearaction@: S0(3)xR3+R3:  (A , x )bAx .For5€R3  
let i €  TeS0(3,R), where A is given in (i), show that the infinitesimal 
generator is &(x) = .$ x x. 

(iv) Show that the adjoint action of  SO(3) on R 3  is the "usual" action 
described in (iii). 

(v) Show that S2=S0 (3 ) / S0  (2) is a homogeneous space, with the action 
of  SO(3) on s2 being the "usual one." 

4.1B. Let R be the multiplicative group of  nonzero reds. Show that the homomor- 
phism of  Lie algebras corresponding to det : GL(n; R)+R is the trace. Show 
this by showing that T,detA = trA directly from properties of  the determinant. 
Deduce that det(eA)= etrA by a general fact about Lie groups. 

4.1C. (i) Let E be a finite-dimensional vector space with a bilinear form (,). Let G 
be the group of  isometries of  E, that is, G= { F  E L(E)  I F is an isomor- 
phism of E onto E and (Fe, Fe') = (e, e') for all e, e' E E ) .  Show that G is 
a subgroup and a closed submanifold o f  GI(E). Show that { K G  L(E)( 
(Ke, e') + (e, Ke') = 0 for all e,ef E E ) is the Lie algebra o f  G. 

(ii) I f  (, ) denotes the Minkowski metric on R4;  that is, 

then the group of  linear isometries is called the Lorentz group L. Prove the 
following facts. The dimension of  L is six and L has four connected 
components. I f  

then L = { A  E Gl(4, R )  I A'SA = S ) and the Lie algebra of L is { A  E 
L(R4,  R ~ )  I SB + B'S = 0). The identity component of  L is { A  E LI detA 
> 0 and A, > 0 )  = L1, ; L and L: are not compact. 

4.1D. This is a list of  some important matrix Lie groups. Prove the facts stated. 

(i) Gl (n, C )  = { n  x n invertible complex matrices) has Lie algebra the set of  
all n x n matrices and has complex dimension n2, that is, real dimension 
2n2. 

(ii) Sl (n, C )  = { A  E GI (n, C)JdetA = 1 )  is a Lie subgroup of GI (n, C),  has Lie 
algebra { B  E L(Cn, Cn)ltrB = 0) ,  and has complex dimension n2 - 1, 
that is, real dimension 2(n2 - 1). 

(iii) GI (n, R )  = { n  x n invertible real matrices) has Lie algebra the set of  all 
n x n real matrices and has real dimension n2. 

(iv) Sl (n, R )  = { A  E GI(% R)ldetA = 1) is a Lie subgroup of GI (n, R) ,  has Lie 
algebra { B  E L(Rn,  Rn)ltr B = 0 )  and has real dimension n2 - 1. 

(v) 0 (n), the group of  orthogonal real matrices, = { A  E GI (n, R)I(Ax, Ay)  = X 
( x , y ) , ~ h e r e ( x , y ) = Z ~ = ~ x ~ ~ a n d x = ( x ,  ,..., xn),y=(yl ,..., yn)) isaLie  $ 
group with Lie algebra { B E  L(Rn,Rn)I(Bx,y)+(x,By)=O), has di- 
mension n(n - 1)/2 and is compact. 8 

(vi) SO (n), the special orthogonal group, = { A  E 0 (n)ldetA = 1 )  is the con- 3 
nected component of O(n) containing the identity I and is a compact Z 
Lie group of the same dimension as O(n). . 8  



(vii) U(n), the unitary group, = {A E GI (n, C)I(Ax,Ay) = (x, y), where (x, y) 
=E:=l~iY;., x=(xl ,..., xn)ECn,y=(y1 ,..., yn)ECn) is a real Lie group 
with Lie algebra {B E L(Cn, Cn)I(Bx,y) + (x, By) =O), has real dimen- 
sion n2 and is compact. 

(viii) SU(n)= {A E U(n)ldetA = 1) is a Lie subgroup of U(n) of real dimen- 
sion n2- 1, has Lie algebra {B E L(Cn, Cn)I(Bx,y)+ (x, By) =0, ( ) 
given in (vii) and tr B = 0). 

(ix) Sp(2n,R)= {A E Gl(2n,R)la(Ax,Ay)=a(x,y), where 

is the real symplectic group, has Lie algebra {B E L(Rn,Rn)la(Bx,y)+ 
a(x, By) = 0), is of real dimension 2n2 + n, and is noncompact. 

4.1E. (a) (Lie's Theorem). Let G be a Lie group with Lie algebra g. Let b c g  be a 
Lie subalgebra. Show that lj is the Lie algebra of a connected Lie 
subgroup H c G. (Hint: Use Frobenius' theorem and take H to be the 
leaf of the foliation through e determined by the integrable subbundle 
defined by the left translates of Jj in TG.) 

(b) Show that a connected Lie group with an abelian Lie algebra is abelian. 
(This occurs only if G is a product of a torus with Euclidean space; see 
4.IK.) Also show that a connected Lie subgroup H of a Lie group G is 
determined by its Lie algebra. 

4. IF. (Requires a knowledge of covering spaces.) 
(a) Let G be a Lie group with Lie algebra g  and identity e. Let e be the 

universal covering space of G with projection a: &G. Show that 
becomes a Lie group (with an identity e' chosen in sP1(e)). 

(b) If G= S '=SO (2), show that e= R, a(x)= eix. 
(c) Show that the universal covering group of SO (3, R) is SU(2, C) (the spin 

group) by considering the map a: SU(2, C)+S0(3,R) defined as 
follows. 

Let al,a2,a3 be the Pauli spin matrices, that is, 

and let 

Then 

sets up an isomorphism between R3 and the 2 x 2  traceless Hermitian 
matrices. Note that 
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so that the orthogonal group O(3) corresponds to the transformations 
that are determinant preserving. 

Next show that SU(2) is diffeomorphic to the three-sphere by 

In particular, deduce that SU(2) is simply connected. 
Now define a: SU(2)+3 X 3 matrices by 

Since det (A (x. @)A - I) = det (x. a), 

But a(SU(2)) is connected, so 

Also show that a(A) = a(B) iff A = + B. 
Finally show that a is onto and is a local diffeomorphism. To show it is 

a local diffeomorphism, use the inverse function theorem. [Hint: Tea: 
a k d ,  where d(n.a)=(x.u)a*+a(x.u). Use the fact that an open sub- 
group is also closed (its complement is a union of open cosets), and 
connectivity of SO (3) to obtain a(SU(2)) = SO (3).] 

4.1G. Let M be a manifold and let 9 be the group of Cm diffeomorphisms of M to 
M. Ignoring all questions of smoothness,* show that: 

(i) The tangent space to 9 at TJ may be identified with maps X: M+TM 
such that TM 0 X= TJ. (Hint. See 3.8.2.) In particular, the Lie algebra of 9 
is, as a vector space, the space of vector fields 5% on M. 

(ii) For X EX, show that exp(tX) is the flow of X. (Warning: exp is not 
onto a neighborhood of the identity.) 

(G) For X E %, show that the right-invariant vector field 2 corresponding to 
X is A?(TJ)=XOTJ. 

(iv) Show that 

the usual Lie bracket of vector fields. (Hint: Use the local formula for 
the bracket and ~2 (e) - Y = TX 0 Y.) 

(v) Conclude that the Lie bracket on % as defied in the text (using 
left-invariant vector fields) is the negative of the usual one. !! 

4 4.1H. Let G be a Lie group and y E g*. Let x(t) be a curve in G and let 6, E T,G. $: 
0 

2 
*These are answered in Leslie [1967], Omori [1970], Ebin [1970a], and Ebin-Marsden [I9701 and 
references therein. z 
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Prove that 

and 

[Hint: This can be deduced from 4.1.25(c) by differentiating p(t)-.$=p 
Ad,(,,- 15 or by using 4.1.25(d) and the method of proof of 4.1.25(c).] 

4.11. Let G be a discrete subgroup of Rn (under addition). Show that there are 
linearly independent vectors vl, . . . , q  E Rn such that 

4.1 5. Let G be a Lie group and 5,q € g. Let 

and 

(a) Show that KO = Fo = Id, KG(e) = 5 + q, Fh(e) = 0, f F{(e) = [5,q]. (If 6 and q 
are replaced by -6, - q in the formula for F{(e), the Remark preceding 
3.1.13 results.) (Hint: Use the fact that the flow of Xt, the left-invariant 
vector field coinciding with 5 at e, is gbgexptt.) 

(b) Use (a), 2.1.27, and Exercise 2.2L to prove the following product formulas 
of Lie: 

(i) exp(t+ q) = lim exp -exp- 
1+9( f; :). 

4.1K. (a) Use 4.1J(b) to show that if G is abelian then exp: g+ G is a group 
homomorphism. Show that if G is connected, exp is onto. 

(b) Show that if G is a connected abelian Lie group of dimension n, then 
G is isomorphic to Tk X Rn-k. [Hint: By (a) G z=g/ker exp and 
ker exp is discrete; then use 4.11. Compare this with the proof of 
Arnold's invariant tori theorem 5.2.23.1 

4.1L. Let H be a closed subgroup of the Lie group G and denote by a: G+G/H the 

9 canonical projection. 
!2 (a) Show that i: G x G/H+G/H: (g,s(g'))ba(gg') is a well-defined 
9 
rn 

smooth action on G/H. (Hint: Use the passage to quotient criterion 
m o explained after 4.1.20.) z (b) Show that for each [g] E G/H there exists a neighborhood % of [g] in 
Z G/H such that T-'(a) is diffeomorphic to % XH. (Hint: Show the a existence of a section %+a-I(%) using % as chart at [g] and the way 
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the charts arise on G/H from those on G.) This proves that a: G+G/H 
is a principal fiber bundle with structural group H. 

4.1 M. (Requires knowledge of fiber bundles.) 
(a) If G acts on M smoothly, properly, and freely, then M+M/G is a 

principal fiber bundle with structural group G. (Hint: Use the charts 
given in 4.1.20 to construct local sections as in 4.1 L.) 

(b) If G acts on M smoothly, properly, and such that all its isotropy groups 
are conjugate, that is, for all x,y€M, there exists ~ E G  such that 
gG,gT1 = G,, then M/G is a manifold and s: M+M/G is a locally 
trivial fiber bundle with structural group N(H)/H, H = GX and fiber G-x, 
where N (H) denotes the normalizer of H, that is, the smallest subgroup 
of G such that H is normal in it. (Hint: Modify the proof of 4.1.20 and (a) 
above; see also Hsiang [I9661 and the slice theorem in, e.g., Palais [1957].) 

4.2 THE MOMENTUM MAPPING 

In this section we show how to obtain integrals (i.e., conserved quantities) 
for a Hamiltonian system with symmetries. Linear and angular momentum 
associated with translational and rotational invariance are the most common 
examples. However, topologically more complex examples such as the rigid 
body benefit from a rather abstract point of view. The final picture presented 
here is due primarily to J. M. Souriau [1970a], with important contributions 
by B. Kostant [1970], S. Smale [1970a] and J. Marsden [1968a]. 

4.2.1 Definition Let (P, w) be a connected symplectic manifold and @: G X P 
-+P a symplectic action of the Lie group G on P; that is, for each g € G, the 
map cP, : P+ P; x H @(g, x) is symplectic. We say that a mapping 

J: P+g* (the dual of the Lie algebra of G ) 

is a momentum mapping for the action provided that for euery .$ E g , 

where j (5) : P+ R is defined by j(o(x) = J (x) .< and 5, is the infinitesimal 
generator of the action corresponding to 5. In other words, J is a momentum 
mapping provided 

Xjcs=b 

for all 5E g . Sometimes (P, w, @, J )  is called a Hamilonian G-space. 

Shortly we shall see how to compute J for large classes of symplectic Y 
actions. Let us note, however, that not every symplectic action has a momen- S 

4 tum mapping. The reason is precisely because not every locally Hamiltonian m 
8 vector field is globally Hamiltonian; see Remark 1 following 3.3.6. If each 5, 2 

is globally Hamiltonian, there is a momentum mapping. Indeed, let [,, . . . , & z 
be a basis for g and let J,,. . .,Jk be the Hamiltonians for ([,),,.. .,(tk),. Let 
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j(ei)= J~ and extend by linearity. Clearly if J and J' are two momentum 
mappings for the same action, there is a p E g* such that J ( p )  - J ' (p)  = p for 
all p E P. 

We want to develop a number of basic properties of momentum mappings 
as such, but before doing so we bring out their importance by means of the 
following fundamental conservation law. 

4.2.2 Theorem. Let Q, be a symplectic action of G on (P, w) with a momentum 
mapping J. Suppose H :  P+R is invariant under the action, that is, 

H ( x )  = H ( Q , ~ ( x ) )  for all x E P, g E G 

Then J is an integral for X,; that is, if Ft is the flow of XH, 

PmoJ , For each <E g we have H (QWtSx)  = H ( x )  since H is invariant. 
Differentiating at t = 0, 

dH (x ) .  tP ( x )  = 0 

that is, 

Lx; = 0 

that is, 

which, by 3.3.13, proves that 

for each 5. But this is equivalent to our assertion. 

We now turn to our study of momentum mappings. We begin with the 
following. 

4.2.3 Proposition. Let (P, w, Q,, J )  be a Hamiltonian G-space. Define, for 
g E G  and < E g ,  

Y 
g qg,, : P+R : x ~ . f  (<)(ag(x))  - j ( ~ d ~ - ~ < ) ( x )  
4 
m 
8 
2 Then qg, is constant on P. We let a: G + g* be defined by a( g )  - 6 = the 
z constant value of and call it the co-adjoint cocycle associated to J. It 

satisfes the cocycle identity: u(gh) = u(g) + Adz-~a(h). 
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ProoJ We compute the derivative of $g,S as follows: 

by definition of the momentum mapping. As we saw in 4.1.26.(i) 

Thus 

But as @, is symplectic, 

so the two terms cancel. Thus d+,,< = 0, and as P is connected, qg,( is constant. 
The proof of the cocycle identity is as follows: 

Notice that the definition of a may be rewritten 

for any x E P, and that a(e) =O. 

4.2.4 Definition. Let G be a Lie group and g its Lie algebra. A (co-adjoint) 
cocycle on G is a map 

g 
such that the cocycle identity 9 

rn 
3 

~ ( g h )  = a ( g )  + Ad,*-lu(h) Z 
z 

holds for all g, h E G. 3 
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A cocycle A is called a cobounday if there is a p Eg* such that 

The cocycles form a vector space and the coboundaries are a subspace. The 
quotient space; that is, equivalence classes [a] of cocycles mod coboundaries, is 
called the cohomology of G. 

Using these terms, we can make the following observation. 

4.2.5 Proposition. Let Q, be a symplectic action of G on P. If J ,  and J2 are 
two momentum mappings with cocycles u ,  and a,, then [a,]=[a2]. Thus to any 
symplectic action admitting a momentum mapping there is a well-defined 
cohomology class [a]. 

Proof: We have 

' 
However, since d j , ( n  = iepu = d2(5) ,  J 1  - J2 is a constant element of g*, say p. 
Thus 

so a,  - a, is a coboundary. W 

Specializing 4.1.27 we make: 

4.2.6 Definition. A momentum mapping J is called Ad*-equiuariant provided 

for every g E G; that is, the following diagram commutes: 

d 

zi Thus the cocycle a of a momentum mapping J measures its lack of 
g equivariance. In particular, a =O if and only if J is Ad*-equivariant. 
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4.2.7 Proposition. Let J be a momentum mapping for the gvnplectic action 
@, with cocycle a. Then: 

( i )  the map q :  (g,  p)+Ad,-rp+ a ( g )  is an action of G on g*; 
(ii) J is equivariant with respect to the action in (i). 

Proof: Since a(e)  = 0 and Ad: is the identity, \k(e,p) = p. Also, using the 
cocycle identity, 

= Ad:'- ,(Ad,*- IP) + a ( g) + Ad,- la ( h )  

so ?P is an action. This proves (i), and (ii) is obvious from the definition of a 
and q. II 

As we shall see, concrete momentum mappings one normally constructs 
are Ad*-equivariant. However, in an "exotic7' case where J is not Ad*-equi- 
variant, 4.2.7 shows that there is another action of G on g* with respect to 
which J is equivariant. See Exercise 4.2D for an example. 

Next we shall discuss the commutation relations associated with a given 
momentum mapping J. 

4.2.8 Theorem. Let @: G X P+P be a symplectic action with a momentum 
mapping J :  P+g*. Let a:  G+g* be the cocycle of J and define 

where Sq: G+R: g~+a(g)-q. Then: 

( i )  2 is a skew symmetric bilinear form on g satisfying Jacobi's identity 

2([Q [v, 51) = 2([& v ]  t 5 )  + 2(v, [[Q 51) 
and 

(ii) { 4 0 , . f ( v ) l  =a[& v l ) - ~ ( [ Q  v )  

Since Z([Q 77) is constant, this implies that 

Proof. Let us first show that 
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Indeed, 

&[& 771) = i[&vlpO 

= - i,,p, ,,a (by 4.1.26) 

= - (LSpiqPu - ivPLSpu) (by Identity 16, Table 2.4.1) 

= - LtPiqppw (since SP = Xi(,) and SO LSpw=O) 

= - LSPdJ(77) 

= - d~x;(<$77) 

=d{.?(<),j(q)) (by'3.3.12) 

Thus p(5,q) = {j((), j(77)) - .f([(, 91) is constant, so defines a skew symmetric 
map p: g X g+ R. Since { ) and [ ] satisfy Jacobi's identity, so does p. If we 
differentiate the relation 

eq( 9) = .f (v)(@~(x)) - j (Adg-'??)(~) 

in g at g =  e, we get 

X(& 77) = dGq ( 4 .  5 

= 477)(~) .5P(~)  + j([& 771)(x) (by 4.1.25(b)) 

= - 
9 j(77)Kx) + j([& 77l)(x) 

=-p(&77> . 
4.2.9 Corollary. If J is an Ad*-equiuariant momentum mapping, then 

that is, j is a homomorphism of the Lie algebra Q to the Lie algebra of functions 
8 under the Poisson bracket. 
E 
9 
m 
8 If 5,. represents the infinitesimal generator of the action + in 4.2.7, then 

$ by differentiating the equivariance relation 
z z 'k,(J(x))= J(@g(x)) 
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in g at g = e (i.e., using 4.1.28) one finds that 

which is a rephrasing of 4.2.8(ii). Likewise one may prove 4.2.9 by directly 
differentiating the condition that J be Ad*-equivariant. Thus the commutation 
relations represent the infinitesimal (or linearized) version of equivariance. 

The condition that Z satisfies the Jacobi identity says that Z defines a 
two-cocycle on g. A two-cocycle I: is called exact if there is a p E g* such that 
Z([, q )  = p([& 771). Thus, requiring any two-cocycle to be exact is a cohomology 
condition on the Lie algebra g.? (This is exactly the infinitesimal version of 
4.2.8.) If Z is exact and we replace j(5) by j(5)-p(0, we get a new 
momentum mapping satisfying 4.2.9 as is readily checked. 

Next we turn to the important question of constructing momentum 
mappings. Many of the important results are derived from the following: 

4.2.10 Theorem. Let @ be a symplectic action on P. Assume the symplectic 
form w on P is exact, w = - do, and that the action leaves 0 invariant, that is, 
@,*O===O for all ~ E G .  Then J: P-g* defined by 

is an Ad*-equivariant momentum mapping for the action. 

Proof: Since the action leaves 0 invariant, we have LSpO=O, that is, 

that is, 

d (iSpO ) = iSpw 

so j ( 0  = iSp0 satisfies the definition of a momentum mapping. 
For Ad* equivariance, we must show that 

j (n(@g(x)) = j ( ~ d , - ~ o ( x )  

that is, 

However, this follows immediately from the identity (~d,-,(), = a,*<, proved 
in the previous section, together with invariance of 0 under a?,. 3 

2 
+whitehead's theorem asserts that if g is a semisimple Lie algebra, then every two cocycle is 

z 
exact. !3 
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Consider now the important special case when P = T* Q with 8 = 80, the 
canonical one-form. As we saw in Sect. 3.2, a diffeomorphism f of Q to Q lifts 
to a diffeomorphism T*f of P that preserves 8, (and hence a,). 

If we have an action @ of G on Q we can lift it to obtain an action on 
P Q .  Since @: G X Q-Q, the notation T*@ could be misleading, so we shall 
write QP; it is defined by lifting each Qt, separately; that is, 

We use g-' so CpT* is an action because from p. 181, T *( f 0 h )  = T*h 0 T *f 
so T *( f 0 h)-' = T *f-' 0 T *h-' and @;' = @,-I. By 3.2.12 it is a symplectic 
action and in fact preserves the canonical one-form 8,. Thus we can use 4.2.10 
to obtain the following. 

4.2.11 Corollary. Let be an action of G on Q and let QP be the lifted 
action on P= T* Q as defined above. Then this action is symplectic and has an 
Ad*-equivariant momentum mapping given by 

where & is the infinitesimal generator of @ on Q. For a vector field X on Q we 
define 

P ( X )  : T*Q+R; or, ~+ol,-X ( q )  

and call it the momentum corresponding to X. Thus . f ( ~  = P(tQ).  

ProoJ: By 3.2.12, 78: T*Q+Q is equivariant, that is, 

r g o @ f  =@,or$ 

By 4.1.28, we find that 

T72)0tp=tQ 072, 

Now by definition of the canonical one-form from 3.2.10, 

;,,!(a,) = (T7,* O tP(aq) ,  aq) 

= ( t Q  O 7e*(aq>7aq> 

= ( tQ(q)7aq) 
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Notice that in coordinates q', . . . , qn on Q and the corresponding induced 
coordinates q', . . . , qn, p,, . . . ,p, on P = P Q, we have 

P (X)(p, q) =pixi(q) (summation understood) 

The general commutation relations proved in 4.2.9 may be specialized to the 
case of the momentum functions using 4.2.1 1. We can enlarge these relations 
by introducing, for any function f: Q+R, the correspondingposition function 
f= f 0 7t). As we shall see in Sect. 5.4, these relations have played an important 
role in the relationship between classical and quantum mechanics. 

4.2.12 Proposition. For any two vector fields X and Y on Q and functions, 
f,g: Q-R, we have 

(i) {P(X),P(Y))= -P([X, YI); 
(ii) {~z}=o ;  

rV 

(iii) {x P (X)} = X (f) . 
Instead of deducing this from 4.2.9, we shall prove it directly (see 

Exercises 4.1G and 4.2C for the "explanation" of the minus sign). 

ProoJ: (i) From the coordinate formulas for { } and [ ] in Sects. 3.3 and 
2.2, 

The assertion (ii) is clear since f and are functions of q' only. For (iii), note 
that 

hl 

which, as a function of q and p, is X (f) . 
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Another important special case of 4.2.10 that is proved the same way as 
4.2.1 1 or that may be deduced from it, is as follows: 

4.2.1 3 Corollary. Let Q be a pseudo-Riemannian manifold and let a group G 
act on Q by isometries. Lift this action using 3.2.14 to a symplectic action on 
TQ. Its momentum mapping is given by 

This last corollary is actually a special case of a more general fact about 
Lagrangian systems. It is usually referred to as Noether's theorem in the 
finite-dimensional case. (For the result for continuous systems, see Sect. 5.5.) 

4.2.14 Corollary. Let G act on Q by @: G X Q+Q and let QT denote the 
tangent action; @:= TQg : TQ+ TQ. 

Let L be a regular Lagrangian on TQ with 0, = (FL)*Bo, as usual. Suppose 
L is invariant under the action @$ that is, L o @:= L for all g € G. Then: 

( i )  (@:) * eL = eL; 
(ii) the momentum for the action is 

and is Ad* -equivariant; 
(iii) the momentum mapping J given by (ii) is an integral of Lugrange's 

equations X,. 

ProoJ: (i) Differentiating L = L 0 cP,T along fibers yields 

in other words, @: 0 FL = FL 0 a;, that is, FL: TQ+ T* Q is equivariant 
relative to the actions QT of G on TQ and QF of G on P Q .  

By definition, 0, = (FL)*e,, and so 



(ii) We compute as in 4.2.11. First note that re: TQ+Q is equivariant, 
that is, 

and hence 

Therefore, using the definition of 0, and letting P = TQ, 

Since Trz TFL = T(T; FL) = T%,, we get 

Thus (ii) follows from 4.2.10. 
For (iii) we need only show that <p,T leaves the energy E invariant, in view 

of 4.2.2. Because FL(v).w = FL(@;(v)).@:(w) (as noted in the proof of (i)), 
G$ leaves the action A (v) = FL(v) -v invariant. Hence it leaves E = A - L 
invariant as well. . 

The relationship FL(v)= FL(T@;v) 0 Tag proved in (i) is worth noting 
and is equivalent to commutivity of the diagram 

. . 
that is, to equivariance of FL. From 4.1.28, we deduce, for example, $ 

4 
TFL ETQ = tPQ o FL. r;l 

rn z 
d 

Now we turn to some examples of momentum mappings. (Further exam- z 
ples are found in the exercises.) !!I 



4.2.15 Examples. (i) Let Q = R", G = R", and let G act on Rn  by transla- 
tion: d! : G X Q+ Q : (s, q) w s + q. The infinitesimal generator corresponding 
to ,$ E Rn is & (q) = ,$. By 4.2.1 1 the momentum mapping on T* Q is given by 

In other words, J (q,p) =p, the linear momentum. 
(ii) Let Q= R" and let G be a Lie subgroup of GL(n, R). Let G act on Q 

by : G X Q-. Q : ( T, q) w Tq. The infinitesimal generator corresponding to 
B E g c L(R ", Rn) is Be (q) = Bq. Thus by 4.2.1 1 the momentum mapping on 
T* Q is given by 

Take the special case when n = 3 and G = SO (3, R). Then identifying the 
Lie algebra so(3,R) of SO (3, R)  with R~ using B w B" (see Exercise 4.1A) and 
working on TQ, 4.2.13 and Exercise 4.1A gives 

= (B" x q, v) = det (B", (I, u) 

Thus J(q,u) = q x u (under this identification of so(3, R)  with R ~ ,  and R3  
with R3* by (,)) which is just the angular momentum 

(iii) Let G be a Lie group and consider the action : G x G+ G; 
(g,h)wgh. The infinitesimal generator corresponding to ,$Eg is the right- 
invariant vector field equal to ,$ at e; that is, &(g)= Te$-,$. [see Example 
4.1.25(a).] Thus the corresponding momentum mapping on T* G is 

that is, 

J (a,) = T$R, ol, 

(iv) Let P = R" x R" = R 2n with the symplectic form associated with the 
Euclidean inner product as usual. Let H (q, q) = i 11 q 1 l 2  + 3 11 ql12, the harmonic 
oscillator Hamiltonian. Using Example (ii) we can construct conserved quan- 
tities associated with SO (n, R). We shall now construct a proper extension of 

x this momentum mapping that gives rise to more conserved quantities. 
$ Let 
9 
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with Lie algebra 

Then G acts on P by ( c , Z ) w c Z ;  one checks that this is symplectic: 
w(cZ, c W )  = w(Z, W ) .  The infinitesimal generator corresponding to C E Q is 

Since C is linear and w-skew, it is a Hamiltonian vector field with energy 
1 ?o(CZ, 2). (See remarks following 3.3.6.) Thus the momentum mapping is 

where 

The restriction of this momentum mapping to the subspace DA=O yields the 
momentum mapping associated with SO(n,R). The mapping J is Ad*-equi- 
variant because ~ ( c ) ( z )  vanishes when Z = 0, so using 4.2.3, the cocycle must 
vanish as well. (This can also be seen directly. Using the fact that w(cZ,cW,) 
= w(Z, W),  we get 

~ ( c ) ( c z ) - ~ ( C - ' C C ) Z =  $(W(CCZ, C Z ) - ~ ( C - ~ C ~ Z ,  z ) )  
=o 

which is Ad*-equivariance.) 

We shall now reconsider the momentum mapping from a different point 
of view. The results can be used as an alternative characterization of the 
momentum mapping. The idea is that instead of considering @:0 for each 
g E G, we consider Q,* 0 for the whole map Q, : G X P+ P. 

I f  J is ? momentum mapping for a symplectic action Q, on (P,  w), define a 
one-form J on G X P by 

where 5, E T, G, V, E T, P, and p E P. 
X 

2 4.2.16 Theorem (Momentum Lemma). Let the conditions of 4.2.10 hold and 
let J be as given there. Then Cr) 

B 
00 

@*0= r p + j  
where 4 : G X P+ P is the projection onto the second factor. 
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Notice that this result holds, in particular, in the context of 4.2.1 1, 4.2.13, 
and 4.2.14. 

Proof: By definition of pull-back, 

@*@ (Zg,  0,) = 0 (@(g,p)). T@(g,p)- (5,, up) 

= e (@,(P>)'T@,(P).~, + 0 (Qt,(p)). TQb ( d . 4  

= 8(p).vp + 8(@,(p)).~cp,(g).5, (1)  

since @,*6= 8. Denote by 5= TeLg-I(&). We have 

Tg(a,tg = TgQp O TeLg (5) 

= 7'' (ap O Lg)(5) 

= Te (@, O @,NO 

= q,@, O Teap (5) 

and 

so that 

Substituting (2) in (I), we get 

since, again, @,*8 = 8. But since J (p)C = (i&(p) we get @*6 (G, v,) = 8 ( p )  -up 
+ J (p).(TL,- and so the result follows. rn 

There is another way to write j that will be useful. Namely, we let 
n, :  G X P+G be the projection on the first factor. Let u be the Lie algebra 
valued one-form on G given by u(g)= TL,-,<,. Then n f u  is a Lie algebra 
valued one-form on G x P: 

s 
9 rn 

T T U  (6, up) = TL,-I.& 
0" 
3 Thus we can write the definition of j as 
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where . signifies the natural pointwise pairing between maps with values in Q* 
and g, respectively. Thus @*e = 77;8 + ( J  n2) - T T V  and so applyingd, @*w = 
m2w + d ( J  7 ~ ~ )  A ?T:V + J n2.dnTv, with d and A appropriately defined. 

The reader can similarly show that quite generally for a symplectic action 
with a momentum mapping J (not necessarily assuming w is exact), we still 
have @ * w = ~ $ o + d ( J o ~ ~ )  ~ n ~ v + J ~ n ~ . d n T v .  

We now give an important reformulation of the momentum lemma. 

4.2.17 Corollary (Whittaker's Lemma). Under the same conditions as above, 
let 52 : P+ G be a smooth mapping and let 

Then 

where v is the Lie algebra valued one form on G defned above, so that 

!~*v .v~  = TL,-,(T,Q~v,) 

and g = 52(p). 

ProoJ: Factor B through G X P as follows: 

Thus 

B*O= (cp 0 (52 x Id))*e 

= (n2 0 (52 x 1d))*8+ J 0 (n2 0 (52 x Id)). (n, (52 x Id))*v 

But q (52 x Id) = Id and n, (52 x Id) = 52, so the result follows. II X g We refer to this basic result as Whittaker's lemma since he first discussed 
it in the context of SO(2) and SO(3) actions on R2  and R3, as we now 8 
explain. 2 

We specialize the Momentum Lemma to the case of the usual 80 ( 2 ) s  
Cg s'-action p on R2  by rotations. In this case G: T*R2+R*=R, G(q,p)= 
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q'p, - q%, is an Ad*-equivariant moment for the action 

pP: S1 x T*R2+T*R2: (eit (q,p))~(eiBq,pe-iB) 

Ad* equivariance means G o  pgP = G for all g E S ', since S' is abelian and 
hence (Adg- I)* = identity. 

Denote bya ,  : S ' x T* R 2 - + ~  ' and 71, : S ' x T* R 2+ T* R the canonical 
projections: G 0 a2 E %(S ' x T* R 2). If Q : P+S I is an angular variable, we 
define dQ(p).vp = TLg-~(T,Q.vp) where g = Q(p). (See Exercise 2.4F .) It 
follows from 4.2.17 that Q*v = dQ. 

4.2.18 Corollary (Classical Momentum Lemma on the cotangent bundle.) 
If p is the usual S '-action on R by rotations and p : S ' x T* R ~ +  a"* R the 
induced action on the cotangent bundle, 

where a, : s ' x T*w'+s ' and n2: s ' x T*R~+ T * R ~  are the canonical 
projections. 

With the remarks above, this follows from 4.2.16. 
We now formulate a similar result on the tangent bundle. Assume that 

L =  K- V: TR2+R is a Lagrangian with the kinetic energy K(q,q)= +llq112 
and potential V: R2+R. Then L is hyperregular and FL: (q,q) ~ ( q , p  = 4). 
Hence OL=(FL)*9,, where 9, is the canonical one-form on T*R2, has the 
form 

Then 9, defines wL = - doL = dqlr\dq' + dq2r\dq2, the standard, noncanonical 
symplectic form on TR2. 

Let S' = SO(2) act by rotations on R 2  and. call this action as before p. 
Then the induced action on the tangent bundle p T :  S ' x TR2+ TR2 is (see 
4.1) p (e ", (q, 4)) = (p(e "q), p(e iBq)). An Ad*-equivariant moment fof this 

X 
action is G: TR2+R* : (q,q) wqlq2 - qZq'. Also notice that G 0 FL = G and 
that L is invariant by p T, assuming that V is by p. This happens, for example, 
if V depends only on 11q11, a case useful in the two- and three-body problems. 
As we saw in 4.2.14, invariance of L by pT implies the equivariance of FL, 
that is, FL o p;= pgP o FL for all g E S '. Denote as before by T, : S' X T R ~ +  

Z S ' and a,: S ' x TR2+ TR2 the canonical projections. The following is easy 
to establish from 4.2.16 and 4.2.14. 
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4.2.19 Corollary (Classlcal Momentum Lemma on the tangent bundle). If 
p is the usual S '-action on R by rotations and p T :  S ' X TR 2+ TR the 
induced action on the tangent bundle, 

where L is a p T-invariant Lagrangian on TR 2. 

The following special case of 4.2.17 and 4.2.18 will be useful in Sect. 9.5. 

4.2.20 Corollary (Whittaker's Lemma in cotangent formulation.) Let U c 
T* R be an open set, a: U+S ' a smooth map, B : U-+ T* R the map defined 
by 

where p is the usual S '-action on R using rotation, and wo = - doo the 
canonical symplectic form on T* R2. Then the pull-back forms are given by 

'where G is the classical angular momentum on the cotangent bundle. 

Similarly from 4.2.17 and 4.2.19, we get: 

4.2.21 Corollary (Whittaker's Lemma in tangent formulation). Let U c 
TR be an open set, a : U+ S ' a smooth map, B : U+ TR the map defned by 

where p is the S'-action on R 2  by rotations, and wL= - doL, the standard 
(noncanonical) symplectic form on TR 2; here L is any (regular) p T-invariant 
Lagrangian on TR 2. Then the pull-back forms are given by 

where G is the classicaZ angular momentum on the tangent bundle., g 
4 - 
M 
0 

The original form of these lemmas, expressed in terms of coefficients of 
B*w,, B*oL-the classical Lagrange brackesmay be found in Whittaker Z 
[I9591 or Brouer-Clemence [1961, p. 1791. In Whittaker's original paper, the % 
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standard action of SO(3) on TR3 was the goal. Using the general result 
4.2.17, the reader may easily work out this case as well. (See Exercises 
4.2E, G.) 

Finally, in this section we give an application of the momentum mapping 
to prove a completeness theorem for pseudo-Riemmanian manifolds. We 
recall that a pseudo-Riemannian manifold is homogeneous if its isometry 
group acts transitively, that is, there is only one orbit. The following result 
should be compared with 3.7.1 1, and was proved by Hermann [1972b] for the 
special case of semi-simple groups. See also Mishchenko [1970]. 

4.2.22 Theorem (Marsden [1973a]). Let M be a compact homogeneous 
pseudo-Riemannian manifold. Then M is geodesically complete. 

In this theorem, neither of the two assumptions of compactness nor 
homogeneity may be dropped. For example, there exists an incomplete 
Lorentz metric on the two torus T~ (see Markus [1963, p. 1891 and Wolf 
[1964]). For the proof of 4.2.22 we shall need the following three lemmas. 

4.2.23 Lemma. For each m EM, T, M = {tM(m)lt E g) , where g is the Lie 
algebra of the isometry group G and 5, are the infinitesimal generators. 

ProoJ: According to Sect. 4.1 the set {tM(m)l(€g) is the tangent space to 
the orbit through m E M (remember the orbit is an immersed submanifold). 
But the hypothesis of homogeneity means the orbit is all of M. V 

4.2.24 Lemma. Let Y and X be first countable Hausdorff spaces with X 
compact. Let f: Y+X be continuous and one-to-one. Suppose that if xn E X  is a 
convergent sequence, then f - '(x,) = y, E Y has a convergent subsequence. Then 
f -' is continuous and so Y is compact. 

ProoJ: If x,+x, and ynk is a subsequence of yn that converges to, say, y, then 
f(y)= x or y = f -'(x). Hence any subsequence of y, has a subsequence that 
converges to the same pointy. Thus the whole sequence y, must converge to 
y. (If it did not we could find a neighborhood of y and a subsequence of yn 
that did not enter this neighborhood.) Hence f -' is continuous. 

4.2.25 Lemma. Let P: TM+g*, P(v).t=(v, <,(m)), the momentum for 
the action of G on TM. For a Eg*, set Sa = P-'(a). Then Sa is a compact 
subset of TM that is invariant under the geodesic flow. 

$I: P o  Invariance of Sa under the geodesic flow results from 4.2.13. We have 
to show Sa is compact. Certainly Sa is closed. Furthermore, the restriction of 

a-l 3 the projection 7, = rMISa: Sa+M is one-to-one because, from 4.2.23, Sa 
intersects each fiber in at most one point. 

Z We claim T,(S,) is closed and hence compact. Indeed x @ 7,(Sa) means 
that a is not in the range of the linear map obtained by restricting P to T,M. 
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Thus a is not in the range of PI T,M for y in a whole neighborhood of x. 
Hence ra(Sa) is closed. 

To prove that Sa is compact, we shall use 4.2.24 to show that 7,-': 
ra(Sa)+Sa is continuous. Let ((,)) be a Riemannian metric on M with 
associated norm I I I - I I I .  Because our pseudo-Riemannian metric ( , ) is nonde- 
generate, there is an isomorphism Ux : Tx M+TxM, depending smoothly on 
X ,  such that for u, v E TxM, 

Let xn = ra(vn) and suppose xn+x. We want to show that vn has a convergent 
subsequence. Now since vn E S,, 

(on, tM(xn))= a t 0  for all t 
Choosing a Euclidean norm 1 1  - 1 1  on g,  we can write 

On= ~ < ' t t n ) M  t x n )  

for 5, E g and 

lltnll G c l l l ~ n l l l  

where C is a constant independent of n. [The constant C depends on the 
norm of Uxn and on the norm of a right inverse for the surjective map 
5 H t',(m).] Therefore, 

Therefore, 1 1  lon 1 1  1 < 1 1  a 1 1  C, SO vn is uniformly bounded, and hence lies in a 
compact set; thus vn has a convergent subsequence; since Sa is closed, it 
converges in S,. The result now follows from 4.2.24. V 

Proof of 4.2.22. Since TM= u {SalaEg*), TM is a union of compact sets 
invariant under the geodesic flow. In particular, any integral curve of the 
geodesic flow remains a priori in a compact set. Therefore, by 2.1.18 the 
geodesic flow is complete. 

Remark. If dim G =  dim M, then S, is a submanifold of TM since then 
P: TM+g* is a submersion, as is easily checked. 
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EXERCISES 

4.2A. Let G act on Q and hence on P Q  as usual. Let k ~ o  be the canonical two-form, 
e a constant, and A be a one-form on Q. Set F= dA and 

If the action of G on Q leaves A invariant, show that a momentum mapping 
for the action of G on ( P  Q,w,) is 

(This exercise is relevant for a particle moving in the electromagnetic field F; 
see Exercise 3.7F and 4.3.3.) 

4.2B. (i) Show that 4.2.14 remains valid for degenerate Lagrangian systems. 
(ii) Let L : TQ+R be a regular Lagrangian and L" : T(Q X R)+R the 

associated homogeneous Lagrangian (see 3.7.19). Apply 4.2.14 to this 
Lagrangian under time translations and conclude that the energy of the 
original Lagrangian is conserved. 

4.2C. Let Gi) denote the group of diffeomorphisms of Q that acts on P Q  by lifting. 
(See Exercise 4.1G for a description of the Lie algebra % of 9 .) 
(i) Compute the infinitesimal generator of X E % on P Q  and show it is the 

Hamiltonian vector field X,(,,. 
(ii) Show that the action on P Q  is Adf-equivariant. 
(iii) Deduce from 4.2.9 that {P (X), P ( Y)) = - P ([X, Y]). 
Let 9 be the group of real valued functions f on Q under addition. Let 9 act 
on P Q  by translation by df along fibers. 
(iv) Show that the infinitesimal generator corresponding to f is Xi. 
(v) Show that the action is Ad*-equivariant. 

(vi) Deduce, from the fact that 9 is abelian, that {&)=O. 
Let G = Gi) X 9 with the semi-direct product structure: 

Let G act on P Q  in the obvious way. 
(vii) Show that the infinitesimal generator corresponding to (X,f) is XJ(x,n, 

where J (x,f) =f+ P (X). 
(viii) Show that the action is Ad*-equivariant, and 
(ix) the commutation relations for J reduce to those in 4.2.12. 

4.2D. Let G = R 2  (coordinates q1,q2) under addition and P= R~ (coordinates x1,x2) 
with the symplectic structure w=dx,/\dx2. Let G act on R~ by translation: 

3 (a) Show that a momentum mapping for this action is given by 
E! 

J(x1, XZ)'(~I,  52)'51~2-t2x1 

and its cocycle is given by 
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(b) Show that [a]+O. 
(c) Show that J is equivariant with respect to the action of G on g* given by 

(d) Verify the commutation relations 

where X(5,v) =51172 - 5 ~ 7 , .  
4.2E. Write out Whittaker's lemma 4.2.17, computing explicitly a coordinate formula 

for J-Q*v (and dlr\Q*v) for the standard action of SO(3) on P R 3 .  (You may 
find the discussion in Sternberg [1964, p. 234-2361 helpful.) 

4.2F. Let ( V, a)  be a symplectic vector space and Sp (w, R) = { P E L( V, V)lw(Pv, Pw) 
= w(v, w) for all v, w E V )  be the Lie group of linear symplectic mappings. If 
H: V-+R : v !+ f I? (v, u), where I? is a symmetric bilinear form on V, show 
that: 
(I) G = { Q E Sp(w, R)I H (Qv) = H (v) for all v E V )  is a closed subgroup of 

Sp(w,R) (and hence is a Lie group); 
(2) the action Q,: G x V-+ V:  (P,v)wPv is symplectic and leaves H in- 

variant; 
(3) the momentum mapping of Q, is J: V-+g*; where j(n(v)= fo(&,v). 

Let w be the standard symplectic form on R2", SO the matrix of w is 

Compute G and the momentum map J for 

where 

[Hint: Show that 
(1) Q E G if and only if Q is symplectic and QJ,,I?= J,,~?Q, where 

(2) In matrix terms, X 
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(3) The map 

cp: G + u ( ~ , ~ ) =  {S €G1(2n, C)I%'I~,,S=I~,,): 

is an isomorphism of real Lie groups.] See Cushman [I9741 for further 
information. 

4.2G. (Spin Angular Momentum). Let SO(n) be the rotation group on Rn and 
Spin(n) be its universal (two-fold) covering group. In Exercise 4.1F we showed 
that Spin(3) is isomorphic to SU(2, C) (and that this is diffeomorphic to s3).  

Let Spin(n) act irreducibly on a complex vector space Sn (if n = 2k or 2k + 1, 
S,, has complex dimension 2k; see Palais [1965]). 

Let M be an oriented Riemannian manifold. To define a spin bundle over M 
we first define a local spin bundle and then globalize in the spirit of Sect. 1.4. 

A vector bundle a: E+M with fiber Sn is a spin bundle if there is a covering 
Ua of M and bundle charts +a : TUa c TM+ Ua x Rn  of TM and +,* : a - '( Ua) 
+ Ua x Sn of E such that (i) +a preserves the metric and orientation and (ii) the 
overlap maps +$ 0 +za*- ' have the form (x, s) I+ ( x ,  gab (x) .s), where gab : Ua n Ub 
+Spin(n) and p(gaB(x)) = +b 0 +; ' (restricted to x), where p : Spin(n)+SO (n) 
is the canonical projection. 

Thus a spin bundle over M is a (vector) bundle a: E+M whose local charts 
are local spin bundles and transition maps are local spin bundle isomorphisms. 
Roughly, when we have a coordinate change, the fibers "transform like" 
spinors rather than vectors; that is, according to Spin(n) rather than SO (n). 

A classical Hamiltonian y t e m  with spin* is, by definition, a Hamiltonian 
system on T*E. 

Let G be a Lie group acting on M by maps +,: M+M and suppose this 
action lifts to E by maps ICg : E-+E, that is, (i) a 0 I)g = +, 0 a and (ii) there are 
chart coverings +a, cpz as above, such that over x E A, +$ 0 4, 0 +,* ,+ -' E Spin(n) 
and p(+; 0 I)* I/g o (Th) 0 '. (Such a lifted action always exists lo- 
cally and is unique. For the global problem, see Chichilnisky [1972].) 

Let tM be an infinitesimal generator of cp on M and 5, the corresponding 
one for 4 on E. Then show that locally 5, =tM +&, where & at each point lies 
in the Lie algebra of Spin(n), that is, T,Spin(n). If the +a above have the form 
Tfa for charts fa on M, then T,p(&)= TtM (in the chart). 

Deduce that if H: P E + R  is invariant under the action I), then 

("orbital" + "spin" angular momentum) defines a momentum mapping J that 
is a constant of the motion for XH. 

For M=R3, E = R ~ x C ~ ,  and G=SO(3), show that 

- - 
4 m where the components of a are the Pauli spin matrices. Discuss Whittaker's 
13 lemma for this case following 4.2.17. z 

*A quantum mechanical system with spin is a quantum mechanical system on the Hilbert space 2 of L2 sections of E; see Sect. 5.4 and 5.5. 
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4.3 REDUCTION OF PHASE SPACES WITH SYMMETRY 

It is a classical theorem going back to Jacobi and Liouville that if one has 
k first integrals in involution (i.e., their Poisson brackets all vanish), thendt is 
possible to reduce Hamilton's equations to a set of Hamiltonian equations in 
which 2k variables have been eliminated. Similarly, in the n-body problem, 
rotational invariance allows one to eliminate four variables (Jacobi's 
"elimination of the node"). We now give a procedure, called reduction, that 
includes both of these as special cases. 

The general setting of reduction (going back to E. Cartan) is the following. 
Suppose M is a manifold and w is a closed two-form on M; let E, = {uE 
TMli,o=O) the characteristic distribution of w and call w regular if E, is a 
subbundle of TM. (This will hold if w has constant rank; see 5.1.2). In the 
regular case, we note that E, is an involutive distribution, that is, if X, Y are 
sections of E,, then so is [X, Y]. To see this, it is sufficient to recall the 
formula 

to obtain i Ix ,y=O.  By Frobenius' theorem E, is integrable and hence 
defines a foliation '3 on M. Form the quotient space M / F  by identification 
of all points on a leaf. Assume now that M/'3  is a manifold with the 
canonical projection M+M/'3 a submersion. Then as in 4.1.20, the tangent 
space at a point [ x ]  is isomorphic to T,M/E,(x) and hence w will project on 
a well-defined, closed, nondegenerate two-form on M/T. In other words, 
M / S  is a symplectic manifold, the process by which it was obtained being called 
reduction. We shall apply this general result to the case of submanifolds 
defined by an Ad*-equivariant momentum mapping of a given symplectic 
action. (Some generalizations are given in the exercises.) Our formulation 
follows Marsden and Weinstein [1974], which in turn was inspired by Smale 
[ 1970a1, Souriau [I 970a], and Robbin [ 19731. Related papers are Neboroshev 
[1972], Meyer [1973], Fong and Meyer [1975], and Marle [1976]. A discussion 
of these questions also occurs in Arnold [1978]. We shall return to a number 
of these topics in Sect. 5.3. 

First we shall summarize the notation from the previous section that will 
be used. We let (P,w) be a symplectic manifold and @: G X P+P a 
symplectic action. Assume that this action has an Ad*-equivariant momen- 
tum mapping J: P+g*. Denote by G, the isotropy subgroup of G under the 
co-adjoint action Ad*, that is, G, = { g E G /Ad,*- ,p = p). Since J is Ad*-equiv- 
ariant under G,, the orbit space J-'(p)/G, is well defined. This space 5 
P, = J - '( p)/ G, is called the reduced phase space. g 9 

We impose two conditions that guarantee that P, is a manifold. Note that 
G, is a Lie group, being a closed subgroup of G. First we assume y to be a 2 
regular value of J (which by Sard's theorem takes place for "almost all" p). z 
Then J-'(p) is a submanifold of P (see Sect. 1.5). Second, suppose G, acts 
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freely and properly on  J - '( y). Then we know * (see 4.1.23) that J - '( y)/ G, is 
a manifold with the canonical projection ~r, : J - '( y)+P, = J - '( y)/ G, a 
submersion. 

4.3.1 Theorem. Let (P, w) be a (weak) symplectic manifold on which the Lie 
group G acts symplectically and let J :  P+g* be an Ad*-equivariant momentum 
mapping for this action. Assume y Eg* is a regular value of J and that the 
isotropy group G, under the Ad* action on g* acts freely and on 
J -  '( y). Then P, = J-'( y)/G, has a unique (weak) symplectic form w, with the 
property 

~ ; w ,  = i; w 

where T, : J - '( y)+ P, is the canonical projection and i, : J - I (  y)+P is the 
inclusion. 

4.3.2 Lemma. For p E J - ' ( y )  we have 

(9 T,(G,.p)=T,(G.p)nT,(J-'(p)),  and 
(ii) T, ( J  - '( y)) is the w-orthogonal complement of T, (G-p). Here, Gep denotes 

the orbit of p under the action of G, that is, G-p = {@(g,p)l g E  G ) .  

ProoJ: Let ~ E Q  so that gp(p) E Tp(Gy)  (see the remark following 4.1.24). 
Assertion (i) is that t P ( p )  E T,(J-'( y)) i f f  .$'€g,, the Lie algebra o f  G,. By 
equivariance, T, J (S,(p)) = [,,( y) (see 4.1.28), so 5,(p) E T, (J - '( y)) = ker T, J 
i f f  (,,(y)=O, which is equivalent to y being a fixed point o f  Ad&,-,o, that is, 
exp .$' E G,, or by the characterization o f  Lie algebras o f  subgroups (see 4.1.13), 
~ E Q , .  

For (ii), i f  5 E g and v E T, P, we have w(5, (p) ,  v )  = (dj(<)), (0)  = (T, J-v)(O 
since J is a momentum mapping. Thus v E T, (J - '( y)) = ker T, J i f f  w(tP (p) ,  v )  
=O for all ( ~ g ,  that is, v is in the a-orthogonal complement o f  T,(Gy)= 
{ 5 P ( ~ ) 1 5 ~ 0 ) .  v 

From (ii) it follows that T,(J - '( y)) and T,(G.p) are w-orthogonal com- 
plements o f  each other. This is needed in the following proof. (For the 
infinite-dimensional case, use Exercise 3. IF.) 

Proof of 4.3.1. For v E T,(J - ' (y)) ,  let [v]  = TT,(v) denote the corresponding 
equivalence class in T,  J - '( y)/ T,(G,y). The assertion T;W, = i,*o is 

a Since T, and TT, are surjective, w, is unique. 
m 

*In the infinite-dimensional case, add the condition that the map from the group to each orbit is 
an immersion. 
tAdd the conditions in the footnote above and the condition that the model space is reflexive, 
and a$' has closed range in the infinite-dimensional case. 
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Now from Lemma 4.3.2(ii), it follows that w, is a well-defined two-form. It 
is smooth since Ir,*w, is smooth. 

Next we prove that w, is closed. Indeed, d?T,*w, = di,*w = i,*dw=0, so 
?T,*(~w,) = 0. Since .rr, and T,n, are surjective, dw, = 0. 

For (weak) nondegeneracy of a,, suppose w,([v],[w])=O for all w € 
T,J -'(p), hence w(v, w)=O for all w E T,J-'(p). Thus by Lemma 4.3.2(ii), 
v E T,(G.p) and hence by (i), v E T,(G,p), that is, [v] = O  and so a, is a 
(weak) symplectic form. 

Finally (in the infinite-dimensional case), if w is a strong symplectic form, 
so is w,. Indeed, let a E cfi(,,P, so a is a linear map from T,J-'(p) to R that 
vanishes on the closed subspace T,(G,.p). If o(v, w)=a(w) for all w € 
~ J - ' ( p ) , w e s e e t h a t c ~ , ( [ ~ ] , [ w ] ) = ~ ( [ w ] ) f o r a l l w ~ ~ ~ - ' ( p ) .  . 

We remark that even if w =dB is exact and the action leaves 8 invariant, w, 
need not be exact. 

The manifold P, is always even dimensional, being a symplectic manifold. 
Also dim P,=dimJ-'(y)- dimG,=dim~-dim G-dimG,. 

Important Remark. If p is a regular value of J, the action of G, is locally 
free. Even if the action is not globally free and proper (and this occurs in a 
number of examples) this construction can be done locally. This is important 
because in a number of results later on, we only assume y is regular; this is 
possible because we will be implicitly invoking the local version of 4.3.1. In 
fact, y only needs to be weakly regular; i.e., J- '(y) is a submanifold with 
T,J-'(p)=ker T,J. 

Next we describe a way, which will be important for later work, to 
explicitly realize P, in the case of the cotangent bundle. Let G act on Q and 
hence on T*Q and let J: T*Q+g*, .f($)(aq)= LX~($,(~)) be the usual 
momentum mapping. Suppose y is a regular value for J and the other 
conditions of 4.3.1 hold. Also, suppose G, acts freely and properly on Q so 
that we can form Q/ G, = Q,. 

4.3.3 Theorem. In addition to these conditions, assume there is a G,-equi- 
variant one-form a, on Q with values in JP1(y). 

Put on T*Q the symplectic form Q, = w, +(rJ)* da, (where w, is the 
canonical symplectic form) and let T *Q, be given the corresponding induced 
symplectic form (see Exercise 3.7F). 

Then there is an induced symplectic embedding 
Y 
8 

0 
onto a subbundle over Q,. The map cp, is a diffeomorphism onto TY Q, if and z 
only ifg=g,. E 
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Remark. An appropriate one-form cu, will be constructed in Sect. 4.5 in 
terms of a Riemannian metric. Note that if p = O  we can take a, =0, and if G 
is abelian g= a,, so P,m PQ,. This special case is due to Satzer [1977]. 

ProoJ We have 

= F,/ G, ( this defines F,) 

(Recall that if G acts freely on M, 

SO 
t T*(M/G) z {a,  E T*M~~,(T,(G.X)) = 0) 

Also, J - ' ( ~ ) = { ~ E  PQl,.(&(q)=p(() for all <€g). Let 6: J- ' (p)+~, ;  
O ( ~ H  aq - a ( ). Since this is translation on the fibers, it follows as in 3.2.11, or , .4 
by a coord~nate computation, that I),, is symplectic, that is, $;*(S2,I F,)= 
w,l J - I (  p). Also, $,, is clearly an embedding (and onto iff g = g,). Since a, is 
G, equivariant, I,$ passes to the quotient, defining +,. By definition of the 
symplectic structure on P,, +, is symplectic. . 
4.3.4 Examples. (i) We begin with the Jacobi-Liouville theorem to which 
we alluded in the introduction. Let (P, w) be a symplectic 2n-manifold and let 
K,, . . ., Kk be k functions in involution: {&,4.} =0, i,j= 1,. . . , k. Because the 
flows of XK and X, commute, we can use them to define a symplectic action 
of G = R ~  on P. dere p € R k  is in the range space of K , x . - .  xKk and 
J = K, x - . - x Kk is the momentum mapping of this action. Assume the dK, 
are independent at each point, so p is a regular value for J. Since G is abeliam, 
G,= G, so we get a symplectic manifold J- ' (p)/G of dimension 2n -2k. 

This example will be completed below in 4.3.5, where we show that any 
invariant Hamiltonian system on P induces, canonically, one on P,. If k = n, 
the system is called completely integrable; see Sect. 5.2 and Exercises 5.2H and 
5.21. 

(ii) Let us consider the above example from a different point of view. Let 
X,, be a Hamiltonian vector field on P so its flow gives a symplectic action of 
R on P. The momentum mapping is H itself. Hence, if e is a regular value of 
H, we get a symplectic structure on H-l(e)/ R, assuming it is a regular quotient. In 
this quotient we consider each orbit, or solution, to Hamilton's equation to be a 
point. This space is called the manifold of solutions of constant energy. It has 
dimension dim P-2. 

?For this to work on tangent bundles rather than cotangent bundles, one must use a metric on Q 
invariant under G and put a Riemannian structure on Q, that makes the projection Q-tQ, a 
Riemannian submersion, that is, an isometry on the orthogonal complements to its level sets. 
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(iii) If G = SO (3), then the adjoint action of G on g = R3 is the usual one 
[Exercise 4.1A(iv)]. For p E R3, p +O, G, = S ' corresponding to rotations 
about the axis p. A moment for this action may be called angular momentum 
(since that is what it is if P= TXR3), and the reduction from P to J-I(  p)/S1 
is a generalization of the procedure in celestial mechanics called "elimination 
of the nodes." It goes back to Jacobi. Note that dim P,=dimP-3 - 1 = 
dim P-4. 

(iv) Example (ii) above provides a method of endowing quotient mani- 
folds with "canonical" symplectic structures, if one chooses the Hamiltonian 
carefully. For example, CPn-I, the complex (n- 1)-dimensional projective 
space is a symplectic manifold. To see this, choose P= R2" = TXRn with the 
canonical symplectic form Zy,,dqi~dpi and consider the (harmonic oscilla- 
tor) Hamiltonian H (q,p) = 3x1, '((4 ')' +p;). Then 

and the flow of XH is given by 

I;,: (q,p)t-,(qcost+psint,pcost-qsint) 

Since I;, is periodic with period 2a, it defines a symplectic action of S ' on P. 
Since S' is compact, it is proper and it is obviously free. The value 3 is clearly 
a regular value for H and H - '(3) = S '"- I. By example (ii) above H - I(+)/ R 
= H - I(;)/ s ' = S2"- I /  S ' = CPn - I is a symplectic manifold of real dimen- 
sion 2(n - I). 

(v) Let G be a Lie group and denote by A: G X G + G the action of G on 
itself by left translations, that is, A, = L, for all g E G. Consider the induced 
action AT* on T*G. By 4.2.11, the momentum mapping of this action is J: 
T*G + B*, J(ag)(5) = ag(5c(g)) = ag(TeRg(E)) = (TeRg)*ag(O, since by 
4.1.25(a), (,(g) = TeRg((). Hence J(a,) = (T,R,)*a,. Each p E g* is a regu- 
lar value for J and 9-'(p) = {a, E T*GIa,(T,R,.<) = p(5) for all 5 E g ), 
which is the graph of the right-invariant one-form a, whose value at e is p, 
that is, a,(g) = T,*R,-~(p) = p T,R,-I. It is easy to see that G, = { g E 

GI L:a, = a,) using the definitions, so G, acts on JP1(p) by left translation of 
the base point. Thus J-'(p)/G, = G/G, = G .p c Q *, the diffeomorphism 
being given by cp: a,(a,(g)) * Adfp for any g E G. Hence the reduced phase 
space, in this case, is naturally identifiable with the orbit of p in g * under the 

X coadjoint representation, that is, G.p is a symplectic manifold. This is the A 
statement of the Kirillov - Kostant -Souriau theorem. S 

9 
We now compute explicitly the symplectic form on G-p. Let this form be 

denoted w,. Let {: ~ - ' ( p )  + G-p be given by a,(g) - Ad:p so that from 2 
4.3.1, {*w, = i,*o, where w is the canonical two-form on T *G. To work out w, z 
from this, we need a few steps. 8 
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(1) Since J - '( p) is the graph of a,, T,,,, J - ' ( p) = { Ta,. TRg[ ( 5 E g} 

(2) (i,*w)(Tol,. TRgQ Tol,. TR,TJ) = (a,*w)(TRgQ TRgq) 

= - da,(TRgQ T$TJ); (see 3.2.1 1) 

where ft is the right-invariant vector field corresponding to 5. By 
Formula 6 in Table 2.4.1, this becomes 

= %([ f ,  -fq])(g) [since a, (fv)(g) = p(q) is constant in g] 

= - P([Q 111) 

(it is minus since we are dealing with right-invariant vector fields). 

(3) (l*ap)(ap(g))(Tgap.TeRg5, Tgap.TeRgTJ> = ~ p ( A d ~ ~ ) ( q ~ ( g ~ S . T g ~ p . T e R g ~ ,  
5. Tga; TeRgq). But {(a,(g)) = Adzp by definition, so we get 

(4) By exercise 4.1H and Example 4.1.25(d) we have 

= - ( ~ d ; ~ $ , . ) ( ~ d 3 )  

By 4.1.26(i) applied to the coadjoint action, 

Putting these steps together we get the following formula: 

for any g E G. Replacing here Adg-15 by 5, Adg-l9 by TJ and letting v = Adzp 
be an arbitrary point on the orbit we get 

X g 
4 m 
8 
2 
2 From 4.1.26(i) and this formula for w,, it also follows that u,, is Ad,*-,-in- 
g variant. That is, G.p is a homogeneous Hamiltonian G-space. If (P, w, cP, J) is a 



homogeneous Ad* equivariant Hamiltonian G-space, it is easy to see that J: 
P+g* gives a symplectic covering map onto Gay, a result of Kostant. (See 
Wallach [I9771 and Guillemin and Sternberg [I9771 for more information.) 
For examples using G-y, see 4.4.7, 4.6G and 5.5L. 

So far, the symplectic manifold alone has been reduced. We want now to 
induce Hamiltonian systems on the reduced phase space. 

4.3.5 Theorem. Under the assumptions of 4.3.1, let H: P+R be invariant 
under the action of G. Then the flow F, of XH leaves J-'(y) invariant and 
commutes with the action of G, on J- '(  y), so it induces canonically a flow Ht 
on P, satisfying IT, Ft = H, .rr,. This flow is a Hamiltonian flow on P, with a 
Hamiltonian H, satisfying H, .rr, = H 0 i,. H, is called the reduced Hamito- 
nian. 

ProoJ: From 4.2.2, J is an integral for XH. It follows that J-'( y) is invariant 
under the flow and that we get a well-defined flow Ht induced on P,. If F, 
denotes the flow of XH on P and J - '( y), we clearly have 7% Ft = H, IT,, SO 

n;* H:w, = I;;CIT,*U, = F*i*w = i : ~  = IT:U,, the third equality holding since Ft is 
symplectic and leaveif-'(y) invariant. But since ?i, is a surjective submer- 
sion, we conclude H:w, =up, so the flow H, on P, is Hamiltonian. 

The relation H, 0 n;, = H i, plus invariance of H under the action of G 
defines H, uniquely. Hence, if [v] = TIT,(v) E TP,, we have 

But from the construction of H,, its generator Y satisfies Tn;, XH = Y o  T,, so 
dH,[v] = i,*w(XH, v) = T,*~,(X,, v) = up( Y, [v]), that is, Y has energy H,. H 

In celestial mechanics where one has a rotational invariance, we can 
"eliminate the nodes" by passing to P, = J- '(y)/S1 and we get a well-de- 
fined Hamiltonian system on the reduced phase space. It eliminates extra 
rotational freedom and, in effect, passes to a rotating coordinate system. (We 
shall see this sort of thing explicitly in Sect. 9.1 and 9.8.) 

Again, in the Jacobi-Liouville theorem [4.3.4(i)], if we have a given 
Hamiltonian system XH and k first integrals in involution and pass to P,, we 
still obtain equations in Hamiltonian form. Under the conditions of 4.3.4(v), 
the reduced Hamiltonian H, on G.y c g* is given by H,(A~:-I~) = 
H (T: R,- I( y)), where H: T* G+R is a given Hamiltonian satisfying H TY L, 
= H  for allgEG. 

The Hamiltonian system induced on the reduced phase space represents, 
in a sense, the "essential'. dynamics; the explicitly known dynamics is $ 
factored out in the reduction process. m 

3 
If we know the flow H, of the reduced system on P,, then we can find the 3 

flow of F, on J - ' ( 3  as follows. L e t p , ~  J-'(y) and let c(t) and [c(t)] be the g 
integral curves of XH and XHu with c(0) =p,. We want to express c( t )  in terms g 
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shift along orbit by g(t). 

Flgure 4.3-1 

of [c(t)]. To do so, pick a smooth curve d ( t ) € J - ' ( ~ )  with d(0)=po and 
[d (t)] = [c(t)]. Write c(t) = cP,.,)(d(t)), for g(t) E G,. We then try to find g(t) 
(see Fig. 4.3-1). Now [see Eq. (2) in the proof of 4.2.161 

Using a,(,) invariance of XH, we get the equation 

This is an equation for g(t) written only in terms of d(t). We solve it by first 
solving the algebraic problem 

tp(d(t)) = XH (d(t)) - d'(t) 

for [(t) E g and then solving 

s f ( 4  = TLg(t)t(t) 

for g(t). (In examples, one will often get an answer "in quadratures.") Then 

y finally the solution c(t) sought is 

iri 
0 

g If the reduced phase space is a point, we say that the system is complete& 
z integrable, although this terminology is often reserved for integrals in involu- 

tion. By the above, the problem of finding the flow is reduced to solving 
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(1)-(3). In Section 5.2 we shall study completely integrable systems in greater 
detail and the origin of the terminology is explained in Exercise 5.2H. 

One might guess that if the momentum map includes all the integrals, the 
flow on energy surfaces in the reduced phase space is ergodic, since there are 
no longer any (smooth) constants of the motion. This is in fact not the case. 
For example, in the three-body problem it is conjectured from classic work of 
Poincari: and Arnold that there are no integrals other than the obvious ones, 
yet the reduced motion is not ergodic. (This is proven for the Sitnikov 
example in -Moser [1973a].) The reduced motion is, however, random or 
chaotic in a sense discussed in Chapter 8. For further discussion see Henon 
and Heiles [1964], Moser [1973a], Markus and Meyer [1974], and Sects. 8.3 
and 8.8 below. 

A circular orbit in a rotationally invariant system appears to be an 
equilibrium relative to a rotating observer. This idea leads to the following. 

4.3.6 Definition. Under the conditions of 4.3.1 and 4.3.5, a point p E P is 
called a relative equilibrium if T , ( ~ ) E  P, is a fixed point for the induced 
Hamiltonian system XHp on P, where p = J (p) .  

Since the symplectic form on P, is nondegenerate, this condition is 
equivalent to dH,(.rr,(p))=O, that is, T,(P) is a critical point of H,. 

Similarly, one defines a relative periodic point to be a point p such that 
n;(p) E P, lies on a periodic orbit of XHp. 

The next result characterizes relatlve equilibria and relative periodic 
points in terms of the original flow. 

4.3.7 Proposition. Let the conditions of 4.3.1 and 4.3.5 hold and p E 
J - '( p). Denote by @ : G X P+P the symplectic action of G on P and by I;, the 
flow of the Hamiltonian vector field XH E %(P). 

(a)  The following are equivalent: 
( i )  p E P is a relative equilibrium; 
(ii) there exists a one-parameter subgroup g(t)  of G such that for all 

t E R ,  I;,(p)=@(g(t>,p); 
(iii) there exists 5 E g such that XH ( p )  = tP (p) .  

(b)  The following are equivalent: 
(i) p E P is a relative periodic point; 

(ii) there exists g E G and T > 0 such that 

I ; t + , ( ~ ) = @ ( g , I ; , ( ~ ) ) f o r a l l t E R .  Y 2 
4 

Proof: (a)p  is a relative equilibrium iff T,(&(P))= T,(P). If this holds, there 
is a unique curve g(t)  E G, such that Ft(p) = @(g(t),p) since the action of G, 
on J - ' (PI  is assumed to be free. The flow property I;,+, = I;, 0 & shows z 
g(t + s) = g(t) g(s), so g(t)  is a one-parameter subgroup. 
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Conversely, if I;,(p)=@(g(t),p), where g(t) is a one-parameter subgroup 
of G, then, from Ad* equivariance of J ,  

This, together with the invariance of J under I;, [hence F,(p)E J -'(p) for all 
t E R], shows that g(t) E G, for all t E R, so r,(Ft(p)) = r,(p) for all t € R, 
that is, p is a relative equilibrium. 

This establishes the equivalence of (i) and (ii). 
The equivalence of (ii) and (iii) follows from the fact that any one-param- 

eter subgroup of G is of the form exp t< for some <Eg [for (ii)*(iii)] and by 
uniqueness of integral curves [for (iii)+(ii)]. 

Part (b) is similar and is left as an exercise for the reader. . 
For example, in celestial mechanics, a relative equilibrium is a configura- 

tion of the bodies which is such that the bodies subsequently move in circles. 
The following result gives a useful criterion for relative equilibria involv- 

ing only the functions H, J on P. 

4.3.8 Proposition. (Souriau-Smale-Robbin) Let the conditions of 4.3.1 and 
4.3.5 hold. Then p E J - '( p) is a relative equilibrium iffp is a critical point of 
HXJ :  P+Rxg*. 

For the proof we need the following. 

4.3.9 Lemma (Lagrange Multiplier Theorem). Let T: E+R, A: E+F be 
linear maps, where A is surjective and E, F are finite-dimensional vector 
spaces. * Then T is surjective on kerA iff T X A : E+R X F is surjective. 

ProoJ: Assume T is surjective on kerA and write E = kerA CB El. Let (t,f) E 
R X F and find by su rjectivity of A, el E El such that A(e,)=f. Since T is 
surjective on kerA, there exists k E  kerA such that T(k+e,)= t. Hence, if 
e = el + k, (T  X A)(e) = (t,f). 

Conversely, if T x A is surjective, then for (t,O), t 9 0 ,  find e E E such that 
(T X A)(e) = (Te,Ae) = (t, 0). But this shows that T is surjective on kerA . I 

Proof of 4.3.8. We saw before that p is a relative equilibrium iff %(p) is a 
critical point of H,: P,+R. Since H, .lr, = H i, and 7% is a surjective 
submersion, this is equivalent top being a critical point of HI J -'(p), that is, 

x dH (p) = 0 on ker T, J = T, ( J  - I( p)). By the Lagrange Multiplier Theorem, 
this in turn is equivalent to dH (p) X T,J: T, P+R X g* not surjective [if we 
assume dH(p)+O] and hence dH (p) surjective, which says that p is a critical 

8 
2 

*In the infinite-dimensional case when E,F are supposed to be Banach spaces, add the condition 2 that kerA has a closed complement. 



point of H X J  : P+ R x g *. If dH ( p )  = 0, then clearly p will be a critical point 
of H X J :  P+R X g*, so the theorem holds in this case, too. 

We now investigate a notion of stability appropriate for relative equilibria, 
called relative stability. Recall that stability of a point (see Sect. 2.1) means 
intuitively that nearby trajectories stay nearby to the trajectory of the point 
for all time. Precisely, a fixed point p E: P of a flow I;, is stable when for any 
neighborhood U of p, there is a neighbrohood V c U of p such that x E V 
implies &(x)  is defined and remains in U for all t E R. 

4.3.10 Deflnitlon. Let (P, w) be a symplectic manifold and G a Lie group 
acting symplectically on P and leaving a Hamiltonian H E %(P) invariant. 
Assume that the hypotheses of 4.3.1 and 4.3.5 hold A relative equilibrium p E P 
is relatively stable if r p ( p )  is stable for the induced dynamical system XHfi on P,, 
where r p ( p )  appears as a fixed point of XHw. 

The stability of relative equilibria in celestial mechanics is subtle, depend- 
ing on deep properties of Hamiltonian systems as has been shown by 
Kolmogorov, Arnold, and Moser (see Chapter 10). However, for "simple" 
situations such as the rigid body, we have the following generalization of a 
result of V. Arnold. The specific case considered by Arnold is given in Sect. 
4.4 below. 

4.3.1 1 Theorem. Let the conditions of 4.3.1 and 4.3.5 hold with p E J  - '( p) a 
relative equilibrium. Suppose the Hessian (Hess Hp)(rp(p)) is positive (or nega- 
tive) definite. Then p is relatively stable. 

The proof is an immediate consequence of Definition 4.3.10 and of the 
general stability criterion for Hamiltonian systems 3.4.17. 

In the above, we investigated the invariance of a Hamiltonian system 
under a one-parameter group, or a whole Lie group, of symmetries. Discrete 
symmetries can also play a profound role, such as reflection symmetries. Now 
we consider the simplest type of "symmetry" of this kind, namely, time-rever- 
sal symmetry. 

4.3.12 Definltlon. Let (P, w) be a symplectic manifod. A map p: P+P is 
antisymplectic if p*w = - w. A Hamiltonian system is called reversible if there is 
an antisymplectic involution p (i.e., p2 = id) such that H p = H. 

4.3.13 Proposltlon. Let H be reversible and let c(t)  be an integral curve of 
XH. Then p c( - t )  is also an integral curve of XH. Thus F-, ( x )  = pt ( p(x)) ,  
where I;, is the flow of X,. 

ProoJ: As in 3.3.19, one can show that p* XH = - X, or Tp 0 XH = - XH p 
from which the conclusion is immediate. . 
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In such a situation, if the flow 4 of X, is initially defined only for t > 0, 
4.3.13 assures us that 4 may be defined for t < 0 as well. This is typical for 
many Hamiltonian systems. For example, if H is kinetic plus potential energy 
on a Riemannian manifold My we can take y : P = TM+P, y ( v )  = - v .  
Similarly, as we shall see later, quantum mechanical systems are always 
reversible as their Hamiltonians are quadratic forms. If f  is a lift of an 
involution p: M+M to TM or T*M, so f  is symplectic, we call f  0 y  a "parity 
symmetry." Clearly f  0 y is antisymplectic and is an involution iff f o p  = y 0 f. 
Typically we might choose p to be reflection in the origin. 

EXERCISES 

Under the hypotheses of 4.3.1 and 4.3.5, show that XH is tangent to J- '(p) 
and that XHI J - '( p) and XHR are T,-related, that is, TT,, O X ,  = XHp 0 T,,. For G 
invariant functions f,g on P, show that { f,g),=_{ f,,g,). Discuss for 4.3.q~). 
Let the hypotheses of 4.3.1 hold and suppose G is another Lie group acting 
symplectically on (P,o) with an Ad*-equivariant momentum mapping If the 
actions of G and G commute and 7 is G-invariant, then 
(i) G leaves J invariant; 
(ii) the e-action induces canonically a unique symplectic action on P,-and 

the induced momentum mapping <: P,+Q* satisfies GS= ~ o i , , .  
(Hint: Replace in the proof of 4.3.5 everywhere "flow" with G-action; for 
the momentum computation on P, use the fact that tplJ -'(p) and tPfi are 
%-related.) 

Note that 4.3.5 is a particular case of this statement with G= R, J= H. 
Taking in 4.3.q~) G= G acting on T* G by right translations, we conclude that 
G-p CQ* is acted on symplectically by G. Thus, show that G-p is a "homoge- 
neous Hamiltonian G-space." What is the momentum mapping for the action 
of G on G-p? The reduced phase space? 
(a) Let S' act on T*R2 by rotations. Construct the reduced phase space 

explicitly and identify it with "rotating coordinates." 
(b) Describe the process of fixing the center of mass and angular momentum 

of a system of n particles in R 3  in term of reduction (see Robinson 
[1975c] and Section 10.4). 

This exercise shows how the reduction is done if the momentum mapping J is 
not Ad*-equivariant (see also Exercise 4.3.E). Let (P,o) be a symplectic 
manifold, G acting symplectically on P, and let J: P+Q* be a momentum 
mapping of this action. 
(i) Recall that the one-cocycle of G for the co-adjoint representation is 

defined by a(g) = J (@(g,p)) -Ad;- I(J (p)), g E G, p E P and it does not 
depend on p (see Sect. 4.2). It also satisfies a(gh)=a(g)+Ad;-~(a(h)). 
Let 9: G XQ*+Q*, (g,p)-Ad;-IF+ a(g). By 4.2.7, J is equivariant with 
respect to this action, that is, 9(g,  J(p)) = J(@(g,p)). Conclude that if .$',p 
denotes the infinitesimal generator for the action 9 ,  that is, tO*(p) 

d 
= ;ii 9(exp t5, p)1 ,,o, 5 E 0 we have T, J (tp(p)) = E,=(J(p)). (Hint: See 
4.1.28.) 

(ii) Show that Lemma 4.3.2 still holds, where G, denotes the isotropy group 
of p under the action 9. 
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(iii) Formulate and prove the analog of Theorem 4.3.1, dropping the assump- 
tion of Ad* equivariance of J and letting G,, be the isotropy subgroup of 
p Eg* under the action 9. 

(iv) Prove the analog of Theorem 4.3.5, dropping the assumption of Ad* 
equivariance of J. 

(v) Show that if the action 9 of G on g* is used in place of the co-adjoint 
action, the orbit G-p is symplectic with 

4.3E. (A. Weinstein) 
Let a: P+ M be a principal G-bundle and Jp the natural momentum mapping 
on PP.  Let Q be a Hamiltonian G-space with momentum mapping JQ. Show 
that P P X Q reduced by Jp + JQ at p = 0 is symplectically diffeomorphic to 
the space (r,&P) XGQ constructed by Sternberg (Proc. Nat. Acad., Dec. 1977). 
Give the isomorphism explicitly for Exercise 3.7F. 

4.3F. (Fong and Meyer) 
(a) Let @ c d(P) be a Poisson subalgebra on a symplectic manifold (P,o). 

Let s~={x€%(P)Ix(~)=o for all f E@)  and S#  ={Xfl f €@I. Show 
that So, S # and son  S # are involutive (and assume the pointwise 
objects are bundles). Let p E  P and N be the leaf of the So foliation 
through p. Let p-p' if p and p' lie on the same Son S # -leaf in N. Let 
B = N/-. Show that B is a symplectic manifold. 

(b) Let G act symplectically on (P,a) with a moment J: P-g* and let 
@ ={.f(.$)k€g). show that N= J - ' ( ~ )  if ~ ( ~ ) = p  and that the Son S # -  
leaf in N is the orbit of p under GN={g€ GlaZN= N), a Lie subgroup 
of G. If J is Ad*-equivariant, show that this reproduces 4.3.1, while 
otherwise it reproduces the result of Exercise 4.3.D. (See Fong and Meyer 
[1975].) 

4.3G. (Marle) Let the hypotheses of 4.3.1 hold and let G also act on g * by the 
coadjoint action (or the action \k if J is not Ad*-equivariant; see Exercises 
4.3D, F), so that G.p is a symplectic manidd 4.3.4(v). Let N = J- '(G.~). On 
N, say pup '  if p and p' lie in the same G-orbit and if J(p)=J(pf). Let 
Q = N/-- and J: Q+G.p be the map induced from J. Show: 
(a) Q is a smooth manifold for which the projection ??: N+Q and .f are 

smooth submersions and G acts smoothly on Q. 
(b) Q is a symplectic manifold and G acts symplectically on Q with momen- 

tum mapping .f. 
(c) The symplectic structure on Q can be obtained from the result of Fong 

and Meyer (Exercise 4.3F) by choosing @ = {.f(.$)lt€ g and &(p) = 0). X 
(d) ~ocally, Q is P, x G. y. @ 
(e) Q reduced by the action of G on it is again P,. 4 m 
(The reader is referred to Marle [I9761 and Kazhdan, Kostant, and Sternberg 8 
[I9781 for a number of quite interesting applications of these results.) 2 

4.3H. (Arms, Fischer and Marsden) Let J be an Ad*-equivariant moment for a Z 
symplectic action of G on (P,a). Let P and G carry Riemannian structures. 
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range TXJx = orthogonal to J-' (M). 

J n ker 3; = orthogonal 
Gp x within J-* (p) 

Then show that TxP admits the orthogonal decomposition 

TxP= rangeZx +(ker TxJ n kerZz) +range(TxJ)* 

-- Tx (G,.x) + ker TxJ/ Tx (G,-x) + T, (G.x)  

where Zx:  g,+T,P: & + t p ( x )  and * is the adjoint relative to the inner 
products involved. [Hint. Write Tx P = ker T, J + range( Tx J)* = range Z, + 
kerEz and prove rangeZXc ker CJ.1 See Fig. 4.3-2. (For applications of this 
decomposition, see Arms, Fischer, and Marsden 119751.) 

4.31. Prove theorem 3.4.15 in the following context. Let the conditions of 4.3.1 hold. 
Show that I,= J - ' ( y )  has a unique volume form 6, invariant under G, that 
projects to the volume form determined by the symplectic form o, on P,. 
Deduce that if H is G-invariant, XH leaves 6, invariant. 

4.35. (The Routhian) Let L be a Lagrangian on TQ and let G be a group acting on 
Q and hence on TQ, which leaves L invariant. Form from X, the correspond- 
ing reduced Hamiltonian system on P,= J - ' ( p ) / ~ , ,  w h d ~  is the momen- 
tum map (see 4.2.14). The reduced Hamiltonian is called the Routhian and is 
denoted R,. (It depends parametrically on y ~ g * . )  Show that this procedure 
generalizes the classical description of the Routhian for cyclic (or ignorable) 
coordinates (cf. Goldstein [1950], p. 218-220). 

4.3K. Use reduction by the energy integral (4.3.qii)) to give another proof of the 
principle of least action 3.8.5. 

X 

E 
4 - 4.4 HAMlLTONlAN SYSTEMS ON LIE GROUPS AND THE RIGID BODY 3 
2 This section studies some general features of Hamiltonian systems whose 
z configuration space is a Lie group. The main example we consider is the rigid 

body; the configuration space here is the rotation group SO(3, R). Later, in 
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Sect. 5.6, we shall indicate another infinite-dimensional example, namely, 
the motion defined by Euler's equations in hydrodynamics. There, the config- 
uration space will be the infinite-dimensional Lie group of all volume preserv- 
ing diffeomorphisms of a compact manifold with boundary. 

Our discussion of the rigid body cannot claim to be exhaustive; for 
specific details on solutions the reader should consult, for example, Whittaker 
[1959], Goldstein [1950], Appell [1941,1953], or Routhe [1955]. 

We will begin with a general treatment of mechanics on Lie groups. This 
material is based on Arnold [I9661 and Marsden and Abraham [1970]. For 
alternative approaches, see Hermann [1972a]. 

Let G be a (finite-dimensional) Lie group. Then the tangent bundle TG is 
trivial, that is, isomorphic to G XQ, where Q =  TeG is the Lie algebra of G. 
There are two isomorphisms, denoted X and p determined by left and right 
translations on G. If h E G, recall that left translation by h, denoted L,,, is the 
map gwhg; similarly, right translation Rh is the map gwgh. We define the 
isomorphism of vector bundles A : TG+ G X Q by 

where g = rG (v), rG : TG-G being the natural projection. Similarly, we define 
the vector bundle isomorphism p : TG-+ G X Q by 

We shall sometimes refer to X as defining body coordinates [i.e., X(v) repre- 
sents v in body coordinates] and p as defining space coordinates; the reason 
for this rather obscure terminology will be explained when we discuss the 
rigid body. 

The transition from body to space coordinates is as follows: 

where gbAdg is the adjoint representation of G on Q. 

We now relate time derivatives in space and body coordinates. Thus, let 
x(t) be a curve in G, and let vo(t) be a curve in TG with vo(t) E Tx(t)G. Let 
((t) = TeLx(t)-lv,(t), that is, [(t) is the vector field over x(t) in body coordi- $$ 
nates so that the corresponding vector field in space coordinates is &t)= !$ 
AdX(,,(S(t)). Now recall the formula 4 

m 
8 



where g (t) = Ad,(,,(q), g E g, proved in Example 4.1.25(c). Thus Leibniz' 
formula for derivatives yields 

that is, 

where v,(t)= T e R X j I ) - d t  is the "velocity" in space coordinates. This 
formula becomes, in the special case of SO(3,R) and using a slight abuse of 
notation, 

dtspace ( d t 7  ) -= - 
dt + 0s X (space 

space 

Finally, we compute the action of the left translation maps TeLg in both 
space and body coordinates. This will be useful below in connection with our 
discussion of various left-invariant quantities. In body coordinates, left trans- 
lation does not act on the vector component. Indeed, we have 

On the other hand, a similar calculation shows that in space coordinates, the 
left translation map becomes 

These results mirror the intuitive notion that the vector 5 is "attached" to 
the "body," and so does not vary as the body moves, relative to an observer 
fixed in the body; but 5 of course does vary relative to an observer fixed in 
"spdce." 

Y To obtain only the equations of motion and the conservation laws the 
tangent bundle is the simplest and is all that is really needed. Indeed, on a 
Riemannian manifold, the geodesic flow appears most natural on the tangent 

8 
2 bundle. However, in the literature on topology and mechanics, it is most 

common (although not essential) to use the cotangent bundle. In anticipation 
of this for later sections, we shall also describe the parallel situation on PG. 
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The cotangent bundle P G  is isomorphic in two ways, by X and 5, to 
G X g*. These two isomrphisms of vector bundles are defined by 

where g = 7: (4, 72: : T* G+ 6 being the canonical projection. As before, we 
shall say that A(a) represents a in body coordinates and ?(a) represents or in 
space coordinates. The transition from body to space cooordinates is given by 

where p ~ g * .  
As before, we want to relate t h e  derivatives in space and body eoordi- 

nates. Thus, let x ( t )  be a curve in G and let a( t )  be a curve in T*G over x(t) ,  
that is, for each t ,  a ( t ) E  T'(,)G. Let p(t)= or(t)TeLx(,), that is, p(t) is the curve 
of one-forms over x ( t )  in body coordinates. We just saw that the correspond- 
ing one-form in space coordinates is fi(t)=Ad,(,,-l(p(t)). Now we have the 
formula 

where v( t )  = Ad,*(,,- l (v)  and v E Q * ; see Exercise 4.1 .N. Then Leibniz9 formula 
for derivatives yields 

that is, 

where ub(t)= TeLx(,,-l-dx/dt is the "velocity" in body coordinates. 
It is easy to compute the action of the left translation rnaps (TeLg)* in 

both space a d  body coordinates: 

8 
We now discuss Namiltonian systems on P G  and TG. We begin by g 

finding the expressions for the canonical one- and two-forms 2 
to and a ,  on T*G, in body coordinates, that is, we want to determine 8,= 
A,Bo~Q1(G X g*) and (3, =X,w0~Q2(G x a*). $ 



4.4.1 PsoposiBllsn (Cushmasn [4977]) k t  (gyp) E  G X g* and (u,p), (w,a) E  
T(,+)(G X a*)= TgG X g*. Then 

(i) @B( g9 P) ' ( ~ 9  P) = P ( ~ ~ ~ ~ - ~ ' ~ >  

= p(TL,-1.u) 
(ii) To compute uB we shall use the formla 

Let X,YE%(GX~*) ,  X=(x',X2), Y=(y' ,y2) be the vector fields on 
G X g* such that X2, Y2 are constant and equal to p (respectively, O) on g* 
and x', Y' are left-invariant vector fields on G whose value at g E  G is u 
(respectively, w), that is, X ' = Xt, Y = X,, where [= T'LgP '(v), 9 = T'Lg- '(w). 
Denote by +t(h, v) = (+)(h), +?(v)) the flow of X, that is, +;(h) is the flow of 
the left-invariant vector field x', and @(v) the flow of the constant vector 
field X2 on g* equal everywhere to p. Then 

= p( Y ' (e)) (by left invariance of Y' and the definition of +2) 

A similar computation shows that 

Since 
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so that 

= ,u([x ' (e), Y ' (e)]) (by left invariance) 

Addition of these three equalities gives the desired formula. 

There are similar fomulas for 8, and w, in space coordinates (replace L 
by R). 

Assume that the Lie group G has a left-invariant metric or pseudometric 
( , ), that is, for all u, w E ThG and all g E 6, 

Left invariance amounts to requiring that in boi& coordinates (,), is inde- 
pendent of g. 

The Riemannian (or pseudo-Riemannian) metric pulls back the natural 
symplectic structure of T*G to TG as described in Sect. 3.2. Recall that the 
one-form O obtained in this way is given by 

where u E TG, w, E T, TG. (See Theorem 3.2.13.). The symplectic form on TG 
is then Q =  -do. We can now determine expressions for 8 and $2 in boi& 
coordinates, that is, for 

@ , = h , @ ~ $ 2 ~ ( 6  Xg) 

4.4.2 PropsRlon. Let (g, 5)  E G X g and (0, S), (w, 9) E T{,<)(G X g) = 
T,G Xg. Then 

d 
Pros& Let cp: TG+T*G be the diffeornorphism determined by the metric 2 
and 4: G x Q - + G  x g* be given by #(g,u)= (g, (u, .),). Then clearly # oh= 5 



4 HAMlLTONlAN SYSTEMS WITH SYMMETRY 317 

- 
X o cp, that is, the following diagram commutes: 

Thus, 

But from the expression for 8, in 4.4.1 and the definition of 4, +*OB is given 
by (i). The proof of (ii) is similar. II 

Denote by A: G x G+G the action of G on itself by left translation, that 
is, A, = Lg for all g E G. Then 4.2.2 and 4.2.1 1 yield the following. 

4.4.3 Theorem. ( i )  The Ad*-equivariant momentum mapping j of the action 
AT* on T* G is given by 

If the Hapiltonian H :  T*G+R is left invariant, that is, H o T* Lg = H for all 
g, then J-(t) is constant on the orbits of XH for all ( € 0  and XH is a 
left-invariant vector field. 

(ii) If the Lie group G has a left-invariant metric (, ), then the Ad*-equiv- 
ariant momentum mapping J of the action AT on TG is given by 

If E: TG-R is left invariant, that is, E 0 TLg= E for all g E  G, then .?(<I is 
constant on the orbits of the left-invariant vector field X, for all 5 €9 .  This 
holds in particular when E = K,  where K(vg) = i ( v ,  v) ,  is the kinetic energy of 
the metric. 

(iii) The action AT* in body coordinates is given by 
X g 
o A r :  G x G x g * + G x g * ;  ( g , ( h , p ) ) ~ ( g h , p )  
CCI 

8 The Ad*-equivariant momentum mapping of this action on G X g*, & : G X g* 
3 +a* is given by z 
3 . f B ( t ) = . f ( < ) o h l  foraNtEg 
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that is, 

If the Hamiltonian H :  G X g*+R is left* invariant, that is, H ( gh, p) = H (h, p) 
for all g, h E G and all p E g*, then & (5) is constant on the orbits of the 
left-invariant vector field X, for all 5 €9.  [The symplectic mandfold here is 
( G  G*, @B).] 

(iv) Assume again that G has a left-invariant metric (, ). The action AT in 
bod! coordinates is given by 

The Ad*-equivariant momentum mapping of this action on G X g is the mcy, 
JB: G X g+g* given by 

that is, 

If E:  G X g 4 R  is left invariant, that is, E (gh, q )  = E (h, q )  for all g, h E G, 
11E g ,  then j B ( 0  is constant on the orbits of X, for all 5 Eg; the symplectic 
manifold here is ( G  x g , QB). In particular, this hot& if E (g,  .$) = % where 
K(5) = ;(& 5), is the kinetic energy of the metric. 

(0) The action AT* in space coordinates is given by 

A,": G x G xg* +G xg*; (g ,  (h, y ) ) ~ ( g h ,  ~ d ; - ~ ( p ) )  

The Ad*-equivariant momentum mapping of this action on G X g* is the map 
Js :  G Xg*+g* given by 

that is, 

Js(g, PI  = P  X 
4: 
Q 

On the symplectic manifold (G X g*, w, = w,) , i f  the Hamiltonian H:  G X g*+ 
R is left invariant, that is, H (gh, Ad,- I(  p)) = H (h, p) for all g, h E G, p E g*, 
then Js (6) is constant on the orbits of the left-invariant vector field X, for all 5 E g . z 

(vi) Again assume G has a left-invariant metric (,). The action AT in 
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space coordinates is given by 

The Ad*-equivariant momentum mapping of this action is given by 

Js: G ~g+g* ,&( t )= j  ( g o P - '  for al l<€@ 

that is, 

Js(g, rl).t= (Adg-1(77), Adg-l(t)), 

Zf E:  G Xg+R is left invariant, that is, E(gh, Adg($)= E(h, q)  for all g, 
h E G, q E g , then j, (8 is constant on the orbits of the left-invariant vector field 
X, for all ( E  g ;  the symplectic manifod here is (G X g ,  3, =p*3). In particu- 
lar, this holds if ~ ( g ,  8= ;(T,R,(~), TeRg(0),. 

ProoJ: All conservation statements are particular cases of the general theo- 
rem on conservation of momentum; see 4.2.2. The expressions for AT and AT 
in body and space coordinates have been established at the beginning of this 
section. (i) and (ii) are merely rephrasings of 4.2.11 and 4.2.13. The left 
invariance of the Hamiltonian vector fields in question follows from the fact 
that all actions are symplectic and from 3.3.19 

The conservation laws stated above are the six possible formulations of 
the so-called Euler conservation law. 

d 
G In the tangent bundle formulation in body coordinates the surfaces 

( t ,  t ) ,  = constant are called inertia ellipsoih. Thus, if E = K= kinetic energy, 
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these surfaces will be preserved in body coordinates by conservation of 
energy. 

In 4.4.3(vi), if we write (x,y),=A(y).x, which defines the linear map 
A : gjg*,  then we can write 

and hence 

Thus, Euler's conservation law amounts to conservation (in space coordi- 
nates) of the "vector" quantity 

for each < E g. In the case of G = S 0 ( 3 ) ,  this conserved quantity is simply the 
angular momentum. The plane g[,, = { 17 E g 1 Lg(q) = 0) is called the invariable 
plane for a given initial condition < E g. 

Poinsot, back in 1834, discovered a geometric way to visualize rigid body 
motion. Namely, he proved-for SO (3)-that the inertia ellipsoids move in 
space coordinates so as to always "roll" on (a translate of) the invariable 
plane. This rolling exactly characterizes the motion of the body since the 
inertia ellipsoid is attached to the body (see Fig. 4.4-1). These features are 
quite general for any Lie group as we now show. 

4.4.4 Theorem. Consider the situation of 4.4.3(vi) with E = K, that is, E (g,n 
=$(T,$<,T,$<),= $(A~,-I<,A~,-&')~. Let w(t) be an integral cwve of X,, 
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in space coordinates. Let Eo= i(w(O), w(o)),, and let S ( t )  denote the image of 
the inertia ellipsoid ((,.$),=2Eo after time t ,  in space coordinates. That is, 

where x ( t )  is the geodesic in G obtained by projection of w( t )  onto G. 
Then letting gW(,,,,(,) denote the invariableplane with initial condition w( t )  E g 

we have: 
(0  gw(t),x(t) is tangent to S ( t )  at w(t) ,  and 

( i i )  gw(t), x ( t )  is independent o f t .  

Proof. (i) Let f ( 5 )  = (Adx(,).-15, Adx(,)-~E),  and notice that by nondegener- 
acy of (,),, f - ' ( 2 ~ , )  = S ( t )  is a codimension one submanifold of g .  More- 
over, w ( t )  E S ( t )  since, by left invariance of the metric (. , .), 

which is twice the value of the energy at ( x ( t ) ,  w( t ) )  by 4.4.3@i). By conserva- 
tion of energy, this equals 2E0. The tangent space to S ( t )  at w(t)  is 

since 

by definition. 
(ii) By 4.4.3(vi), JS(x( t ) ,  w(t)).$ = (Adx(, , -~w(t) ,  AdX( , , -~ t ) ,  is indepen- 

dent of t and thus the kernel of Js(x(t) ,  w( t ) )  is time independent. But this 
kernel is just gw(,,, ,(,,. 

On the symplectic manifold (P _G, wo) consider the left-invariant Hamilto- 
nian H :  T* G+R and let HB = H X - ' : G X g*+R be its expression in body 
coordinates. Since by the definition of wB, i: ( P G ,  wo)+(G Xg*,wB) is a 
symplectic diffeomorphism, X,X, =XHOx-,  = XHB (see 3.3.19) is the Hamilto- 
nian vector field XH E %(T*G) expressed in body coordinates. Hence 

y where 
s3 
5 
m 
2 z 



This means, in particular, that 5: gwX(g,  y) is a vector field on 5. Since 
by definition of the action A T  [see 4.4.3(iii)], A&=XO ~ L , - I  OX-', left 
invariance of H, that is, H 0 T*Lg-I = H, implies 

that is, HB is left invariant, too. Therefore by 4.4.3(iii), XHB is left invariant. 
But 

RE = (L,, ida.) : G X g*+G X g*, 

which implies 

and hence 

Thus X'" is a left-invariant vector field on G for each y Eg* and Y(g-lh,y)= 
F(g, y) for all g, h E G and y E g*, that is, Y(g, y) = Y(e, y), and hence Y is 
independent of g. 

Thus we have the complete description of the Hamiltonian vector field XH 
in body coordinates: X,xH=XHB, XHB(g,y)=(*(g),y, r(B)) with FpE 

(G), the left-invariant_ vector fields depending smoothly on y € g * and 
Y: g *+g *. We refer to Y as the Euler vector field or the Euler equations in 
cotangent formulation. 

We want to determine the flow of YE%@*). Since X*xH=xFB, if 
F, : T*G-+T*G denotes the flow of XH, X o  F, 0 A - I :  G X g*+G X g* is the 
flow of XHB. Hence, if P,: G x g*+g* is the projection, 
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the last equality holding since Y is independent of g E G. We now compute 
P2 X0 I;, X-'. Denote by x ( t )  = r:(I;,( y)) for y Eg* fixed. Then by left 
invariance T* Lg F, = F, T* L,, and hence 

Thus @(y)= ~ ~ ( y )  TeLX(,, is the flow of F. Note that in the discussion 
above only left invariance of XHB was needed. We have proved the following. 

4.4.5 Proposition. (i) Let X E%(T*G) be left invariant and denote by 
X! = &x- its expressis in body coordinates; then X ( g ,  y )  = 
(X(g ,y ) , y ,Y (y ) ) ,  where Y :  g*+g* and F p :  g ~ X ( g , y )  is a family of 
left-invariant vector fields on G depending smoothly on y Eg*. m e  flow of y, 
denoted by &, is given by 

H,  (4  = (TZL,(*) I;,)(v) = I;, ( v )  o TeLx(,) 

where x ( t )  = 7: (F,  ( P ) ) .  L is called the cotangent Euler vector field. 
In particular, this holds for any Hamiltonian vector field X, with left-in- 

variant Hamiltonian H, in which case x;=XHB, where HB = H A-' is the 
expression of the Hamiltonian H in body coordinates. 

(ii) Assume G has a left-invariant metric (,). Let X E %(TG) be left 
invariant and denote by xB=A,X its expression in body coordinates; then 
X" ( g ,  = ( x ~ ( ~ ) ,  5, Y ([I), where Y :  g+g and x5 is a family of left-invariant 
vector fields on G depending smoothly on [ E g.  The flow of Y ,  denoted by H,, is 
given by 

H, (5) = ~x(oLxco-l(Ft (0) 

Y where ~ ( t )  = rG (I;,(()). Y is called the tangent Euler vector field. 

s In particular, if E :  TG+R is left invariant, then the vector field XE is left 
invariant and xi= XEB, where E, = Eo A-' is the expression of E in body 

m 
coordinates. 

d 
Z Part (ii) of this proposition is proved along the same lines as part (i) and is 

left as an exercise to the reader. 
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The derivation of the flow in body coordinates may be done slightly 
differently as follows. (We do the case of TG.) Let G be a Lie group, and let 
4 be a flow on TG that is left invariant: TL, 4 = Ft TL,. Let us express Ft 
in body coordinates: we write @,A-'(g, v) = (At(g, v), Bt(g, 0)) E G X g. The 
condition of left invariance takes a particularly simple form in body coordi- 
nates since, as we have seen, ATL,A - '(h, v) = (gh, 0). It follows immediately 
that we must have 

and 

Let us write Ht(v) for Bt(e,v), and K,(v) for At(e,v). Thus Ht maps g+g and 
Kt maps g+G. The condition FS+,= < 0 Ft implies that Ht and Kt obey 
certain identities. Indeed, we must have 

that is, 

so that 

and 

The latter condition says that Ht is aflow on g, which we may call the flow in 
body coordinates. The condition relating K and H may be less familiar; but 
such "cocycle identities" have been studied, for example, in connection with 
group representations. 

4.4.6 Theorem. (i) Let X E %(T* G) be a left-invariant vector field with flow 
6. Let Y: g*+g* be the corresponding cotangent Euler vector field with flow 
K. Then we have the formula V 

,4 

where x(t)=rJ(Ft(p)) for all pEg*, qEg. 4 
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In particular, if F, is the flow of X,, where H is left invariant, then we have 

for all p E Q*, 77 E Q. 

( i i)  Let G be a Lie group with left-invariant metric (,) and X E X ( T G )  a 
left-invariant second-order equation with flow 4. Let Y :  g+g be the corre- 
sponding tangent Euler vector field with flow Ht. Then we have the formula 

= ( [ L  n ]  . 5 )  +(& (n). ' t)(X(O) 

for all 5, 7 E g .  
In particular, if F, is the flow of X,, where E: TG+R is left invariant, the 

symplectic structure associated with the metric is used on TG, and X, is a 
second order equation, then 

for all &  17 E g. 
Note: X is second order when x [ ( ~ ) =  TeLg((); See Ex. 4.4.C. 

Remark. This last formula obviously determines Y uniquely and is indepen- 
dent of the left-invariant energy function E. Taking then E= K, the kinetic 
energy defined by the metric, we can conclude that the geodesic flow is the 
unique left-invariant Hamiltonian vector field on TG that arises from a 
second-order equation. Recall that the flow is complete if the metric is 
Riemannian, and is complete in the pseudo-Riemannian case if G is compact 
[see 3.7.20(ii) and 4.2.221. 

ProoJ (i) Fix p E Q* and let x ( t )  = 7; (Ft ( p)). Then 



But x(t)- ' x  (t) = e implies that 

and by Example 4.1.25(b), (c), 

This gives then the desired formula. 
(ii) Fix 5  E g and let x (t) = re (I;, (8). Then 

d = ( ~ t n  I;, 5 )  = by 4.4.3(ii) 

= ( ~ d ~ - ,  ( )  1 (by left invariance of the metric) 
t = O  

since x(t) is a base integral curve of a second-order equation and hence 

The final assertions of (i) and (ii) follow from conservation of momentum X 

in the case it concerns. . g 
4 
6 
3 

In the above derivation, the flow property of I;, was not essential. What 2 
was relevant was that we were dealing with a curve u(t) in TG that "corre- 
sponds to a physical motion" in that u(t) = (d/dt)x(t), if x(t) = re u(t). The 
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Euler equations in tangent formulation are, in this sense, purely geometrical 
or "kinematical." Note also the discrepancy between the cotangent and 
tangent formulation in the above theorem. 

4.4.7 Theorem. (i) Let H: T*G-R be a left-invariant Hamiltonian (i.e., 
H o T* L, = H for all g E G) and denote by G-p c g* the orbit of G under the 
co-adjoint representation, Gap = {Adz- tpl g E G ). Then, on the symplectic mani- 
fold (G-p, a,,), where 

G-p is a Hamiltonian vector field with Hamiltonian H, : G-p+R gioen by 

(ii) Let G have a bi-invariant metric (,). Denote by G. < the orbit ofG under 
the adjoint representation, that is, G - < = { Adg$ lg E G ). Then on the symplectic 
manifold (G - 5, w*), where 

Y I G . < is a Hamiltonian vector field with Hamiltonian Hg: G .< + R given by 

where E is a left invariant energy function on TG. 

Proof. (i) The expression for a,, was already derived in 4.3.4(v). That proof 
set up a symplectic diffeomorphism cp: P, + Gap; n,(a,(g)) -, Ad;p. By 4.3.4, 
the original Hamiltonian system X, induces a well-defined flow 4, and hence 
vector field Xk on P,; the vector field is Hamiltonian with the energy function 
induced naturally from H. We have l;,P(?r,(cw,(g))) = ~r,(l;,(cw,(g)). The corre- 
sponding flow on G.p induced by cp is given as follows. For v = Adglp, 
x(t) = 7,*(F,(v)), 

= Cp 0 T,,O 4 0 Tg*-1Lgv 

= cp 0 n,, 0 T,*-, ,,,, L, 0 F,y (since l;, is left-invariant). 



Because J is an integral of X,, T,*-lX(,,Lg 0 4(v) = 1", 0 T,*-IL,(v) E JP1(y). 
Since JP1(y) is the graph of the one-form a,, q ( h )  = T,*-lX(,,Lg 0 4(v) for 
some h E G. Applying T,*, h = g-l~,*(4v) = gP1x(t). Therefore, 

= T~L,l,(oT,*-~x(t,L,&(v) (since a,(h) = T;Rh-lp = T,*-lx(t,Lg 0 F,(v)) 

The result (i) therefore follows. The assertion (ii) follows from (i) using the 
symplectic diffeomorphism between g and g* induced by (,) and lemma 
4.4.1 1. . 

From this argument and 4.3.6 we also see that relative equilibria of X, on 
TG correspond to equilibria for the Euler vector field Y on G-y. (Since 
G.p is invariant under Y, these are the zeros of Y itself.) 

The stability criteria of equilibrium points for the tangent Euler vector 
field is given by the following. 

4.4.8 Theorem (Arnold). Let Y (0 = 0, where $ E g and Y is the tangent Euler 
vector field. Then if the bilinear form Q on g given by 

is positiue- or negatiue-definite, then ( is a stable stationary (equilibrium) point 
of the vector field Y ( G. (A is defined on page 320.) 

Proof: By 4.4.7(ii) YIG-( is a Hamiltonian vector field on the syrnplectic 
manifold (G-(,we) and the Hamiltonian is H(q)= i(77,q) for q E Get. Hence 
we can apply the stability criterion 3.4.17, that is, D ~ H  (0 should be positive- 
or negative-definite. If this is established, ,$ will be stable for Y I G (. 

Recall that if M is an arbitrary manifold and f: M+R is a smooth 
function with m E M a critical point, that is, df (m) = 0, then 

Hessf: TmM X TmM+R 

is a symmetric bilinear form which, in any chart, is given by the matrix of 
second partials. Intrinsically, if u, W E  TmM are extended to vector fields 
V, W; then, 



In our case, extend q,[ to vector fields on G.E, as follows: 

?j (v) = - A - ' (adq) * Av 

where v E G. 5. Clearly, 

so that 

which is exactly the bilinear form given in the statement of the theorem. II 

For the case of the rigid body, this criterion reduces to a classical one: a 
rigid body spins stably about its longest and shortest principal axes, but 
unstably about its middle one (these terms will be defined below). 

Another important point is the question of stability of whole geodesics on 
6, or of integral curves of XH on TG. One way to approach this problem is by 
means of curvature. If one can show that a geodesic on G remains a priori in 
a region of positive (sectional) curvature, then it is stable. Unfortunately, the 
calculation of curvature of left-invariant metrics on G is not trivial. Arnold 
[1966] has done so for cases relevant to fluid mechanics (see Sect. 5.5 and 
Arnold [1978]). See also Milnor [1976] for an excellent review of what is 
currently known about curvatures of left-invariant metrics. 

So far, all Hamiltonians on T*G and TG have been supposed to be left 
invariant. We shall analyze now an important special case when this does not 
happen, left invariance being destroyed by a potential function.* 

Let G be a Lie group with a left-invariant metric (,) and V: G+R an 
aribtrary smooth function. Consider the energy function E= K+ Vor, on 
TG, where K(vg) = i(vg,vg), is the kinetic energy. If V is not left invariant, E 
will not be either. The associated vector field X, will remain, of course, a 
second-order equation on TG by the last statement of 3.5.17. Let us define for 
VE43 

3 z Ht (TI = Txu)Lx(t)-tK (q) 
4 
r;l 
g Here is the flow of XH and ~ ( t )  = X, (t) = r,(< (q)). This will not define a 
op 
0 

*Another case in which this happens is for a nonhomogeneous fluid; see Sect. 5.5 and Marsden 
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flow on g because 4 is not left invariant. However, we can define a 
time-dependent vector field at the points H,(<) by setting 

y* ( f f t  (0) = $ f f t  (0 
The motion is then described as follows. 

4.4.9 Prgrpssllion. Using the above notation, we have 

f ire Y is the Euler vector jield for 6, (,) [see 4.4.6(ii)] and "grad" is the 
gradient with respect to the lefiinuariant metric (,). 

Pro@$ Our argument is an extension of that of 4.4.3(ii). VVe have by 4.4.3(ii) 
and left invariance of the metric 

Now, if we set q( t )  = A d ( ~ ( t ) - ' ) ~ ,  we have 

Applying the formula giving the transition between time derivatives in space 
and body coordinates proved at the beginning of this section, 

Note that dx/d t  = E;(<) because E; arises from a second-order equation. Thus 

s t ( t )= [ ~ d ( x ( t ) - ' ) r , ~ d ( x ( t ) - ~ )  TR,,,,-~F, (81 

= [ a d ( x ( t ) - ' ) s , ~ ,  ( 8 1  

Accordingly, 

d 
-j dt (0 = ( ~ d ( x ( t ) - ' ) n ,  yt ( H ,  (0)) 
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Now 

since by 4.4.3(ii) ( j(q),  K )  = 0. By 4.2.12(iii) and making all suitable identifi- 
cations using the metric, 

Thus, if we let w = Ad(x(t)- ') .q and use 4.4.3(ii), 

(r,(~,tE))7w)-(~(~,(t)),w)=(~,(~,(t)),w)+([w,~,(5)],~,(5)) 

= - d ~ ( x ( t ) ) .  ~ , ~ ~ ( * # d ( x ( t ) ) w  

= - ~ v ( x ( ~ ) ) . T ~ L ~ , , , w  

for all w E g. The result follows from this together with the left invariance of 
the metric (,). H 

In the case of SO(?) the extra term in Y, arising from V is called the 
' 6  torque." If one has forces that are nonconservative, these lead to nonNami1- 
tonian vector fields on TG, but the equations of motion retain the form given 
above, with the obvious replacement of -grad V by a general force term. 

Previous completeness theorems apply, in particular, to the present con- 
text. The folIowing consequence of 3.7.15 is illustrative. 

4.4.1 0 Proposition. Let G be a Lie group with a left-invariant metric (, ). 
Let K (v) = (0,v) on TG and let V: G+R be smooth and bounded below (or, 
more generally, bounded below by a positively complete function). Then the flow 
of the Hamiltonian E = K + V o r, is complete. 

W e n  one is using an "accelerating" coordinate system, fictitious forces 

y are introduced. This happens, of course, when one uses coordinates fixed on a 
rigid body such as the Earth. The general set up is as follows. Let X,  be a 
given Hamiltonian vector field on a symplectic manifold P. Let 5, be a given 

8 flow on P corresponding to a ""motion" of P. Let c(t) be an integral curve of 

2 - X ,  and set E(t)= [[(~(r)). Then 
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where Y is the generator of 5,. Here ([,),X, is just X ,  in the "new coordinate 
system9' defined by S; and the extra term Y is the "fictitious" or Coriolis 
forces. 

Of course, using left- or right-invariant metries is mostly a matter of 
convention. We saw that the flow in body coordinates is described by the 
Euler vector field Y. It is easy to see that the motion us in space coordinates 
may, dually, be regarded as an integral curve of the Euler vector field 
obtained by extending the metric to be right rather than left invariant. Thus 
changing ""left" to "right" interchanges v, with v,. Both of them satisfy the 
same "Euler equations." m e n  we study fluid mechanics as an exarnple of 
Hamiltonian systems on Lie groups in Sect. 5.5 we will see an instance where 
it is more natural to use right invariance. 

There is a simplification of the Euler equations on G if its Lie algebra g 
carries a nondegenerate symetr ic  biginear form (,) that is invariant under 
the adjoint maps A d ( g ) :  

( A d (  g)t,Ad(g)17) = (5717) 

Such a bilinear form then defines a pseudo-Eemannian metric on G that is 
both left and right invariant. [Examples of Lie groups with this property are: 
Abelian Lie groups-for which Ad ( g)  =. Id; semi-simple Lie groups-for 
which the "KKing form" (0,  w) = Trace(adu o adw) is nondegenerate; corn- 
pact Lie groups-for which a positive-definite invariant form on g may be 
obtained by "averaging" any gnven positive-definite form with respect to the 
invariant Haar measure on 6. The group SO(3)  falls under the two latter 
categories; later we shall explicitly calculate the invariant inner product on its 
Lie algebra.] 

Suppose that (,) is a hondegenerate symmetric bilinear form on g. Then 
we can write ( 5 , ~ )  =(I[,-q) where I :  g+g is linear and symetric with 
respect to (,). The Euler equations for the geodesic flow of (,) then read 

4.4.1 "9esmma. Suppose that (,) is invariant under A d ( g )  for all g E G.  Then 
for each 5 Eg, ad([)  is skew-symmetric with respect to (,). 

Pro@$ We have 

d 
(ad(E)n,5)= z ( a d ( e x p t t ) n , i ) /  t = ~  

= d ( n , ~ d ( e x p a - l i . ) l  dt t = O  

d 
= - ( ? , ~ d ( e x p ( -  dt fZ)) j )J t=o 

= ( q 7 a d ( - 5 ) l ) =  - ( n , a d ( t ) l )  
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Hence, assuming that (,) is invariant, we have 

so that the Euler vector field is given by 

I Y ( < ) = [ I [ , [ ]  thatis, Y ( ~ ) = I - ' [ 1 [ , 5 ]  

The proof of Lemma 4.4.1 1 shows that ad(rj) is skew-symmetric with 
respect to a form provided that it is invariant under Ad(exp(t$) for all t. We 
can apply this observation to deduce additional conservation laws for the 
geodesic flow of (,) when it has such invariance. (Applications to the case of 
the rigid body will be given below.) 

4.4.12 Proposition. Suppose that ( , ) is invariant under {Ad (exp trj): t E R ) 
for some r j  E g.  Then the function p,, : g + R  defined by 

is a constant of the motion for H,, that is, p,, Ht = constant for all t. (Here Ht 
is, as above, the flow on g in body coordinates corresponding to the geodesic flow 
of ( , ).) In particular, p,, ( Y (5)) = 0 for all 5 E g. 

ProoJ By our remarks above we have 

so that y (Y(5)) is 0 for all 5 E g. Hence 

Alternative ProoJ: On TG we have invariance of (,) under right translation 
by exp(trj) so as in 4.4.3(ii) [++(T,L,rj,() is a constant of the motion. We get 
the result by passing to body coordinates. . 

8 4.4.13 Corollary. Suppose that (, ) is invariant under the adjoint representa- 
2 tion of G. Then the corresponding Euler vector field vanishes identically, and 

therefore the geodesic j7ow F, expressed in body coordinates is given by the 
8 
2 exponential map, namely, 



In other words, the two exponential maps in the Riemannian and Lie 
group sense coincide for a bi-invariant metric on a Lie group, and hence the 
geodesic curves through e are in this case just exp t5 for 5 E g. 

ProoJ: If (,) is invariant under Ad(g) for all g, it follows from the proof of 
4.4.12 that (11, Y (8) = 0 for all q E g. Consequently, Y (5) = 0 for all 5 E g. But 
then Ht (5) = TLX(,)- I Ft (5) = 5 for all 5 E g and hence Ft (5) = Te Lx(,)(. The geo- 
desic flow in body eoordinates is 

=h(TeLx(t,,S) = ( ~ ( t )  g,Q 
Note that 

so that x(t, + t2)=x(t,)x(t2), that is, the curve x: R+G defines a smooth 
one-parameter subgroup of G and hence equals exp tq, where q = dx/dtl,,,. 
Since X, E %(TG) is a second-order equation on G, K(v) = i(v, u), being 
the kinetic energy of the metric, x: R+G is a geodesic. . 

The rotational motion of a rigid body may be described by the geodesic 
flow of a given left-invariant metric on SO(3). This metric is determined by 
the body's mass distribution; it is called the inertia tensor. [The use of left 
rather than right invariance is due to the convention by which we represent 
the action of SO (3) on R3.] The following physical remarks are intended to 
justify this mathematical model. 

Consider a rigid body that is free t o  rotate about a fixed point, which, for 
convenience, we take to be the origin of R3. The notion of rigidity entails that 
the distances between points of the body are unchanged when it moves, so 
that, if x(t,5) is the position at time t of the particle that was at 5 at time 0, we 
have 

where A(t) is an orthogonal matrix. If the motion is continuous and starts out 
at the identity, we must have A (t) E SO (3), the identity component of the 
orthogonal group. The initial mass distribution of the body is described by a 
positive measure y on R3; for A(t) to be uniquely determined we must insist 
that the support of y not be concentrated on a one-dimensional subspace of 
R3. Assuming this, the configuration space of the rigid body can be identified 
with the group SO (3). 
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The kinetic energy of the body at time t is given by 

Now k(0) E TeSO (3) is a 3 x 3 skew-symmetric matrix o; as explained in 
Sect. 4.1, there is a corresponding vector O E R~ such that w(x) = O X x. The 
mapping ~ H O  identifies the Lie algebra TeS0(3) with R3; under this 
identification the Lie bracket corresponds to the cross product in R3. 

At an arbitrary time t we have 

where 

= TR,(,)-IA (t) = p(k (t)) 

The vector representative O(t)=o,(t) E R3 is called the angular veloci~ (with 
respect to our fixed spatial coordinate system); note that the occurrence of 
the map p here is in agreement with (and indeed justifies) our general notion 
of "space coordinates." The corresponding vector as viewed from a coordi- 
nate system fixed in the body (and originally coinciding with the system fixed 
in space) is clearly o,(t) = A(t)-'o,(t). If our general notion of "body 
coordinates" is valid, this should correspond to the action of Ad(A(t)-') on 
o,(t). We verify this in the following lemma. 

4.4.14 Lemma. (i) The adjoint action of SO (3) on TeSO (3)-R3 is the 
usual action. 

8 (ii) The usual inner product on R3  is invariant under the adjoint action 
(and therejbre extends to a bi-invariant metric on SO(3)). B 

d 
z ProoJ: The second assertion is an immediate consequence of the first; let us 

prove the first assertion. Let w E TeSO (3) and let O E R~ be the corresponding 
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vector. Then, if A E SO (3), 

Therefore, 

Since for A E SO (3), A( y X w) = Ay x Aw. We have thus shown that 

which is our assertion. 

The usual metric on R3 therefore corresponds to a perfectly spherical rigid 
body whose motions are just one-parameter subgroups of rotations. 

Returning to our expression for the kinetic energy, we see that 

where (u, v), = /(u x & v x 8 dp(8. Thus K (t) is the kinetic energy corre- 
sponding to the left-invariant extension of the form (,),. The physical motion 
should conserve and "extremize" the energy K; thus we are led to the 
geodesic flow of (,), as promised. 

The form (u,v), can be written (Iu,v) for some positive symmetric matrix 
I ,  where (.,-) denotes the usual inner product in R3. AS noted above, Y following the remarks after 4.4.11, since the inner product (,) is invariant 
under the adjoint representation, the Euler equations take on the simple form 3 

Ei where we have identified the Lie algebra so(3) with R3. We can choose the 2 



original (orthonormal) spatial coordinates so that Z is diagonal: Zx= 
(Zlxl,Z2x,,Z3x3) for constants Zl,Z2,Z3 > 0. [The axes of this coordinate system 
are called principal axes, and the constants Il,Z2,Z, (the eigenvalues of I )  are 
called the principal moments of inertia.] With respect to this coordinate system 
the Euler equations become 

If torques are present, they are added to the right-hand side of the Euler 
equations, as indicated in the general case (but note that the torques depend 
on A (t)). 

The conservation laws are as follows: Conservation of energy says that 
(aB, a,) is constant. Conservation of angular momentum says that 

A ( t ) z ~  (t) - 'as (t) = A  (t)zw, (t) 

is constant since 

and jB(t) is constant on the orbits (A(t),c~,(t)). Proposition 4.4.12 implies 
that if (,), is invariant under rotation about the vector 6 (i.e., if the mass 
distribution has this symmetry), then (wB(t),6), is constant. It follows that 
(wB(t), 16) is constant. But the assumed symmetry property implies that 6 is 
an eigenvalue of I. To see this note that a rotation A ESO(3) about 6 is 
characterized by A$= 6, that is, Ad(A)v = v by Lemma 4.4.14 so that for any 
u E TeSO (3) 

or (zi, 16) = (Azi, 16) for any zi E R 3. It then follows that A16 = 16 and hence 6 
and I6 lie in the eigenspace of A corresponding to the eigenvalue 1. But since 

$ A E SO (3), it is an easy matter to see that 1 is either a simple eigenvalue, in 
which case I6 = ti? for some t E R, or it is a triple eigenvalue, in which case 

3 A =e. Thus we deduce the well-known fact (about a spinning top for 
i?; instance) that the component of wB(t) along the direction 6, that is, (oB(t),d), 

is constant. This is also easy to see directly from the Euler equations. 



EXERCISES 

4.4A. Determine Bs = p*BO E Q1(G X g*), us = - dBs, Os = p*Oo E Q1(G X a), 
and 52, = - d8,. 

4.4B. Formulate and prove the cotangent version of Theorem 4.4.4. 
4.4C. In 4.4.qii) show that x ~ ( ~ ) =  T,%(O. [Hint: Show that (PI. TAXw,,)= T&(v), 

where v E T,G, w,, E T,,TG, and PI: TG X g X g+ TG is the canonid projec- 
tion.] 

4.4D. (a) Prove that if G is a connected Lie group and G has a bi-invariant 
Riemannian metric, then exp: g+G is onto. (Hint: Use the fact that Ct(t)= 
exp tE are geodesics and the Hopf-Rinow theorem.) 

Remark. The most general simply connected group admitting a bi-in- 
variant Riemannian metric is a compact group X Rn; see Milnor [1963, p. 1151; 
see also Sternberg [1964, p. 2341. 
(b) Show that the result in (a) is false if the metric is merely pseudo- 
Riemannian. (Hint: Use the Killing form on Sl(2, R)). 

4.4E. In the notations of proposition 4.4.9 and the remarks preceding it, show that 
(i) Xi+  v.,(g, 0 = (T,Lg(t), t ,  Y(t)- T,Lg-4gradV(g))) by using the for- 

mula for 3, in 4.4.2(ii) and comparing with E;. 
(ii) Let (g, 6) - (A,(g, t), B, (g, E)) denote the flow of X i +  V 0  7G. Show that 

A , ( e , 5 )  =xg( t )  = r G 4 ( t ) ,  and H,(t) =B,(e , t ) .  

(iii) Prove the version on T*G of 4.4.9 and (i), (ii). 
4.4F. (i) Let G be a Lie group with (,) a left-invariant metric and let 6 be the 

universal covering group of G with a left-invariant metric ((,)) coincid- 
ing with (,) at e. Show that geodesics on 6 are lifts of geodesics on G. 

(ii) Let U: e x X+X be a unitary representation of e on a Hilbert space 
X. ~ e f i n e  a metric (,) on E = ~ X X  by 

((~13 +I), (02, $9)) = ( ~ 1 ,  v2) + ( Ug-1+~).(Ug-l+2P2) 
where g is the base point of u, and v2 and . is the inner product in X .  
Calculate the momentum mapping J for the action of 6 on TE induced 
by the action of C? on E= G x X  given by ag(h,+) = (gh, U (+)). 

5 (iii) For G = SO (3), 6 = SU (2) (see Exercise 4.1H) and X  = C , and ( , ) a 
given moment of inertia tensor, the construction in (ii) gives a rigid body 
with spin. Show that 

J ( g, v, c, u) =rigid body angular momentum 
+ spin angular momentum 

= A  (t)Zw,(t) - tu.iu.c 

where u is the "vector" of Pauli spin matrices. 
4.4G. Discuss the complete integrability of the rigid body using formulas (1)-(3) 

preceding 4.3.6. Consult Iacob [I9731 and Mishchenko [1970], Dikii [1972], 
Manakov [1976], Mishchenko and Fomenko [1978]. 

Y 
4.5 THE TOPOLOGY OF SIMPLE MECHANICAL SYSTEMS 

4 
In Smale [1970a] a topological program for studying Hamiltonian systems 

with symmetry was laid out. This may be described as follows. Let H be a 3 
Hamiltonian on a symplectic manifold (P,u) and let G be a (connected) Lie 2 
group acting on P, leaving H invariant, and having a momentum mapping 8 
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J: P + Q * .  Form the energy momentum mapping 

H  x J :  P+R xa*,  ( H  x J ) ( p ) = ( H ( p ) ,  J ( p ) )  

so that for each c = (e, y) E R x a*, the set 

is invariant under the flow of XH.  (Recall from the invariant volume Theorem 
3.4.15 that if c is a regular value of H  X J ,  then I, carries an invariant volume 
element.) To describe the topological nature of the flow of XH one should 
determine: 

(i) the topological type of I, for all c; 
(ii) the bifurcation set 2 ,  ,, of H  x J  (defined below); 
(iii) the flow of XH on each I, (if the group action is explicitly known, this is 

equivalent to finding the flow of the reduced system on P,, see Sect. 
4.3); and 

(iv) how the sets I, topologically fit together, as y varies, to make up 
H - '(e). 

The bihrcation set is defined as follows. A smooth map f: M+N is locally 
trivial at the value yo in its range if there is a neighborhood U of yo such that 
f -'(y) is a smooth submanifold of M for each y E U and there is a smooth 
map h: f -'(U)+f -'(yo) such that f X h is a diffeomorphism from f -'(U) to 
U x f - '(yo) [hence hl f - '(y) : f - '(y)+ f - is a diffeomorphism for each 
y E U]. See Fig. 4.5.1. The bifurcation set off is 

Xj = { yo E N 1 f fails to be locally trivial at yo) 

Y 
N 

f 
l-l h 'projects' 
8 nearby level 
3' surfaces onto f1 (yo) 
z 
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The idea of the bifurcation set is that as y passes through Xf, j may 
change topological type.* 

Before studying mechanical systems, we give a general property of the 
bifurcation set. 

Let u ( j )  denote the set of the critical points of j; 

u ( j ) = { x € ~ I ~ j ( x ) :  T,M-+Tf(,,N isnot surjective) 

which is a closed set in M. By Sard's theorem j(aCf)), the critical values, has 
measure zero in N. Put 

Z j = f ( a i f ) )  

We prove now that critical values must be bifurcation points. 

4.5.1 Proposition. 2; c Z,. 

Proof. Suppose that yo@E,, so that f is locally trivial at the value yo. By 
definition, f x h is a diffeomorphism off - ' ( U )  to U x f - '(yo). In particular, 
the derivative at xo E f - ' (yo) ,  

is an isomorphism. Writing Tx0M = Ex,@ Tx,Cf-'(yo)) and using the fact that 
T,,, f - ' (yo)  c ker Tf(xo), this derivative becomes the matrix 

I Tf ix0)l Ex, 0 

Th(x0)lExo Th(xo)lT,,f - ' ( Y O )  I 
If this is onto, then Tf (xo)(Exo is onto [and Txo f - ' ( yo )  = ker Tf (x,)], so xo is a 
regular point. Thus yo @ 2;. rn 

If we assume that f is proper (and so the level sets are compact), then 

Indeed, if yo ex;, then yo is a regular value of f and so f is a submersion on 
j -'(yo). From the local fibration theorem (see Exercise 1.6G), it follows that f 

X 
'Bifurcation theorists probably would prefer a definition that forced a change in the topolog~cal ' 9 
type off  - ' ( y )  at yo. For instance, for fr R+R, f ( x ) = x 3 ,  0 is a bifurcation point (according to F, 
4.5.1), but f is always a single point. (Most bifurcation theorists would nor call this a 
bifurcation point.) Those used to a definition involving a map F :  X XA- - tY  and seeking a 
solution of F(x,X)=O for various X (see. e.g., Hale [1977]) can relate it to the present definition 
by choosing f to be the projection of the set F ' ( 0 )  (the solution set) onto the X axis. See & 
Marsden [I9781 for further information. Y 
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is trivial near each point of f -'(yo). Since f- '(yo) is compact, it follows 
readily that f is trivial over a whole neighborhood off -'(yo). 

Unfortunately, in many examples, f will not have compact level sets. [For 
such cases one needs to make sure Df(xo) has a uniformly bounded right 
inverse on all off  -'(yo) to ensure Xj=Xp In examples in Sect. 9.8, 2j#Xf 
will actually occur.] 

Since we are concerned with systems with symmetry, we are not studying 
the "generic" case. However, these cases are the interesting ones. The idea is 
that they are the hub around which qualitatively different classes of Hamilto- 
nian vector fields hover; that is, they are the "bifurcation points" in the set of 
all Hamiltonian vector fields, the different classes being reached by breaking 
the symmetry in various ways. (See Chapter 8 for additional information.) 
Furthermore, most of the classical examples (n-body problem, rigid body, 
etc.) possess symmetries. 

We will now carry out part of Smale's program, for the case of Harnilto- 
nian systems of the form kinetic plus potential energy. For these a number of 
issues simplify. By using the methods of Sect. 4.3, a number of proofs become 
simpler than those existing in the literature, and 4.5.6 seems to be new. Most 
of the other results are due to Smale [1970a] (see also Iacob [1971]). 

We make the following definition. 

4.5.2 Definition. A (simple) mechanical system with symmetry is a quadyle  
(M, K,  'V; G ) ,  where: 

( i )  M is a Riemannian manifold with metric y =(,); M is called the 
configuration space and the cotangent bundle T*M, with its canonical 
symplectic structure wo= -dB,, the phase space of the system; 

(ii) K E %(T*M) is the kinetic energy of the system defined by 

where we denote (by abuse of notation) ( ,), the metric on T M  given by 
(a,  B ), = ( Y  ' (x)(a),  Y ' (x)( PI), for a, B E T M'and Y ' : T. M+ TM 
is the usual isomorphism of vector bundles, y = ( y  b)- ', y (v,) = 
(., vx),; 

(iii) V E %(M) is the potential energy of the system; 
(iv) G is a connected Lie group acting on M by an action a :  G X M+M 

under which the metric is invariant (i.e., @ s an action by isometries) and 
V is invariant; these conditions mean thud  

F KOQ,:=K and Vo@,V g 
9 for all g E G; G is called the symmetty group of the system; finally, 

(v )  H E %(T* M )  defined by 
2 
+ H = K +  Vor; 
& 
Z is the Hamiltonian of the system. 
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Note that the above conditions imply H @: = H for all g E G and hence J :  
P M+Q*, J (am)(,$) = am ([,(m)) is an Ad*-equivariant momentum mapping, 
constant on the orbits of the Hamiltonian vector field XH; that is, J  is a 
constant of the motion (see Sect. 4.2). 

First, we shall be concerned with the sets I,,, =(H X J)-'(h,p), which are, 
for "most" values, (h, p) E R x g*, manifolds. They will be called the invariant 
manifolds, even though for some values (h, p) u)E Z,,, (the bifurcation set), they 
will not have a manifold structure. We know from Sect. 4.3 that the isotropy 
group G, = { g E G IAd;-,p = p} of the Ad*-action acts on J  -'(p). But H is G 
invariant, too, so that G, will act on H -'(h). Thus G, acts on I,,, = H -'(h)n 
J-'(p). Now we can apply the reduction procedure explained in Sect. 4.3 to 
obtain the submanifolds h,, = I,,,/G, of the symplectic manifolds 
J  - I (  p)/ G,. On J - I (  p)/ G, we have the Harniltonian vector fields 
T , X ~  1 J - '( p)) = XHp and on i,,, the vector fields (li,,+(XHl I,,,), where 
Th,p -' Ih,p+Ih,c ^ is the canonical projection. In fact, I,,, 1s just the energy 
surface H,- '(h) for the reduced Hamiltonian system 

But there may be cases where the rather restrictive conditions of 4.3.1 and 
4.3.5 are not fulfilled and hence we do not know that A,, are manifolds. Even 
if &,, are not manifolds, but XHIIh,, is complete, invariance under the 
symplectic group action assures that 

where F, is the flow of XH. We can define a flow 13, on &,, by 

where [a] = njr,p(a). 
Thus a version of the topological program for the energy-momentum 

mapping would be the study of the topological type of the sets &,, and the 
flows induced on them by XH. If the conditions of 4.3.1 and 4.3.5 are 
satisfied, the dimensions of I,,, and &,, would be 

It is clear now that working with the reduced "manifolds" L,, simplifies the 
problem considerably. 

In what follows we want to construct these "invariant manifolds" and the 
bifurcation set. The first step is to characterize EL,, = (H X J)(a(H X J))  c 
2, , (see 4.5.1). 

X 
4.5.3 Proposition. $ 

4 
Cr) 

a (H  x J )  = a ( J )  u ( U ~ ( H I J - ~ ( P ) ) )  8 
p€g*\J(a(J)) 2 z 

In other words, a E  P M  is a critical point of H XJ if and only if 3 
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TaJ: Ta(T* M)+g* is not surjective or a E J -I( p) is a critical point of 
HIJ-'(~): J - ' ( p ) + ~  for some pEg*\J(u(J)). 

Proo$ a is a critical point of H X J iff Ta (H X J )  = dH (a) X Ta J: T a ( P  M) 
+R Xg* is not surjective. Now T,J is either surjective or not. If it is 
surjective then ~EQ*\J (u(J ) ) .  By the 
Lagrange Multiplier Theorem (see 4.3.9), Ta(H x J )  not surjective is equiv- 
alent to dH (a) = O  on ker TaJ= Ta(J -'(EL)), that is, a is a critical point of 
H(J-'(p). 

Recall that from 4.3.8, critical points of H X J are exactly the relative 
equilibria. We prepare the following for later use. 

4.5.4 Lemma. (i) Let A = {x E M  I J, = JI M: T,* M+g* is not surjec- 
tiue) . Then A = {x E M 1 Ex : g+ Tx M, 5 H tM (x) is not injective) = { x  E 
MI dim G, > 1 ) , where G, = { g E G I @( g, x) = x) is the isotropy group of the 
action of G on M; 

(ii) A is closed and G-inuariant. 

This result has been essentially given in the proof of 4.2.22, but we give it 
here for completeness. 

PmoJ (i) Recall that the Ad*-equivariant momentum mapping J: T* M+Q* 
is given by J (LY,)($) = LY, (tM(x)) for x E M. Thus Z: = J, and hence J, not 
surjective is by linear algebra equivalent to Z, not injective. 

Now Ex : g+ Tx M not injective means that there exists 5 E g\{O) such that 
Zx(5) =tM(x) =0, that is, x is a fixed point of the flow of tM (that is of 
and hence this is equivalent to exp t t ~  G, for all t E R. Thus Z, not injective 
is equivalent to the existence of a one-parameter subgroup of G,, that is, to 
dim G, > 1. 

(ii) Let x E A  and g~ G. We want to prove that y=@(g,x)EA. By (i), 
x E A is equivalent to the existence of 5 E g with exp t5 E G, for t E R, but then 
@(g(exp tt) g - = y. Since g(exp tt) g- = exp(tAd&)), we conclude that 
exp(tAd,(()) E G,, for all t E R, that is, y EA and A is hence G-invariant. 

Since J, varies continuously with x, if J is surjective it will stay so in a 
neighborhood of x, which proves that M\A?s open. . 

Because of this proposition A 3  7&(u(J)), that is, J has only regular values 
if A is excluded. We usually deal with M\A and A separately since in 
examples A can be readily worked out. 

5? Recall from 4.3.3 that the reduced phase spaces for simple mechanical 
4 systems are symplectically embedded P,G T*M,, where M, = M/ G,, if we 
13 
2 can find a G,-invariant one-form ar, on M with values in J-'(p). We shall 

now construct such an ol,. Once we do this we shall examine the Hamiltonian 
induced on T*M,. 
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For p Eg*, let the one-form ap €Q1(M\A) be defined by  the following two 
conditions: 

(1) a, (x)€~; ' ( lu>= J - ' ( p ) n  T,*M 
(2) K(ol,(x)) = inf K (a ) ,  that is, or,(x) is the minimum of KIJx-'( y). 

~ E J , - ' ( B )  

The existence and uniqueness of such an %(x) in ~ ~ - ' ( y ) = { a E  
T: M 1 a (S , (x) )  = y  (<) for all < E Q} follows from the well-known theorem 
guaranteeing the existence and uniqueness of elements of minimum norm in 
closed, convex sets of Hilbert space.* 

The next result gives some basic properties of 4. 

*For the convenience of the reader we shall give this standard proof. 
Denote by 

E =  inf K ( a ) = f  inf llal12 
a e J ; ' ( ~ )  ~ E J ; ' ( P )  

where I I ~ I I ~ = ( ~ , ~ ) , .  Then for each n E N  there exists a , , E J l 1 ( p )  such that 

and we can conclude that lim,,,,K(a,,)=e. We shall prove now that the sequence { a n }  
constructed in this way is Cauchy and hence convergent to an element of J F L ( p )  since J L 1 ( y )  is 
closed. Since a,, a,,, E J; '( p), then 

so that 

We have 

and we conclude that the sequence {a,,} c J L 1 ( p )  is Cauchy. Let a,,(x)= lim,,,,a,,. Then clearly 
K(a,,(x))=lim,,,K(cx,)=~ and the existence of ol, is proved. Finally, a,, is unique. Indeed, if 
there were another a;(x) minimizing KIJL I( y), then 

< 2 ~ - 2 ~ = 0  

so that or,(x)= 4 ( x )  H 

In our case J L 1 ( p )  is an affine space. If P,,&E J J 1 ( p ) ,  we have (ax(p), /3,  - p 2 )  =O. Indeed Y 
by the minimization property, g 

4 
( . . X ( ~ ) , ~ ; ( P ) ) < ( & ( P ) + ~ ( P ~ - P Z ) . G ( P ) + ~ ( P I  - P I ) )  m 8 

from which z 
2 t ( ( u , ( p ) , P 1 - P 2 ) ~  t2llP1-P2112 for all t € R  Z 

which implies ( a x ( y ) , P I  - P2) = O .  a 
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4.5.5 Proposition. (i) q, EQI(M\A); that is, ol, is a smooth one-form on 
M \A; a,,(x) is the unique critical point of KI Jx- '( y); 

(ii) %(x) is orthogonal to the subspace kerJx = JXp'(O) with respect to the 
Riemannian metric ( , ), of T: M; 

(iii) if G,, = { g E G [Ad,*- ,y = y ) is the isotropy subgroup of the co-adjoint 
action of G on g*, then ol, is G,,-equivariant, that is, T*@,-, 0 a,, = ol, @,, for 
all g E G,. 

ProoJ: (i) oc, is the minimum of KIJx-'( y), that is, it is the minimum of K 
subject to the constraint Jx(ol,(x)) = y. Hence, using the Lagrange Multiplier 
Theorem (4.3.9) this minimum will be found among all solutions of the 
system: 

where t E g** = g, or, since Jx : T; M+g* is linear, 

Hence by definition of the isomorphism y (x )  : TxM+ T: M, y (x)(v) = 
( . , v),, we have 

= Pay # (x)(a,, (x)) + P- (Ext) (notation of 4.5.4) 

for all /3 E T; M. Thus 

But y = Jr (4(x)) = - (Jx y (x) Ex)([). We show now that Jx o y (x) Zx : 
g-g* is injective. Assume that (Jx y (x) Ex)($ = 0. Then, in particular, 

z 
so that qM(x) = Ex(q) = 0. But since x E M\A, Ex is injective by 4.5.4 and 
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hence q = 0. Since dim g* = dim g and Jx y b(x) Zx : g+g* is an injective 
linear map, it is an isomorphism, and so we can write 

Thus oc,(x) is the unique critical point of KI Jx-'( p) and is given by 

Since all the maps on the right-hand side are clearly smooth in x, we conclude 
that a, is smooth. 

(ii) Clearly ker Jx = Jx- '(0) = Jx- '( y) - q (x), so that any P E ker Jx can 
be written in the form p = - g (x) + y for y E Jx- '( y). Thus, 

because %(x) is the minimum of K I  JXp'(p). Hence (cu,(x),p), > 0 for all 
P EkerJ,. Reversing the sign of P, we must have (a,(x),P),=O for all 
p E kerJx (or use the last statement in the footnote on p. 344.) 

(iii) ForallgEG,, T*Qk-I(Jx-'(y))c~<~x)(y)becauseifP,EJx-'(y),by 
Ad* equivariance of J ,  

Thus T*@,- I : Jx- '( p)-+ J - '<P,(x)( y) is a diffeomorphism with inverse T*@,. 
Since K is invariant under the action QT* and g ( x )  is a critical point of 

KIJx-'(y), T*@g-l(ol,(x)) is a critical point of KIJ<;,,(~). But a,($(x)) is 
the unique critical point of K I J<:~,( y). Thus 

Now we consider the symplectic embedding +, : P,-+ T* M, given by 4.3.3. 
(Recall that if y is only assumed to be a regular value of J without the free 
and proper assumptions, this construction can only be done locally.) We 
know that the Hamiltonian H induces H, on P, whye H = H, 0% (see 4.3.9, 
and XH induces XHp on P,. In T*M, we have H, = H, oIP,-' induced on 
+,(P,). Points in T*M, are G, orbits of covectors ax vanishing on Tx(G,.x) 
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(see 4.3.2), so we can denote them by G;aX. Then, by definition of (p,, 

Thus, it is natural to let 

so that I?, is the projection of K +  V,. Since cp,(P,) c PM,,  (with equality if 
G = G,), it makes sense to define a simple mechanical system on (p,(P,) as one 
obtained by restricting a simple mechanical Hamiltonian K +  V, OT&, on 
P M ,  to (p,(P,). We shall say that we have a simple mechanical system in 
PM,.  The following theorem of Satzer [I9771 and Marsden now results. 

4.5.6 Theorem The reduction of a simple mechanical system on T*M with 
A = 0 is a simple mechanical system in P M,,_where M, = M /  G,. The kinetic 
energy of the reduced system is the function K  induced fro? the G,-inuariant 
kinetic energy function K on P M and the potential energy V, is induced from 
the G,-inuariant function on M defined by 

which is called the eflective potentiat or the amended potential. 

Warning. The symplectic structure used on T*M, is not necessarily the 
canonical one; see 4.3.3+. 

Since A = 0 we are implicitly assuming that p is a regular value of J and 
either the actions of G, on J - ' ( p )  and M are free and proper or else we 
replace the statements by local ones. If Af 0, we replace M by M\A and 

2 determine A separately. 
4 
m 
8 
2 

t ~ h e  motion in T*M, is that of a particle in the potential V, plus an "electromagnetic" potential a, (see 
Exercise 3.7F). In several examples, (such as planar central force problems; Exercise 4.5C) 4 is closed. 
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For the version of this theorem suitable for the tangent bundle, see 
Exercise 4.5D. 

For purposes of computation, notice that by definition of or, 

V,: M\A+R 

V,(x)=V(x)+ inf K(a) 
a~J;l(,) 

= inf H(a)  
aEJ;l(,) 

At this point we recommend that the reader work Exercise 4.5C to get a 
feel for V,. 

In T*M, and in the subbundle +(P,) over M,: equilibrium points are 
points in the zero section that are critical points of V,. [The critical points of 
a Hamiltonian vector field on P M ,  are not affected by its noncanonical 
symplectic structure; see Exercise 3.7F(iii).] These critical points are obvi- 
ously in one-to-one correspondenc_e with critical orbits of V,. We no_te for 
later use that if a critical point of V, is nondegenerate, the indices of V, and 
V, along the corresponding nondegenerate critical manifold are equal (this 
follows easily from the definitions following 3.2.3). 

By Definition 4.3.6, critical points of V, are in one-to-one correspondence 
(using the diffeomorphism induced by cu,) with relative equilibria; that is, to 
critical points of H x J on J- ' (y)  or equivalently to critical points of 
HI J -'(y) (see 4.3.8). 

We summarize the results obtained in the following. 

4.5.7 Corollary. (i) V, o ag = V, for gE  G, and the set of critical points, 
a ( V,) is G, -invariant. 

(ii) a(H I J - ' ( y)) = 4 (a ( V,)) and is G, - and X,-invariant. 

The next basic theorem of Smale will characterize the set of critical values 
ZL,, of the energy-momentum mapping in terms of the effective potential 
only. 

4.5.8 Theorem. Let p be a regular value of J. Then 

ProoJ: Recall that by 4.5.3, 
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By 4.5.7(ii), a(H ( J  - '( p)) = ap(a(Vp)) so that 

= vp(4vp))x { PI 
Thus 

The statement now follows from the fact that r>(a(J))cA, observed in 
4.5.4. . 

We now want to "construct" the invariant manifolds and the reduced 
invariant manifolds for the mechanical system with symmetry, up to a 
diffeomorphism. To do this, we shall need some constructions with vector 
bundles. 

Let p :  E+B be a vector bundle over a manifold B possibly with 
boundary a ~ ,  and (,) a Riemannian vector bundle metric, that is, a smooth 
map b~ (,), that associates to each b E B a scalar product on the fiber E,. 
D,(E)= {V E El llvll< 1) is the associated unit disk bundle and S,(E)= { u E  
El llvll= 1) the associated unit sphere bundle of E. Clearly, if aB=QI, aD,(E) 
= S,(E). In D,(E) make the following construction: For each x E ~ B ,  identify 
the whole fiber p-'(x)n D,(E) with the point x. The space a(E) thus 
obtained is called the reduced disk bundle of E. Performing the identical 
construction with S,(E) we get the reduced sphere bundle P(E) of E. Note 
that if i3B = 0 ,  a(E) = D,(E) and P(E)= S,(E). We shall prove in 4.5.14 that 
a(E) and P(E) can be given smooth manifold structures, and that aa(E)= 
P (E); in particular, P (E) is boundaryless. 

If M X R *+ M is the trivial bundle, we shall denote by cu,(M) = a ( M  X 
R *) and Pk (M) = /3 (M x R *) = 8% (M). We shall give some elementary ex- 
amples that will be of use to us later in Sect. 10.6 when treating the topology 
of the three-body problem. Let 

Y D*= { X E R * ~  I J x J I  < 1) and s*-'= {x€Rkl llxll= 1). 
s (a) If aM-0, then a , ( ~ ) a ~  x D*, D~(M)!%M x s*-'. 
9 (b) If aMf 0 ,  then &(M) is the double of M, that is, the manifold obtained 8 
23 "glueingyy together M to itself along aM, one copy of M having the 

Z reverse orientation, so that after glueing the resulting manifold is 

?? oriented and boundaryless. 
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(c) P k ( ~ m ) 5 Z ~ k + m - 1 .  

(d) If aml = 0, then CXk(M1 X M2) 5Z M l  X ak(M2), Pk(Ml X M2) 
M I  x Pk(M2l- 

(e) P ( T M )  is the unit sphere bundle of M if M is boundaryless. 

Further information on the a,  P construction is given at the end of this 
section. 

Let (M, K, V ,  G )  be a mechanical system with symmetry with A = 0. For 
( h , y ) ~  Rxg* ,  define 

If h is a regular value for V,, then M,,, is a smooth manifold with boundary 
aMh,, = v,- '(h). Let 

E,,= { a €  T * M [ J ( ~ ) = ~ ,  ~ ( a )  < ~ } = ( H I J - ' ( y ) ) ' ( ( - m ,  h ] )  

If h is a regular value of V,= HOol,, then it is also a regular value of 
HI J - '( y), since a(H I J - '( y)) = ~u,(a(V,))). Hence E,,, is a submanifold 
(with boundary) of T*M. We clearly have 

4.5.9 Theorem (Invariant Manifold Theorem of Smale). Given a mechanical 
system with symmetry (M, K, K G )  with A = 0 and h a regular value of V,, the 
following hold: 

aEh,, = I,, 

[The last statement says that any orbit of momentum y and energy < h projects 
to M,,, and cannot cross the boundary aMh, , = $ '(h).] 

(ii) If F= J - '(0), then ?,$IF: F+M is a vector subbundle of T* M. 
Denote by F I M, its restriction to the submanifod Mh , c M. Then i f  (h, 3 e 

,,, E,, is dgfeomophic to a(FI M,,,); more precisely, there exists a 
G, -invariant diffeomophism of manifolds with boundary +,, , : a(FI Mh, ,)-+Ek ,. 

(iii) The induced diffeomophism on the boundaries 

a+h,p'+h,plaa(~IM~g)=+~pl P(FIMh,p): P(FIMkp)+'h,p 5 E 
9 
m is G, -equivariant. s 

(iv) I f  C is a nondegenerate critical manifold of V'/Mh,, of index h, then 2 
%(C) is a nondegenerate critical submanifold of HI Eh,, of the same irdex (see 
remarks following 4.5.6). !2 
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ProoJ: (i) Since V,(x) = (H o a,)(x) = K (ol,(x)) + V (x), we have 

so that H(cu,) < h is equivalent to 

and the first formula is proved. The second was shown above. 
Let ax E I;T M n E,,,.. .To prove that V,(x) < h, first note that cu, - a,(x) E 

Jx-'(01, so that by 4.5.5(11) (g - q(x),  ol,(x)) = 0. Thus 

Then 

(ii) The map J X 7;: T*M+g* X M is a morphism of vector bundles of 
constant rank, since by hypothesis A = 0, that is, Jx is surjective for all x EM. 
Thus J - '(0) = ker(J X 7;) is a subbundle of T* M. 

Let Dl(FIMh,,) be the unit disk bundle associated to M,,,. Define the 
map 

#h,p: D1(FIMh,p)4Eh,p 
by 

for ax E Jx-'(O), 1 1  ax 1 1  < 1, x E Mh,,. The first task is to prove that the defini- 
tion of qh,, makes sense, that is, that Jx(#h,p(ax))=p, H(#h,p(ax))< h. We 
have 

~ ~ ( ~ k , ( a ~ ) ) = \ h ( h -  v,(x)) .Jx(ax)+Jx(a,(x))=p 

by definition of %(x) and the fact that ax E Jx-'(0). Now 

X 
& H(\C,~,,(~X)) =~(qh, , (%))+ V(x) 
2 
9 
m =2(h- ~,(x)).fll%11~+K(~,(x))+ V(x) s 
2 <h-v,(x)+v,(x) usingIIaxll<l 
z 
il =h 



If q E Dl(FIMh,,) with x E aMh,, = v,- '(h), then qh,,(aX) = a,(x). In other 
words, $,,, sends the whole fiber of D,(FIMh,r) over xEaMh,,= ~[ ' (h )  to 
the single point q(x)EaEh,, = lh,,. Denoting Ph,, : Dl(FIMh,,)+ 
a(FIM,,,) the canonical projection, we have defined a map 

by +h,, 0 p,,, = +,,,. Since +,,, and p,,, are smooth and a(FIM,,,) is a quotient 
manifold, +,,, is smooth, too. The inverse of +,,, is given by 

and is smooth. 
Since J is Ad*-equivariant and G acts by isometrics, E,,, and Dl(FIMh,,) 

are G,-invariant, where G, = { g E G [Ad,*- = p) .  By 4.5.5(iii) and 4.5.7(ii), we 
can write: 

that is, t,bh,, is equivariant with respect to the action @l" of G,. We want to 
show that this action induces one on a(FIM,,,). For this purpose, note that if 
g E G, and LU, E Dl(FIMh,,) with x E aM,,, = V,- '(h), then @F(ax) = 
T*@,- ,(ax) E T&,,,M and by 4.5.7(i), @( g ,  x) E aMh,, = v,- '(h). In other 
words, the action QP sends the fiber over xE~M,,,  to the fiber over 
@(g,x)EaM,,,. We can then define the action \k of G, on a(FlM,,,) by the 
formula 

Clearly we have 

and the equivariance statement is proved. 
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(iii) aE,,, = I,,, is G,-invariant since J is Ad*-equivariant and H o <PF = 
H for all g E G. 

Since G acts by isometries, we conclude that @~"(S,(FIM,,,))C 
S,(FIM,,,) so that P(FlM,,,) is invariant under the action of G, on 
a(FI M,,,). Thus a+,,, : j3 (PI M,,,)+I,,, is a G,-equivariant diffeomorphism. 

(iv) If C is a nondegenerate critical submanifold of V,I M,,,, then since 
a, : M+graph% c T* M is a diffeomorphism, q ( C )  will be a submanifold 
of T*M and clearly g ( C )  c E,,,. Since aC= 0 ,  a~u,(C)= 0,- and since I 

cnaMh,,=@, ff,(C)nff,(aMh,,)=ff,(C)naEh,,=~; ac=0 and CnaMh,, 1 
= 0 are part of the definition of C as a critical submanifold. The rest of the 
statement is clear by 4.5.7(ii) since ol, is a diffeomorphism onto its image and 
Vp=H"ff,. . 

It was stressed throughout this section that all defined objects are G,- 
invariant so that a priori reduction is possible. Since by reducing, the dimen- 
sions of the manifolds become lower, it would be interesting to have a 
"topological" theorem similar to the above for the reduced invariant mani- 
folds. We shall write kh,, = M,,,/ G,, kh,, = E,,,/ G, and let +$I E , ,  be the 
map for which the diagram 

commutes; the horizontal arrows are the can2nical projections. Define by 
A A 

passing A to a the quotients: H: E,,,+R, $ : M = M/ G,+-= T* M/G,, 
and V,=Hoai,: M,,,+R. Note that aEh,,=Ih,,. 

4.5.10 Theorem (Reduced invariant manlfold theyem of !male). Assume 
G, acts freely _and eroperly on Mh, , and E,,, ,. Then M,,, , and Ek , are manifolds. 
Assume that V, : M,,, ,+ R has nondegenerate critical points; then: 

(i) If 4 E k,, , is a nondeg5ne;ate critical point of V,, then &,(4) will be a 
nondegenerate critical point of HI E,,, of the same index. This index equals the 
index of V, on the nondegenerate critical manifold T,-'(Z) c M,,,, where T,: 

Mh, ,+ M,, ,/ G, is the projection. 
(ii) If the vector bundle J -'(O)IM,,,, is trivial (i.e., isomorphic to Mk, X 

RS), then 

Y rh,r=PS(Mh,r) and ' h , , = & ( 4 , )  

2 
4 The proof is straightforward from what we have done and will be left as 
m 8 an exercise. 
2 We conclude our study of the topology of the invariant and reduced 
z invariant manifolds with an example that completely describes them in a 

simple case. 
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4.5.11 Example. Assume G, acts freely and properly on M,,, and that Gh,, 
is a compact manifold on which V,I M,,, {as a unique, nondegenerate critical 
point i,, wbich is a minimum, satisfying V,(R,) < h. Then Mhi,= Dm, Mh,,= 

-sJ-~, G,X SJ-', Zh,,- G,x Dm, Eh,,=P', Eh,p=G,X Di, and hence I,,,- 
where m=dimM-dimG, and j=2dimM-dimG-dimG,. 

This follows from the simple result in Morse theory which states that if M 
is a compact manifold with boundary on which f has a single nondegenerate 
interior minimum and f is constant on aM, then M is a disk. (See Exercise 
4.5B.) 

The next theorem gives additional characterizations of relative equilibria 
for simple mechanical systems with symmetry. Recall that under the hypothe- 
ses of 4.3.1 the set of relative equilibria coincides with the set u(H X J )  of 
critical points of the energy-momentum mapping H x J :  P M - R  X g*, 
where H = K +  VOT$ is the Hamiltonian of the mechanical system with 
symmetry (M,K, V ,  G )  and J :  T*M+g* is the momentum mapping of the 
induced cotangent action of G on T* M,  that is, J (ax)(<) = a(t,(x)). Thus the 
part X',,, of the bifurcation set X,,, is determined by the set a(H X J )  of 
relative equilibria. The next theorem is essentially due to S. Smale [1970a] and 
J. Robbin [1973], and characterizes relative equilibria. 

4.5.12 Theorem. Let (My K, K'G) be a mechanical system with symmety and 
assume that axoE J - ' ( p )  and that p is a regular value of J. Denote by 
H = K+ V o  7; the Hamiltonian, by E = K+ V o  7, the energy function, and by 
L = K - V 0 7, the corresponding Lagrangian of this mechanical system. y = 
FL : TM+ T* M denotes the Legendre transformation so that H 0 FL = E. The 
following are equivalent: 

( i )  axo is a relative equilibrium; 
(ii) there exists 5 E g satisfying (9 -y,b0 tM)(xo) = p such that xE (5, (x,)) = 

S~M(t,w(xo)) ; 
(iii) thcre exists 5 E Q satisfying (J  0 yjo tM)(xO) = p such that x, is a critical 

point of L tM : M+R; 
(iv) there exists .$ E g satisfying (J yko tM)(x0) = p such that X ,  is a critical 

point of V - K o y b 0 t M :  M+R; 
( v )  x, is a critical point of the amended potential V, and axo = a,(x0). 

ProoJ: Equivalence of (i) and (ii) is clear since the Legendre transformation 
is a symplectic diffeomorphism. In detail, according to Proposition 4.3.7, axo 
is a relative equilibrium iff there exists 5 E g such that XH (go) = tPM(axo). But Y since L = K + V 0 T,, FL = y b and since G acts by isometries @,T* b = y b <p,T N 

as is easily checked; here O: G X M+M denotes the action of G on M. By $ 
rn 

3.6.2, X, 0 FL = TFL 0 XE and by 4.1.26, t,, yb = Tyb tTM. Let axe= 2 
y b (vxo). Then 2 

z 
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and 

Since FL is in this case an isomorphism of vector bundles, XH(axo)= 
trM(axo) is equivalent to 

But the last equality implies vxo=tM(x0) because X, is a second-order 
equation so that TrM o XE = idTM and hence 

Thus (i) and (ii) are equivalent. 
We proved the equivalence of (i) and (v) in 4.5.7(iii), and the equivalence 

of (iii) and (iv) is clear. (Recall that the kinetic energy on T*M is actually 
K O  y# , even though we denoted it always simply by K as in the tangent 
bundle.) 

Finally, we show that (ii) and (iv) are equivalent. (This argument is due to 
A.Weinstein; cf. Robbin [I9731 for another proof.) Condition (ii) is equivalent 
to 

(XE -Xi (5))(tM ( ~ 0 ) )  = O  

where J is the momentum mapping for the tangent bundle. This is, in turn, 
equivalent to 

d ( E - j  (t))(tM(xo))=O 

that is, d(E-j(<))(5,(xo))-wv=O for all wvE TvTM. Now E- j ( t )=  V.7, 
+ K - j (t) and clearly d ( V 0 rM)(tM (xo)) wV = dV (x0)v. However, we also 
have 

where w, E TvTM. [This identity is easily verified in coordinates: use K(v) 
- - - : yP 'v' and j (<)(v) = yllt; (x)v'.] Thus (ii) is equivalent to dV (xo) -v - 
d(K0 tM)(xo).v = O  for all v, that is, (iv). . 

We conclude this section with some additional information on the a ,P  
constructions (see remarks preceding 4.5.9). These results will be used in Sect. 
10.4. 

4 - 
;r; 
0 

4.5.13 Proposition. Let M be a manifold without bounday and T: E+M a 
vector bundle with a Riemannian bundle metric (,), that is, for each x E M, 
( , ), is inner product on the vector space Ex = T - ' ( x )  depending smoothly on 
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x E M. Let f E %(M)  and c E R be a regular value for J: Defne g E %(E) by 
g(v)  = (v,  v )  + C f o  n)(v) ,  v E E. Then: 

( i )  c is a regular value for g if and only i f  c is a regular value for f; 
g-I((- oo, c])  is a smooth manifold with boundary g-l(c);  

( i i )  g -  I ( ( -  oo, c])  is homeomorphic to a ( ~  V m l ( ( -  oo, c ] ) ) ,  where 
E V- I ( ( -  oo, c])  is the restriction of the vector bundle E to the submani- 
fold f - I ( ( -  oo, c])  of M; in this w q  a(El f - I ( ( -  oo, c])) becomes a 
smooth manifold making the homeomolphism above into a diffeomor- 
phism; 

(iii) if n l  : El + M is another Riemannian vector bundle over M and f E 
%(M) is another smooth map such that c is a regular value for both f and 
f l ,  f i - ' ( ( -oo ,~I>=f- ' ( ( -oo ,c l ) ,  and E l l f ; ' ( ( - ~ , c 1 )  and 
E 1 f - I ( ( -  oo, c ] )  are isomorphic as vector bundles, then 
a(E1VL1((-  oo, c])) is diffeomolphic to a(Elf  -I((- oo, c])). 

ProoJ: (i) In a vector bundle chart of E with model space E for M and fiber 
E: write the metric as 

(the local representative of (,)), that is, (,) is a map that associates to each 
x E U an inner product in F. In this chart, g E %(E) is written as 

so that (xo,vo) E U X F is a critical point for g iff 

for all w E F. The second equation implies v,=O and then the first says that 
(Df)(xo)=O. Thus a(g)= m - ' ( a C f ) ) ~  M,  M being regarded here as the zero 
section of m : E+ M. Thus c E W is a regular value for g iff c is a regular value 
for f. The rest of the statement is clear. 

(ii) Let D ,V-'((- oo,c]) be the unit disk bundle of E restricted to 
f - I((- oo, c]). Define the map 

h :  Dllf - I ( ( -  03, c ] ) + ~ ' ( ( -  W ,  c ] )  
X 
& 

h ( v )  = ( c  - ( f  o m ) ( ~ ) ) " ~ . v  S! 
9 
m 

[Note that c -( f 0 m)(v) E R so that h is essentially a rescaling.] If m(v) E 2 z f - ' ( c )  = aCf- I ( ( -  co, c])), then h(v)  = 0. Thus h induces a continuous map h^: 
a ( ~ l f - ' ( ( - m , c ] ) ) + ~ - ~ ( ( - m , c ] )  with inverse k l :  g - l ( ( -m ,c] )+  8 
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a ( ~  I f -I((- co,c])) given by 

where O,(,, denotes the equivalence class of any v E EVA,), llvll < 1, Cf 0 m)(u) = 
c. It is easily verified that X - '  is continuous, so that h is a homeomorphism. 

(iii) It is clear that if v ~ g - I ( ( -  co, c]), then g(v) = 1 1  v112 + Cfon)(v) < c so 
that T(v)E~-I((-  co,c]). If k: Elf-I((-co,c])+~,V;'((-oo,c]) denotes the 
isomorphism of vector bundles in the hypothesis, change the inner product in 
the second bundle so that k becomes an isometry. kl gW1((- co,c]) is then a 
diffeomorphism between g - I(( - co, c]) and g; I((- co, c]) ( g, corresponding 
to El with inner product changed, and to f,) so that by (ii) the result 
follows. w 

4.5.14 Corollary. For any Riemannian vector bundle T: E+M, the reduced 
disk bundle a(E) and the reduced sphere bundle P(E) have a natural smooth 
manifold structure and, aa(E) = j3 (E). 

Proof. We distinguish two cases: aM= 0 and a M Z 0 .  If aM= 0 ,  then 
a(E) = D1(E) and there is nothing to prove. If aMZ 0 ,  a partition of unity 
argument shows that there exists f E % ( M )  such that 0 E R is a regular value 
for f, f-'(0)=aM and f(x)<O for all xEM.  Thus M=f-I((-oo,O]). Now 
take MI to be the double of M, that is, the manifold obtained by "glueing" 
together two copies of M along their boundaries, and define a vector bundle 
r1 : E1-+M1 such that Ell M =  E in each copy of M in M, and identifying the 
fibers of E over aM (for this construction as well as a rigorous definition of 
the double of a manifold, see Hirsch [1976]). A choice of a Riemannian 
metric on E, and the previous proposition shows that a(E) is a manifold. H 

It will be useful in Sect. 10.4 to have an alternative description of a(E) 
using another function g. This is given by the following. 

4.5.15 Propositlon (Smale). Let M, n: E+M, f, c be as in Proposition 
4.5.13. Assume there exists a map h E %(E) satisfying: 

(i) for each x EM, hx = hl Ex : Ex-+R, Ex = T- '(x) is a proper map and has a 
unique nondegenerate minimum at the origin Ox E Ex; 

(ii) f ( x ) = m i n { h ( v ) ~ v ~ E ~ ) = h ( O ~ ) f o r a l l x E M .  

* Then c is a regular value for h and a (E  1 f -I((- co, c]) is diffeomorphic to 
hK1((-co,~]). 

4 
rn 
8 Proof. As before, working in a vector bundle chart with E a model for M 
$ and F a model for the fiber, (xo,vo) E U x F c E x F is a critical point for h iff z 



and 

D2h (x,, v,).w = Dhx,(vo).w = 0 

for all w € F. By (i), hxo has a unique critical point that is a nondegenerate 
minimum and this unique critical point is 0,. Thus hl U x {Oxo) = f and the 
first condition reads Df (x,) =O. Thus a(h) = T-'(aCf)) n M, M regarded as 
the zero section of E. Thus, if c is a regular value for f, it is also a regular 
value for h. 

From (i) we conclude that hXp'((- m,c])  is diffeomorphic to a disk [or is 
empty for c < h(Ox)] (see Exercise 4.5B). Also note that ~ ( h - I ( ( -  m,c])= 
f W ' ( ( -  m,c]). Let now g € % ( E )  be as in Proposition 4.5.13, that is, g(v)= 
~ l v ( l ~ + f ( x ) ,  x=n(v) .  The proposition will be proved if we show that 
g - '(( - m ,  c]) is diffeomorphic to h - '(( - m ,  c]). Denote by r (x )  the radius of 
the disk hx- I((- co,c]); r ( x )  is a continuous function of x [and smooth where 
h ( x )  < c]. Recall that g; I ( ( -  m ,  c])  is a disk of radius \Ic-. Define 

cp: , - I ( ( -  m ,  c])+h-I((- co, c ] )  

10 if T ( v )  = x E f - ' ( c )  (in which case v = 0 )  

The definition of cp makes sense because 

implies that 

4 x 1  

belongs to the disk of radius r (x )  over x E f -I((- m ,  c]), hence h(cp(0)) < c. 
The map cp is smooth since it is a fiber rescaling (this requires a short 
argument we leave to the reader). It clearly has an inverse 

Y 
N t 
m 
8 

if T (0)  E f - ( c )  in which case v = 0 2 
which is smooth. 
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EXERCISES 

4.5A. Complete the proof of 4.5.10. 
4.5B. Let M be compact with boundary f: M+R have a single nondegenerate 

interior minimum and be constant on aM. Prove M is a disk. (Hint: Let F, be 
the flow of - Vf; show that 6 for t large gives a diffeomorphism between M 
and a disk about the critical point. Alternatively, use 3.2.17.) 

4.5C. Let S' act on R~\{O) by rotations and let V be a potential on R 2  invariant 
under S1, so V is a function of the radial coordinate r. If K(v)=  f rnllvl12, show 
that the amended potential is given by 

Verify 4.5.6 by direct computation, that is, show that motion in the plane 
under the potential V is governed by motion on the half line r >O under the 
potential Vl. (Hint: See Goldstein [1950], Sect. 3.3.) 

4.5D. Prove the analogs of 4.3.3 and 4.5.6 for simple mechanical systems on tangent 
bundles. Use a Riemannian structure on M, that makes the projection M+M, 
a Riemannian submersion (see the footnote to 4.3.3). 

4.5E. Determine the topology for the Hamiltonian on p R 2  given by 

for the usual S' action (by rotations) on R 2  with 

In particular, show that the critical manifolds of J on H -'(h) for h > 0 are the 
curves 

and 

(periodic orbits of X,). (The linking number of yh, + with yh, - in H -'(h) may 
be shown to be - 1 .) 

4.5F. (Spherical Pendulum) Carry out the topological program for 

M =  s2 ,  with the standard Euclidean metric 

V= height function on s2 
G = S ' = SO (2), acting on M by rotations about the z-axis 

Use spherical coordinates (0,+) on s2 and show that the effective potential is 
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Show that there is exactly one relative equilibrium for the reduced system. Let 

and let h( p) be its minimum. Show 

(i) if h<h(p), Mh,p=Ot zh,C=O; 

(ii) if h=h(p), Mh,,= s', Zh,,=S1; 

(iii) ifh>h(p),  Mh,,=S1x[a,b],Ih,,=T2. 

Also, show 

(iv) Z'={(h,p)lh=h(p)); and 

(v) Z = Z f ~ { ( h , p ) l h = 0 , h = 2 ) ~ { ( h , p ) I p = O ) .  

Using the equations of motion in V, for the reduced system, express the 
solutions of the full system in terms of those of the reduced system; see the 
remarks following 4.3.5. (See Iacob [I9731 and Cushman [I9751 for further 
information.) 

4.5G. Show that nondegenerate maxima or minima of the reduced amended potential 
give stable relative equilibria. 

4.6 THE TOPOLOGY OF THE RIGID BODY 

We now carry out pieces of the topological program for the rigid body. 
For a slightly easier example to s t a t  with, the reader may wish to first consult 
Sect. 9.8 on the topology of the two-body problem or Exercise 4.5E. The 
results of the present section are extensions of those due primarily to Iacob 
[1971, 19751 and Katok [I9721 in a formulation due to Cushman [1977]. 

We recall that the motion of a rigid body is described by the geodesic flow 
on SO (3) [= SO (3,R)I relative to a given left-invariant Riemannian metric 
(,) on S0(3), the moment of inertia tensor. It will be convenient to work in 
body coordinates; that is, we work with the Hamiltonian system on SO (3) X 
so(3)* with symplectic form given by 4.4.1 and with the energy momentum 
map given by 

where K is the kinetic energy associated with the given inner product (,), 5 
that is, K(p)=i(p,p). We want to study the topology of this system $ 
following the procedures of Sect. 4.5. (Actually only nondegeneracy of (,) 5 
need be assumed). 2 

We begin by summarizing some facts about the rotation group SO (3) and z 
its Lie algebra so(3) which we shall need. 8 
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4.6.1 Summay of $0(3) and notation (A1 of the facts below were proved 
or outlined in exercises in Sect. 4.1.) 

(i) (,) and 1 . 1  denote the Euclidean imer product and n o m  on R3,  
e,,  e2, e3 is the standard basis, and 

which, using the standard basis, we can identify with 

S0(3) is a three-dimensional Lie goup. 
(ii) The Lie algebra of SO (3) is 

with [X, Y J = X o  Y- Y o X .  Let 

Then { E,, E2,E3) is a basis for so(3) and the bracket relations are 

The vector product on l Z 3  satisfies (s X y, z)= det(x,y, z )  and makes R~ into a 
Lie algebra. The map j: ~ ~ + s o ( 3 ) :  x=x,e,+x2e,+x3e3~X=x,E,+x2E2 
+ x3E3 is an isomorphism of the Lie algebras ( R ~ ,  X) and (so(3),[,]). We 
shall identify these Lie algebras. 

(iii) We have Ad, = O (more propedy, j-'Adaj = 8) and adXy = x X y 
(more properly, a4(,,j(y) =j(x  X Y)). 

The standard inner product on Jt3  [or - $trace( XY) on so(3)] is Ad-in- 
variant. Let ( , ) denote 'chis inner pmduct on as well as on R~". 

52 
4 (iv) For y E R 3*, the co-acljoint orbit of p [which, for ,u Zd), is a sym- 

plectie maIllfold by 4.3.4(vi)] is the sphere in R3" of radius I gill. This 
follows directly from (iii). (It also follows from the general fornula for the 

E symplectic s twture  on G-p (4.3.q~)) that it is given by the standard area 
2 element on ,Y2 if p ZO.) 
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Recall that the effective potential represents the potential of the reduced 
system. However, in our case, we already know the Hamiltonian for the 
reduced system on Sfp1 SO we have, in effect, automatically computed the 
effective potential (see Exercise 4.6A). We can proceed then with a direct 
analysis of the topology of the reduced system. 

The reduced Hamiltonian I-I, on ~ 1 2 , ~  is given by 

where (,) denotes the given symmetric bilinear form on so(3); that is, on R3. 
We can thus think of (,) as a given moment of inertia tensor as was 
explained in Sect. 4.4. Let us write, (x,y)=(Ix,y) which defines the s y m e t -  
ric linear map I. 

4.6.2 Proposition. The set of criticalpoints of 4 on Sfp1 is 

a(%) = U { StpI n 6 = eigenspace of I corresponding to the eigenoalue 
A 

Pmof: dX,(x) y = (Ix,y). Now at x E s$,, the tangent space is the set of y 
orthogonal to x, and the normal space is the set of multiples of x. Thus 
d@,(x) = 0 if and only if Ix is a multiple of x, that is, x is an eigenvector for 
I. rn 

If n = dim VA is the multiplicity of the eigenvalue A, so n = 1, 2 or 3, then 
each Sf- '=  SFpl n VA is a sphere of dimension 0, 1, or 2. The set S{-' is a 
nondegenerate critical manifold of H, with index equal to the number of 
eigenvalues less than A and the corresponding critibal value is ;XI because 
the Hessian of H, on the normal to Sf- '  at x is I- A restricted to ePZAV,. 

To keep things simple, we will assume that there is no external potential 
(Euler-Poinsot case) and that the eigenvalues A,,A2,A3 of I are distinct and 
are ordered A2>A, >A, (see the exercises for the other cases). Then, from 
4.6.2, H, is a Morse function with nondegenerate critical points k x 4 ,  
i = 1,2,3, where Ixh =Ax4 and (x4,x4) = 1 these points have indices 1,2,0, 
respectively. 

Since I is symmetric, there is an 8 E SO(3) such that 6(I plel)= q,, 
6 (1 pie,) = xA2, and 6 (1 ale,) = xA3. Thus 

0 0 

6-l16=[; A2 0 A3 @ ] = f  
!2 Y 9 - 
8 

Let 6 : s&, c R3+BB: x-+;(fx,x); then & has the same topological be; 2 
E 

havior as 4 because (GI*%=%. The level sets q 1 ( h )  are either the 
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intersection of the ellipsoids i(X,x: + A2x; i- X,x;) = h with the sphere x: + x: 
+ X: = 1 i f  A2 >A1 >A3 > O or the intersection of the hyperboloids i(X,x:+ 
X,X; - X3x3 = h with the sphere x: $. xz + x: = 1 ,uI2 if A, >A,  > O and A, > 0. In 
both cases, the topology of the level sets of FP is the same and is given in Fig. 
4.6-1 and Proposition 4.6.3 for the stated range of h. 

4.8.3 ProcaposltBsn. ;The tq~olo&y of the energy surfaces is given as jollows. 

W, two disjoint copies of S 
with two distinct points identified 

The mappings 9: ~ - ' ( p ) + S 0 ( 3 ) . ~ :  (O,Ad$-lp)wAdz-ip and $: SO(3) 
+SO (3) .p : O t-+Adg - ~p have the same topological behavior because $ = 
cpO% where q: S 0 ( 3 ) 4 J P 1 ( p ) :  O ~ ( 0 , A d $ - ~ p ) ,  which is a diffeomr- 
phism. Define X: SO (3)+Sf,, C R ~ :  OH 0 (1 pie,). Then x and $ have the 
same topological behavior because the linear action of SO(3,R) on Sf,, is 

X transitive and equals the coadjoint action by 4.S.l(iii). Let O,, = (0  E 
SO (3,R)l Oe, = e,}. Then 

4 
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which is diffeomorphic to S ' .  Since x ( 0 ) = x ( O f )  if and only if 0 ' 0 - ' E O , , ,  
x- '(O-'(I ple,))=8,,0=R08,,, which is diffeomorphic to O,,. Therefore, x 
is a fibration with fibers diffeomorphic to S ' ,  since x is a submersion. 

The reader is cautioned that x is not a trivial fibration, that is, SO (3) is 
not homeomorphic to Sf,, X S '. 

However, from Fig. 4.6-1 we see that for every hZAII  p12/2, every con- 
nected component of H;'(h) bounds a contractible open set in Sf,,. There- 
fore for h+ +A, I pi2, K -  '(& ' (h ) )  (whi9 is homeomorphic to cp-'(H; '(h))= 
( H  x J)- ' (h,p))  is homeomorphic to 4 - ' ( h ) X  S ' ,  because x is a fibration. 
For h = +A,/ pI2, V= ( H  x J)-I(h,p)  is not homeomorphic to W X S '  but is 
topologically the union of two disjoint two dimensional tori which are 
identified along two imbedded circles whose double covering have linlung 
number one in S 3  (see Fig. 4.6-4). The following proposition summarizes the 
results obtained this way. 

4.6.4 Proposition. The topological types for the level surfaces of the energV 
momentum mapping are: 

V ;  two disjoint tori T~ identified 
along two embedded S ' whose 
double coverings are l i e d  once in S3 

M e n  y = 0, the co-adjoint orbit is ( 0 ) .  Therefore, J - ' ( ( 0 ) )  = SO (3) X 
(01, wbich is precisely the set of critical points of H :  S0(3)xso(3)*+R: 
(0, v) t-+ (v, v) since ( , ) is nondegenerate. The corresponding critical value 
is 0. Therefore: 

4.6.5 Proposltlon. The bgurcation set of H X J is the union of three 
paraboloids 

for i =  1,2,3. 9 
(See Fig. 4.6-2.) 4 

m 
8 

In order to understand how the level sets (N x J)- ' (h,p)  with h fixed fit 2 
together to form J - ' ( p )  [which is homeomorphic to S0(3 ) ] ,  we use the solid 6 ball model of SO (3). In this model, SO (3) is the ball B: = {X E R 3 1 ( ~ , ~ )  < 2 
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,rr2) with diametrically opposite points y and - y on its boundary s$= {x E 
R31(x,x) = , rr2)  identified. B: is homeomorphic to SO(3) under the homeo- 

f: morphism that assigns to every 0 E SO (3) a vector z E R~ lying on the axis of 4 * rotation of 0 (which is the eigenspace spanned by the eigenvector of 0 8 
corresponding to the eigenvalue 1) oriented so that the angle of rotation 6 of 
0 about that axis satisfies 0< 6 < n. The length of z is 6. Proposition 4.6.5 
and Fig. 4.6-3 give the disposition of the six critical circles X- '(e) = ae, 0 



Figure 4.6-3 

(where Oe = el and 

of H in the solid ball model of SO(3). 

4.6.5 Proposition. (See the following tabular material.) 

From Figure 4.6-3, remembering that antipodal points on the boundary 
are identified and that S3 is a double covering of SO (3) (see Exercise 4.1F), it 
is not difficult to see that the critical circles are pairwise linked in SO(3) 
with linking number i ,  that is, their double coverings have linking number 1 
in s3. In fact, any two fibers of I/ (and hence X) are linked in SO(3) with 
linking number 4. 

Figure 4.6-4 shows the level set x1(&'(fh1l  p)')), which is homeomor- 
phic to two disjoint tori T: joined along the two embedded linked circles 
x-'(e,) and x-'(-el). From the figure it is clear that 

is two disjoint. solid tori ST: (which is diffeomorphic to D: x T i )  with 
4 xP1( 'c e&in its interior. It is also true, but is not clear from the figure, that n 

SO (3)\M is diffeomorphic to two disjoint solid tori ST: with x-'(+ e,) in its 8 
2 

interior and SO (3)\ M is homeomorphic to ( H  x ~)- ' ([ ih,J  pI2, +XI 1 pI2]). 
Note that the boundary of is V. !2 
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U 

I1 x" x" 
;, x" .Flu 0 . s o x "  .3 0 1 0 1 .fi ax" 

", * I1 " ' Y  . p g I L  3%; : : 11 .I 1 1~ .n g I!. 3 %q 
darc 40.x el arc 



This completes the description of the topology of the energy-momentum 
mapping of the geodesic flow on SO (3) for any nondegenerate left-invariant 
metric with distinct principal moments of inertia. 

We did the analysis in this case by a direct examination of the Hamilto- 
nian on the reduced phase space. For other cases, see the exercises, Iacob 
[1975], Katok [1972], and Tatarinov [1973]. 

EXERCISES 

4.6A. Show that the effective potential, for a Lie group G with a left-invariant 
Riemannian metric (,) and potential V is 

( s h o w  A=@. What is Vp? Use the effective potential on SO(3) to prove 
4.6.4 and 4.6.5. 

4.6B. Show that the flow on Ih,p in cases 2 and 4 of 4.6.4 is quasi-periodic. (Cf. 
Arnold-Avez 11967, Appendix 31.) 

4.6C. Study the topology of the rigid body for A, = A, > A,. Prove, in particular, that 
the generic invariant manifolds I,, , are tori T, .  

4.6D. Study the topology of the rigid body under gravity in the Lagrange-Poisson 
and Kovalevskaya case (see Iacob [1971], Katok [1972]). 

4.6E. Use Exercise 4.5F and the effective potential in Exercise 4.6A to prove that the 8 relative equilibria corresponding to A2 and h, are stable, but A, is unstable. 2 (Assume A2 >A,  >A3 as in the text.) 9 
4.6F. Show that b : sl(2, R) X sl(2,R)+R : x,y ~ t r a c e a d ~ a 4 ~  is a nondegenerate 

inner product on sl(2,R) whose matrix with respect to the basis OP rn 
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Clearly, b is invariant under Ad: SL(2, R) x sl(2, R)+sl(2, R), (A,X) 
bAXA -I. Conclude that the co-adjoint action orbits are diffeomorphic to the 
adjoint action orbits. 
(i) Show that the cone {X E sl(2, R)l b(X, X) = 0) consists of three adjoint 

orbits, those containing 

(ii) Show that the hyperboloid {X ~ s l ( 2 ,  R)l b(X,X) = - 1 )  contains two 
orbits. 

(iii) Write the equations of each adjoint orbit as polynomial inequalities. 
(iv) What is the Euler vector field for the dual metric (,) whose matrix with 

respect to the basis {b # (El), b # (E2), b # (E,))  of sI(2, R)* has the form 

4.6G. (Van Moerbeke, M. Adler, B. Kostant, and R. Hermann) 
Let G be the group of invertible lower triangular, n x n matrices. Let g be 
identified with the lower triangular matrices and g* the upper triangular 
matrices. Show that the adjoint action of G on g is by conjugation and on g* 
by conjugation followed by projection A wA + (taking the upper triangular 
part). 
(i) Show that for f ~ g * ,  

and that the sympletic structure on the coadjoint orbits is 

o([h, A ] + ,  [h, B ]+) = - trace(h [A, B 1) 

(ii) Take the special case in which f has ones on the superdiagonal (the 
diagonal above the main diagonal) and zeros elsewhere. Show that G$ 
the orbit of f is parametrized by (al,. . . ,an- bl, . . . , bn- ,) by associating 
to this 2(n - 1) tuple, the upper-trianglular matrix C with bl, . . . , bn - l, 
bn = - 21; :bi, down the main diagonal and al, . . . ,an - down the superdi- 
agonal. Show that the symplectic structure is 

and that ak = e(*-qh+l) (with ~ ~ = l q i = O )  bk= -pk, k =  1, ..., n - 1 brings o 
to canonical form. This Toah lattice example is continued in Exercise 
5.5K. 



CHAPTER 5 
Hamilton-Jacobi Theory and 
Mathematical Physics 

This chapter continues our development of the theory of Hamiltonian 
systems, giving a few more advanced topics. In addition to traditional topics 
related to canonical transformations and Hamilton-Jacobi theory, we present 
an introduction to some topics of more recent vintage including Lagrangian 
submanifolds, quantization and infinite-dimensional systems. The final sec- 
tion (5.6) is intended to provide a transition from this chapter to Part 3 on 
qualitative dynamics. 

5.1 TIME-DEPENDENT SYSTEMS 

Section 3.3 was concerned with Hamiltonian vector fields on a symplectic 
manifold(P,w). If, instead, we are given a mapping X: R x P+TP, (a 
time-dependent vector field), then the analysis of Sect. 3.3 is no longer 
appropriate. In fact, R X P cannot be a symplectic manifold, as it has odd 
dimension; but it does have a contact structure. Contact manifolds will also be 
of importance for canonical transformations, which we study in the next 
section. (Historically, the terms contact and canonical have been used in a 
variety of ways; see Whittaker [1959, p. 2901.) 

5! 
Ralph Abraham and Jerrold E. Marsden, Foundation of Mechanics, Second Edition 4 cr, 

Copyright O 1978 by The Benjamin/Cummings Publishing Company, Inc., Advanced Book 
Program. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 2 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or 
otherwise, without the prior permission of the publisher. g 



5 HAMILTON- JACOB1 THEORY AND MATHEMATICAL PHYSICS 371 

We shall begin with a study of closed two-forms that are not necessarily 
nondegenerate. 

5.1.1 Definition. Let w be an exterior two-form on M. Then 

is called the characteristic bundle of w. [Here ub is the one-form defined by 
ub(w) = w(v, w).] A characteristic vector jield is a vector field X such that 
ixw = 0, that is, X ( x )  E R, for all x E M. 

The following is a basic result that will be of use to us here and later. It is 
due to E. Cartan. 

5.1.2 Proposition. Let w be a two-form on M of constant rank. Then R, is a 
subbundle of TM. If w is closed then R, is integrable as well. 

Prooj: If w is of constant rank, this implies the fibers of R, have constant 
dimension. We can choose a smoothly varying basis of R, in any chart by 
starting with a basis of vector fields for the tangent bundle and applying the 
algebraic procedure of 3.1.2(ii) to bring w to canonical form. (The reader 
should write out the details.) Thus R, is a smooth subbundle. 

The second part uses Frobenius' theorem and was already noted in the 
introduction to Sect. 4.3: Let X and Y be characteristic vector fields. Then 

so [X, Y ]  is a characteristic vector field. 

Remark. The reader can easily prove the converses to the two conclusions 
of 5.1.2. 

Next we generalize Darboux' theorem proved in Sect. 3.2 to cover the case 
of closed two-forms with constant rank. (We shall explicitly give a finite-di- 
mensional version, but our proof also works in infinite dimensions.) The 
classical proof may be found in Sternberg [1964]. 

5.1.3 Theorem (Darboux) Let M be a (2n+k)-manifold and w a closed ' two-form of constant rank 2n. For each xo E M there is a chart (U, q) about xo 
such that, in this chart, 

rn 
8 n 

2 wl U= 2 dxir\&' 
cr i =  l 
& 1 
2 where coordinates in the chart are written ( x  I, . . . , x ", y , . . . ,y : w ', . . . , w k). 
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ProoJ Choose a chart (V,$) about x, and in it a ball B in a linear subspace 
E through x, such that i*w has rank 2n at x,, where i :  B++(V) is inclusion. 
If we shrink B if necessary, we can find coordinates xl,. . .,x",yl,. . .,yn on B 
such that 

by Darboux's theorem. By 5.1.2, the characteristic subbundle R, is integrable. 
It is of dimension k and transverse to B. Thus a neighborhood of x, is 
diffeomorphic to B x N, where the tangent space to N at p E B X N coincides 
with R,(p). Here we may have to shrink B further and have used Frobenius' 
theorem. If we let w', . . . , w be arbitrarily chosen coordinates on N, then 

since w vanishes when applied to a pair of vectors, one of which is in R,. 

We shall now specialize to the case of contact manifolds. 

5.1.4 Definition. A contact manifold is a pair (M, u) consisting of an odd-di- 
mensional manifold M and a closed two-jorm w of maximal rank on M. An 
exact contact manifold (M, 0 )  consists of a (2n + 1)-dimensional manifold M 
and a one-jorm B on M such that Br\(dB)" is a volume on M. 

Note that the characteristic bundle R, of a contact form w has one-dimen- 
sional fibers, so we sometimes call it the characteristic line bundle. 

The next result gives the canonical form of w and B and shows that an 
exact contact manifold is a contact manifold. The converse can be proved 
locally using the Poincark lemma. 

5.1.5 Theorem. Let (M, w) be a contact manifold. Then for each m E M there 
is a chart (U, cp )  at m with cp(u) = (ql(u), . . . , qn (u)  ,pl(u), . . . ,pn(u), w(u)) such 
that 

wI U= dqir\dpi 

Similarly, if (M, 0 )  is an exact contact manifold, there is a chart (c +I) at m 
such that 

B I U =  & +pi dqi 5 
!3 
B 

Proof. The first statement follows at once from 5.1.3. For the second, let 3 
w = dB and choose coordinates (q', . . . ,q:pl, . . . ,p,, w) as in the first part. Then 2 
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so locally 

for a function w. Since B~(d6)" + 0, the functions qi, pi and w are function- 
ally independent, and thus define,a local chart. . 

An illustrative characterization of exact contact manifolds is as follows: 

5.1.6 Proposition. Let 6 be a nowwhere zero one-form on a (2n + 1)-manifold 
M and let & = { v E TM 16 (v) = 0) be its characteristic bundle. n e n  (M, 8) is 
an exact contact manifold if and only if dl3 is nondegenerate on the fibers of &. 

Proof: Re is 2n-dimensional, so by 3.1.3, dB is nondegenerate on Re iff 
(dB)"#O. By definition of A and &, this is so iff B~(d0)"fO. . 

Here is an example of a contact structure: 

5.1.7 Proposition. Let (P, w, H)  be a Hamiltonian system and 2, a regular 
energy surface. Then (Z,, i*w) is a contact manifold, where i : 2,- P is 
inclusion. Moreover, XHIZe is a characteristic vector field of i*w generating the 
characteristic line bundle of i*w. 

Proof. Clearly di *w = i *dw = 0, so i *w is closed. Since w is nondegenerate 
and 2, is of codimension one, w has maximal rank on Z ,. [w 1 T,2, is of 
maximal rank iff the dimension of the w-orthogonal complement to TxZ, in 
TxP is one dimensional. But this is clear by 5.3.2(iii).] 

Since XH is tangent to 2 ,  w(x).(XH(x), v) = dH(x).v = O  for x €2 ,  
v E  TX2,c TxP. Thus ixHl,,i*w=O, so XHIZe is a characteristic vector field. 
Since e is a regular value, XH(x)#O for x EX,, thus XH generates the 
characteristic line bundle. . 

The argument given here shows that if w is closed and its characteristic 
bundle is one dimensional, then w is a contact form. 

5.1.8 Example. If P = P Q, and w = -do0, where 19, is the canonical one- 
form and if H =  K +  V O T ~ ,  where K is the kinetic energy associated to a 
Riemannian metric and V: Q-R, and if 2, is a regular energy surface that 
does not intersect the zero section of T*Q, then (Xe,i*B0) is an exact contact 
manifold. Indeed, by 5.1.7, (Z,, i*w) = (Z,, i*(- dBo)) is a contact manifold, so 
(dB,)" is nonzero on a complement to Ri.,. Also, 6, is nonzero on Ri., since 
Ri., is generated by XH and BO(XH) = 2 K is the action of H. Thus Bo~(dB0)" is z 

3 nonzero, so we have an exact contact manifold. 
2 The argument given here also shows that if (M,dO) is a contact manifold 
Z and if B is nonzero on the characteristic bundle R,, w = dB, then (M, 6) is an 

exact contact manifold. 
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We now turn to a second main example of contact manifolds, namely, 
those associated with time-dependent Hamiltonian systems. We stress the 
Hamiltonian formulation, although the time-dependent Lagrangian formula- 
tion could be similarly described. 

5.1.9 Proposition. Let (P, w) be a symplectic manifold, R X P the product 
manifold of R and P and T: R x P-t P the projection, %(t,p) =p. Let 5 = 7~;o. 

Then (R X P, 5) is a contact manifold 
The characteristic line bundle of 5 is generated by the vector field f on R X P 

given by 

If w = d0 and e" = dt + 7~;0, %here t : R X P-tR is the projection on the first 
factor, then 5= de" and (R X P, 0 )  is an exact contact manifold. 

ProoJ: Clearly d 5  = 7~;do = 0, so 5 is closed. As in 5.1.7, to show 5 is of 
maximal rank, it suffices to show that its characteristic bundle is one 
dimensional. However, ((s, r), up) E R;-means that 

for all u,wp. By definition of 5, this is exactly the condition that 

9 (up, wP) = 0 for all q, 

that is, up = 0. Thus at (s,p) E R x P, 

which is one dimensional, generated by f(s,p). 
The last part follows since dB= 5 and dt(l) = 1, so e" is nonzero on R;. . 
Recall from Sect. 2.2 that if M is a manifold, a smooth map X :  R x M-t 

TM is a time-dependent vector field on M if for each t E R, X is a vector field 
on M, that is, ( T ~  0 X)(t, m )  = m. We define 2 :  R X M-tT(R X M)= TR X 
TM by (t, m )  I+ ((t, I), X (t, m)) and observe that 2 E X(R x M), and 2 = f + 
X. Also, by definition, a curve b: I-+M is an integral curve of X at m iff 
bf(t)  = X(t, b(t))  for all t E I,  and b(O)= m. It follows that c: I-tR X M is an 
integral curve of 2 at (0, m )  iff c( t )  = (t, b(t)), where b : I-tM is an integral 
curve of X at m. Indeed, if c(t)  = (a ( t ) ,  b(t)), then c(t)  is an integral curve of 
2 if cf( t)  = (a f ( t )  , bf(t))  = 2 (c(t));  that is, af(t)  = 1 and bf(t) = X (a ( t )  , b(t)). 
Since a(0) = 0, a( t )  = t. This proves the assertion. We call 2 the suspension of 
X and note that its flow is t ( s , m ) = ( t + ~ , F , , ~ ( m ) )  where 4 ,  is the flow of 
the time dependent vector field X. 
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Thus, changing X to 2 suspends the integral curves of X,  as shown in 
Fig. 5.1-1. 

5.1.1 0 Definition. Let (P, w )  be a symplectic manifold and H E F ( R  X P). 
For each t E R define Ht : P+R by Ht ( p )  = H (t,p). [Note that H, E F ( P )  and 
XHt=(dHt)' €%/ (p ) . ]  Then put XH: R X P+TP: (t,p)t+XH,(p) and define 
the suspension . f H :  R X P+ T ( R  X P )  as above. 

Thus our time-dependent vector field XHt is obtained by merely freezing t 
and constructing the usual Hamiltonian vector field. Thus we obtain the 
following. 

5.1.1 1 Proposition. Let ( U, c p )  be a symplectic chart of P with 

so ( R  x U, t x c p )  is a chart of R X P, where t : R x P+R is the projection onto 
the first factor. Then c: I+R X U :  t~+(t, b(t)) is an integral curve of . f H  or, 
equiualently, b : I+ U is an integral curve of XH, iff 

m 
8 
2 In the time-independent case we saw that LxHH=O, or H is constant 

along the integral curves of XH. For the time-dependent case the Hamiltonian 
is not an integral invariant. 
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5.1.1 2 Proposition. With 2, and _t as defined we have 

ProoJ Since 2, = _t + X,, 

since dH-X, = 0. . 
Another way to write this is, using notation in a symplectic chart: 

where qi(t),pJ(t) is an integral curve of Hamilton's equations. 
Next we shall bring in the contact structure. 

5.1.13 Theorem (Cartan). Let (P, w) be a symplectic manifold and H E %(R 
X P). Let 6 be defined by 5.1.9 and set 

wH=G+dH~dt  

Then 

( i)  ( R  X P, a,) is a contact manifold; 
(ii) TH generates the line bundle of w,; in fact, f H  is the unique vector fieId 

satisfving 

igHwH = 0 and iiHdt = 1; 

moreoger, if F is the flow of XH, F*w = 6 - dH/\dt; and 
(iii) i f  w7d8  and 8 , = ~ f O & ~ d t ,  then if- is 

nowhere zero, then ( R  x P, 8,) is an exact contact manifold. 

ProoJ (i) We have dw, = dG + d ( d H ~ d t )  = 0, so w, is closed. To show w, 
is of maximal rank, observe that w, coincides with G on "horizontal vectors" 
of the form ((s, 0) ,  0,) E T(s,p)(R X P )  on which G is nondegenerate by 5.1.9. 
(An alternative way to prove w, is of maximal rank is to observe that 
d t ~ w ;  ZO.) 

(ii) For t fixed, let d, denote exterior differentiation on P. Then 

iiHwH = it,,& + (izH d ~ )  dt - dH (iiH dt) 

Since ~ ~ ~ - 2 , ( t , p )  = xH,  (p ) ,  we have 
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where Y is a vector field on R X P. Also, by 5.1.12, 

and 

Thus 

Since the characteristic bundle is one dimensional, 2, is unique. The last 
statement follows from &,,*a = o. 

(iii) Clearly doH =wH. Also, using the definition of OH, 

so 8, does not vanish on the characteristic bundle of w. Thus (R X P,8,) is 
-- 

an exact contact manifold (see 5.1.8). w 
66%' I-H 

Notice that is (minus) the Lagrangian associated to H 
according to Sect. 3.6. 

~lthough energy is not conserved for time-dependent Hamiltonian sys- 
tems, we do have some important integral invariants also due to Cartan. 

5.1.14 Theorem (Cartan). Let (P, w) be a symplectic manifold, H E S(R X 
P) and wH be defined as in 5.1.13 (and 13, if w = dB). Then: 

(i) w,, w;, . . . ,a; are invariant forms of .fH (and 9, is relative& invariant if 
w is exact); M 

(ii) dtr\wg = dtr\Gn is an invariant volume element for XH. 

Proof: (i) L.,w, = i f " d ~ ,  + diZH% = O  since o, is closed and . f H  is a 
characteristic vector field of wH. Since LyH is a A derivation, LzHwh = 0, k = 
1,2 ,..., n. 

(ii) Observe that from 5.1.9, dtr\Gn is a volume element and clearly 

Then, from (i), 

~ ~ " ( d t ~ w ; )  = (LgHdt)~w& 

But 
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The integral invariants of Cartan just obtained illustrate the importance of 
suspension. For instance, the time-dependent flow of X,  itself need not be 
volume preserving, but the suspended flow is volume preserving. 

For the interesting topic of adiabatic invariants for time dependent 
Harniltonian systems by the method of averaging, we refer to Arnold [1978]. 

EXERCISES 

5.1A. Adapt the Lagrangian formulation to the time-dependent case. 
5.1B. Showthat,forf€%(RxP), 

5.1C. (i) Let (M,B) be an exact contact manifold. Show that there is a unique 
Y E %(M)  such that iyB = l and iydB = 0. Show that L,dB = 0 and that 
there are local coordinates (ql,. . .,qn, pl,. . .,pn, t) such that Y=a/at  and 
B=dt+pidqi. 

(ii) Let (P, o, H) be a Hamiltonian system, w = dB, Z, a regular energy surface 
such that 0 (X,) is never zero on 8, and i: Z,+P the inclusion. Show that 
(Z,,i*B) is an exact contact manifold. Show that the vector field defined 
by it, according to (i) is (l/B(XH)).XH restricted to Z,. 

5.1D. Let M be a 2n+ 1 manifold and w a closed two-form on M. Then show (M,o) 
is a contact manifold if and only if for each m E M, there is an a,,, E E M  such 
that cu,r\w; +O. 

5.1E. (Reduction to the autonomous case) Let (P, w )  be a symplectic manifold, 
and H E '%(R x P). Show that, on R X (R X P) with first and second 
factor projections s and t, & ~ d t  + D is a symplectic form, as is dmdt + i j ,  
[D = n;w, where 7r3: (s, t, X)H X, etc.] Also, define H(s, t, x) = H(t, x )  - 
s. Using the first symplectic form, show that the integral curves of Xg are 
related to those of 2, by projection. Moreover, show that, if F is the flow 
of Xfi, then s(F,(x)) = H(t, x). (Hint: Recall that L?"H = aH/at.) 

5.1F. Let (P, a)  be a syrnplectic manifold and f2 = dt~ i j " ,  the volume on R X P. 
For X E %(R X P), write X(t, x) = X,(t) + X,(x) as the vertical and 
horizontal components. Then show that 

dx, divnX (t, x) = - (t) + div,X, (x) dt 

Use this to give another proof of 5.1.14. 
5.1G. (i) Let M be a manifold and X, Y E  %(M). Show that 

- 

(ii) Suppose H E%(R x TIM) and LyBH=df, where 8 , = & + ~ d t .  Then 
show g = BH(Y) - f is a constant of the motion (i.e., LfHg =0). Show that 3 
dg = - iywH, and hence that, in the circumstances of 5.1.14, werecover the $ 
same constant of the motion. (Under the weaker conditions here, g may 
depend on time.) a 
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5.2 CANONICAL TRANSFORMATIONS AND HAMILTONJACOBI THEORY 

If (P,, w,) and (P,, w,) are symplectic manifolds of the same dimension, we 
recall that a map f: P,+P, is called ymplectic whenyw, = a,. We shall begin 
this section by reformulating this definition in a way that facilitates the 
introduction of generating functions. Following this we generalize the concept 
of symplectic maps to the case of time-dependent systems. In either case we 
study the associated Hamilton-Jacobi equation that relates the generating 
function of the symplectic map or canonical transformation which trivializes 
the system, to the given Hamiltonian. 

5.2.1 Proposition. Let (P,, w,) and (P,, w,) be symplectic manifolds, ri: 
P, X P2+ Pi the projection onto Pi, i = 1,2 and 

Q=~:w,-r,*w, (compare3.3.25) 

Then: 

(i) Q, is a symplectic form on P, X P,; 
(ii) a map f: P,-+P, is ymplectic if and only if if*Q = 0, where if: rj+P, x P2 

is inclusion and rf is the graph off. (In the terminology of the next section, 
rj is called a Lagrangian submanifold.) 

Proof. The first part is readily verified, as in 3.3.25. To prove (ii), notice that 
f induces a diffeomorphism of P, to rj, so we can write 

Therefore, by definition of Q, 

so (ii) is clear. . 
Suppose we write, locally, Q,= - dO. For example, O = r:O1 - r,*d2, where 

- dOi =q is a possible choice, but other choices exist as well. Thus if*dO= 
di/*O = 0, that, is, if*@ being closed is equivalent to f being symplectic. Locally, 
by the PoincarC lemma, if*@ = - dS for a function 

A 
5.2.2 Definition. We call such an S a generating function for the symplectic 

" map f. ( I t  depends on the choice of O and is locally defined.) 8 
00 
0 

Z At this point we recommend that the reader have a look at Exercises 5.2A 
and 5.2B in conjunction with Example 5.2.3. 
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If (q l  ,..., qn, pl,. .., p,) are coordinates on P2 and (Q1 ,..., Qn, PI,.. ., P,) 
are coordinates on PI, then r, can be given a chart in several ways. For 
instance, S may appear as a function of (ql  ,..., q: Q' ,  ..., Qn)  or of 
( q l ,  . . . , q: P,, . . . , P,), and so forth. 

The fact that S is only locally defined is important. Indeed global 
properties of rf are important in problems of quantization using the Maslov 
index; see Maslov 119651 and Sect. 5.6. We also refer to Weinstein [1972] for a 
description of Poincarzs generating function in the context of 5.2.2. (see also 
Arnold [1978]). 

5.2.3 Example. Let f: Pl+P, and write canonical coordinates on PI and P2 
as ( Q  I , .  . . , Q: PI,.  . . , P,) and (ql, .  . . , q:pl, . . . ,p,) and choose 

Then writing 

and regarding S as a function of (q l  ,..., q", Q',  ..., Qn),  the relationship 
if*@ = - dS reads 

For instance, let 

be given by 

Then f is easily seen to be symplectic away from p =0, that is, dPr\dQ = 
d p ~  dq and we can choose 

5 
S (q, Q ) = - i wQ cot (27~q) !&? 

9 
t-4 
8 

This canonical transformation maps the Hamiltonian of the harmonic oscilla- 2 
tor H (P, Q) = i ( p 2  + w2Q2) to H (p,  q)  = (w/27~)p; the latter has trivial in- z 
tegral curves. 3 
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Recall from Sect. 3.6 that the canonical one-form pidqi is closely related 
to the action. Indeed, in the Lagrangian formulation, the action is 

SO 

Adt ==pi dqi 

Thus if we pull down the relationship if*@ = - dS to P, and integrate along a 
path, we see that S measures the change in the action induced by f. Therefore 
S itself is sometimes called the action. 

We shall now discuss the time-independent Hamilton-Jacobi equation. 
The time-dependent case will be discussed below. The idea is rather simple: we 
seek a symplectic map f such that the new Hamiltonian will be totally in 
equilibrium, that is, H 0 f = E = constant, so Q' and PI can be treated as 
integration constants for H 0 f. The transformation of the original Hamilto- 
nian then reads, by substituting pi = aS/aq', 

which is the Hamilton-Jacobi equation. 
The next result summarizes the situation. 

5.2.4 Theorem (Hamilton-Jacobi). Let P= PQ with the canonical vm- 
plectic structure o= -do,,. Let XH be a given Hamiltonian vector field on P, 
and let S: Q+R. Then the following two conditions are equivalent: 

(i) for every curve c(t) in Q satisfling 

c'( t) = ~ ~ 6 . x ~  (ds  (c ( t))) 

the c u m  t wdS  (c(t)) is an integral curve of X,; 
(ii) S satisfies the Hamilton-Jacobi equation H o dS= E, a constant, that is, 

Pmo$ Assume (ii) and let p(t)= dS(c(t)), where c(t) satisfies the stated 
equation. Then, by the chain rule, 

= TdS (c ( t)). T T ~ X ~  (ds  (C (t))) 

= T (ds  0 T$).x, (d s  (c ( t))) 



382 2 ANALYTICAL DYNAMICS 

Now we use the following symplectic identity: 

5.2.5 Lemma. On T*Q we have, for any function S: Q+R, 

ProoJ: From 3.2.1 1, (dS)*w = 0, so the identity in the lemma is equivalent to 

But this identity is obvious since v - T(dS r$)v is vertical (Trz of it is zero) 
and from the local formula for w (see formula 2 on p. 179), it vanishes on a 
pair of vertical vectors. V 

Thus we get, for w E T,(,,P, 

But dH (p (t)) TdS (p (t)) = d (H dS)(p (t)) vanishing is exactly the Ham- 
ilton-Jacobi equation. Thus, assuming (ii), we get 

so (i) follows. 
The proof that (i) implies (ii) follows from these arguments in the same 

way. . 
We encourage the reader to give a coordinate proof of this result, 

consulting a standard text, and then to reread the proof just given. Notice 
that this proof works in infinite dimensions. Future applications of the 
Hamilton-Jacobi equation in the infinite dimensional case may center around 
quantization problems for field theories (for applications in general relativity, 
see Misner, Thorne, and Wheeler [1973]). 

Remarks. (1) Theorem 5.2.4 establishes a basic link between nonlinear 
first-order scalar partial differential equations and ordinary differential equa- 
tions, often referred to as the method of characteristics (cf. 2.2.22 and * 
textbooks such as Duff 119561 or John [1975]). g 

9 
(2) In many examples, such as H = K +  V, Z'r$.X, is a metric, so 

condition (i) means c(t) is a gradient line of S, so is orthogonal to level 3 
surfaces (or a "wave of action") of S. Additional results along these lines are z 
given in Sect. 5.3. 4 
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(3) S is related to the wave function $ in quantum mechanics by being 
its phase: 

where A is a constant (with the dimensions of action). For H =  K +  V, that is, 
H (q,p) = ( 1  /2m)p2 + V (q), the Hamilton-Jacobi equation is easily seen to 
imply 

If the last nonlinear term is omitted, this reduces to the Schrodinger equation. 
(4) We explicate Remark 3 in a more general context. Suppose P is a 

linear partial differential equation on a manifold Q, written symbolically as 

Assume that P is of order m and depends on a large parameter r. We take P 
of the form 

where Pm-j is a linear partial differential operator of order m-j. The 
principal symbol of Pm-, is the smooth real-valued function am-, on T* Q 
defined on (x, a) = ol, E Q by replacing a/axi by the coefficients ai in the 
top order term of Pm-,. Let H  (x,a) on T* Q be defined by 

Now we try to solve Eq. (I) by a solution of the form 

u (x, r)  = e kS(x)a (x, 7) 

If a(x,r) is expanded in an asymptotic series in r, 

00 

Y a (x, r)  - ak ( x ) T P - ~  
k=O 

9 
and Eq. (2) is substituted in Eq. (I), and coefficients of powers of r are set 
equal to zero, the leading term is exactly the Hamilton-Jacobi equation: 

H (x, dS (x)) = 0 
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(The constant E is built into H in this formulation.) Thus one expects that as 
7300, the solutions of Eq. (1) are approximated by eirS, where S solves Eq. 
(3), that is, by a Hamiltonian system. For the Schrodinger equation with 
7 = 1/h, this is the usual classical limit of quantum mechanics (by the "WKB" 
method; cf. Birkhoff [1933]). For the (reduced) wave equatior. P= V + 
72/f (x),, Eq. (3) is the eikonal equation of geometrical optics. 

Equations for other coefficients of powers of 7 lead to transport equations; 
for geometrical optics, they govern the propagation of amplitudes normal to 
the wave fronts S= constant. These ideas form the basis of the fundamental 
generalized Huygens principle of Courant and Lax; see Courant-Hilbert 
[1962, p. 7351. 

The base integral curves of X, in Q are called the bicharacteristic curves 
for the original operator P and play a key role in recent work of Egorov 
[I9691 and Nirenberg and Treves [1970]. 

These ideas are related to the pioneering work of Keller [1958], Lax 11 9571, 
and Maslov [1965], and have led to and are related to the theory of Fourier 
Integral Operators and geometric quantization; see Hormander [1971], Duis- 
termaat and Hormander [ 1972), Duistermaat [ 19741, Guckenheirner [ 1973~1, 
Guillernin and Sternberg [1977], Sect. 5.4, and references therein. Some 
additional remarks are given at the end of Sect. 5.3. 

Now we turn to time-dependent canonical transformations. These will 
map R x P, to R x P2 and we wish them to preserve the form of the 
time-dependent Hamilton equations, as explained in the previous section. 

As an example, consider a complete Hamiltonian vector field XH on a 
symplectic manifold (P, w). Suppose XH has flow i? R x P+ P. Then define 
its suspension by 

@: R x P + R x P: (A, x) H (A, F(A, x)) 

which becomes a diffeomorphism. In fact, j-' maps the integral curves of zH into integral curves of _t, that is, fibers of the line bundle 7r2: R x P+ P. 
We say that transforms H to equilibrium. (See Fig. 5.2-1.) We shall see 
shortly that is an example of a canonical transformation. 

5.2.6 Deflnltlon. Let (P,, w,) and (P,, a,) be symplectic manifolds and 
(R X Pi, 6) the corresponding contact manifolds. A smooth mapping 
F: R X P,- R x P, is called a canonical transformation if each of the following 

holds: 
(Cl) F is a diffeomorphism; 
(C2) Fpreserves time; that is, Fr t = t, or the following diagram commutes: 
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Figure 5.2-1 

(C3) There is a function K F f  %(R X P I )  such that 

F*G2 = uKF 

where O,yF = i j  + d K F ~  dt. 
In the following, we will also allow the domain and range of F to be open 

subsets of R X PI (or R x P2). 

The function K, will be related to the generating function of F in 5.2.15 
below. We shall soon derive several more familiar conditions, equivalent to 
(C3). First, let us note the following. 

5.2.7 Proposition. The set of all canonical transformations on ( R  X P, G) 
forms a group under composition. 

PmoJ Let F and G be canonical transformations on ( R  X P,;); that is, 
from R x P onto R x P. We must show that Fo G- '  satisfies (Cl), (C2), and 
(C3). However, (C l )  and (C2) are clear, and for (C3), 

But G*G= i j+  dKGAdt, so ( G  -')*ij=ij - (G -')*(dK,~dt) and hence 

A 
8 
2 As a corollary, we have 
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It will now be convenient to give several definitions we will be using 
throughout the remainder o f  this section. 

5.2.8 Notations. Let ( P ,  w )  be a symplectic manifold and ( R  X P, D )  = 

( R  X P, a2*o) the corresponding contact manifold, where %: R X P + P; 
(s, X )  H X. Let jt : P+R X P; x H (t, x )  , so that a 0 jt is the identity on P and 
t 0 j, = s. For F: R X P+R X P we put F, = a2 0 F 0 j, : P+ P, as before. Also, if 
X : R X P+ TP is a time-dependent vector field, let .f = X + E T ( R  X P)= 
T R  x TP, so that T T ~  0 .f = X. 

5.2.9 Definition. Let F: R X P,+R X P2 be a smooth mapping satisfying 
( C  1). Then F is said to have property ( S )  iff I;; : P+P is symplectic for each 
t E R .  

5.2.10 Proposition. A mapping F: R X P,+R X P2 has property ( S )  iff there 
is a one-form a on R x P such that FCG2 = 3, + a ~ d t .  

ProoJ: I f  FCG2 = 3, + a ~ d t ,  then 

since .rr, ojt = identity and t ojt is constant. 
Conversely, assume I;; is symplectic and let P= FC3, -3,. Then 

Now we can write 

where y does not involve dt; that is, a$j:p= y at points o f  { t )  X P. Thus, 
sincej:p=O, y=O. II 

Taking a = dKF leads to the following. 

5.2.1 1 Corollary. Condition (C3) implies condition ( S ) .  

In case the symplectic forms q are exact, q =  -dB,, (C3) is clearly $I: 
equivalent to: 2 9 

( ~ 4 )  There is a K, such that F*8;- OKF is closed where, as usual, 

&=dt+a;Oi and OKF=g1-KFdt 
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5.2.12 Proposition. Suppose F:  R X P,+R X P2 satisfies (C2). Then (C3) is 
equivalent to the following. 

(C5) For all H E T(R X P,), there is a K E F(R X PI) such that 

F*wH = LOK 

Proof: If (C3) holds, let 

K=H0F+KF 

Then 
F*wH = F* (ij2 + dHr\ dt) 

by (C2). 
Conversely, let KF denote the K determined by H = 0. Then F*wH = wK 

reduces to (C3). . 
5.2.13 Proposition. Let F:  R X Pl+R X P2 satisfv (Cl) and (C2). Then 
(C3) is equivalent to each of the following. 

(C6) (S) holds and, for all H E T(R x P,), there is a K E F(R X P,) such 
that F * Z ~  = ZP 

(C7) ( S )  holds, and there is a function KF E F(R x P I )  such that Fr_i = 

XK,' 

Proof: Assume (C3) holds. Then by 5.2.1 1 (S) holds. Let K be given by 
K= H o F+ KF. From (C5), F*wH =wK. Thus to prove (C6) it suffices to show 

i,fHwK = 0 and i,fH dt = 1 

from 5.$.1$. But 

=F*i-  w =O 
XH H 

Similarly 

0 =$'*.1=1 
z 
9 Second, (C6) implies (C7) by taking H = 0. 



Finally, we must show (C7) implies (C3). From 5.2.10, F*ij2=ijl +aAdt. 
Hence, writing KF = K(F), 

On the other hand, 

since &= s:w~, and ixKiF)dt = 1 since F*_t=! by (C2). Comparing the two 
expressions, and using ~ y ~ ( ~ d t  = 1 we have a = i,,ij, + (i,,a)dt. Thus F*G2 = 

+(iTkl)ndt, andas  b g B 

we get F*L;),=L;), + dKFr\dt. H 

The statement F * Z ~  = ZK of (C6) is the precise meaning of the assertion: 
F preserves the form of all time-dependent Hamiltonian equations. 

The classical form for a canonical transformation is essentially (C6) 
without the condition ( S ) ,  as follows. 

5.2.14 Theorem (Jacobi). If F: R x P,+R x P2 satisfies (Cl) and (C2), 
then (C3) is equivalent to the following. 

(C8) There is a function KF E $(R X P,) such that for all H E %(R X P,), - - 
F*XH = X,, where K =  H 0 F+ KF. 

ProoJ: That (C3) implies (C8) was shown in 5.2.13. For the converse, taking 
ff = 0, we have I;*! = xKF and so for an arbitrary H we have 

F * Z ~  = F*XH + ZKF 

BY (C8) 

J ~ K = x ~ + z = x ~ ~ ~ + X ~ ~ + _ ~  and ZK=pl?, 

so, combining the two expressions, 

F*XH= XHOF 

Therefore, 

jt*F*71ZXH, =XH,.F, 

where 
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In other words, 

Since this holds for all H E %(R x P,), 4 is symplectic (see 3.3.19). Thus (C8) 
implies (C6) and hence (C3). W 

The (time-dependent) principal function of Hamilton is the analog of the 
generating function in the time-independent case and is derived from ((3). 

5.2.1 5 Definltlon. Let F be canonical and locally write w1 = - do1, w2 = 
-dB,, and so forth as in ((3). Then if we locally write 

~ * d ,  - eKF=dw 

for W: R X PI -, R, we call W a generating function for F. 

Notice that the local existence of W is equivalent to F being canonical. 
If we write down the definitions of 8, and OKF, the definition of W reads 

~ * ( d t + r ~ 8 , ) - ( d t + 7 i j ~ , ) + K ~ d t = d ~  

that is, 

F*r?O2 - r*e, + K,dt = dW 9 

since F * dt = dt. Letting F be the coefficient of dt in F *r;tl2, we get 

5.2.16 Proposltlon. If F is canonical and has generating function W, then 

K ,  = awlat - F 

and for a Hamiltonian H on R X P,, 

If F can be chosen so that K is constant, then we will have transform d P. 4 the Hamiltonian system f H  to one that is trivial; iK= ;. All points for XK are 
equilibrium (or fixed) points, so we have the following: 

5.2.17 Definltlon. Let F: R X P1+R x P, be a canonical transformation and 
HEJ(RXP2) .  WesaythatFtramformsHtocquiIibriumifK=HoF+K,= ij 
constant. 

r;, 
8 
2 If we assume we can write W as a function 
z 
! w(t,ql ,..., q:el, ... , e n )  
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so that F is given by 

pi=aw/aqf pi=-  a w/aei 
as in 5.2.3, then from 5.2.16 and (aW/at) ,,,= ,, ,,,, = (aW/at) ,,,= ,, ,,,, + 
(aW/aQi)(aQ'/at), we see that F transforms H to equilibrium if and only if 

H (t, q f  a w/aqi) + a w / a t  = constant 

This is the time-dependent Hamilton- Jacobi equation. Since the new Hamilto- 
nian is in equilibrium, we can regard the Qi as integration constants. 

5.2.1 8 Theorem (HamiltonJacobi). Let P = T* Q with the canonical sym- 
plectic structure. Let zH be a Hamiltonian system on R X P and let W :  
R x Q+R. Then the following conditions are equivalent: 

( i )  for every curve c(t)  in Q satisfying 

ct(t) = T7;S'XH, ( d q  ( C  ( t ) ) )  

the curve twdW,(c(t))  is an integral curve of X,; 
(ii) W satisfies the Hamilton-Jacobi equation 

H, o dW, + a W/a t  = constant 

that is, 

This is proved in the same way as 5.2.4, so may be omitted. The 
relationship between W and S, in case H is independent of time, is easily seen 
to be 

W =  S - ( E  + constant)t 

We refer to 5.3.33 for another formulation of the Hamilton-Jacobi theory. 
The remarks following 5.2.4 have analogs for the case of the time-dependent 
Hamilton-Jacobi equation; for instance, Remark 3 leads to the time-depen- 
dent Schrodinger equation. 

We next give an application of the theory of canonical transformations 
just developed to show that, locally for a Hamiltonian system, coordinates 
can be found in which H and t appear as canonically conjugate variables. 

The result is actually a special case of more general considerations treated 
in Chapter 4.* However, it is useful to treat it here from the present point of 

X view. The result may be regarded as a refinement of the straightening out 
theorem proved in Sect. 2.1, to the Hamiltonian case. 4 m 

8 
*In Example 4.3.2(ii), it is shown that the manifold of solutions of constant energy is a symplectic $ 
manifold. If we choose coordinates H, t and symplectic coordinates on the reduced symplectic manifold 
(the remaining 2n - 2 coordinates), we obtain symplectic coord'mates on all of P. 8 
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5.2.19 Theorem (Hamlltonlan flow box). Let (P,w) be a symplectic mani- 
fold, H E Q(P), and suppose dH (x,) P O  for some x,, E P. Then there is a 
symplectic chart (U,cp)at m with cp(U)=IX WCRXR~"- ' ,  I=(-a,a),cp(u) 
=(ql(u), ...,qn( u),pl(u), ...,pn( u)) and cp(xo)=(O,O) such that cp-'II ~ { w )  is 
an integral curve of XH for all W E  W (with parameter ql) and pl(u)= 
H(u) - e , where e=  H (x,). 

Proof. First, we may assume that XH is complete. For, choosing neighbor- 
hoods U1, U2 of x, with U, c U2 and U2 compact, let h EQ(P) be a bump 
function with hl Ul = 1 and hl P\ U, = 0. Then by 2.1.19, X,, is complete and 
coincides with XH on U,. 

Thus suppose XH complete, with flow F. Define i: R X P+R X P by 
(A, X) I+ (A, F (A, x)). Clearly F is a diffeomorphism and preserves time. Also, $# F 
is symplectic and 2**t = I?,. Thus by (C7), is a canonical transformation 9 

with KF-I = H, and KF= - H o F .  
Next, let (U,,+) be a symplectic chart such that dH(u)#O in U,. Also, we 

may assume that at x,, XH(x0)= T+-'(el); that is, XH points in the direction 
of the first coordinate axis. This is possible because, in the proof of Darbowr's 
theorem, the initial vector is arbitrary. If +(u) = (&(u), . . . , qn (u),p,(u), 
. . . ,pn(u)), let Vo be the submanifold defined by q1 = 0. From 2.1.9, there is an 
E > 0 and V c V, such that F maps Vl = (- E, E )  x V diffeomorphically into U, 
(see Fig. 5.2-2.) 
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Let U= F(Vl) and F also stand for F restricted to V,. On U we have 
defined, by means of the chart (Uo,rC/), ql,. . . ,qn,pl,. . . ,pn E %(u) and, in 
addition, t = a, 0 F - I ,  where al is the projection onto the first factor. Define a 
mapping E 

a:  (-E,Y)X V+R2": v w ( ~ , ( v ) , q ~ ~ ~ ( v )  ,...,qno F(v) 

and a mapping 

so the diagram indicated in Fig. 5.2-2 commutes. Let wo be the canonical 
two-form on R2". We shall show that cp*(wo) = w. 

Indeed, 

Also, 

i k i = i j - d ( ~ ~ ~ ) ~ d ( t o ~ )  

since Kz = - H 0 F. Hence, restricting F to Vl (q' = 0), 

Thus 

The reader can consult Chapter 4 and Roels-Weinstein [1971] for gener- 
alizations. 

We now turn to the topic of action-angle variables, which combines ideas 
from Chapter 4 on systems with symmetry with those concerning generating X 

functions treated here. g 
9 
c.i s 

5.2.20 Deflnltlon. Let (P, w) be a symplectic manifold H E %(P) a Hamilto- 2 
nian, and f, = H, fZ, . . . , fk constants of the motion (Le., ( A ,  H )  = 0 for all 
1 < i < k). The set { fl, . . . , f,) is said to be in imwlution if {A,&) = O  for all 3 
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1 < i, j < k. The set { f , ,  . . . , fk)  is said to be independent if the set of critical 
points of F = f , x . . -  Xfk, u ( F ) = { p ~ P l d f , ( p ) ,  ..., dfk(p)  are linearly depen- 
dent) has measure zero in P. A set of constants of the motion that is in 
involution is called integrable (or completely integrable) if k = n E dim P. (In 
infinite dimensions the set is called integrable if the set {Xi ( p ) J i  = 1,2, . . . ) 
forms a basis for T,,P in the Hilbert or Banach space sense.) 

Recall that Z (F)  denotes the bifurcation set o f  F= f ,  X . . . X fk: P+=R~;  
that is, it is the set in R~ over which F: P + R ~  fails to  be a locally trivial 
fibration (see 4.5.1). 

5.2.21 Theorem (Arnold). Let (P, u) be a ~ymplectic manifold, H E F ( P )  a 
Hamiltonian, f ,  = H, f2,. . . , fn E %(P) an independent, integrable system of con- 
stants of the motion for H, n = +  dim(^). Denote by F = f ,  X - . . X f ,  : P-+Rn 
and let U c R n  be an open set such that F - ' ( u ) ~  U ( F )  = 0. 

( i )  If FIF-'(U): F-'(U)-+Uis aproper map, then each of x ~ [ F - ' ( u )  is 
complete, U cRn\Z(F)  and the fibers of the locally trivial fibration 
FIF-'(U) are a disjoint union of manifolds diffeomorphic with the torus 
Tn. 

(ii) If F I  F -'(u): F - ' (u) + U is not proper but we assume that each of the 
Hamiltonian vector fields XxI F-'(u), 1 < i < n is complete and U c Rn \ 
Z(F), then each fiber of FIF-'(u) is a disjoint union of manifolds 
diffeomotphic to the cylinders R~ X T " - ~ .  

PmoJ The proof o f  both assertions will be done together. For (i) we have an 
extra statement to prove: U c Rn\Z(F). By hypothesis, a(F)  n F-'(u)  = 0 
so that by  the independence condition, FlF- ' (U)  is aproper submersion and 
hence a locally trivial fibration (see 4.5.1). Thus UcRn\Z(F) .  Assume we 
have proved (ii). Then if  FIF-'(U) is proper, the fiber P- '(c)  is a compact 
manifold; but by (ii) it is diffeomorphic to R k  X T " - ~  for some k so that it 
must be diffeomorphic to Tn. Hence (i) follows from (ii). 

Now we prove (ii). Since U cRn\Z(F), F ( F - ' ( u )  is a locally trivial 
fibration. Let c €  U and I,= FP ' (c )  the fiber o f  FIF-'(U) over c and let I: 
be a connected component o f  I,. By hypothesis XJIZc is complete and hence 
so is ~~11:; note first that I, is an invariant manifold for all f,, . . . , fn, that is, 
any integral curve o f  XJ starting in I, will stay completely in I,, i = 1, .  . . , n by  
the involution condition {J ,$)  =O for all i j =  1,. . .,n. Let q$ be the flow o f  
Xi. Then $ acts on 1: for all i= 1 ,..., n and since {J.,$)=O, i , j=l ,  ..., n, the 

X 
flows cp:' and q$ commute. Thus we can define an act~on 

g 
9 

@: R n  x z:+z: 
m 
8 ~ ( ( t l  , . . . , tn) ,a)=((P:IO~iO .. . O T [ ) ( ~ )  3 

a E I:, ( t l  , . . . , tn) E R " ,  R " considered as a Lie group with its additive struc- 
Z ture. 
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We prove that this action is transitive. Clearly, @(Rn,a) is closed and 
connected in 12. If we show it is open, it will follow that @(Rn,a)=l; and 
hence @ is a transitive action. To show that @(Rn,a) is open, we prove that 
a(. ,a): R " + I ~  is an open mapping. For this it is sufficient to show that it 
maps any open neighborhood of 0 E Rn  onto an open neighborhood of a E I:. 
If el,. . . ,en denotes the standard basis in Rn, note that 

d i To@(., a). ei = - cp, (a) = XL (a) dt 

so that by the independence assumption, To@(. , a) : R '+ Ta I: is an isomor- 
phism (dim 12 = n) and hence a(-, a) is a local diffeomorphism at 0 E Rn. This 
proves our claim. 

Since @: R n  x I;+ 12 is transitive, the manifold I:is diffeomorphic to the 
homogeneous space Rn/H, where H is the isotropy subgroup of an arbitrary 
element a, E I:, that is, 

Since dim I: = n, we must have dim H = 0, that is, H is a discrete subgroup of 
Rn and is hence generated by (n - k) linearly independent vectors over R, 
ak+17...,an; that is, 

(see Exercise 4.11). Recall from Sect. 4.1 that we have a diffeomorphism h : 
R"/H+I: given by the formula 

h([tl ,...,tn])=@( (tl,...,tn) ,a,) 

where [t,, . . . , tn] E Rn/  H. Define the isomorphism T: Rn+Rn by Ta, = ei for 
1 < i < n, where a,, . . . ,ak is a completion to a basis for Rn  of the linearly 
independent system of vectors a,+ ,, . . . ,an. T maps H isomorphically onto 
((0,. . . ,0)) x ZnPk c Rn and hence it induces a diffeomorphism 

Then f 0 h -' : Z:+R x T ~ - ~  is a diffeomorphism. 

5.2.22 Deflnltion. Let VER" be a dxed vector and consider the flow I;,: 
Rn-+Rn given by F,(v) = v + tv. Denot the canonicalprojection by n: R " + R ~  i X Tn- and let cp, : R X Tn- k + ~  k , ~  T"- be the unique flow satisfying x 
s F, = qt T. qc is called a translati0~-type jlov. (The definition equiualent& 
reads I 4 rn 
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where v=(v ,,..., vn)€R: x ,,..., xkER,  and Bk+ ,,..., B,Es' are the coordi- 
nates (angular uariables) on the torus T " - ~  = S I X - X S 1  [(n - k )  times]. 

The case k=O deserves a special attention; the flow in this case is called 
quasi-periodic. Then cp,: Tn+ Tn and if B,, . . . ,On are the "coordinate func- 
tions" on Tn (angular variables defined modl), then the formula in the 
definition of qp, shows that 

x E Tn, t E R ,  1 < i < n; v,, . . . , vn are called the frequencies of the flow and they 
determine completely its character as the next proposition shows. 

5.2.23 Proposltlon. Each orbit of tpt is dense in Tn if and only if X:= ,kivi =0, 
ki E Z implies ki = 0 for all 1 < i < n, that is, vi are independent over Z. 

We refer the reader to Example 4.1.11 and Sell [I9711 for a discussion of 
these toral automorphisms and the proof of this result. 

5.2.24 Theorem (Arnold). In the notations and hypotheses of Theoreri 
5.2.20, if 12 denotes a connected component of I, = F - ' (c) and cp, = denotes 
the flow of XH = X , then is differentiably conjugate to a translation type 
flow on R' x T"-#( for k = 0 the flow is quasi-periodic). 

Proof: The diffeomorphism 

stated at the end of the proof of 5.2.20 defines the commutative diagram 

- Z 
with the flows X = h - ' o c p , l ~ ~ o h ,  A= f o $ o f - I ,  where r: 

=[t+t , , t z  ,.." t,] 
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Consider the flow 4: Rn+Rn, &(u)=u+tTe1. We claim that +t is the 
translation-type flow defined by 4 ,  that is, n 4 = +t n, where n: Rn+Rk X 
Tn-k is the canonical projection. Denote_ by .rr, : Rn-+Rn/ H the canonical 

projection and note that by definition of T we have n o  T= TonH. If (t,, . . . ,tn) 
E R ", denote T - '(t,, . . . , tn) = (y , , . . . ,yn). Then we have 

The two theorems of Arnold show us that complete integrability of a 
Hamiltonian system imposes serious restrictions on the topology of the 
manifold T*M. This is the intuitive reason why integrable systems are not 
generic. (See Markus and Meyer [1974], Robinson [1970b].) The classical way 
to "integrate" a completely integrable system is given in Exercise 5.2H. 

Recall that FIF-'(Rn\ZF) is a locally trivial fibration, that is, for each 
coE R n  there exists an open neighborhood U, of c, in Rn\ZF and a smooth 
map h,: F - '(Uo)-+Ic0 = F - ' (c)  such that 

is a diffeomorphism [and hence for any c E U,, h,l F -'(c): F -'(e) = I,-+ Ico is 
a diffeomorphism]. If we have a Hamiltonian system that is completely 
integrable, by Arnold's theorem Ico is a disjoint union of "cylinders" R~ X 
Tn-k so that we would expect the push-forward h,(XHIF-'(U,)) to have a 

simple form. The first question that naturally arises is if the vector field 
h,(XHIF-'(U,)) is Hamiltonian. The answer is in general "no." However, if 
Ic0 is compact, there is a local trivialization procedure that will make 
~,(x,[F-~(u,)) a Hamiltonian vector field on U,X ~ ? % e  variables that 
will be introduced for this purpose are called action-angle coordinates. 

We begin with the standard model for action-angle coordinates. In the * 
symplectic vector space R 2n with coordinates (ql,. . . , qn,p,, . . . ,pn) consider 

9 
the equivalence relation which identifies two vectors (q,p),(q',p') if and only 
if q = q' and p -p' E 2". The quotient space is clearly R n  X Tn, which inherits 

8 
3 

naturally a symplectic structure from R ~ "  via the canonical projection. Let 
B" c Rn be an open ball in R n  and consider the symplectic manifold Bn X Tn 8 



5 HAMILTON- JACOB1 THEORY AND MATHEMATICAL PHYSICS 397 

in which we now introduce canonical coordinates (I' ,..., Zn,cp,,. ..,cp,) by 
Z i =  qi in Bn and cpi =pi (mod l), i=  1,. . . ,n. Then we say that a Hamiltonian 
H =  H(Z1,.. . ,In) that does not depend on the variables cp ,,..., 93, (i.e., these 
variables are ignorable) has action-angle coordinates (Z,cp) in Bn x Tn. Thus 
Hamilton's equations become 

and the maps Zi: Bn X Tn+R become constants of the motion of XH. Given 
initial conditions Ii(0) = I:, ~ ( 0 )  = q$, the solution is 

Thus Ii= I:, i = 1,. . . ,n, are invariant n-tori and the motion on them is 
periodic or quasi-periodic with frequencies vi(Z:, . . . ,I$). 

5.2.25 Definition. A Hamiltonian H E F(P) on a gmplectic manifold (P, a) 
admits action-angle coordinates ( I ,  cp) in some open set U c P, if: 

(i) there exists a symplectic diffeomorphism +: U+Bn X Tn; 
(ii) H + - I  E F(Bn X Tn) admits the action-angle coordinates (I, cp) (as ex- 

plained above) in Bn X T", that is, the Hamiltonian vector field +* XH = 
XH *,- 1 has the form ,lf 

Thus Hamilton's equations can be written in this case as 

and, according to what we said for the standard model, the flow admits 
invariant tori 11' = I;, i = 1,. . . , n on which it is quasi-periodic with frequencies 
vi(Z1, ..., In). The conclusion is that if we are able to write a Hamiltonian 
system in action-angle coordinates, we determine in one stroke the flow, the 
invariant tori, and the character of the flow on these invariant tori since it is 

5 given by the frequencies vi that are now explicitly computed.? For a nontrivial 
example of this, we refer to the Delaunay coordinates in the two-body 

4 problem (Sect 9.3). Another is the parametrization of the Korteweg-de Vries 
Cr) 

8 equation by scattering data (see Sect. 5.6 and Faddeev and Zakharov [19713). 
2 
i3 

+In,khe terminology of the next section, these tori are Lagrangian submanifolds. 
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We shall show now (following Arnold and Avez [1967]; see also Arnold 
[I9781 and Iacob [1973]) how such action-angle coordinates are found on a 
manifold, where I, = Tn for all c E U c Rn\Z,. To be precise, assume from 
the beginning that we work in an open set of R2" [instead of the symplectic 
manifold (P, w)], the domain of a symplectic chart of (P, w). Coordinates will 
be denoted here by q1 ,..., qn,p ,,..., pn. We assume that we are given a 
Hamiltonian H E'T(P) and n independent integrals in involution f, = H, 
f,, . . . , fn, 2n = dim P. Let Z, denote the bifurcation set of F and assume that 
U c Rn\ZF and that F-'(U) is diffeomorphic to U X Tn. 

We shall construct the symplectic diffeomorphism +: F-'(U)+Bn X Tn. 
Locally, the symplectic form w = Cy= 'dqi~dpi is exact, w = - dB, where 8 = 
2y= ,pi dqi, I,= Tn = S' x . . x Sn, and denote by y,(c), . . . , yn(c) the funda- 
mental n cycles of I, corresponding to the n factors S ' [that is, y,(c), . . . , yn(c) 
forms a basis of the first homology group H,(Tn; R ) r R n ] .  Define A =  
(A,, ..., A,): U+Rn by 

where ic : I,-+ P is the canonical inclusion. &(c) is the integral of the one-form 
8 on the cycle yi(c) [and the integrals depend only on the boundary class of 
y,(c)]. We shall assume, following Arnold, that A is a diffeomoorphism onto its 
image. Thus A 0  F: cf -'(u)+A(u) and we shall assume, eventually shrinking 
U, that A( U) = Bn c R ". This is "half" of the desired diffeomorphism + : 
F- ' (u)+B~ x T". 

We now search for a map r : F - '( U)+ Tn such that (A 0 F) X r : F - '( U) 
+Bn X Tn is a diffeomorphism; r will give us the angle coordinates. In the 
construction of I?, the first step is to show that ~,*(B)EQ~(I,) is a closed 
one-form. By hypothesis, the Hamiltonian vector fields Xfl,. . . , XL are linearly 
independent at any point [since U c W "\ZF implies U n a(F) = and the set 
f,, . . . , fn is assumed to be independent]. Thus Xfl(q,p), . . . ,XL (q,p) forms a 
basis of T{,,)(I,). Hence to show d(i,*(B)) = 0, it suffices to prove that 

But this is clear: 

= - {f. f.) oic=O 
1' J 
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since the constants of the motion A, i = 1,. . . , n are in involution. By the 
independence hypoihesis, the matrix (aA/apj) has nonzero determinant and 
hence fixing (qt,. . . , q,"), the equation F(q,p) - h -'(I) = 0 for I fixed can be 
solved for p in a neighborhood of 6 (the implicit function theorem). Thus we 
get a function p =p(q, I). Now define 

where the integral is taken over any path joining (qo,po) to (q,p), the path 
lying in the torus IA-~(!). Since i,*-1(,)(0) is closed, the integral does not depend 
on the path if (q,p) is close to (qo,p,,). However, it should be noted that 
globally S (q, I )  does depend on the path of integration since Tn is not simply 
connected. 

Define the map I' : F - '(U)+ Tn by I' = (r,, . . . , r,), where 

Clearly, Fi are multi-valued functions, and this was to be expected since we 
want them to be angular variables. The variation of ri on the cycle yk(A-'(I)) 
is given by 

so that mod 1, Ti are well defined and hence they determine angular coordi- 
nates on the torus, that is, r: F-'(U)+Tn. 

Define now rC/ = (A F) X r : F - '(U)+Bn X Tn and assume that it is bijec- ' tive (locally this is automatic by what we do below). Note that s 

Ei 
3 To see this, fix I and note that on the torus Ix-lcI,, the map S(q,I) can be 



written as 

by taking as path of integration the union of the two segments 

We have then the two relations 

so that S is a generating function of the map +: (q,p)t-+(I,cp), cp = r and 
hence + is symplectic (see Example 5.2.3 and Proposition 5.2.1). As a 
symplectic map, it is a local diffeomorphism and since it is bijective, it is a 
global diffeomorphism. Thus (i) of Definition 5.2.24 is satisfied. 

To show that the Hamiltonian H = f, is independent of the angle variables 
9, we remark that 

and that 

which establishes condition (ii) of Definition 5.2.24. 
It would be interesting to generalize this by introducing "action-angle 

variables" for any group (not just Rn) acting on (P ,w)  for which the reduced 
phase space (Sect. 4.3) is a point (i.e., a Hamiltonian system that is integrable 
in a generalized sense); see Exercise 5.21. 

Y 
EXERCISES 2! 

9 
A 

5.2A. Show that definition 5.2.2 reproduces all the generating functions listed in ;3 
Goldstein [I9501 and their associated identities. "a 

5.2B. In 5.2.2, let Pi = P Q i  and let 0= 8, - 02, where 8, is the canonical one-form. Z 
Show that a symplectic map f is the lift of a map of Q, to Q2 if and only if the 8 
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associated generating function is zero (or constant). (Hint: Consult Exercise 
3.2F.) 

5.2C. Show that if cp: Pl-+P2 is symplectic, its suspension @: R X Pl+R x P2; 
(t, x) w (t, cp (x)) is canonical with KG = 0. 

5.2D. Develop canonical transformations for Lagrangian systems up to and includ- 
ing the formula 

It may help to consult one of the standard texts in mechanics. 
5.2E. Check (i) directly using (Cl), (C2), and (C4) and (ii) using the definition 5.2.15 

of a generating function, that if E is a Banach space, then W: R x E x E+R, 
and if the maps 

F ,W:RxEXE+RXEXE* 

and 

are diffeomorphisms, then 

is a canonical transformation with 

Use this to derive the Hamilton-Jacobi equation. 
5.2F. A mapping x : R X P, +R X P2 is a locally canonical transformation iff it 

satisfies (Cl), (C2), and (S) (5.2.9.). Show that: 
(i) For each x E PI  there is a neighborhood U of x such that xIR x U is 

canonical. 
(ii) If P is contractible, then a locally canonical transformation is canonical. 
(iii) Let P= P S  l. Then define X: R x P+R x P by x(t,x)=(t,cp,(x)), where 

cp, is the symplectic diffeomorphism induced by a rotation on S1 by an 
angle t. Show that x is locally canonical, but not canonical. 

5.2G. (R. Hansen). Let Z be a manifold of periodic orbits of a Hamiltonian system 

(P, w = - d B,X,) and for p E Z, let J =  0 where c(p) is the periodic orbit, I,,, 
with period 7(p), through p. Prove that dl(p)= ~(p)dH(p)  and deduce the 
period-energy relation (see Sect. 3.3). 

5.2H. (a) This exercise explains the term "completely integrable" and gives an 
algorithm for "integrating" completely integrable systems. Let M be a 

!2 symplectic 2n manifold and let PI, P2,. . . , Pn be independent functions in 
4 
m involution; (one of these will normally be the energy of a given Hamilto- 
8 nian system). In canonical coordinates ql, q2,. . . , qn,pl,p2,. . . ,p, on M, 2 
z write the surfaces Pi =constant as pi = Bi(ql,. . . , qn, PI,. . . , P,). From the 

fact that the P, are in involution, deduce from elementary exactness 2 
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considerations that there is a function s ( ~ '  ,..., qn,P1,. ..,Pn) such that 
as as and 5 define a symplectic chart. (In Bi=-. Then show that Qi=-- 
34' api 

the language of the following section, the surfaces Pi =constant define a 
Lagrangian foliation and S is the generating function.) 

(b) Use (a) to integrate the harmonic oscillator. 
5.21. (The authors and A. Weinstein) generalize action-angle variables along the 

following lines. Let (P, o) be a symplectic manifold, w = - do, and @ an action of 
G on P preserving 6 (we have introduced 6 so the action can be defined), with 
associated momentum mapping J: P-g*; j(n= iSpB. Fix a regular value y of 
J and assume the reduced phase space is a point (generalized integrability; see 
Sect. 4.3), so dim P = dim G + dim G,. Consider the orbit G-p c g*, which is a 
symplectic manifold as shown in Sect. 4.3. Also, consider PG,  -- G, Xg* 
Show that the method of action-angle coordinates (in a generalized s e n 4  
produces a symplectic diffeomorphism between P and G-yx PG,  (or G.p x 
T+ G, x P, if dim P, > 0) (the latter with the product symplectic structure). The 
angle coordinates are in G, and the action coordinates are in g*. Those in G-y 
are residual. 

Show that this scheme has the right dimension count and reduces to 
standard action-angle coordinates if G is abelian. Prove the general case and 
work out the case of SO(3) acting on T+s2 and R xSO(3) acting on 
P ( R  3\{O)) by the flow of the Kepler problem x SO (3). See Exercise 4.5H 
and Sect. 9.3; the results of Weinstein [1977b, Sect. 51 also seem relevant. (The 
action of SO(n) on the Grassman manifolds provides another interesting 
example of generalized action angle variables). 

5.3 LAGRANGIAN SUBMANIFOLDS 

The last decade has seen a rapid development of the concept of a 
Lagrangian submanifold. Although the story is an ongoing one, we present 
some basic points in the theory here. 

Virtually every physical system has a symplectic manifold associated with 
it, and the behavior of the system may be described in terms of Lagrangian 
submanifolds. This applies equally well to statics as to dynamics. As we shall 
explain, this approach may be regarded as basing mechanics on a reciprocity 
principle. Already we have seen some hints of Lagrangian submanifolds in our 
discussion of the period-energy relation (3.3.25) and canonical transforma- 
tions (5.2.1). The reader should have another look at those topics after 
reading this section. 

Some believe that the Lagrangian submanifold approach will give deeper 
insight into quantum theories than does the Poisson algebra approach. In any 
case, it gives deeper insight into classical mechanics and classical field 
theories. 2 

9 
For further information on the subject of this section, the reader should 

consult Weinstein [1977b], Guillemin and Sternberg [1977], and references 2 
given therein and below. Some use will be made of Lagrangian submanifolds Z 
in the next section. 2 
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We shall begin by discussing the linear case, and then we shall globalize to 
manifolds. Following this we shall give some simple examples, explain the 
connections with reciprocity, and proceed to some more specialized topics. 

5.3.1 Definitions. Let (E, w) be a symplectic vector space and F c E a sub- 
space. The w-orthogonal complement of F is the subspace defned by 

F I =  { e € ~ l w ( e , e ' ) = O  for a l l e ' ~ ~ )  

W e  say: 

( i )  F is isotropic if F c F that is, w(e, e') = 0 for all e, e' E l? 
(ii) F is co-isotropic if F > EL, that is, w(e, e') = 0 for all e' E F implies e E l? 
(iii) F is Lagrangian if F is isotropic and has an isotropic complement, that is, 

E = F @ F', where F' is isotropic. 
(iv) F is symplectic if w restricted to F X F is nondegenerate. 

Clearly each of these notions is invariant under symplectic isomorphisms. 
The terminology "Lagrangian subspace" was apparently first used by 

Maslov [1965], although the ideas were in isolated use before that date. 
Throughout this section we shall assume that our vector spaces and 

manifolds are finite dimensional. Of course many of the ideas work in infinite 
dimensions as well. 

The following collects some properties related to definition 5.3.1. 

( i )  F c G implies G c P I. 

(ii)  F L n G L = ( F + G ) ' .  
(iii) dimE=dimF+dimFL. 
( i ~ )  F= F I L .  
(0)  ( F n G ) ! - = F L + G L .  

Pro05 The assertions (i) and (ii) are simple verifications. To prove (iii), 
consider the linear map wb: E-+E*. Now for e E  F, wb(e) annihilates F L ,  so 
we get an induced linear map wk: F-+(E/FL)*. Since w is nondegenerate, 
this map is injective, as is easily seen. Thus by linear algebra 

dimF< d i m ( ~ / ~ I ) * = d i r n E - d i m F L  

Next consider yb: E--+E*-+P. As a linear map Qk of E to F., this has kernel 
y exactly F L .  Thus, by linear algebra again 
E b 
4 - dim F > dim range Q, = dim E - dim F I 
.. 3 

0" 
2 These two inequalities give (iii). 

+For an infinite-dimensional version of (iu), see OICrcise ).IF, and for infinite-dimensional 
versions of many of the other results, see Weinstein [1971b]. 
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For (iv), notice that F c FLL is clear. From (iii) applied to F and to F' 
we get dimF=dimFLL, so F=FLL. 

Finally, for (v), notice that, using (ii) and (iv), 

The next result is often used to define Lagrangian subspaces. 

5.3.3 Proposltlon. Let (E, w) be a symplectic vector space and FcE a 
subspace. Then the following assertions are equivalent: 

(i) F is Lagrangian. 
(ii) F = F I. 
(iii) F is isotropic and dim F = dim E. 

Proo$ First we prove that (i) implies (ii). We have F c FL by definition. 
Conversely, let e E F and write e = eo + el, where eo E F and el E F', where 
F' is given by Definition 5.3.l(iii). We shall show that el =O. Indeed, el EF'I 
by isotropy of F', and similarly el=e-e,EFL. Thus e ,€F ' InFL=(F '+  
F)I = E = (0) by nondegeneracy of w. Thus e, = 0, so FL c F and (ii) holds. 

Secondly, (ii) implies (iii) follows at once from 5.3.2(iii). 
Finally, we prove that (iii) implies (i). First, observe that (iii) implies that 

dimF=dimFL by 5.3.20. Since F c F L ,  we have F=FL. Now we con- 
struct F' as follows. Choose arbitrarily u, e F and let V, = span(v,); since 
F n V, = {0), F+ V t  = E by 5.3.2(v). Now pick u2 E Vk, u2 e F+ V,, let 
V2 = Vl + span(uJ, and continue inductively until F + V, = E. By construc- 
tion, F n V, = {0), so E =  FG3 V,. Also by construction, 

since u2 E Vt. Inductively, V, is isotropic as well. Thus we can choose 
F' = v,. . 

We can rephrase 5.3.3 by saying that Lagrangian subspaces are maximal 
isotropic subspaces. 

5.3.4 Examples. (i) Any one-dimensional subspace of E is isotropic, so if 2 
E is two dimensional, any one-dimensional subspace is Lagrangian. 3 

(ii) Let E = R x R with elements denoted u = (u,, uJ and with the usual 3 
symplectic structure 2 
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where (,) denotes the Euclidean inner product. Then the subspace spanned 
by linearly independent vectors v and w is Lagrangian if and only if 

For instance R ~ X { O )  and {O)XR2 are Lagrangian subspaces, as is 
span((1, 1,1,1),(0,1,0, I)), and so forth. 

(iii) Let E= V€3 V* with the canonical symplectic form 

Then V€3 (0) c E and (0) €I3 V* are Lagrangian, since w, vanishes on them 
and they have half the dimension of E. 

(iv) Let H be a complex inner product space (regarded as a real vector 
space) with the symplectic form 

O(Z, z') = - Im(z7 2 ' )  

(see 3.1.18 and the ensuing discussion). Thus a subspace V c H is isotropic if 
and only if all inner products of pairs of elements of V are real. Let J :  H+H 
be multiplication by i = . Then if V is isotropic, so is V'= J .  V. Also, 
V n J- V =  {0), as is easily seen. Thus V is Lagrangian if and only if all pairs 
of inner products of elements of V are real and V +  JV= H. This last 
decomposition of H identifies H with the complexification of a real inner 
product space V and within H, the "purely real" and "purely imaginary" 
subspaces are Lagrangian. Thus, this example merely rephrases Example (iii). 

The next proposition shows that Example 5.3.4(iii) is, in a sense, the most 
general example. 

5.3.5 Proposition. Let (E, a )  be a symplectic vector space and V c E a 
Lagrangian subspace. Then there is a symplectic isomorphism A : (E, a)+( V €3 
V*, w ,) taking V to V €3 (0). 

PmoJ Let E= V€I3 V', where V' is isotropic, and consider the map 

T: V'+ V*; T (el).e = w(e, el) 

5 We claim T is an isomorphism. Indeed, suppose that T(el) = 0; then @(el, e) = 
8 
2 0 for all e E V and hence-as V' is isotropic and E= V @  V'-for all e E E. 
Z Since w is nondegenerate, el =O. Hence T is one-to-one, and since dim V= 

dim  it is an isomorphism. 



Now let A = Identity03 T. It is now easy to verify that A*@,=&; indeed, 

(~*w,)((e ,  e l ) ,  (e f ,  e;)) =+((e, T ~ I ) ,  (e f ,  Te;)) 

= (Te;)(e) - (Tel)(ef) 

since each of V and V' is isotropic. . 
The following definition will be convenient for products (see 5.2.1). 

5.3.6 Deflnltlon. Let (E, , wl) and (E, , w,) be symplectic vector spaces and ri : 
El X E2+Ei the projection, i = 1,2. Let w, 8w2 = r:wl - r,*w,, a symplectic 
form on El x E,. 

5.3.7 Proposition. An isomorphism A : EI+E2 is symplectic if and only if its 
graph, 

is a Lagrangian subspace of (El X E2, w, 80,). 

ProoJ: Since rA is half the dimension of El x E,, r, is Lagrangian if and 
only if it is isotropic, that is, 

that is, 

that is, A is symplectic. . 
We now introduce some additional terminology in connection with these 

products, generalizing the idea in 5.3.7. 

5.3.8 Deflnltlon. A Lagrangian subspace of (El X E2, w18w2) is called a 
linear canonical relation. 

If S c El x E, and T c E, X E3 are linear canonical relations, define the 
composition of S and T by 

T o  S = {(el , e3) E El X E31 there exists 
z 

e, E E, such that ( e l ,  e,) E S and (e,, e,) E T ) g 
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This definition of compositions is the usual one for relations, generalizing 
composition of functions. Specifically, if S=r, and T=rB  for symplectic 
isomorphisms, then T 0 S = I'B o,, as is easily checked. 

For linear canonical relations T and S, it is easy to see that ToS is 
isotropic: 

In fact, ToS is actually Lagrangian. The proof will run most smoothly if we 
use the ideas about reduction from the beginning of Sect. 4.3. 

5.3.9 Definition. Let (E, w) be a symplectic vector space and F c E a sub- 
space. On F/F n FL, define 

If F is co-isotropic, that is, F n FL = F I, we denote F/FL = EF and call it the 
reduced symplectic space, or the space E reduced by I;. 

To justify the terminology we shall check that Cj is well defined and is a 
symplectic form. Indeeed, let Jf E F n FL ; then 

w(e +fl ef + f )  = w(e, e') + w(e +fl f )  +o(fl e') 

= w(e, e') 

The two terms involving f;f* vanish since e + f E F, f E FL and since ef E F, 
f E FL. Thus Cj is well defined. It is nondegenerate, for if e E F  and if 
w(e,ef)=O for all e'EF, then e € F L ,  so in F / F n F L ,  e is zero. 

5.3.1 0 Proposition. Let L c E be a Lagrangian subspace and let F c E be 
co-isotropic. Then 

L,=LnF/FLcE,  

(the image of L n F in EF using projection F+ F/ F l )  is Lagrangian in the 
reduced symplectic space. 

ProoJ: From the definition of L,,G and the fact that L is isotropic, it is clear 
that L, is isotropic. 

Next we will show that dim L, = $dim(F/ F I), which will complete the 
proof. From linear algebra, 
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From 5.3.2(v) and 5.3.2(iii), and L = LL, 

d i m ( ~ n  ~ ' ) + d i m ( ~ n  F I ) ~    dim^ 

that is, 

dim(Ln F1)+ dim(L+ F ) =  dimE 

Thus 

But 

dim(F/FL) = dimF- dimF1 

=dimF-(dimE-dimF) 

=2dimF- dimE 

T h u s d i r n ~ , = f d i m ( ~ / ~ l ) .  . 
The reader is referred to Weinstein [1977b] for another proof. 
A little thought shows that the result 5.3.10 is actually somewhat remark- 

able. For example if we do not assume that F is co-isotropic and we replace 
EF by the symplectic space F/(F n Fi), then the result in 5.3.10 need not be 
true. 

5.3.11 Example. Let (E,w) be a symplectic space, let A: E-E be skew 
adjoint relative to w, that is, w(Ae,, e,) = - w(e,, AeJ, and let H (e) = 
fw(~-e,e).  Then A is the linear Hamiltonian vector field with energy H, that 
is, dH(e).e, =w(A(e),e,). (See remarks following 3.3.6.) Fix e#O and let 

Then F is co-isotropic; in fact, F1 is the one-dimensional space 

Note that dim F/F l= dim E - 2. If L c E is Lagrangian, then the image of L 
in F/ F is Lagrangian, so has dimension dim E - 1. However, L may g 
intersect F in dimension n - 1 or n, where 2n = dimE. This may be seen by 2 
choosing E = Rn x Rn and H (q,, . . . , qn,p,, . . . ,pn) = z;=, q,? + Z?= ,p,? and suit- z 
able ( 9 , ~ ) .  3 
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5.3.12 Proposition. The composition of two linear canonical relations is again 
a linear canonical relation. 

ProoJ: Let T and S be linear canonical relations as above. We have seen 
that To S is isotropic. We want to show that it is Lagrangian. 

Let A E 2 c  E2 x  E2 be the diagonal and notice ToS is the projection on 
El x  E3 of 

( S x  T ) n E , x A E ~ x E , c E , x E 2 x E , x E 3  

Let (E,w) = (El x  E2 x  E2 x  E3, wl 8w2@w28w3). Now F= El X AE2 X E3 is co- 
isotropic. In fact, one checks that F~ = (0) x AE2 x {0), so that EF is isomor- 
phic to (El X E3,w18w3) by sending the class of (e1,e2,e2,e3) to (e,,e3). 

Now S x  T is Lagrangian in (E,w), so by 5.3.10, its reduction by F is 
Lagrangian. Under the above isomorphism, this reduction is exactly T Q S .  
Hence T 0 S is Lagrangian. 

This concludes our discussion of the linear theory. We turn now to the 
globalization of these ideas to symplectic manifolds. 

5.3.13 Definitions. Let (P, o) be a Jymplectic manifold and i:  L+P an 
immersion. We s q  L is an isotropic (co-isotropic, syqlectic) immersed sub- 
maniford of (P, o) if (Txi)(TxL) c TcX1P is an isotropic (GO-isotropic, symplectic) 
subspace for each x E L. The same terminology is used for submanifolds of P 
and for subbundles of TP over submanifolds of P. 

A submanifold L c P is called Lagrangian i f  it is isotropic and there is an 
isotropic subbundle E c TP 1 L such that TP I L = TL@ E. 

Notice that i :  L+P is isotropic if and only if i*w=O. Also note, from the 
linear theory, that if L c P is Lagrangian, dim L = dim P and (Tx L)I  = Tx L. 

5.3.14 Proposition. Let (P, o) be a Jymplectic manifold and L C  P a sub- 
manifold Then L is Lagrangian i f  and only if L is isotropic and dim L = ; d m  P. 

ProoJ The preceding remark proves the "only if" part. For the "if" part, we 
know TxL has an isotropic complement Ex at each x E L. The thing we need 
to check is that they can be chosen in a smooth manner. This can be done 
using the following device. Put a Riemannian metric (,) on P. Then by the 
argument in 3.1.18 we get a complex structure J on P and a complex inner 
product h(v, w) such that - o(v, w) is its imaginary part. Now J :  TP+ TP is a 
smooth involution and by Example 5.3.4(iv) we can take E = J (TL), which is 
a smooth complementary isotropic bundle. 

d 
Z An important example of a Lagrangian submanifold is given in the 

next proposition. 
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5.3.1 5 Proposition. Let a be a one-form on Q and L c T* Q its graph. Then 
L is a Lagrangian submanifold if and only if a is closed. 

ProoJ Clearly L is a submanifold with dimension :dim T* Q. However, 
from 3.2.11, a*8,= a ,  so 

Thus a is closed if and only if a*@, = 0, that is, L is isotropic. 4 

In particular, note that Q itself, being the zero section, is Lagrangian. The 
argument also shows that the Lagrangian submanifolds of T* Q which project 
diffeomorphically onto Q are in one-to-one correspondence with the closed 
one-forms on Q. See also Exercise 5.3A. 

In 5.3.15, since a is closed, locally a =dS for a function S. 

5.3.16 Definition. Let (P, w) be a symplectic manifold, L a Lagrangian sub- 
manifold, and i :  L+ P the inclusion. If, locally, w = - -8, then i*w = - di*8 = 0, 
so i*8 = dS for a function S: L+R (locally defined). W e  call S a generating 
function for L. 

If L c T* Q is the graph of dS, where S: Q+R, then L is Lagrangian and 
we can identify the generating function of L with S. 

As we saw in Sect. 5.2, the idea of generating functions really goes back to 
Hamilton and Jacobi. However, the definition in a general context apparently 
is due to Sniatycki and Tulczyjew [1972]. (See also Maclane [I9681 and 
Exercise 5.3K.) To link these ideas up with those in Sect. 5.2, we generalize 
products and canonical relations from the linear case. 

5.3.1 7 Definition. If ( P ,  , w,) and (P,, w,) are symplectic manifolds, let ( P ,  X 
P,, w, 8w2)  be the symplectic manifold with w, @a2 = mTw, - m?w2, where mi : 
P, X P2+Pi is the projection. A Lagrangian submanifold of ( P I  x P,, w, @a2) is 
called a canonical relation. The composition of canonical relations is defined as 
in the linear case. 

As in 5.2.1 or 5.3.7 we see that a diffeomorphism f: P,+P, is symplectic 
if and only if its graph is a canonical relation in ( P ,  x P,,w,@w,). Thus, 
generating functions of the graph of f reproduce the classical generating 
functions of canonical transformations given in Sect. 5.2. 

A number of important phenomena in quantization theory arising from 
Maslov's work (see the following section) can be described in terms of Y 
Lagrangian submanifolds that are not necessarily graphs. Therefore, a study S 

9 
of them for their own sake is important. m 

B We shall return to the study of canonical relations in the context of 2 
reduction, below. However, we shall first give a basic result of Weinstein that z 
reduces one to the cotangent bundle case, generalizing 5.3.5. 2 
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5.3.18 Theorem. Let (P, w) be a symplectic manifold and L c P a Lagrangian 
submanifold. There is a neighborhood U of L in P, a neighborhood V of the zero 
section in T* L, and a symplectic diffeomolphism cp: U+ V  such that cpl L is the 
standard identification of L with the zero section of P L .  

Combined with 5.3.15, this shows that the Lagrangian submanifolds near 
L in P are in one-to-one correspondence with closed one-forms on L. 
("Near" is in a sense strong enough to ensure that, using cp in 5.3.18, we get 
graphs. For example, if L is compact, a uniform C 1  topology will do.) 

To prove 5.3.18 we use the following two lemmas. 

5.3.19 Lemma. There are neighborhoods U, of L in P and V ,  of L in T*L 
and a diffeomolphism f:  Ul-+ V ,  with f 1 L = identity and f,wl L = wol L, where wo 
is the canonical symplectic form on T*L. 

Proo$ Let E be an isotropic complement to T L  in TP. Define +: E + P L  
by +(v).w = o(w,v). Then + is an isomorphism on fibers; indeed if +(v) =O, 
then v E T L L  = TL;  but T L n  E = {0}, so v =O. Thus + is injective, so as 
dim E = dim T* L,  + is an isomorphism. Since E is a complementary bundle to 
TL, + will be a diffeomorphism on a tubular neighborhood defined by this 
bundle onto a neighborhood of L in T*L. This restriction of + is f. Now on 
TL, Tf is the identity and on E, Tf is + since f is fibenvise linear. Thus, 
writing 22 E TPl L as v =(vl ,  v2) E T L  X E and splitting TT* LI L = TLCB T* L ,  
we get, as in 5.3.5, 

The next Lemma is a generalization of the Poincare lemma. 

5.3.20 Lemma. Let m: E+N be a vector bundle and w a closed k-form on E 
such that i*w =0, where i:  N-+E is the inclusion. Then, there is a ( k -  I)-form 
6 on E such that @IN-0 and o=dO. 

Proo$ Let q: E-+E be fiber multiplication by tE[O, 11, and define the 
time-dependent vector field X, on E by the requirement that ?r, be its flow, 
that is, X, o m, = d ~ , / d t .  Then, as in the proof of the Poincark lemma, there is 

* no trouble at t = 0 and (d/dt)(./r:w) = .rr: Lx,w. Hence B 
oQ 
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or w = do, 0 = ]@iX,wdt since i*w = 0 implies n,*w = 0. Clearly 0 IN = 0 since 
X,IN=O. 

Now we can complete the proof as in the proof of Darboux' theorem. 

Proof of 5.3.18. By Lemma 5.3.19, we can define the pushforward w, by f of 
o in a neighborhood of L in T* L. By Lemma 5.3.20, w, = do,. Let wO= - do0 
be the canonical symplectic form on T*L restricted to the same neighbor- 
hood. Recall that we have @ , I  L = @,I L = 0. Now we use the method of the 
proof of Darboux' theorem. Define w, = w, + t (w, - wo) for t E[O, 11 and notice 
that wt 1 L = w, 1 L = w,l L is nondegenerate. Since the condition that a closed 
skew-symmetric form be a symplectic structure is open, and since [O, 11 is 
compact, we can find for each x  E L a neighborhood of x  in P L  on which 
all w, are symplectic. The union over L of all these neighborhoods gives a 
neighborhood of L in T*L on which all cot are symplectic. Notice that 
w, - w,= d(0, + 6,). Define a smooth time-dependent vector field X, on the 
above neighborhood by ix,wt = - (6, + Oo), which is possible since w, is sym- 
plectic. But on L,Xt = O  and hence by the local existence theory, we can find 
for each x €  L a neighborhood of x  in T*L on which the "flow" of XI is 
defined for time at least one (see Exercise 3.2C). The union of these neighbor- 
hoods over all x  € L gives a neighborhood of L in T*L on which the "flow" 
Ft of Xt is defined for time at least one. Then we have: 

Therefore, Fro, = F$wo = a,. Since F,/ L = identity (since XI I L = 0), the com- 
position Fl 0 f on the above appropriate neighborhood of L gives the result. 

For additional motivation and insight into Lagrangian submanifolds, we 
turn to the ideas involved in reciprocity. First we consider an example,* 
namely, a 3 (or generally n) -port nonlinear DC electric network, schemati- 
cally shown in Fig. 5.3-1. Let qi denote voltages applied to each terminal and 
let pi denote the currents flowing into the terminal (in specified directions, as 
in the figure). The applied voltages determine the currents, so we have 
relations 2 

9 
m 

pi =A (ql,. . . , qn), i = 1,. . . , n 2 z 
Z 

*Many of the ideas here are due to W. Tulczyjew and G. Oster. z 
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q1 = applied voltages 
pi = currents into terminals 

Thus small changes in the q's, Aq' produce small changes Api in the p's. 
Reciprocity means that 

that is, the proportional change of current/voltage induces in port 2 by 
activating port 1 is the same if instead we activate port 1 and look at the 
current changed in port 2. Precisely, this means 

Another way of saying this equality is that the manifold which is the graph of 
f = (fly .. . ,A) in R 2n with its usual symplectic structure o = Z dqir\dpi is iso- 
tropic and hence Lagrangian (since its dimension is n). This fits in with 5.3.15, 
for the above relations say exactly that f regarded as a one-form, f=Jdqi, is 
closed. 

As we saw earlier. canonical transformations define Lagrangian submani- 
folds. However, reciprocity, that is, Lagrangian submanifolds, are more 
general. For instance, for a 2-port network, reciprocity (plus a nondegeneracy 
condition) is equivalent to having a function P'(ql, q2) such that p, = - 
aP'/aq1 and p, = aP'/aq2, that is, F is the generating function of a canonical 
transformation of (ql, p,) to (q2,p2). For three or higher ports, we still have 
generating function (5.3.16), but it is not associated with a canonical transfor- 
mation. 

Other physical examples are reciprocal relationships between generalized 
forces and displacements in an elastic suspension (see also Exercise 5.3G) and 
thermodynamic variables in thermostatics.* The generating functions for 
these examples are the "internal energy" and the "free energy." In the first 
example, 0=p,dqi is usually called the "virtual work." In thermostatics, the 

$ reciprocity relations are called the Maxwell relations, while in thermody- 
namics they are called the Onsager relations. Thus, pairs of variables in a B 

2 
z 

*See Tulczyjew [1977], Oster and Perelson [1974], and Exercise 5.5L. 
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definite relationship are called reciprocal when they define a Lagrangian 
submanifold of the corresponding phase space. The fact that these submani- 
folds have generating functions means that there will be a potential associated 
to any reciprocity relation, although its physical meaning will depend on the 
particular system. 

One can carry these ideas further, as Tulczyjew has done, and regard 
Lagrangian submanifolds as basic entities describing systems. We have 
already seen that graphs of canonical transformations are Lagrangian sub- 
manifolds.* What about Hamiltonian systems themselves? We have the 
following. 

5.3.21 Proposition. Let (P, u) be a symplectic manifold and let w, be the 
symplectic form induced on TP (see Exercise 3.3 I ) .  Then a vector field X on P 
is locally Hamiltonian if and only i f  its graph in TP is Lagrangian. 

Proof: We claim that X*O,=Xb, where 8, is the one-form on P given in 
Exercise 3.31, namely, 

In fact, 

by definition of xb =i,u. Thus X*uT= - d x b  is zero if and only if X%S 
closed, that is, X is locally Hamiltonian. W 

The generating function of this Lagrangian submanifold, in the sense of 
5.3.16, is just H: P+R (locally defined perhaps), the Hamiltonian for X, if 
we identify the graph of X with P using X. 

There is also a neat way of describing the Legendre transformation ush3 
this idea, also due to Tulczyjew [1974]. Namely, let P= P Q .  Then (see 
Exercise 3.31), the symplectic structure on TP arises from two different 
diff eomorphisms: Y 

i,: TP-+T*(T*Q) and i,: TP-+T*(TQ) 2 
2 
13 z 

*It is possible that some problems involving the dynamics of systems with singularities in classical 
mechanics may be describable in terms of Lagrangian submanifolds that are not necessarily 
graphs of canonical transformations. 3 
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Thus if we have a Lagrangian submanifold L c TP, we get two Lagrangian 
submanifolds 

Lh= ih (L)cF(T*Q)  and L,=i,(L)cT*(TQ) 

as such, we get generating functions on P Q  (the Harniltonian) and on TQ 
(the Lagrangian). 

The different ways of realizing this Lagrangian submanifold in TP as 
graphs of one-farms on T*Q and TQ and the passage between them is, of 
course, exactly the Legendre transformation. In some problems of field 
theories, this formulation may have some technical advantages. 

Next we turn to the topic of reduction, generalizing what we did in the 
linear case.* 

5.3.22 Proposition. Let (P, w) be a synzplectic manifold and M c P a sub- 
manifold. Suppose TM n (TM)'- is a subbundle of TP. Then: 

(i) TM/ TM n (TM)'- is a symplectic vector bundle over M; that is, each 
fiber has an induced synzplectic structure vatying smoothly over M. 

(ii) TM n (TM)'- is an integrable subbundle of TP. 

Pmo$ (i) Follows from our remarks after 5.3.9. For (ii) let X,,X, be vector 
fields on M that take values in (TM)-'-. We have to prove that [X,, X2] takes 
values in (TM)'- as well. However, @(Xi, Y) = 0 for all vector fields Y on M. 
If this is substituted in the identity of 10.15(ii), that is, 

we get 0 = w([X,, X2], Y). W 

By Frobenius' theorem there is a foliation S of maximal integral mani- 
folds of M of which TM ~ ( T M ) ' -  is the tangent bundle. We can form the 
quotient space M/S. In general, this may not be a manifold, but we shall 
assume it is in what fo1lows.t If we select a point on a leaf, the tangent space 

3 of M / S  can be identified with TM/ TM n (TM)'-. See Fig. 5.3-2. 
2 

*The ideas here are taken from Weinstein [1977b]. They were in turn, partly inspired by Roels 
and Weinstein [I9711 and Marsden and Weinstein [I9741 (see Sect. 4.3). 
tThe reader may wish to look back to Sect. 4.1 where we constructed quotient manifolds for 
group actions. The constructions here are similar. Each point of M / F  is a leaf of the foliation. 
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TM n (TM)' at a point 
of a leaf in M 

representation of 
TM/rnn( TM) -1. 
at this point 

leaves of Ti-= points of MI9 

Flgure 5.3-2 

5.3.23 Theorem. The quotient M / F  inherits the symplectic structure of 
TMITM ~ ( T M ) ~  so that M/% becomes a symplectic manifold. If M is 
co-isotropic, so TM n TML = TML, we write PM for M / F  and call it the 
reduction of P by M. 

ProoJ: We know we get a nondegenerate two-form defined on each 
TM/ TM n TM at each point of M. We must show that this structure does 
not depend on the point on the leaf chosen. If X is tangent to a leaf, it is a 
section of TM n TM I, and thus, on M, ixw = O .  Thus, 

(precisely, Lxi*w = dixi*w=O, where i :  M-+P is inclusion). Thus w is con- 
stant along each leaf. The nondegenerate form wM on M/% has the property 
that 

where m: M-+M/% is the projection and i :  M+P is the inclusion. Thus 
n*dwM = i*dw=O. Since n is a submersion, d w ,  =O.  Thus wM is a symplectic 
form. fl 

Following the linear case 5.3.10, we are led to try projecting Lagrangian 
submanifolds of P to PM. To do so we need to ensure L n M is a manifold. If 
they intersect transversally, we know this is sufficient. But it is more than is 
actually required. E 4 

CI) 

8 
5.3.24 Definition (R. Botl [1954]). If L and M are submanifolds of P, we say 3 
L and M have clean intersection if L n M is a submanifold and TL n TM= 
T(Ln M). !! 



5 HAMILTON-  JACOB1 T H E O R Y  AND MATHEMATICAL P H Y S I C S  4 1  7 

Figure 5.3-3 

5.3.25 Proposition. Suppose L is a Lagrangian submanifold, M is co-isotropic 
and L intersects M cleanly. Then the projection LM of L n  M to PM is an 
immersed Lagrangian submanifold. 

This is proved by reference to our calculations in the linear case and 
Exercise 5.3F(b). Note that the mapping of L n  M to PM might not be 
one-to-one. See Fig. 5.3-3. 

5.3.26 Proposition. Let (Pi, q), i = 1,2,3 be symplectic manifolds and let 
S c P,  X P2 and T c P2 x P3 be canonical relations. Suppose that S X T inter- 
sects the diagonal A c PI x P, x P2 x P3, A = PI x AP2 x P3 cleanly. Then T 0 S 
is a canonical relation. 

This follows from 5.3.25 by the same procedure as in 5.3.12. Intersection 
theory and perturbations of Lagrangian submanifolds is an important topic 
we have omitted. See Weinstein [1973a] and, for applications, Moser [1978], 
and Arnold [1965]. 

The final topic in this section concerns the question of enlarging an 
isotropic submanifold M c P to a Lagrangian submanifold. For this purpose, 
the following terminology is useful. 

5.3.27 Definition. Let (P, w) be a symplectic manifold and M c P a submani- 
fold. Let 

0 

z We say M is integrable (resp. integrable at x E M) if, for any j g E Z ( M )  , the 
Poisson bracket {f; g )  is zero on M (resp. at x E M). 
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Another way of saying this is that Z(M) is a Lie subalgebra of 
(%(PI, { 1). 

5.3.28 Proposition. (i) If M is integrable and f E Z (M) , then Xf is tangent 
to M, that is, its flow leaves M invariant. 

(ii) If there is a Lagrangian submanifold L c M, then M is integrable at 
points of L and for f E Z (M), Xf is tangent to L. 

Proof; (i) Let M have codimension k so it is given locally by x'  = . - . = x 
= O  in a chart. Then dx', ..., dxk are zero on M. Now {cxET;P~cx(v)=O for 
all v E Tx M)  c T; P is k-dimensional. Thus dx', . . . , dx at x form a basis for 
this space in Tz P. Thus, {dg(x)l g E Z (M)) spans the annihilator of Tx M in 
T;P. Thus TxM = {v E Tx Pldg-v = O  for all g E Z(M)). (This is a general 
remark about any submanifold.) Let f G Z (M) so that - { f,g) = dg.Xf = 0 on 
M for all g E Z (M). Hence Xf (x) must be in Tx M. 

(ii) Let i: M+ P and j: L-+P be inclusions. Let f E Z (M). In particular, 
j*df =0, so df = ix,w will vanish on any vector tangent to L. Thus Xf(x)E 
(Ir, L ) ~  = Tx L, so Xf is tangent to L. If f,g E Z (M), then - { f,g) = dg(Xf) is 
zero at all points of L since Xf is tangent to L and g=O on L. . 

Notice that (i) also proves that for x E M, {Xf (x)l f E Z (M)) is k-dimen- 
sional. Also note that much of what we have said is relevant for functions 
that are constant on M. 

5.3.29 Lemma. Let (P, w) be a symplectic manifold, H E %(P) and suppose 
2, is a regular energy surface. Let M cZ, be isotropic and transverse to XH 
(i.e., XH is nowhere tangent to M). If F: D c R x P-+P is the flow of XH, then 
F(R X M) c 2, is an isotropic immersion. 

ProoJ Let be the graph of F, that is, j ( t ,x)=(x,~,x) .  By 3.3.25, ?92 = 
- d t ~ d H ,  where D = m:w - m?w. Thus, as F= m2 and m, f: R x P+P is 
the projection ( t , p ) ~ p ,  using the definition of 5 in 5.1.9 we get F*w= 2*n?o 
= F*n:w-FrQ=&+dt~dH. This is also clear from 5.1; see 5.1.13. Thus if i: 
R X M+R X P is inclusion, 

But i*5=O since M is isotropic and i*dH=O since M cZ,. That F is an 
immersion follows from the computations in the proof of 3.3.25 corroborated 
with the hypothesis that XH is nowhere tangent to M. . 

Next we prove an extension theorem implicit in the paper of Roels and 
Weinstein [I9711 as formulated by Guillernin and Sternberg [1977]. 

5.3.30 Theorem. Let (P, w) be a symplectic manifold of dimension 2n. Let M 
be a submanifold of codimension k < n that is integrable. Let Lo c M be an 



5 HAMILTON- JACOB1 THEORY AND MA THEMA TICAL PHYSICS 419 

(n - k)-dimensional isotropic submanifold transversal to all Xf, f fE Z(M). Then 
there' is a unique Lagrangian submanifold L, Lo c L c M. 

ProoJ By 5.3.28, locally there are fl, . . . , fk fE Z (M) such that Xf ,, . . . , Xfx are a 
pointwise basis of {Xfl f fE Z (M)}. Let L, be the submanifold swept out by Lo 
under the flow of Xf,. By 5.3.29 it is isotropic and dim L, =dim Lo+ 1. Since M 
is integrable, Xf2,. . . , Xfx are not tangent to L,. Repeating, we obtain finally 
L, = L of dimension dim Lo + k = n. Hence L is Lagrangian. 

Doing this around each point of Lo defines L locally. However, the pieces 
of L so obtained must coincide on overlaps. Indeed, by 5.3.28(ii), if L exists, 
all Xf, f EZ(M) are tangent to it. But the foliation determined by {Xfl f E 
Z(M)} must have leaves then coinciding with L; that is, L consists of all 
leaves passing through Lo. Thus if L exists, it is uniquely determined, so there 
is no ambiguity on overlaps. 

5.3.31 Corollary (Lie). Let (P, w) be a symplectic manifold, dim P = 2n. Let 
f . . . , fk E %(M), k < n. Assume {i. , j j)  = 0 and df ,, . . . , dfk are pointwise linearly 
independent. Then locally there exist canonical coordinates (ql,. . . , q:p,, . . . ,pn) 

k such that fl = ql,. . . , fk = q . 

ProoJ Pick, by Darboux' theorem, local coordinates q', . . .,qn,j,, . . . ,j, such 
that f,, . . . , fk,pl,. . . ,& are linearly independent. Let M be defined by = 0 and 
Lo by J; = 0 and pi = 0. Then as {f;.lJ) = 0, M is integrable and since {df,} are 
linearly independent, M has codmension k. Similarly Lo is of dimension 
n - k. Since the space defined by ji is isotropic and it contains Lo, Lo is 
isotropic. Thus, by 5.3.30, there is a Lagrangian submanifold L, Lo c L c M. 
Since a neighborhood of L in P is diffeomorphic to a neighborhood of zero in 
T*L by 5.3.18, canonical coordinates on T*L yield the desired coordinates. 

w 

This argument may be used to give another proof of Darboux' theorem 
(see Duistermaat [1973, p. 1011 for details). 

We now return to make a connection between the Hamilton-Jacobi 
equation and Lagrangian submanifolds. For orientation, we first make a 
simple observation, implicit in 5.3.30 and 5.3.3 1. 

5.3.32 Proposition. Let L c P be Lagrangian and H E 9(P). 

(i) If H is constant on L, then L is invariant under the flow of XH. 
5 (ii) If Ft is the flow of X,, then E;(L) c P is Lagrangian. 
aN - - 
4 

Proof: (i) F o r x ~ L , ~ ~ ~ = ( ~ ~ ~ ) ~ = { v ~ T ~ P ~ o ( v , w ) = O f o r a l l w ~ T ~ L } .  
3 
4 But w(XH(x), w) = dH (x) .w = O  for w E TxL since H is constant on L. Thus 
0 

z X, is tangent to L. 
Z? (ii) This is obvious since E; is a symplectic diffeomorphism. 
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Now suppose that L C  T*Q is the graph of dS, so S is a generating 
function for L, and H E S ( M ) .  Let E; be the flow of X,. Then, at least for a 
short time, Ft(L) is the graph of dSt for St a function St on Q. We can adjust 
the arbitrary constants in St so it depends smoothly on t and coincides with S 
(a given function) at t = 0. 

The Hamilton-Jacobi theorem can now be rephrased as follows: 

5.3.33 Theorem. The function S(t, q) just described is the solution of the 
(time-dependent) Hamilton-Jacobi equation. 

This follows directly from 5.2.18; we leave the details to the reader. 
For t's that are not small, F,(L) may eventually not be the graph of the 

differential of a function; S(t,q) may in fact blow up in finite time. One then 
says that a caustic forms. Notice, however, that the picture of E;(L) as a 
Lagrangian submanifold remains valid; it just may "bend over" so that it fails 
to be a graph. This is the beginning of deep connections between symplectic 
geometry, geometric optics, partial differential equations, and Fourier integral 
operators. The reader is referred to the many excellent references on this 
topic, such as Duistermaat [1973,1974], Guillemin and Sternberg [1977], 
Hormander [1971], Maslov [1965], and Weinstein [1977b]. 

EXERCISES 

5.3A. Show that the following result of Guckenheimer is a corollary of 5.3.15 and 
dimensional considerations: A submanifold L c T* Q is locally the image of a 
differential of a function on Q if and only if (i) L is isotropic and (ii) L is 
transverse to the fibers of T* Q. 

5.3B. Consider R 2 n ~  R" X Rn* with its canonical symplectic structure a, the 
Hamiltonian H E %(R2"), H (q,p)= 1 1 q 1 1 2 +  l l p l 1 2  and its regular energy 
surface H -'(I) = S2"- '. Show that: 

(i) XH is w-orthogonal to S2"-' at each of its points (Hint: 

(ii) s2"-' is a co-isotropic submanifold of (R2",w); 
(iii) the leaves of the foliation % defined by the co-isotropic submanifold 

~ 2 n - I  . In R2" are the solution curves of XH; Y 
(iv) s2"- '/% is diffeomorphic to the complex projective plane CPn- ' [Hint: 2 

the solution curves in (iii) are all great circles in S2"-'1; 4 
m 

(v) p =O is Lagrangian in R2"; call this manifold L; 8 
(vi) L n s2"- I+CPn- I is a Lagrangian immersion; it is a double cover of 2 

the image that is RPn-I, the real projective space; RPn-' is hence Z 
imbedded as a Lagrangian submanifold in CPn-'. 
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5.3C. (W. Tulczyjew). Let M be a co-isotropic submanifold of the finite-dimensional 
symplectic manifold (P, LO). If PM denotes the reduction of P by M, show that 
{(m, S)lm E M n S and S is a leaf of the foliation '3 defined by M I  in 
M )  C P, X P is a canonical relation. 

5.3D. (A. Weinstein). Let (Pi,q), i = 1,2,3 be symplectic manifolds, P3 being the 
zero-dimensional manifold formed by one point. A canonical relation LC 
P2 x P, is a Lagrangian submanifold of (P,, ad. If S c PI X P2 is a canonical 
relation, then S 0 L = S (L) = { pl E P, I there exists p2 E L such that (p, ,pa  E 
S )  is the image of L C  P2 by S in PI. Deduce that under the assumption of 
clean intersection, canonical relations operate on Lagrangian submanifolds. 

5.3E. (A. Weinstein). Let Ql, Q2 be two finite-dimensional manifolds and (Pi, q)= 
( P Q ,  wi) their cotangent bundles with their canonical symplectic structure. If 
f: Q,-.Q2 is a smooth map, notice that Tlf is symplectic, so its graph 
rPf = {(a, T* fa)la E T* Ql = P,) is a canonical relation in (PI X P2, w, 803. 
Show that: 
(i) iff: Q,+Q2 is a submersion and L is a Lagrangian submanifold of 

PI = T* Q,, then (Tlj)(L) is a Lagrangian submanifold of P2 = T* Q2 
[Hint: Work with the inverse relation (T* f ) - ' ,  show that rcPn-,(L)= 
(T*f)(L) and prove that the intersection in question is clean; use 
Exercise 5.3DJ; 

(ii) if f: Ql+Q2 is an immersion and L is a Lagrangian submanifold of 
P2 = T* Q2, then (T+n-'(L) is a Lagrangian submanifold of PI = T* Q, 
[Hint: Apply 5.3D to the relation T*f: show that TPf (L) =(PA-'(L)]; 

(iii) if L C  P, is generated by S EB(Q,), then (T*fl(L) is generated by 
s o f  EF(Q2)- 

For those who know about generalized functions (distributions) on mani- 
folds, the preceding exercise will suggest the idea that one can think of 
Lagrangian submanifolds of cotangent bundles as distributions. (i) and (ii) 
recapture two such properties: distributions can always be pulled back under 
submersions and pushed forward under immersions. 

The analogy Lagrangian submanifolds/distributions is much deeper, both 
arising as "soolutions" of partial differential equations, a subject not discussed 
in the book but touched upon in Lemma 5.3.29 and Theorem 5.3.30, which in 
fact gives the "method of characteristics" for first-order PDE7s. 

5.3F. (Guillemin and Sternberg [19773). This concerns the Tricomi equation uxx+ 
(x2- I)%, = O  and the method of characteristics. (See 5.3E.) Let H E F ( P R ~ )  
be given by 

H ( ~ ' , $ , P I . P ~ = ~ [ ( ( ~ ~ ) " ~ ) P I +  (~2)'] 

(i) Show that 

(ii) H -'(O) is integrable (Hint: As a codimension-one submanifold of T * R ~  
it is integrable.) 

(iii) Show that &, given by (q', q:pl ,p2) = (I, 0,1, 1) is a one-dimensional 
isotropic submanifold transversal to XH. 

(iv) Apply the method of characteristics to find a Lagrangian submanifold L 
such that Lo c L c H -'(O). Draw this submanifold in R3. [Hint: L is the 
cylinder (q2)2 + (P,)~ = 1, p, = 1 .] 
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(v) Explain the reasons why in (iii) Lo is a good choice for an isotropic 
submanifold lying in H -'(O) in the search of a Lagrangian submanifold 
using the method of characteristics. 

(vi) Show that 7421L is not a diffeomorphism exactly on the lines q2= 2 1 in 
the (ql,& plane. 

5.3G. Show how to write Betti's reciprocal theorem in linear elastostatics and 
Graffi's reciprocal theorem in elastodynamics (see M. Gurtin [1972, p. 98, 
2181) as statements about Lagrangian subspaces. (Thls exercise will require a 
fair amount of translation; the reader may wish to utilize the ideas in Sect. 5.6 
below.) 

5.3H. Show how, following Sniatycki and Tulczyjew [1971], to write the motion of a 
charged relativistic particle in terms of Lagrangian submanifolds. 

5.31. (A. Weinstein and the authors). Let G act symplectically on a symplectic 
manifold (P,w) and have a momentum mapping J: P+g* (see Sect. 4.2). 
(a) Let T*G be identified with G X g* by left translations. Let 

where P x P is given the symplectic structure ~ € 3 6 ~ .  Show that L is 
Lagrangian (Hint: See the proof of the momentum lemma.) Call L the 
bicharacteristic relation of the original action.* 

(b) Let A c P x P be the diagonal; show that A X  T* G is co-isotropic in 
P X P X P G .  

(c) Reducing the bicharacteristic relation L by A X  P G ,  show that, under a 
clean intersection hypothesis, the character 

is Lagrangian. 
(d) Show that the period energy relation (see Sect. 3.3 and problem 5.2G) is a 

special case of (c). 
(e) Derive the results of Henon [I9771 as a special case of (c). 

5.35. (A. Weinstein). A local manijbld is an equivalence dass of pairs (M, m), where 
M is a Banach manifold and m E M  and (M, m)--(M', m') if m = m' and there 
is a manifold U containing m = m' that is simultaneously an open submanifold 
of M and M'. Let the equivalence class be denoted [M,m]. 

The usual differential geometric objects (vector fields, maps, etc.) can be 
localized in the obvious way. We work with representatives of the correspond- 
ing classes without explicit mention. 

An action of a Lie algebra g on [M, m] is a homomorphism p: g+%[M,m]. 
It induces a map 0, : g+ T,M by BP(O = p(o(m). The action is free if 0, is 
injective. If [M,m] is symplectic with form Q, p is symplectic if the range of p 
consists of Hamiltonian vector fields and is conformal& symplectic if, for tEg,  
p(S) is conformally Hamiltonian, that is, Lp(6,Q=$@Q for a constant +(O. We 
call cp the multiplier and 8,*Q (a form on g) the associated form of p. v 
(a) Show that two conformally symplectic free actions p and p' of g on [ M ,  m] 

and [MI, m'] are related by a [conformally] symplectic diffeomorphism if 3 
9 2 

*The name arises from the fact that L is identifiable with the character for a group representation 
whose generators are partial differential operators with bicharacteristic Hamiltonians that make 
up J (see Remark 4 following 5.2.4). 

CI 2 
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and only if: 
(i) there is a linear symplectic isomorphism from T,M to T,,M1; 

(ii) p and p' have equal multipliers, and 
(iii) p and p' have equal associated forms [forms that are scalar multiples 

of one another]. 
(Hint: Use the techniques of 5.3.18.) 

(b) Deduce Darboux's theorem from (a) by taking fi = (0). 
(c) Deduce Darboux's theorem for one-forms: if B(m)#O, Bf(m')+O and 

dB =9, d8'= a', then locally YO'= 8 for some f. 
(d) Prove 5.3.3 1 using (a). 
(e) Let f,, . . . ,f, E F([M, m]) have independent differentials at m and J(m) = a ,  

{J,J) =ZcijJk + bij for constants a ,  cijk, bij. Let f,' be another such set of 
f s (with the same constants). Then there is a symplectic diffeomorphism 
transforming J to f,'. 

( f )  Iff,, . . . ,f, E %([M, m]), r < n, dim M = 2n have independent differentials at 
m and {J,fi) = bij for constants bij, then there exist symplectic coordinates 
in which 

(For the case r = n, see Roels and Weinstein [1971].) 
.3K (Sniatycki and Tulczyjew [1972]). Let 

be a special symplectic manifold (Exercise 3.31), K C  M a submanifold and F: 
K-R. Let 

L = { ~ E P ~ T ( ~ ) E K  and B(v)=dF(T?r.v) 

f o r a l l v ~ T , P  suchthat TTVET,(,)K). 

Show that L is Lagrangian and F may be regarded as its generating function. 
Show conversely that if L c P is Lagrangian, alL has constant rank and 

a-' (point) n L is connected, then L is so represented (possibly with dF  
replaced by a closed one form y). 

5.3L (Dirac Theory of Constraints; Tulczyjew, Kunzle, Sniatycki, Weinstein and the 
authors) Let L: TM-R be a given Lagrangian, possibly degenerate. Regarding 
T(T*M) as a special symplectic manifold over TM by 
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where 5: TZ(TM)+T(TZM) is the canonical symplectic diffeomorphism 
((4, q,p,p)b(q,p, q,p)) and let A be the Lagrangian submanifold generated by 

aL L (Exercise 53K); A is defined by Lagrange's equations pi= %,pi= - 
Realize T(TZM) as the special symplectic manifold aq aqi' 

P 
T(TZM)- TZ(TZM) 

/' 
TZM 

where /3 is induced by the symplectic structure on TZM. If A is generated by 
K C  TZM and H :  K-R, call K the Hamiltonian constraint and H the Hamilto- 
nian. One says the constraint is first class if K is co-isotropic and otherwise is 
second class. 
(a) If K is the zero set of a map J :  TZM+ V* (V a vector space), show that A 

can be regarded as being generated by H+(w,  J )  where W E  V is fixed 
and N :  P M + R  is an extension of H (i.e. the dynamics is generated by 
the constraints). 

(b) Describe K, H when L is the homogeneous Lagrangian for a relativistic 
particle. 

(c) Let k be K reduced by the foliation '3 determined by TKn(TK)I (see 
5.3.23). Coordinates on the leaves of 9F are called gauge variables and 
Poisson brackets on k are called Dirac Brackets. Work out coordinate 
expressions for Dirac brackets and show that they agree with the formulas 
of Dirac [I9501 (see also Hansen, Regge and Teitelboim [I9761 and 
Sudarshan [1974]). 

(d) If rrcYM) maps TL to TK, (i.e., there are no secondary constraints) show 
thatM n constant on the leaves of '3 and hence induces a Wadtomian 
on k. Show that this condition is not always satisfied (consider L(ql, 
q2, 8, d2) = if (q', q2)(4'I2.) 

(e) Show that Newton-Wigner coordinates for the relativistic top are canoni- 
cal coordinates on K (determined by Darbow's theorem). (See Hansen, 
Regge and Teitelboim [1976, Chapter 31). 

( f )  Let R denote TM/C where C is the characteristic foliation determined by 
the Lagrange two form WL. Show thatk and k are symplectically diffeo- 
morphic. 

(g) Suppose there is a group action of G on M leaving L invariant and 
whose orbits in TM are the degenerate directions (leaves of C). Let J: 
TZM-Q* be a moment for the action. Show that (d) holds and we can 
take K= J  - '(0) and if is the reduced phase space in the sense of 4.3.1. 

references: 

Tulczyjew [1977a,b], Kunzle [1969], Sniatycki [1974], Lichnerowicz [1975a], Menzio and 
Tulczyjew [1978], and Gotay, Nester, and Hinds [1978]. fi 
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5.4 QUANTIZATION* 

Quantization refers to the process of forming a quantum mechanical 
system from a given classical system. This section provides merely an in- 
troduction and some background for this topic. More up to date and 
advanced work, along with references, may be found in Weinstein [1977b], 
Guillemin and Sternberg [1977], and Sniatycki [1978]. 

We shall concentrate on certain geometric problems associated with 
quantization, beginning with Dirac's quantization rule that associates quan- 
tum operators to the simplest classical observables, namely, the position and 
momentum functions. This leads naturally to the notion of quantization; that 
is, a map from classical observables to symmetric operators preserving the 
bracket relations and mapping 1 to the identity. The theorems of Groenewald 
and van Hove are then established, which show that quantization is, in 
general, impossible if the q's and p's are to act with finite multiplicity; 
however, it is possible if they act with infinite multiplicity. The geometric 
construction of this using techniques of Souriau and Kostant is known as 
pre-quantization. The construction of the actual quantum mechanical Hilbert 
space uses the additional structure of a polarization. 

The present view of quantization theory was developed by Souriau and 
Kostant, and our main goal is to give an introduction to it. However, it is 
important to keep it in context. We have therefore endeavored to include 
considerable background work of van Hove. We have also included a 
discussion of the Mackey-Wightman analysis at the end of the section. This 
shows, among other things, that Euclidean and Galilean invariance forces one 
to quantize in the usual way for free particles on Rn. (See also Mackey [I9631 
and Varadarajan 119681.) The discussions are, however, incomplete because 
many key issues are omitted, such as the classical limit A-0 (see Maslov 
[1965], Truman [1976]). 

One should be warned of two things. First of all, the Souriau-Kostant 
theory has not yet reached a completely satisfactory state. Secondly, research 
is still active in the subject and it is rather complicated at the research 
frontier. 

An analysis of Euclidean-invariant quantum systems may be summarized 
by a set of rules for assigning operators in Hilbert space to the simplest 
classical observables. For simplicity, let us consider the case of a spinless 
particle. Then the appropriate Hilbert space is L ~ ( R ~ ) ,  the square integrable 
complex valued functions on R ~ .  The classical coordinate observables xJ 
correspond to operators Q given by 

(Q,f)(x) = xJf (4 
The classical momentum observables are the Hamiltonian generators of 
one-parameter groups of rigid motions; if X, is the vector field on R 3, which 
generates a one-parameter subgroup tt+a(t) of rigid motions, then the 

*The authors thank P. Chernoff for help with this section. 



corresponding quantum operator is (l/i)X,, regarded as a differential opera- 
tor on L ~ ( R  3). In particular, the linear momentum operators are given by 

1 af P,f= -- 
i ax, 

(defined on a suitable domain). Corresponding to the classical energy func- 
tion, p2/2m + V(x), in units with h= 1, we have the Hamiltonian operator 

Dirac observed that these operators obey commutation relations analo- 
gous to the Poisson bracket relations among the corresponding classical 
observables. He made this analogy the foundation of his approach to quanti- 
zation. According to Dirac [1930, p. 871, "the problem of finding quantum 
conditions now reduces to the problem of determining Poisson brackets in 
quantum mechanics. The strong analogy between the quantum Poisson 
bracket (that is, l / i  times the commutator) and the classical Poisson brac- 
ket . . . leads us to make the assumption that the quantum Poisson brackets, 
or at any rate the simpler ones of them, have the same values as the classical 
Poisson brackets." We shall later examine the natural question of whether 
this "analogy" can be raised to the status of a homomorphism of Lie algebras. 
First of all, we shall show that Dirac's principle can be illustrated by a 
method of "canonical quantization" of any classical system whose wnfigura- 
tion space is a finite-dimensional manifold. Special cases of this procedure 
appeared very early in the physics literature. Mathematical treatments have 
been given by Segal [1960] and Mackey [1963], whose outline we will follow. 
(See also Varadarajan [I9681 and Marsden [1967].) 

Our first task is to find the appropriate generalization of L * ( R ~ ) .  Unlike 
Euclidean space, an arbitrary finite-dimensional manifold Q does not carry a 
canonical measure. (Note, however, that there is a natural measure on a 
Riemannian manifold.) But Q does carry a natural class of measures, namely, 
those that are equivalent to Eebesgue in every coordinate chart of Q. We call 
such measures the natural measures on Q. We remind the reader that a 
measure p is absolutely continuous with respect to another measure v provided 
there is a density function p such that p(E)= lE pdv for every Bore1 set E. 
The function p is often denoted by dp/dv, and is called the Radon-Nikodym 
derivative of p with respect to v. The measures p and v are said to be % 
equioalent provided that each is absolutely continuous with respect to the 7 
other. In this case we have dv/dp=(dp/dv)-'. Associated to this class of 
measures there is a Hilbert space, called the intrinsic Hilbert space of the 2 
manifold Q, and will be denoted by X(Q). Members of X will be called z 
half-densities. Its formal definition follows. i! 
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5.4.1 Definition Consider the set of all pairs C f ,  p), where p is a natural 
measure and f is a complex (measurable) function such that lei f l 2  dp < co. Two 

pairs df, p) and (g, v) will be called equivalent provided that f = g. [ I t  
is easy to show that this is indeed an equivalence relation by use of the formula 
dp/dX = (dp/dv)  .(dv/dA)] We denote the equivalence class of df, p) by f G . 
X ( Q )  is the set of all such equivalence classes. The Hilbert space structure of 
X ( Q )  can be defined as follows. Pick any natural measure y Then the map Up : 
f c f* is a bijection from L'(Q p) onto X ( Q ) .  We use Up to transfer the 
Hilbert space structure from L ~ ( Q ,  p)  to X ( Q ) .  ( I t  is easy to check that the 

is independent of the choice of p. Indeed, if 
a typical vector in X ( Q ) ,  we have 

Thus the norm in X ( Q )  is independent of y )  

Of course, "practical" computations in X ( Q )  must be made with the aid 
of one of the isomorphisms Up. The virtue of considering the intrinsic space 
X ( Q )  is that it puts all the measures p on the same footing; choosing a 
particular L ~ ( Q ,  p) would be akin to imposing a particular coordinate system 
on an abstract vector space. 

We shall say that ( E X ( Q )  is C" with compact support provided 
t= f*, where f is a C" function with compact support on Q and p is the 
measure associated with a smooth n-form L?, on Q. These C" vectors with 
compact support form a dense subspace 97 of X ( Q ) .  

Let X be a smooth vector field on Q with local flow 4. We shall show 
using Koopmanism (see Sect. 2.6) that there is a natural symmetric operator 
r? with domain 97 associated to X. To see this, consider fl/& E 9,". Then 
if t is sufficiently small, 

ut(&)=foF,vaF5 
is a well-defined element of X ( Q ) .  We define 

Y 

S 9 
~ ( & ) = l l i m L [ ~ ~ ( f l / & ) - j Y & ]  i t,o t 

m 
8 z To see that this limit exists, note that 
z 
2 s ( f i ) = f o F , G  G 
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where pt =d(p°F,) /dp is a smooth function. In terms of the n-form 
associated with p, we have I;;C(Q,) = ptQp. Moreover, 

Pt-1  1 
lim - Q, = lim - (F,*Q, - Q,) = L $2, 
t+o t t+O t 

= div,X. Q, 

where diu,X is the divergence of X relative to Q,. Hence we have 

1 
lim -(f.F,* - f ) G  = ( x - f  + $ ( d i v , ~ ) f ) G  
140 t 

Thus we define 

f ( - )=  !-(x-f+f+f z ( d i v , ~ )  f ) \ / ; i ;  

This is well-defined because it has been constructed by intrinsic methods; one 
could, of course, check directly that the right-hand side above depends only 
on the equivalence class of (f, p). 

5.4.2 Proposltlon The operator 2 is symmetric. 

=(& T) 

so (25, sl) - (<,&) = 0 by differentiation of the above at t = 0. . 
A fairly straightforward extension of Theorem 2.6.14 and its converse 

shows that 2 is essentially self-adjoint on 9; if and only if the flow 4 of X is 
complete except on a set of measure zero. 

5.4.3 Definltlon. Define the classical momentum obserwble P(X)  on P Q  
associated to the vector field X on Q by P(X)(ax) = a,(X(x)), x E Q. We shall 
call the operator 2 the corresponding quantum momentum obserwble. 

I f f  is a C" firnction on Q, that is, a classcal configurntion observable, we 
define the corresponding quantum position observable to be the operator X 

Qf on X ( Q )  dejnedby 

~f(g* ) = f g G  
(i.e., Qf is multiplication by f). 
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In coordinates note that P(X)=piXi(q). In 4.2.12 we verified by a direct 
calculation in coordinates the classical Poisson bracket formulas: 

Here{f,g)means { for$,gOr$)  and { f , P ( X ) )  means { for&P(X)) .  
The following theorem establishes the analogous operator commutation 

relations in accordance with Dirac's rule. 

5.4.4 Theorem. Let Q be a finite-dimensional manifod with intrinsic Hilbert 
space X(Q) .  Let X and Y be smooth vector fields on Q and let f, g be smooth 
real-valued functions on Q. Then we have the following commutation relations 
(valid on the domain 90" c X(Q)):  

N 

( i )  ( l / i ) [ z , f ] = - [ X , Y ]  

(ii) (l/i)lQf,Qgl=o 
(iii) ( l / i ) ~ ~ ~ ,  21 = Qxm 

Proof: Pick a vector <=+* in 92. Then 

From this, one computes that 

In terms of the volume form a,, we have 

(div,,[X, Y])Q,,=L,x,.,fi, 

= LxLyQ,- LyLxQ, 

= L, (div,, Y Q,) - L, (div,,xQ,) 

= (x.div,, Y - ~.div,,x)Q, 

Thus we have 

1 [n, f]- t= i {  [ x ,  Y ] + +  ~div,,[X, Y]+) 
i 

N 

= - [x, ~ 1 . 5  



So (i) is true. The relation (ii) is trivial. As for (iii), we have 

We come next to the Hamiltonian operator. As we know, the classical 
kinetic energy arises from a Riemannian metric g on Q. The energy function 
on T* Q associated with g is 

where wx E Tz Q and gx : Tx Q+ Q is the isomorphism induced by the 
Riemannian inner product on TxQ. 

The metric g induces a smooth measure D on Q, given by the volume form 
(see Sect. 2.7): 

The associated divergence operation on vector fields is the divergence relative 
to g. Thus, by definition, Lx52 = divgX. a. Also, recall that if + E C "(Q), d+ is 
a one-form, so g-'(d+)=gradg+ is a vector field, called the gradient of + 
relative to g. We can now define the Laplace-Beltrami operator by 

The operator A, is symmetric with respect to the inner product (,) in 
L2(Q, 52). Indeed, if + and rC, are C" functions with compact support, we have 

= - j " ( ~ ~ ~ ~ + $ ) 6 1  by Stokes' theorem 
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But 

~ g r o d + $ =  (d$, g - ' ( & I )  

= ( ( d ) ,  d )  since g is symmetric 

= 'grad&+ 

Thus 

Accordingly, using the canonical identification of L~(Q,  fi) with X(Q) ,  we 
can regard A, as a symmetric operator with domain 9,". (It can be shown 
that A, is essentially self-adjoint if Q is complete relative to the metric g; cf. 
Gaffney [I 9541, Roeleke [ 19601, Chernoff [1973].) 

5.4.5 Definltion. If the classicalpotential energy is given by the function V on 
Q, we define the Hamiltonian operator to be 

The question of essential self-adjointness of this operator is difficult in 
general. (See Reed and Simon [1975].) If we are willing to ignore the technical 
difficulties surrounding the self-adjointness question, then the rules that we 
have given suffice to quantize the basic observables of "any" classical system 
with a finite number of degrees of freedom. 

Let us examine the relations between classical and quantum velocity 
observables. These are, by definition, the time derivatives of the configuration 
observables, relative to the flow generated by the Hamiltonian. 

5.4.6 Proposition. We have the classical formula 

A and the analogous operator commutation relation 2 
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ProoJ: It is straightforward to verify (e.g., by computing in local coordi- 
nates) the first classical formula. To establish the second relation we work in 
the space L2(Q, Q). If + is Cm with compact support, then 

Now grad Cf+) = f grad+ + +gradf. Moreover, for any smooth + and vector 
field X, we have diu(+X) = +div X + X.+. (Indeed, 

div (+X )Q = L+xQ = di+,Q 

= d (+ixQ) = +dixQ + 
= +divXD + d+r\i,D 

Now d+r\D = 0. Hence, since ix is an antiderivation, 

Thus we have the stated formula.) 
Hence 

Unfortunately, the correspondence between classical and quantum brac- 
kets breaks down to some extent when we consider brackets involving the 
kinetic energy and momentum obsewables. In fact, computations reveal that 
the Poisson bracket (K, P(X)) cannot be expressed in general as a finite 
linear combination of obsewables heretofore considered. The same holds true 
for the oRerator bracket. It is true, nevertheless, that { K ,  P(X)) vanishes if 
and only if [- A,f]  does; indeed, each of these conditions holds exactly when 
the flow of X consists of isometries. 2 

0, 
4 

5.4.7 Example (See Sect. 4.4). The rigid body provides an illustration of the 2 
Dirac quantization procedure. The classical configuration space is the group 2 
G= SO(3). In this case there is a canonical measure on G, namely, Haar z 
measure p. Thus X = L~(G,  p) is our Hilbert space. For u E g  (the Lie algebra $ 
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of G), the right-invariant vector fields Xu on G correspond to generators of 
rotation in space coordinates, while the left-invariant vector fields X i  corre- 
spond to the generators of rotation in body co&dinates. Since Haar measure 
is bi-invariant, these vector fields are divergence-free, so the related momen- 
tum operators on L~(G,  y) are given by 

1 - 
Jo=:Xo I and J ;=$z ;  I 

We have the commutation relations 

for u, w ~ g .  These are the same as the corresponding classical brackets (See 
Sect. 4.3. and the relation X{f,g) = - [Xf, Xg].) 

The kinetic energy operator is the Laplace-Beltrami operator associated 
with a given left-invariant Riemannian metric g on SO(3). The metric g is 
determined by a symmetric positive operator I on the Lie algebra of S0(3), 
which we identify with R 3  in the usual way. If e,, e,, e3 is an orthonormal 
basis that diagonalizes I, then the kinetic energy operator is 

where A, B, C are the principal moments of inertia. 
According to the Peter-Weyl theorem (see, e.g. Yosida [1971, 5x1 lo]), the 

Hilbert space L ~ ( G , ~ )  is a direct sum of finite-dimensional subspaces that are 
invariant under both left and right translations. There is one such bi-invariant 
subspace for each irreducible representation 9 of G, and its dimension is the 
square of the dimension of 9. In the case of SO(3) the dimensions of the 
irreducible representations are the successive odd integers, so L2(s0 (3)) is a 
direct sum of bi-invariant subspaces Hn, n = 0,1,2,. . . , where the "spin n" 
subspace H, has dimension (2n + l12. Since the spaces Hn are bi-invariant, 
they are invariant under all the operators J,, J: and so also under the 
Hamiltonian H. Hence the determination of the eigenvalues and eigenfunc- 

% tions of H reduces to a series of calculations with finite matrices. For further 
details and additional references see Wigner [1959], Chapter 19. 

4 - 8 
2 We turn now to the question of quantization. We are first going to prove 

that a quantization of all the classical observables is, in general, impossible. 
Therefore, let us work in the concrete setting of Q= Rn and introduce 
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temporarily, the term "full quantization" for one which includes all the 
classical variables. 

5.4.8 Definition.* A full quantization of Q is a map taking classical obsfrv- 
ables f (i.e., continuous functions of (q,p) E T*Rn) to self-adjoint operators f on 
Hilbert space X such that: 

(9  cf+g~:j+d 
(ii) (Af)^=Xf, X E R 
( 4  {f,g)^=(l/i)lf:$l 
(iv) 1 = I (1 = constant function, I = identity) 
(v) C j i  and Jjj act irreducibly on X. 

By the Stone-von Neumann theorem (stated on p. 452), condition (v) 
really means we can take 3C = L2(Rn) and that & a n d 4  are given by Cji = Q ,  
and lj = (1 / i)a/aqj; that is, the Schrodinger representation. 

If we had just insisted on (i)-(iii) we could let f = (l/i)Xf on L2(R2"), but 
then (iv) [and(v)] would fail. 

To allow for spin, one should relax (v) to 

(v') The position and momentum operators are represented by a direct sum of 
finitely many copies of the Schrodinger representation. More precisely, we 
are asking that X be realized as the space of L~ functions from Rn  to 
b,( = d-dimensional Hilbert space, d < GO) so that 

One may now ask whether there exists a full quantization satisfying (i)-(v) 
or (i)-(v'). The answer is "no." This has been in the literature since Groene- 
wald's paper [1946]; van Hove [I9511 gave a rigorous proof of a result sharper 
than Grbenwold's (he excluded many classical obsemabks as being a priori 
bad because they did not have complete classical flows, while any self-adjoint 
operator generates a complete quantum flow = one-parameter unitary 
group). Van Hove also showed that there is a quantization satisfying (i)-(iv), 
but the "multiplicity" of the representation of the p's and q's is infinite in this 
representation. We shall discuss van Hove's work below. 

We shall now show that no full quantization satisfying (ixv') is possible. 
The fundamental reason for this seems to be the fact that the group Sl(2, R) 
has no nontrivial finite-dimensional unitary representations. $ Our exposition is taken from notes of P. Chernoff; see also A. Joseph o 

d 
*Technical difficulties with addition and bracketing of unbounded self-adjoint operators are ' 
ignored here. They will not be important for what follows. 2 
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5.4.9 Theorem. Let X be the Lie algebra of real-valuedpolynomiaIs on R2", 
where the bracket is the Poisson bracket. Let H =  L ~ ( R :  b,). Then there is no 
map f w f  from X to the self-adjoint operators on H that has the following 
properties: 

(0) For each finite subset S c X there is a dense subspace 9, c H such that for 
allf  E S ,  ~ , ~ 9 ~ a n d ~ 9 , c O j ) , . *  

( i )  ( f  + g)* = f +  g pointwise on 9, iff; g E S 
(ii) (A$)^ = hf for h E R 
(iii) { f; g )  ̂ = (1 / i)[& - -1 on 9,; and, more precisely, if { f; g )  = 0, then f: g 

commute in the strong sense that their spectral resolutions commute. 
(iu) 1 = I 
( v )  4 = multiplication by q, and 8; = (1  /i)a/aqi. 

For simplicity in what follows we shall take n = 1, that is, one degree of 
freedom; but everything goes through in the general case. 

We begin by noting some facts concerning Sl(2,R) and its Lie algebra 
sl(2, R). 

Sl(2, R )  is the group of real 2 X 2 matrices with determinant one. Its Lie 
algebra, denoted s1(2,R), is the algebra of real traceless 2 x 2  matrices 

( - :). It is three dimensional, with the standard basis being 

These satisfy the commutation relations 

It is a well-known fact, which we shall use, that this algebra has no 
nonzero finite-dimensional representation by skew-symmetric operators. (This 
is a special case of a much more general result about semi-simple Lie 

X 
algebras; cf. Varadarajan [1968].) Note that iff =prqs and g=pmqn, we have 

s 
4 el 

{f; g )  = (sm - rn)pr+m-lqS+n-l 
V1 

22 
d 
z 

*We call %, an admissible common domain for S .  
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In particular, we have 

( 9 , ~ )  = 1 

{q2, 9) =o {q2,p>=29 

Hence q2,qp,p2 span a three-dimensional subalgebra of the polynomial 
algebra under { ). Moreover, this algebra is isomorphic to sl(2, R), as can be 
seen by taking 

Finally, note that 

We have $ =multiplication by 9.1, on L ~ ( R ,  0,). Suppose that F(q) is a Y 
d X d matrix-valued function. Then the operator in L'(R,~,), which is given 8 
by multiplication with F(q), commutes with $. It is a standard result that the 

3 
converse is true: any operator 9 commuting with $ (in the strong sense if the $ 
operator is unbounded) must be of this form. For example, use the spectral 
theorem to bring '3 and simultaneously into diagonal form. 5 

Y 
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Through the Fourier transform, we see that an analogous result is true for 
operators commuting with p^; and any operator commuting with both (i and p̂  
must be just multiplication by a constant matrix. 

We now have in hand the tools we need to prove Theorem 5.4.9. 

Proof of 5.4.9 To begin with, note that every admissible domain 6lJ for p̂ , (i 
consists of rapidly decreasing C" functions (with values in b,). Hence if a 
matrix-valued function F(q) maps 9 to 9 ,  F(q) must be C". (Through the 
Fourier transform we have a dual result for operators commuting with p̂.) 

For convenience, we abbreviate p^=(l/i)a/ax by a. If F(x) is a smooth 
matrix valued function, we have [a F(x)] = (l/i)F'(x) (on a suitable domain 
6nl " I .  A'-"-' 

We shall now show w g t  the operators q2,p2,pq have to be. 
Because {q2, q )  = 0, q: and (i have to commute in the strong sense 

[hypothesis (iii)]. Hence q2 is multiplication by some A(x), a d X d ~ a t r i x -  
valued function. Moreover, restricting to an admissible domain for (i, q2,p^, . . . , 
we see that A(x) is C ". Now 

so on this domain 

that is, 

Thus 

where A is a constant self-adjoint matrix. 
Similarly (using the Fourier transform) 

A 
p2=a2.1+Q 

Y 
2 
4 where Q is a constant matrix. 
m 
8 Next, we consider the relation 
m 
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This gives us 

4&= f [ zfi (on a suitable 9) 

1. =:[x2,a2].I+!-[A,Q] 1 r 

which simplifies to 

G= ;(xa+ax).r+ N 

where 

1 
N = - [A, Q] (a self-adjoint d X d matrix) 

4i 

Now, consider the relations 

{p4,p2) = 2p2 and {pq, q2) = -2q2 

An easy computation shows that 

1 1 
-[N,Q]=2Q and -[N,A]=-2h 
i i 

Hence 

generates a representation of sl(2,R) by d X d skew-adjoint matrices. But 
since this must be tnxal, we conclude that A = Q = N = 0. 

In other words, p2 = 8 2.6, ?= x2.1, 

So far nothing surprising has happened. However, we now go on to higher 
things: cubic polynomials. As we shall see, a contradiction is arrived at. 

3 First of all, what is q ? Since 3 commutes with 4, q/j=multiplication by 
some Cm matrix function B (x). The relation x 

gives us 
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B being a constant matrix. 
A 

The relation {q3,pq) = 3q3 clearly implies that B = 0, so q3 = x3.1  and, 
likewise, 

p*= a 3.1 

Now we have 

so (by calculation) 

$= ; ( x a 2 + a 2 x ) . ~  

Similarly 
A 

4% = f (x2a + ax2).z 

Finally, observe that we must have 

and 

4 ' 1 [,?,$I =39$ 

This leads us to 

that is 

for all smooth +. But applying the left-hand side to +r 1 one gets -6i, while 
the right-hand side gives -3i. Hence the two operators are not equal, and we ' 
have reached the desired contradiction. . 2 

9 
m 
'a o Now we shall turn to what is calledpre-quantization; that is, a quantiza- 

tion satisfying (i)-(iv) but not (v) or (v'). Thus the position and momentum 
operators must act with infinite multiplicity. In order to make the construc- 
tion we need a few definitions. 
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Fix a manifold M. By a principal circle bundle over M we mean a fiber 
bundle n : Q+M with structural group S ' = T' = {eisls E R). Basically this 
means that each fiber n-'(m) is a circle and there is a consistent action 

which is just multiplication on each fiber, that is, M= Q/S1, (see Sect. 4.1) 
with S1 acting freely on Q. 

5.4.10 Definition. Let (P, w) be a symplectic manifold. We say that (P, w) is 
quantizable iff there is a principal circle bundle n : Q+ P over P and a one-form 
a on Q such that 

(i) a is invariant under the action of S1 and 
(ii) n*w = da. 

As is standard in bundle theory (Kobayashi-Nomizu [1963]), one calls a a 
connection and w its curvature; Q is the quantizing manifold. On fibers, write 
aim- '(m) =Ads, where A = h/2a is a constant, ultimately to be identified with 
Planck's constant. Let us fix this constant in the discussion. 

The following result is a fairly easy exercise in fiber bundle theory whose 
proof is left to the reader versed in such matters (cf. Steenrod [1951]). 

5.4.1 1 Theorem. (P, w) is quantizable if and on& if w/h E H2(p, Z),  that is, 
w/h is an integral cohomology class. 

Furthermore, the inequivalent quantizing manifolds are classified by 
H '(P, z). 

Basically, w/h E H2(p,Z) means that when w/h is integrated over a 
compact two-manifold K t P without boundary, we get an integer. 

5.4.12 Examples. (1) If w is exact, then P is quantizable (e-g., P= T* M). 
If P is simply connected, then Q is unique. (If w = dB, we can let Q = P X S ' 
and let a==B+Ads.) 

(2) (This example is relevant for the hydrogen atom; cf. Souriau [1970a], 
p. 324.) Consider s2 the two sphere in R3 with radius mK with the following 
symplectic form (m =mass; K= attractive cst.; e = energy). 

2 
Then s2 is quantizable if and only if e=  - 2 n ' r n ~ ~ / ~ ~  for an integer N > 1. - 3 

Since we have a principal bundle and S1 acts on C, we can construct from 2 
Q a complex line bundle L over P (by general principles of fiber bundle Z 
theory; each fiber S1 is replaced by the space C on which it acts). 4 
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The one-form a on Q gives us a connection V on the line bundle L. (In 
differential geometry language, a is the connection form.) The condition 
m*w=da means that w is the curvature form: QxVy-VyVx-VIx ,y I=  

as a iw(X, Y). (In coordinates, (Vxs)" = Xi + a;sbXi). ax 
5.4.13 Theorem (van Hove, Souriau, Kostant). Let (P, a) be a quantizable 
symplectic manifold. Then there is a quantization map f b d  where f̂  is an 
operator on the space S of sections of L (the Hilbert space is then the L~ sections 
of this bundle) satisfying (i)-(iu) of 5.4.8. 

Indeed, we can write down f explicitly: 
1 f: s b (Vx,)S + fs 

(The A here is built into the connection.) 

If w = - do is exact, so locally 0 =Zpidqi and Q = P x S' ,  the above 
becomes 

where s: P-C. This formula has been used by van Hove and Segal. Notice 
that for all f, j is a first-order operator and that our functions are on P; here 
H =  L~(P,  w "). 

Proof of 5.4.13. Because Xf preserves the phase volume, one sees that f̂  is a 
symmetric operator. Conditions (i), (ii), and (iv) are trivial. For (iii): 

1 1 
= 7 vxA 7 vXSs + gs) - vXg ( f vX,s + js) 1 

1 1 + f;Vxgs+ fgs - g 7  vx,s-gfs 
I 

1 
= -(Qx,Qxg - Vx*V$(s> + -(Xf(g)s 1 - XgCf)s) 

(here we used Vx(gs)= (Xg)s+ gVxs and a similar identity with f and g 
interchanged.) 

= - Vy,xg, 

5 Since 13, X,] = - X{ f,g), we get 
E 1 
4 
m 

ti. gis= v,,,,? - T ( 1  g ) ~  
8 - 1 2 = 7--{ftg)^s 

1 

This proves the above theorem. . a 
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The condition that the "energy surfaces", H - ' ( e ) / ~  be quantizable 
amounts essentially to the Bohr-Sommerfeld quantization conditions.* 

Since the above constructions are natural, it is fairly clear that any 
canonical transformations of P will lift to a transformation on Q-at least if 
the quantification is unique. Maps preserving ar on Q are called quantomor- 
phisms (after Souriau) and Souriau discusses these lifting problems (see p. 
338-339 of Souriau [1970a], Weinstein [1977b] and Chichilnisky [1972].) 

The Hilbert space for the quantization constructed above is not yet 
'correct'. Elements of it are complex functions of both q andp. To make them 
just functions of q (orp), we must cut the space down. To do so, we introduce 
the notion of a polarization (= "feuilletage de Planck"). 

5.4.14 Definition. A real polarization of the synlplectic manifold (P, w) is a 
foliation F of P by Lagrangian submanifoh (as leaves). ( I t  is important to 
allow complex tangent planes here, but we shall assume they are real for 
simplicity.) 

Recall that L c P is a Lagrangian submanifold when L is isotropic (i.e., w 
vanishes on T, L X T, L) and is maximal (i.e., dim L = dim P). 

We now describe the quantization procedure of Segal, Kirillov, Kostant, 
and Souriau as follows: 

5.4.15 Definition. Let (P,  w )  be a quantizable ymplectic manifoId and let F 
be a polarization. Let L be the line bundle obtained from the quantizing 
manifold. Then the quantizing Hilbert space is the space of L~ sections of L that 
are constant on the leaves of F. (Assume the leaves are compact.) 

The term "Hilbert space" refers to "intrinsic Hilbert space" defined 
earlier. 

5.4.1 6 Example. Let P = P Q, so L = P x C, and sections of L are just 
complex valued functions. Let the leaves of F be the linear spaces YQ.  This 
is a polarization and in this case 

X M L ~ ( Q )  (intrinsic Hilbert space) 

Thus 4 E X is just a function of the 9's. If Q has a flat metric we can likewise 
obtain a horizontal Lagrangian foliation, so IC, E X would be just a function of 
p's. Moreover, intermediate polarizations are also possible, and have been 
introduced by physicists from time to time. 8 

f) - 

Kostant [1970a] investigated the relations between different polarizations. 2 
If 3C,, and 3CF2 are the Hilbert spaces of two polarizations, Auslander and 8 
Kostant show that for invariant polarizations of orbits of certain solvable z 
*See Guillemin and Sternberg [I9771 and Weinstein [1977b] for details. !3 
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groups there is an intertwining map from X,, to XF2; such maps are related 
to the Fourier integral operators (studied extensively by Hormander, Maslov, 
Leray, and others). Kostant then studies how all these fit together-one must 
be able to consistently form half-forms from volume elements. This leads to 
the notion of a metaplectic structure. In general, however, different polariza- 
tions lead to different quantum systems that are equivalent only in the 
semi-classical limit. See Simms and Woodhouse [I9761 and Guillemin and 
Sternberg [I9771 for more information. 

What about dynamics? How do we get the correct energy operator to put 
in Schrodinger's equation? The abstract formulation of this seems not to be 
completely settled. For example, suppose we can find a Lagrangian foliation 
F corresponding to constants of the motion, as in Chapter 4. Then-perhaps 
modulo some cohomology conditions-the classical flow E; on P will induce 
a flow of unitary operators on X,  and thus will give the quantum dynamics. 

This, or something like it, seems to be the final step in quantization. It is a 
crucial problem that has not yet found a satisfactory answer. Souriau has 
applied it to free particles, both relativistic and nonrelativistic, to obtain for 
instance the Klein-Gordon and Dirac equations. 

The hydrogen atom has proved to be more of a problem. In 1972, Onofri and 
Pauri proposed a condition of selecting the correct quantum dynamics, again 
supposing there is a maximal symmetry group. Their conditions seem to lead 
to the correct equations, but on the other hand they do not appear to face the 
polarization question squarely. The hydrogen atom has also been studied by 
Souriau [I9741 and Elhadad [I9741 in a similar spirit, but their results seem 
quite special and depend on a careful analysis of the classical problem. 

A more modest goal might be to obtain the correct energy levels and their 
multiplicity. To this end we consider, given (P,w) and H: P+R, the follow- 
ing procedure: Fix e E R, consider H - '(e), and divide out by the flow to get 
H - '(e)/R = space of all trajectories with energy e. For, modulo completeness 
problems (which seem to be real enough in the Kepler problem), we know 
from Chapter 4 that 5, = H -'(e)/R is a symplectic manifold. We then try to 
determine those e for which 2, is quantizable and to construct X,  the Hilbert 
space for each such e, and then write X = Z BB X ,  as the quantized Wilbert 
space. The dimension of Xe is supposed to be the multiplicity of the 
spectrum with energy e,. (One must work with complex polarizations here.) 

Unfortunately this does not seem to work exactly. The crucial test case is 
the hydrogen atom. 

We briefly summarize the results obtained by Sirnms [I9681 for this case. 
Here 

and 0" z 
z 
?? 
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This is quantizable if and only if e = - ~ I T ~ ~ K ~ /  N ', N = 1,2,. . . . Surprisingly, 
this seems to agree with the physics books if we set A =  1 and use the right 
units-at least the N~ is correct! 

Simms uses the Riemann-Roch theorem to calculate the dimension of the 
quantized Hilbert space. It comes out to be (N- This is too bad, because 
the physics books tell us N2. A more careful analysis using the half-forms of 
Blattner mentioned above, however, apparently yields the correct answer. 

A. Weinstein [I9741 has done similar things for spheres, comparing the 
"quasi-classical" (i.e., quantized as above) spectrum with that for the Lapla- 
cian. He replaces the above conditions by the following procedure. He 
defines a quasi-classical state on P = (T* Q,d0) to be a Lagrangian submani- 
fold L c P such that, for any closed curve y c L, 

0- tly is an integer 

(quantization condition) where I, is the Maslov index-a generalization of the 
Morse index--of y (cf. Arnold [1967]). The state L is an eigenstate if H is 
constant on it. Using these ideas, he calculates the quasi-classical spectrum 
(including multiplicities) for spheres. Again they do not agree exactly with 
(but do closely resemble) the exact spectrum of the Laplace Beltrami opera- 
tor. Presumably this too can be corrected using half-forms. 

For further information on these matters we again refer the reader to 
Weinstein [1977b] and Guillemin and Sternberg [1977]. 

We will now explain why the Hamiltonians of single particles in R3  (or in 
Minkowski space) for both classical and quantum mechanics must be chosen 
the way they are, at least if certain group invariance properties are assumed. 
The quantum mechanical case will be merely discussed, with references cited 
for detail expositions. The results leave little doubt that the quantization 
procedures for free particles are correct. The related Stone-von Neumann 
theorem shows that the Poisson bracket-commutator correspondence forces 
the quantum operators corresponding to qi and pj to be equivalent to the 
multiplication by qi and i(a/aqj), respectively. Our constructions and proofs 
are done by "brute force." See Marle [I9761 for a more geometric framework. 

We shall begin by discussing what the Hamiltonians for Galilean and 
Lorentz invariant particles must be in the classical (i.e., nonquantum) case. 
To do so we must first understand what "invariance" means. x 

64 
P 5.4.17 Definition. Let (P, w )  be a symplectic manifold and let @, be a g 

symplectic action of a group G on P. Let XH be a Hamiltonian vector field on P. 
We s q  the equations of motion are imariant if 2 

z 
@,* X, = X, for all g E G E 
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This is equivalent to (see 3.3.19) 

Since cP, is an action, we have 

Thus g ~ c ( g )  is a homomorphism of G to R. If G is compact, we observe 
that c=O [since c(G) would be a compact subgroup of R ] .  The study of these 
homomorphisms of G to R is basic to the study of invariant equations of 
motion and the determination of the structure of H. We also observe that if J 
is a momentum mapping for the action and if the equations of motion are 
invariant, then {j (c), H ) = d([) = constant, for .$ E g. 

We turn now to systems in R 3  and Euclidean invariance. The Euclidean 
group on R3 is the group of orientation preserving isometries of R3;  it is 

The group structure is the semi-direct product structure given by 

(A, a). (B, b) = (AB, a + Ab) 

5.4.18 Proposition. Let X, be a Hamiltonian system on T*R that is 
invariant under the action of & on T* R 3. Then H itself is invariant and so H is 
a function of 1 1  pll alone. 

Proof: It suffices to show that any continuous homomorphism c: G +R is 
zero. Indeed since SO (3) is compact and SO (3) X (0) is a subgroup, c((A, 0)) 
= 0. Also, c((I, a)) = (0, a) for some v E R 3 .  Then the identity (A, a) = (I, a). 
(A,O) yields c(A,a)= (u,a). But c is a homomorphism, so 

c((A, a).(B, b)) = c(AB, a +Ab) = c(A, a)+ c(B, b) 

that is, 

(v, a + Ab) = (v, a) + (v, b) 

from which it follows that v = 0 [since the action of SO (3) is transitive on the 
two-sphere]. . 

m 
v, 
0 

2 Since any H that is a function only of llpll is Euclidean invariant, this 
z type of invariance is not enough to specify H completely. However, this end 

can be achieved if we enlarge the invariance group to the Galilean group. 
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5.4.19 Definition. The Galilean group 9 is the group of transformations on 
R x R generated by 

(a )  the Euclidean group & (on R ~ )  
(b )  Lo (x,  t )  = ( x  + tv, t )  for v E R and 
(c )  T,(x,t)=(x,t+r), r E R .  

One calls Lo a pure Galilean transformation and it is interpreted as the 
transformation to a frame of reference moving with velocity v. T, is a time 
translation. 

Clearly 9 is a ten-dimensional Lie group. 
For a E R 3, let Da ( x ,  t )  = ( x  + a, t )  and for A E SO (3), let RA ( x ,  t )  =(Ax,  t). 

The following commutation relations are easy to check: 

There are a number of ways to define Galilean invariance (used by 
various authors). We define it as follows. 

5.4.20 Definition. A Hamiltonian vector field Xu on T * R ~  is Galilean in- 
variant if there is an action W of 9 on T* R by symplectic diffeomorphisms 
such that 

and 

In other words, Galilean invariance means the condition that X,  is 
Euclidean invariant and that this Euclidean invariance together with time 
translations effected by F, fit together to be part of a representation of 9. We 
make no demands on the structure of WL E Wv; its structure will follow. 

A free particle of mass m,+O is defined by H (x,p) = lip 1l2/2m0 + constant. 
This is Galilean invariant if we take Wv(x,p) = (x,p - m,v). 2 

4 
m 
8 

5.4.21 Theorem. Let X, be a Hamiltonian vector field on F R  that is 
Galilean invariant. Then there exists a constant m, # 0 such that Xu corresponds z 
to a free particle of mass m,. E l  
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ProoJ Let XK be the generator of t M Wtv. From the commutation relations 
A - 'XK,= XKAc and hence RAL,=LAvRA we get VAo W,= WAuOVA, so V* 

KVo VA-I= KAV+{(A,v) (1) 

where 3 (A, v) is a constant. Similarly from DaLu = LvDa, 

K, 0 U, = K, + q(a, v) (2) 

As in 5.4.18 q is linear in a, so q (a, v )  = (q (v), a). Also, since Ku + , = Kv + K,,, 
+constant, q(v) is linear in v. 

From (1) and (2) we obtain 

so q(Av)= Aq(v). It follows that q(v)=m,v for a constant m,. 
Let kv (p) = KO (O,p), so Eq. (2) becomes 

From T,L, = LvD -, T, we get F, Wv = W, U-,,F, and, in particular, for 
t>O, 

and so (see Exercise 2.2L) 

for a constant y(u). Using Eq. (1) and Euclidean invariance of H gives 

d 
Z Hence y(v)= 0 in Eq. (4) since y is linear in v and is rotationally invariant. 

On the other hand, from Eq. (3) and the fact that H depends only on Ilpll, we 
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= mo(v, VH) 

where VH is the p-gradient of H. Comparing with Eq. (4), 

so mo#O and H ( I I ~ I I ) =  1lpll*/2m,+constant. W 

5.4.22 Corollary The inequivalent actions on T*R3 satisfying 5.4.20 are 
precisely characterized by the mass mo#O (ccequivalent" means up to a canoni- 
cal transformation). 

Proof: From Eq. (3) k,(p) is linear in v and k,(p) = (v, k(p)) + a(v), with 
a(v) a constant. Let 

Then rC/ is symplectic and leaves H invariant, thus it commutes with Ft. Also, 
+ commutes with Ua. From Eqs. (1) and (3), kv(Ap)=kA-lv(p), so k is 
rotationally invariant and hence + commutes with VA. Note that K, o+(q,p) = 
mo(v,q), so 

is the standard mass mo representation. Hence any mass m, representation is 
canonically equivalent to the standard one. It is not hard to see that standard 
representations with different masses are symplectically inequivalent. Y 

6i 
2 Some connections between Galilean transformations and the work on q 

symmetries in Chapter 4 have been given by Marle [1976]. Also, in Souriau 
[1970a, Chapter 111, 8 131, the mass is interpreted as the cohomology class of a 2 
Galilean group one-cocycle and the obstruction to equivariance. Z 

Next we turn to Lorentz invariance. 3 
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5.4.23 Definitions. The Poincare group (i.e., inhomogeneous Lorentz group) 
9 differs from the Galilean group in that we now set 

L,(x,t)= y (x -v t ) - ( y -1 )  x-v-  ( ( ;i,. Y ( t  - x.0 1) 

where y = 1 /dl - 11 u 11  * with Da7 RA, T, as before. 
A Hamiltonian system X, on T*R3 is Poincare invariant if there is a 

representation W of 9 on T * R ~  by canonical transformations such that 

WDa = Ua, WRA = VA and WT7 = F, =flow of XH 

5.4.24 Theorem. Let X, on T * R ~  be Poincari invariant. Then there exists 
m E R such that 

H (q, J I )  = d w  + constant 

ProoJ: In analyzing this situation, matters are complicated by the fact that 
~ H L , ~  is no longer a one-parameter subgroup (addition of velocities in 
relativity is not "additive" as it is in the Galilean case). For this reason it is 
more expedient to work infinitesimally. 

Let 

be the ,generators of the Lie algebra of 9 ; e, = ith coordinate vector. Ex- 
plicitly, 

The commutation relations shared with !3 are: 
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In the Galilean case we had [K,,q] =0, 14, P,.] =O; here we have 
[K,q.]  = - eiikJk, [&,Pi] = 6#h. [eYk is the sign of the permutation (1,2,3)+ 
(i,j, k), or zero if i j ,  k are not distinct.] 

To prove the result, we define & as in the Galilean case. As before, 

KO' VA-I= KA,+ { ( A ,  V) (1) 

and 

Also, by Euclidean invariance, H is a function of, llpll. 
Writing K, = K, for the Harniltonian function on T * R ~  (as well as the 

generator of Y), the relation [K,,?] = 13~h gives us 

3K,/3qJ = constant, i# j  (3) 

a 4 / a q i  = H + constant (4) 

If one combines Eqs. (3) and (4) with Eq. (I), it is not hard to see that the 
constant in (3) is zero. The constant in Eq. (4) may be incorporated into H. 
Thus, Eq. (2) yields 

aH/a~k=pk 

from which it follows that H z =  l l p l 1 2 +  constant, or H=\Im-. 

The literature on this type of result is extensive. See, for instance, 
Levy-Leblond [1969]. Some related papers are concerned with what interac- 
tions between particles are consistent with Lorentz invariance. (See, e.g., the 
papers of Cume, Jordan, Sudarshan, Foldy, Leutwylel-, Arens, Babbitt, etc.)* 

We next discuss, without proof, some of the corresponding ideas in the 
quantum mechanical case. Basic to this discussion is the Stone-von Neumann 
theorem. This theorem concerns the structure of self-adjoint operators 
Q ', . . . , Q", P,, . . . , Pd on a Hilbert space X satisfying the Heisenberg commuta- 
tion relations : 

[Qt Qj] = O  

[ pi, pj] =o 

[Pi, Qk] = i%k !2 
9 
m 
3 

*The famous "no interaction theorem" states that in many cases a system of n particles governed 2 
by a Hamiltonian system which is Poincark invariant is necessarily a system of free particles (i.e., Z 
in relativity, "action at a distance" does not work). References are given in the bibliography. 2 
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We are interested in a quantum mechanical analog of Proposition 3.3.21. 
Technical problems are relieved if one considers the one-parameter groups 

generated by P, and ek. The Heisenberg relations then become the Weyl 
commutation relations : 

[ vk(t ) ,  VJ(S)] =O 

[u,<t>Y uk(s)] =O 

q ( s ) ~ ~ ( t ) = e - ' ~ ~ ~ v ~ ( t ) q ( s )  

If we set t = (t,, . . . , t,) E Rd and write 

and 

then the Weyl relations become 

and 

where s - t = s , t , + - - .  +sdtd. 
The first two equations of (3) state that the maps t~ U(t), tt+ V(t) are 

representations of R d  in Hilbert space. [Recall that a representation of a group 
G in X is a (continuous) action of G on X by bounded linear transfonna- 
tions.] If we let U(t,s)= U(t)V(s), then the Weyl Relations become 

u ( t, s) u ( t', s f )  = e '). (Ir* ")I U ( t + t', s + sf) (3') 

wherk w is the standard symplectic form on TR,. (See Segal [1963].) 
$I: The Schriidinger representation is, by definition, the representation of Rd  $ on L~(R,) given by 
m 
8 
2 (U(t)f)(x) =f(x-  t) 1 



(corresponding to the usual choice of Qi and 5) and one sees that the Weyl 
relations (3) are satisfied. The Schrodinger representation is irreducible, that 
is, there is no closed subspace of L2(Rd) [other than (0) and L ~ ( R ~ ) ]  
invariant under each U(t) and V(t). (This fact is part of the theorem below.) 
If we replace L2(Rd) by L2(Rd,$), where $ is complex Hilbert space (finite or 
infinite dimensional), then we have card fj copies of the Schrodinger repre- 
sentation. The Stone-Von Neumann theorem states that this exhausts the 
possibilities. 

5.4.25 Theorem (Stone 119321 and von Neumann [1932]). Let U ( t )  and 
V(t) be (continuous) unitary representations of Rd on X satisfying the Weyl 
relations (3). Then there is a Hilbert space $ and a unitary map T:  X+ 
L2(Rd, $) that transforms U(t) and V(t) to the Schrodinger representation. The 
representation is irreducible i f  and only i f  $ is one dimensional. 

For systems with infinitely many degrees of freedom, the analog of the 
Schrodinger representation is called the Fock representation (see, for instance, 
Streater and Wightman [1964]). However, there are infinitely many other 
inequivalent irreducible representations as well (Girding and Wightman 
[1954]) and according to a theorem of Haag (see Streater and Wightman 
[1964]) these cannot be avoided in nontrivial field theories. As mentioned 
earlier, the maps T implementing other representations of the Weyl relations 
are related to Fourier integral operators. 

Mackey [1969] has given an important reformulation of the Stone-von 
Neumann theorem. One represents the position observables by orthogonal 
projections PE in Hilbert space X for any (Borel) set E  cQ, where Q 
represents position space. One requires E H P ,  to be a (projection-valued) 
measure. (For Q = R3, an example of these are the spectral projections 
associated with the usual position operators, i.e., with X = ~ ~ ( d i h ~ ) ,  

where x E  is the characteristic function of E cR3.) If a group G acts on Q, 
the momentum observables will arise as a representation U(g) of G on X. 
(For example, if G = R = Q, we obtain U(g) as described earlier.) The 
position and momentum are linked by 

where g-E is the translate of E under g in the given action. Equations (5) are 
an abstract form of the Weyl relations (3) [or the Heisenberg relations (I)]. Y 
One calls a projection-valued measure and a representation satisfying (5) a $ 
system of imprimitivity. Mackey then proves a general result of which the 8 
Stone-von Neumann theorem is a special case. 3 

Besides G= Rd, one wishes to take the Euclidean group for G and still Zi impose (5). This leads to what is referred to as the Mackey-Wightmn 
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analysis. Since one should only work with expectation values, one should only 
require U(g) to be a projective representation. As Bargmann has shown, we 
can then adjust things so that we have a true representation of the covering 
group G = R ~ X  SU(2). Mackey and Wightman then use the generalized 
Stone-von NeumannJheorem to show that if we have a system of imprimitiv- 
ity based on R 3  for G, then it is unitarily equivalent to the system. 

and 

( U,a,A,f)(x) = D, l f ( ~  - '(x - a)) 

on L'(R 3, lj), where a E R 3, A E SU(2) (which by projection to SO (3), acts 
on R ~ ) ,  and DA is a unitary representation of SU(2) on 6. 

Thus the unitary representations of SU(2) classify Euclidean invariant 
systems. In quantum mechanics texts, the irreducible unitary representations 
of SU(2) are shown to be of dimension n, n= 1,2,3,. . . and correspond to 
particles of spin s = n/2. 

By analogy with the classical case, one can show that a quantum dynami- 
cal system with Hamiltonian operator Hop is Euclidean invariant on R when 
H,, is a function of the Laplacian; the relevant fact from operator theory is 
that every translation and rotational invariant operator on Rn is a function of 
the Laplacian. 

We can go to the Galilei group and the Lorentz group as in the classical 
case. For the Galilei case we are again forced into H,, = - (1/2m)A acting on 
spin wave functions. For the case of the Lorentz group things are more 
interesting. Here Hop depends on the spin and one recovers, for example, the 
Klein-Gordon and Dirac operators, as Bargmann and Wigner have shown. 
Any such Hop satisfies 

the mass-energy relation, independent of spin. (Mass-zero particles, e.g.: the 
photon and neutrino are exceptional in that they are not localizable in the 
sense that their position operators have the form previously described, so this 
case is dealt with separately.) We refer the reader to Varadarajan [1968] for 
details of the aforementioned results and the appropriate references. 

5.5 INTRODUCTION TO INFINITE-DIMENSIONAL 

3 HAMlLTONlAN SYSTEMS 
2 
4 In this section we shall indicate by means of a number of examples how 

many of the ideas developed in this book for systems with finitely many 
degrees of freedom can be carried over to systems with infinitely many 

G degrees of freedom. Because this topic is so vast, technicalities will be omitted 
and some of the examples will merely be sketched. For additiml details and 
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references, we refer the reader to Chernoff and Marsden [1974], Marsden 
[1974b], and references given below. 

We shall begin with perhaps the most fundamental example, the wave 
equation. Then we shall discuss the Schrodinger and Korteweg-de Vries 
equations as Hamiltonian systems. We also discuss the equations of an ideal 
fluid and of general relativity as further examples and give a few results 
concerning field theory in general. 

5.5.1 Example (The Wave Equation). The equation of motion governing 
small displacements from equilibrium of a homogeneous elastic medium is 
the wave equation 

Here +(t,x,, . . . ,x,) is the "displacement" at x E RS at time t, taken to be 
scalar valued for simplicity. We have chosen units, as usual, so that the 
velocity of propagation is unity. In many physics books the above equation is 
derived by approximating the continuous medium by a discrete system of 
point masses interacting via "springs," that is, forces proportional to the 
displacements and acting against them. If one takes the limit of the corre- 
sponding kinetic and potential energies one finds (see Goldstein [1950]) 

Kinetic energy K = f 1 ($12 dx 
RS 

and (2) 

Potentialenergy V = f l  11V+12dx 
R 

where 

More generally, we may consider possibly nonlinear restoring forces; a 
general class of potential energies is given by 

5 
v ( + ) ) = l  R" { f IIV+II'+ f m 2 + 2 + ~ ( 9 ) ) d ~  ( 3 )  s 9 

m 
ti 
0 

Such potentials occur in the quantum theory of self-interacting mesons; the 
parameter m  is related to the meson mass, while the function F  governs the Z 
nonlinear part of the interaction. 3 
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Another class of potential energies relevant for nonlinear elasticity has the 
form 

where now + is R" valued and 

The particular type of elastic nonlinearity depends on the function W chosen. 
Notice that the arguments of W are matrices. 

Of course in most cases of interest the fields + will be defined not on all of 
R" but on some domain c Rs with suitable boundary conditions imposed. 
We work with all of Rs for simplicity. 

Configuration space is some space C? of fields, that is, functions +(x) on R". 
At this point we will leave the precise structure of C? unspecifie4 later on we will 
make it precise. For now, let members of C? be sufficiently differentiable to 
justify our manipulations below and let them form a linear space. We have 
the velocity space TC? = C? 63 C?, and on TC? we consider the Lagrangian 

where V is given by (2b), (3), or (4). Note that K =  $($,$), where the brackets 
represent the usual L2 inner product. We use the metric associated with K to 
pull back the canonical symplectic structure from T*C? = C? 63 C? * to T C? in the 
usual way. On TC? we have the canonical one-form given by 3.5.7: 

and the associated symplectic form wL = -dB,: 

wL(x,e).(ar,P; a',Pf)=(a,P')-(a', P) 
Y 
2 Notice that w, is independent of the differentiability properties assumed for 
2 the members of C?. This is why wL is only weakly nondegenerate in general. 

Finally, we have the total energy 
0 
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Next we find the equations of motion. Consider first the case (3). We seek 
a vector field XE on (2 CB (2 such that 

dE = ixEwL 

From the formula for E we compute 

Notice that, by integration by parts, 

Thus, if we write X, (+, $1 = ( Y (+, $), Z (+, $)), then 

d~(+,$) . (~Pp)=w~(+,$) . (Y,z ;  sP)  

becomes 

( $ , ~ ) + ( r n ~ + + ~ ' ( + ) - A + , a ) = ( Y , ~ ) - ( z , a )  

Thus 

and so the equations of motion reduce to the nonlinear wme equation 

that is, 

where D+=A+- a '+/at2 is the d'Alembertian or wave operator. 
The equations of motion for a general potential V are similarly given by 

where grad V(+), the L~ gradient of V is defined by 
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For the case of nonlinear elasticity with V given by (4), the equations 
become 

where T (V+) = a W/aV+, the nonlinear part of the (Piola-Kirchhoff) stress 
tensor, and where 

and 

Thus, in coordinates on Rs, (8) reads: 

Formula (8) is derived as follows: First of all, by the chain rule, the derivative 
of 

(integrating by parts). Thus, by (7) the L~ gradient of V is 

X 
grad V (+) = - A+ - div (a W /  a V+) 

and substitution of this in (6) gives (8). Equations of the form (8) [as 
* contrasted to (91 are also called nonlinear wave equations. 8 
"a 
Z Now consider conservation laws for systems of the form (6). Naturally the 

energy E (+, 6) is constant if + is a solution of the equations of motion. (This is 
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a formal consequence of general theory; it may be rigorously verified under 
the appropriate technical hypotheses. For Eq. (8), however, it is believed that 
shocks will generally develop after a finite time and conservation of energy 
now becomes a delicate issue.) 

The symplectic form wL is, naturally, also a formal invariant. In this 
connection let us note that as TC? = C? @ C? is a linear space and w, is constant 
in the natural chart, we may identify wL with a skew symmetric bllinear form 
ijL. on C? x C?. In the case of the wave equation whose flow is given by linear 
operators F, on TC?, this bilinear form is invariant. That is, if + and # are two 
solutions of the wave equation, then 

is time independent. The reason is that DF, = 6 by linearity; and so the 
invariance of wL as a two-form implies the invariance of the corresponding 
bilinear form. 

Next, the group of motions of space Rs operates in a natural way on C?, at 
least if C? is a suitable class of functions-ne with an invariant norm. Thus 
for v€RS and +EC? we consider translation by v :  +I++,,, where +,,(x)= 
+(x + v) E C?, and similarly for rotations. Moreover, the Lagrangian L is 
clearly invariant under these operations. The theory of Sect. 4.2 gives us 
momentum functions that are formally conserved. 

For example, translation in the ei direction is given by the group 

The corresponding vector field on C?, obtained by differentiation with respect 
to a, is 

The corresponding momentum function is [see the formula for P(X) in 
4.2.1 I ]  

Written out in full, 

2 
A typical generator YO of the rotation group yields the total angular momen- 4 
tum m 

8 
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One may verify by a direct formal calculation the invariance of these 
quantities if C#I satisfies the equations of motion. 

With these examples in mind we can formalize things for the linear case to 
indicate the general nature of the theory.* 

5.5.2 Definition. Let X be a Banach space and o: X XX+R a weak 
symplectic (bilinear) form. Let Y C X  be a Banach space densely and continu- 
ously included in X and let A: Y + X be a given continuous linear operator from f 

Y to X. We say A is Hamiltonian if there is a C1 function H: Y -, R such that 

for all u, v E Y.  (Note that H is automatically C *.) 

Analogous to 3.3.6, we have: 

5.5.3 Proposition. (i) The operator A is Hamiltonian if and only if A is 
w-skew; that is, 

w(Au, v )  = - w(u, Av) 

for all u, u E Y 
(ii) If A is Hamiltonian, we may choose as energy function, HA defined'by 

PmoJ: (i) If A is Hamiltonian, we have 

Differentiating in u at 0: 

Thus o(Au,v) is symmetric in u and v ;  that is, A is w-skew. 
Conversely, suppose A is w-skew. Let HA (u) = ; o ( ~ u ,  u). Then dHA (u) -u 

= i w ( ~ u ,  v )  + i w ( ~ v ,  u) = ~ ( A u ,  v), SO A is Hamiltonian with energy HA. This 
argument also proves (ii). 

X 
$ Normal forms for linear Hamiltonian systems in infinite dimensions are 

+ presented in the next section. 
Cr) 

8 ' *For additional details on how to rigorously carry out the above manipulations for elasticity, see 
Marsden and Hughes [1978]. 
fusually Y will be D(A), the domain of A (with the graph norm if A is a closed operator). 
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Flows of linear Hamiltonian operators are best approached by means of 
semi-group theory. For example, if A generates a semi-group eM in X, then 
one verifies that etA conserves energy and the form w. For general existence 
theory in the Hamiltonian case, see Weiss [1967], Chernoff-Marsden [I9741 
and Marsden and Hughes [1978]. The proof of 2.6.13 shows that if A is a 
generator then it is o-skew-adjoint. If A is a-skew-adjoint and HA is positive- 
definite, then a suitable modification of A is a generator. (See the aforemen- 
tioned papers for details.) This covers the case of the linear wave equation for 
example. For that case, if we choose X = L2 x L2 so w is nondegenerate, then 
elA is not defined on X. To have it defined, we choose X= H'X LZ and 
thereby obtain only a weak symplectic form. (See, for instance Yosida [I9741 
or Marsden and Hughes [I9781 for proofs of these facts from semi-group 
theory. 

Some remarks on Poisson brackets in the linear case may be of some 
interest here. If we have two Hamiltonian operators A and B in X (not 
necessarily with the same domain), then we form HA and HB, their energy 
functions as in 5.5.3(ii). The following computes the Poisson bracket 
{HAYHE). 

5.5.4 Proposltion. We have the relationship 

where [A, B] = AB - BA, on the domain of [A, B]. 

ProoJ By definition, HA (x) = f w ( ~ x ,  x) and HB(x) = i o ( ~ x ,  x). Also, on 
D(A)nD(B) 

{HA, HE )(x) =@(Ax, Bx) (by definition of Poisson bracke't) 

= ;w(~x, Bx) - f ~ ( B x ,  Ax) 

As we saw in 3.1.18 the symplectic form is the imaginary part of a 
complex inner product. Let us consider the complex linear case in more 
detail. x 

i? 
G 
m 5.5.5 Proposltion. Let X be complex Hilbert space and w(x, y) = --Zm(x, y). ;3 

Then: 2 
(i) A (complex) linear operator A in X is Hamiltonian if and only if iA z 

is symmetric. f! 



5 HAMILTON- JACOB1 THEORY AND MATHEMATICAL PHYSICS 461 

(ii) The energy function associated with A is 

(iii) A bounded (complex) linear mapping U: X+X is ymplectic if and 
only if it is unitary. 

This follows easily from 5.5.3, the relation Re(ix,y) = - Im (x,y), and 
complex linearity, so the proof will be omitted. In this case the existence of a 
flow for A follows from Stone's theorem provided iA is self-adjoint, not 
merely symmetric (see, e.g., Reed and Simon [I9751 for a proof of Stone's 
theorem). 

5.5.6 Example (The SchrtMinger Equation). An important class of com- 
plex linear Hamiltonian systems arises in quantum mechanics. The states of a 
quantum mechtpical system are represented by unit vectors + in a complex 
Hilbert space X, and the observables (physically measurable quantities) 
correspond to self-adjoint operators O on X ;  (O+,+) is interpreted physi- 
cally as the expected value of the observable O when the state of the system is 
+. The time evolution is represented by a one-parameter group U, that 
preserves the "transition probabilities" 1(+,+)12 and is therefore unitary. 
Hence U, is symplectic with respect to the canonical skew form w(x,y)== 
Im(x,y), and it is therefore given by Ut=eitHw, where Hop is self-adjoint. 
Accordingly Hop corresponds to an observable, namely, the energy (as in 
classical Hamiltonian mechanics). The Hamiltonian operator itself is A = 
iHOp. 

For example, if we are dealing with a nonrelativistic particle of mass m 
moving in a force field derived from a potential V(x), then the Hilbert space 
is L ~ ( R ~ ;  C) and the energy or Hamiltonian operator is 

In Sect. 5.4 we saw that to a large extent one is forced into this choice. To 
begin with, this is a mere formal expression; it is important to derive 
conditions on V which guarantee that this expression corresponds to a unique 
self-adjoint operator-so that a well-determined dynamical group U, = eitH* 
exists. There has been a great deal of research in this area; the pioneer was 
Kato, who showed in 1949 that the usual Hamiltonians of nonrelativistic 
atomic and molecular physics are essentially self-adjoint. In other words, the 
corresponding Schrodinger equations can be integrated by virtue of Stone's 
theorem. For more recent work, consult Reed and Simon [1975]. 

The general theory of infinite-dimensional nonlinear Hamiltonian systems 
proceeds as in the finite-dimensional case. However, there are technical 
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difficulties related to questions like the differentiability of the flow. These are 
outgrowths of the fact that the vector fields are only densely defined, since we 
are dealing with partial rather than ordinary differential equations. Once 
these are overcome,* the theory of symmetry groups and conservation laws, 
in general, may be carried through. See Chernoff and Marsden [I9741 and 
Marsden and Hughes [I9781 for details. 

One of the most intriguing equations that has seen an explosion of study 
in the last decade is the Korteweg-de Vries (KdV) equation. It describes 
shallow water waves, but it is also of interest for its mathematical beauty. For 
background, see Witham [1974]. 

Our discussion of the KdV equation illustrates only a few of its aspects. 
The reader interested in this topic should consult one of the many excellent 
review articles on the subject, such as Scott, Chu, and McLaughlin [I9731 and 
Miura [1976a], to see it in proper perspective. Although we discuss the higher 
order KdV equations, the reader should realize that these remarkable proper- 
ties are shared by a whole family of them, including, for example, the 
sine-Gordon equation, u, - uxx = sin u. (This pun on the Klein-Gordon equa- 
tion u,, - uxx = m2u is due to Kruskal.) See Ablowitz, Kaup, Newell, and Segur 
[1974]. 

5.5.7 Example. (Kolaeweg-de Vries equation). The equation ist 

where u, = au/at, ux = au/ax, and so forth, x E R or S ' (the periodic case) and 
u is real valued. In a suitable space G of fields u (e.g., any Sobolev space 
included in H ~ ) ,  define the weak symplectic form 

and the Hamiltonian 

(On S ', replace integrals from J w  with I:.) Then we readily verify that the 
Hamiltonian vector field associaikmd with H is 

that is, solutions of the KdV equation are integral curves of XH. g 
4 
9 

*Passing to spaces of Cm functions so that the vector fields become everywhere defined does not 
seem to help much with existence and uniqueness questions. 2 
?The most common other conventions are u, + uu, + u,,, = 0 and u, - $ uu, + urn =O. Rescaling 
u, t ,  or x yields any set of conventions u, + auu, + bum = 0 desired. g 
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More generally, if 

then 

~ ( u ) = / + ~ f ( %  ~, ,~, , ,  ...)dx, 
-00 

XH (u) = - - 
ax 6~ 

where 

To prove this, the reader can verify by integration by parts that 

+ m  6f 
- (x)v (x) dx = (dH )U (v) 

The special case in which f is a (nonlinear) function of u alone gives the 
so-called conservation laws 

much studied in the theory of shock waves; cf. Lax [1973]. 
A main interest of the KdV equation is that it possesses infinitely many 

integrals in involution; it is therefore completely integrable in some sense. 
These integrals were discovered by Gardner, Greene, Kruskal, and Miura 
[1967]. We will construct them algebraically; they are the Hamiltonians F, for 
a hierarchy of equations ut = %(u), where 

is given recursively by the relation 

Y 84- 1 

2 =(auD+aDu+ b ~ ~ ) -  
4 6u m 
3 

where X,(u) = u,, f,(u) = f u2, and a, b are constants* and D = a/ax. The 
z 

*The constants a,b fix ones conventions in the KdV equation. In our conventions a=2, b= - 1. 
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equations u, = q ( u )  are called higher order KdV equations and have Harnilto- 
nians $(u) = 1 ' zfi(u)dx determined by the above recursion relation." Note 
that for a=2, b= - 1, X2(u)=6uux- uxxx=XH(u) and F2= H. 

We shall prove that {I;,, Fk) = 0 for all j ,  k which will show that all the 15; 
are first integrals of the KdV equation (since F2= H) and that they are in 
involution. We have, since Xi = Xe for all i, 

= - 6! 
- (aDu + auD + bD 3, - (integration by parts) 

6u 

Successive application of the relation (4, Fk) = { F j +  ,, Fk- ,) shows that if 
j=2 i+  1, k=21+ 1, 

*It is easily checked inductively that XJ 1s Hamlltonlan; that is, i,,w is closed; that is, DXJ(u) is 
w-skew. From 

Y 
a ( u )  = 11~(4  ( tu) ,  u )  d~ E 

4 
m 

~t follows ~nductively that F, has the deslred form: B 
2 
z 

~ ( u ) = ~ - ~ ~ ( ~ , ~ ~ , u ~ ~ , . . . ) d x  ?? 
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and hence by antisymmetry of the Poisson bracket, {I;,, Fk} =0. 
The fact that the KdV equation has such integrals in involution is believed 

to be closely related to the presence of solitons, that is, "the solitary waves 
which interact pairwise (2 body interactions) by passing through each other 
without changing shape," a remarkable property for a nonlinear equation. If 
the integrals were not in involution, it is believed that n-body interactions 
would occur. (See also Exercise 5.5K). 

A second main point is that the KdV equations is related to the 
Schrodinger equation with potential u, that is, with the operator 

Notice that Hop = A  *A,  where A = D - v and u = v, + v2 (Riccati equation). 
Then if v satisfies the modified KdV equation, vt - 6v2vx + v,,, =0, then u is a 
solution of the KdV equation. This is easily seen if we note that for 
u=vx+v2, 

Likewise one determines a hierarchy of modified KdV equations vt = I;.(v). 
Assume now that as t evolves, u(t) changes subject to any of the 

conditions 

that is, u(t) satisfies any higher-order KdV. We shall prove below that 
although the operator Hop (t) = - D + u(t) changes (since u does), the 
spectrum of Hop(t) is unchanged, that is, the evolution of u is isospectral. This 
is the tip of a deep connection between the KdV equation and the 
Schrodinger equation by means of the inverse scattering method which was 
discovered by Gardner, Greene, Kruskal and Miura [1967]. 

To show that the operators Hop(t) are isospectral we follow the method of 
Lax [1968]. It is sufficient to show that they are all similar by unitary 
transformations in L'(R), that is, it is sufficient to find a (differentiable) 
family of unitary operators U(t) such that 

d -(u(~)-'H, (t) ~ ( t ) )  = O  
dt 

Since U(t) are unitary, U(t) U(t)* = I; differentiation in t yields 
* 
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Let 

and notice that the above relation implies 

dU (t) =-- 
dt 

U(t)* = - B (t) 

that is, B(t) is skew-symmetric. If the skew-symmetric operator B(t) were 
known, U ( t )  could be defined to be the solution of the linear initial value 
problem dU(t)/dt = B (t) U(t), U(0) = 1 (assuming the solution exists*). In 
order to find conditions on B ( t ) ,  use relation (I) and the fact that 

The chain rule yields 

that is, 

But since Hop(t)= - D 2 +  u(t), dHop(t)/dt=(du/dt)l. Hence the operator 
B (t) has to be skew-symmetric and satisfy the condition that [B (t), Hop (t)] = 
multiplication by a scalar function. A whole sequence of operators Bj satisfy- 
ing these conditions is given by (cf. Lax [1975]) 

Y 

d 
*This is not trivial since B ( t )  will be unbounded. However, below, B's independent of time are 
found and so Stone's theorem is applicable. ~3 9 
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where 9 are constants and bV are functions of u. For j=  1 we can pick c =4 
and b = 3u and find, by an easy calculation, 

[ B1,  Hop] = multiplication by X, ( u) 

so the evolution of X, is isospectral. In general, one has the remarkable result 
that (with 9 and bV properly chosen) [Bj, Hop] is multiplication by Xj+'(u). 
The way to choose 4 so this occurs is by the following formula of McKean 
and van Moerbeke [1975]: 

with the convention fo(u) = u so that 6fO/6u = 1 and X,(u) =O. To prove this, 
we note that 4 is clearly a differential operator of order 2j+ 1 and is 
skew-symmetric. Using the recurrence relation for the T's, we get 

This proves that all the Xj are isospectral. The procedure can be used as 
an alternative way to construct the hierarchy Xi.* We shall give below 
another proof that each X, is isospectral (at least for the discrete part of the 
spectrum). First of all we shall prove, following Lax [1975], that not only are 
the E;j a family of integrals in involution, but so are the eigenvalues Xi, 
regarded as functions of u. (If X has multiplicity k at u, X stands for 

4 A, + - .  - +Ak at nearby u; this problem occurs only on s', not on R; on S' 
CI) 

8 z 'The integrals for the rigid body found by Mishchenko [1970] Manakov [I9771 are related to the 
Lax procedure. In fact many completely integrable systems may be amenable to treatments like 
this using the fact that they are often systems on co-adjoint orbits; see Exercise 5.5K. 
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eigenvalues can be double.?) In fact, I;,, & are all in involution. That {I;,,&) = 
0 is another way of saying that Xj is isospectral; it is by this means that we 
shall give a second proof of the isospectrality of 5. It should be noted that 
the A,'s are not independent integrals; they are derivable from the I;,. 

Let us first prove that {&,+I = O  for all i j .  The first problem we face in 
this computation is the expression of the Poisson bracket of two functions 
that are not integrals of another function. Following Lax [1975], given a real 
valued function F of u, we let GF(u) be the L~ gradient of dFu, that is, GF(u) 
is the element in L~ satisfying 

for all v E  L ~ .  If dFu is a differential operator, GF(u) can be constructed by 
integration by parts as in our earlier examples. Then the following formula 
for the Poisson bracket holds (Gardner [1971]): 

To prove it, notice first that by integration by parts 

and hence 

Then 

Thus 

and we are compelled to compute Gx for an eigenvalue h(u). 

+That is, on R, k =  1 while on s', k <2; see Magnus and Winkler [1975]. 
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So let A be an eigenvalue of Hop of multiplicity k at u and denote by 
f,, . . . , f, the corresponding L2-orthogonal eigenfunctions, all of L2-norm equal 
to one. We claim that 

To prove this formula, start with the k equations Hops.) =AX, i = 1,. . . , k 
defining A. Replace u by u + tv getting 

(- D~ + ( U  + tv))fi ( u  + to) = h(u + tv)fi ( u  + tv) 

and take d/dtlt,o of both sides; this gives 

dfi ( u  + to) dA(u + tv) 
vA(u)+HOp( dt 1 I=O )= dt 1 t = O  f i ( " ) + A ( u )  dt 

Since Hop is symmetric, we have 

dfi (U + to) + w  dfi(u+ tv)  

dt 
t = O  

so that taking the scalar product withx(u) in the above relations and adding, 
we get 

+ W  dA(u + to) JPw o(f;+ .. . + W ) d x =  
dt 

t = O  

- - 
dt 

k = kdA, ( v )  

Thus 

5 The following observation will yield the desired involution property of the 
8 &: I f f  is an eigenfunction of Hop, then f 2  satisfies the following third-order 
4 differential equation 
2 
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where T is the antisymmetric differential operator 

To see this start with the equation 

Differentiating, we get 

We multiply the first by 6fx, the second by 2f, and add. 
Now we are ready to prove that {A,,A,)=O. If A; is an eigenvalue of 

multiplicity k and 4 is an eigenvalue of multiplicity I :  

A; = - - {A,, A;} 
A, 

A; 
= - {A;, Xj} 

4 

Since we assume X, and A, to be distinct eigenvalues we conclude {A;,$} = O  $ 
for all i ,  j .  OQ - 

Y 

Next we prove that {E;,,h,) = 0 for all i J. For j = 1 this was proved above z 
by construction of the appropriate operator B,. iz 
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We now note the following key fact: the recursion relation defining the 
Xj's may be written (in our conventions with a = 2, b = - 1) 

that is, the same operator T occurs in the recursion relation defining the 
higher-order KdV equations and in the equation satisfied by the squares of the 
eigenfunctions. 

Therefore, with the notation as above, 

But {Fl,&)=O, so {F,,A,)=O for all j. 
Having found all these integrals in involution, we can suspect (very 

strongly suspect in view of theorems of Palais; see 4.1.29) that there must be 
an infinite-dimensional Abelian group G,,, acting on the space & of fields 
u(x) such that the above conserved quantities constitute its momentum 
mapping. Of course in a formal sense we can say that this group is the one 
generated by the flows of all the equations T., j= 1,2,. . . , but this is a 
posteriori and a little unsatisfactory. It appears that the corresponding group 
of contact transformations can be realized as the group of self-Backlund 
transformations (see Wadati, Sanuki, and Konno [I9751 and Flaschka and 
McLaughlin [1976a]). If one is ever going to find interesting analogs of KdV 
in higher dimensions, the symmetry must be better understood. Some recent 
observations of Adler, Duistermaat, van Moerbeke, and the authors suggest 
that the proper setting for the KdV equation is as a Harniltonian system on 
the group of invertible Fourier integral operators. M. Adler has already 
shown how to regard the KdV equation as a Harniltonian system on a 

S: co-adjoint orbit in the Lie algebra of pseudodifferential operators (See also 
0 

Exercise 5.5K.) 

s Finally, we should note that the presence of these integrals in involution 
y allows one to introduce action-angle variables along the lines indicated in 



472 2 ANALYTICAL DYNAMICS 

Sect. 5.2. (In particular, see Arnold's theorem 5.2.21.) The introduction of a 
symplectic transformation to action-angle variables is accomplished by using 
the scattering data; see Fadeev and Zakharoff [1970], McKean and van 
Moerbeke [1975], Flaschka and Newell [I9751 and McKean and Trubowitz 
[I9761 for further information. 

Next we briefly describe how the Euler equations of a perfect incompres- 
sible fluid may be described as a Hamiltonian system. The discussion 
is based on the method of Sect. 4.4. (See Arnold [1966], Ebin-Marsden [1970], 
Marsden and Abraham [1970], and Marsden, Ebin, and Fischer [I9721 for 
additional details.) 

5.5.8 Example (Equatlons of a Perfect Fluld). The motion of a perfect 
fluid in a domain M, a smooth (oriented) Riemannian manifold with 
boundary, is governed by the Euler equations: 

and the boundary conditions ullaM (u is parallel to aM), that is, u(x)E 
Tx(aM) for each x E ~ M .  Here u is the velocity field of the fluid, a time-de- 
pendent vector field on M, and p is the pressure to be determined from the 
incompressibility condition div u = 0. Below we shall use the identity (u.n)a = 
iup on aM, where a is the area form on aM, p is the volume form on M and n 
is the outward unit normal. (See Sect. 2.7.) Thus the boundary condition 
ullaM can be written iup=O on aM. The expression Vuu=(u. V)u is the 
covariant derivative of u along u. 

Let qt be the flow of u. Then qt E 9,, the group of v01me preserving 
diffeomorphisms* of M. The sense in which the equations are Harniltonian is 
just this: qt is a geodesic on 9, if and only if u satisfies the Euler equations. 
The metric used on 9, is the right-invariant weak Riemannian metric 
corresponding to the kinetic energy of the fluid, that is, f l(u,u)p. We will 
now prove this using the general Euler equations for geodesic motion on a Lie 
group derived in Sect. 4.4, namely, 

where 

Here (,) stands for the (metric) inner product on the group 9,, that is, the 9 
L~ inner product and [u,u] is the Lie bracket, which is easily seen to be the 8 

d 
*One shows that 9 is, in suitable function spaces, a Cm manifold and in an appropriate sense, a 
Lie group. See ~xek i se  4.10 and Ebin and Marsden [I9701 for details. 8 
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usual bracket of vector fields (Exercise 4.1G). We now compute: Let ub be 
the one-form corresponding to u using the metric. Then 

( [ " , ~ ] , u ) = l  M i [ u , o ] u b ~ r j  M ( i [ u , o ~ ~ b - ~ u i o ~ b ) ~  

Letting 

by Stokes's theorem and the boundary condition ullaM; that is, i,p=O on 
aM. But 

( #  means the metric sharp). 
We cannot identify Y(u) with - ( L ~ U ~ ) #  because we do not know 

(L.,ub)"s divergence free. The classical Hodge theorem states as a particular 
case that any vector field w on M can be uniquely decomposed as 

where w,, is divergence free and parallel to aM.* The two summands are L~ 
orthogonal, as is seen by integration by parts. 

X 
A 
2 
4 *The proof in this case is effected by solving the elliptic equation Ap = div w ,  
m 
;3 
2 ap -- an - w n ( n  = unit normal) 
C 



474 2 ANALY IIC'AL UYNAMIGb 

Write w, = Pw = w - Vp for the projection to the divergence-free part. 
Now we can write 

Rewriting the Euler equations as & / a t  = - P(V,u) and the identity 

(whose proof we leave to the reader) shows that the equations & / a t  = Y(u) 
are the Euler equations (with a redefinition of p). This completes the proof 
that geodesics on 9, starting at the identity are in one-to-one correspondence 
with solutions of Euler's equations. (This can also be proved directly using the 
equations for a geodesic on q,.) 

A remarkable fact, discovered by Ebin and Marsden [1970], is that the 
geodesic spray on 9, (9, completed in the Sobolev H-opology) is a C" 
map.* This means that the questions of existence (local in time) and unique- 
ness become simple, whereas for the Euler equations as they stand this is not 
so clear. In addition other facts (e.g., that one can uniquely join two nearby 
diffeomorphisms by a solution of the Euler equations and the convergence of 
certain numerical algorithms), can be proved rather easily this way. 

Even though the Euler equations are the geodesic equations on a Lie 
group, we cannot apply Theorem 3.7.1 1 to conclude that the geodesic flow is 
complete. The reason is that the metric used for the geodesics is an L2 metric 
and the topology on 9, needed for the above analysis to work must be 
stronger than C' .  In fact, completeness (i.e., definability for all time) is 
known only in two-dimensional flows and may well be false in three or higher 
dimensions. We refer the reader to Ratiu and Bernard [1977], Marsden 
[1974b], and Marsden, Ebin, and Fischer [I9721 for discussions of these and 
related issues and for further references. 

After discussing some properties of field theories in general, we shall 
explain our final example, namely, how to write Einstein's equations of 
general relativity as a Hamiltonian system. 

5.5.9 Example (Lagrangian Field Theory). The classical Lagrangian field 
theories possess a "local" structure in addition to the global structures that we 
have been discussing. Specifically, the Lagrangian is obtained by integrating a 
local "Lagrangian density." We shall indicate haw to fit this sort of system 
into a general abstract framework. The literature on this subject is quite 2 
extensive, but we shall be content with a brief sketch. 2 

4 

- 
*It is well known that the convective term u.Vu disappears in Lagrangian (or material) coordi- 
nates; that is, on Q,,. However, it is leu obvious that the terms corresponding to V p  are well 8 
behaved under such a transformation. s 
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In the physics literature, one considers "fields" +'(x,t), which may have 
various transformation properties under coordinate changes. In current 
mathematical language, a field is a cross section of some vector (or fiber) 
bundle. A Lagrangian is just a real-valued function* 

which depends on the fields and their space-time derivatives. To formulate 
this in an invariant fashion we use the notion of jet bundles. 

Let T: E+M be a vector bundle, and let J'(E) be the first jet bundle. At 
the point x E M we have, by definition, 

We shall assume that M is endowed with a volume element y, and that E is 
equipped with an inner product on each fiber as well as a connection. If [ is a 
section of E, then its first jet is the section of J1(E) given by 

j ( 0  = t @ D t  
where D( is the covariant derivative of (. In the language of jets, a 
Lagrangian density is simply a smooth map 

We can form the global Lagrangian, or action integral, as follows. Given 
two sections $,+ of the bundle E, define 

Despite appearances, C can depend explicitly on the base point x E M  
because C is a map on E@J'(E), and the fibers depend on the base point. 

To set up the global machinery, one chooses for configuration space a 
suitable (Sobolev) class of sections C?. of E. With the appropriate choice one 
can prove that L: T e + R  is a smooth function. Then using the chain rule 
one can establish formulas like the following (using the obvious notation): 

DL(+, 6). (h, h ) = D;L(+, &).h + D+L(+, 41.h 

*As we shall see in relativity below, it is sometimes more convenient to take I?? to be a density 
than a real-valued function. 
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A common class of examples is the following. Let Y: J'(E)+R be a 
smooth function that we think of as apotential energy density. Define 

where (,), is the inner product on the fiber Ex. A suitable domain for the 
global Lagrangian L might be the set of pairs (+,$I such that $ is an L~ 
section of E while + lies in a Sobolev space on which the integral V(+) 

=J,Y(+,D+)~ is smooth. As a concrete example, consider the classical 
wave equation. Here M = R 3, E is the trivial bundle R X R+R 3, and 
Y(+(x), D+(x)) = kV+.  V+. For wave equations with a nonlinear term of the 
form A+P, '3'- has an additional term +P+'/(p + 1); and if we have a "mass 
term," as in the Klein-Gordon equation, then Y contains the term k r n ~ ~ .  

Returning to our general Lagrangian field theory, consider Lagrange's 
equations, exactly as derived in Sect. 3.8: 

In our case this means that for any section h, the relation 

holds. Taking h to have compact support, we can integrate by parts the 
second integral on the right-hand side, obtaining 

Since h is arbitrary, we must have the Lagrangian demsiw equation 

In coordinqtes, this reads 

0 
where the subscript I j denotes the covariant derivative. The expression on the z 
right-hand side of the last equation is often called the functional derivative of 
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C  and, as in the KdV example, is denoted 

This can be written a different way that will be convenient in our discussion 
of relativity below. (This remark is due to A. Fischer.) Namely, consider C$ as 
fixed and write 

Then the formula for D,L written above states that 

Let k(+,&)(x)=C(+(x),~$(x),D+(x)), so k maps T e ,  that is, pairs +,& to 
scalar functions. Then we have 

(The dot on the left means application of a differential operator; the one on 
the right is a pointwise contraction of tensors.) If we use the L2 pairing, this 
states no more than 

where * means the L2 adjoint (of a linear operator) and 1 is the constant 
function. As we shall see in our relativity discussion, the presence of the 1 
corresponds to the fact that in nonrelativistic mechanics we are dealing with a 
"universal time." 

Returning to the Lagrange density equations, we know that the total 
energy is conserved under quite general circumstances. A simple computation 
establishes a local conservation law that is formally stronger: 

Let C: J'(E)@E+R be a smooth Lagrangian density and let +(t) be a 
differentiable curve of sections of E, that is, +(t) E e such that the Lagrange 
density equation of motion holds: 

Define the energy density by & = $ 3 ; ~  - C, where 
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is the contraction of tensors. Then G obeys the conservation equation ("'continu- 
ity equation") 

that is, 

Indeed, using the chain rule together with the equation of motion, we find 

= -$diuaD+e - ~ $ . a ~ + e  
= - div ($a,, f!) 

One can similarly localize the conservation laws associated with more 
general symmetry groups. This proceecs, briefly, as follows. Let \k, be an 
action of a Lie group G on M and let \k, be an action of G on E, linear on 
fjbers, covering it. This extends, naturally, to an action on J1(E) ,  called say 
Gg. (It is determined by: !kg 0 j(+) 0 ?T!; ' = j(Gg o +  0 q;') for + a smooth 
section of E.) If (E a, let, as usual, tM and 5, be the corresponding infinitesi- 
mal generators on M and E (see Sect. 4.1). Assume that f! is invariant in the 
sense that e p is unchanged under pull-back: 

If + is a solution of the Lagrange density equations, set 

or, in coordinates, 

a c 
Tl=l'%&+-(G~+-+"t,&) (sumonjandkunderstood) 

a+;, 
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and 

= a, C . (5,. + - T+.,$') (a scalar field on M) 

that is, 

ac GJE = - (6; 0 + - q&) (sum on i and k understood) a+ 
where f stands for L(+,$,D+), and so forth. Then Noether's theorem states 
that 

and it is readily proved along the lines indicated earlier. The connection with 
moments is this: the momentum mapping is the map of TC? to g* given by 

Thus Noether's theorem provides a localization of the conservation laws 
given by the general theory of symmetry groups. 

5.5.10 Example (Einstein's Vacuum Field Equation of General Relativity). 
Let V4 be a four-manifold with a Lorentzian metric (4)g. The vacuum field 
equations state that the Ricci tensor vanishes: ~ i c ( ~ ) g  =O. These are the Euler 
Lagrange equations for the Lagrangian density 

where R((4)g) denotes the scalar curvature of (4)g (defined in Sect. 2.7) and 
( 1 ~ ~ ) ~ ) = \ I = d ~ x  is its volume element. For the proof of this and 
additional background material, see Misner, Thorne, and Wheeler [1973]. 

In the pioneering work of Dirac (19591, Wheeler [1964], and Arnowitt, 
Deser, and Misner [1962], it was shown how to write these equations as 
Hamiltonian evolution equations. Such a procedure is basic to a study of, for 
example, the initial value problem, quantization, and stability. We present an 

Y account of this "ADM formalism" following the methods and conventions of 
Fischer and Marsden [l978]. It will be brief and the technical papers cited 
should be consulted for those who wish to pursue the matter. 8 

3 The first thing we need to do is to describe how to split up V4 into space 

i3 and time. We wish a formalism that reflects the fact that such a splitting can 
be done in an arbitrary way, that is, there is no preferred space or time 
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coordinates. We let M be a compact* oriented three-dimensional manifold, 
and let i: M+ V4 be an embedding of M such that the embedded manifold 
i(M) = I: is spacelike, that is, the pull-back i*f4)g) = g is a Riemannian metric 
on M. Let E "(M, v,,(~)~) denote the set of all such spacelike embeddings. As 
with Gi) in 5.5.8, this is a smooth manifold. Let k denote the second 
fundamental form of the embedding as defined in Sect. 2.7. In our present 
notation, at m E M and for X, Y E  TmM, it is given by 

km(X, Y) = -(4)g 0 i(m)((~,i 0 Y ) , " ) V ( ~ ~ , ~ )  ( 4 ) ~ ,  0 i(m)) 

where ( 4 ) ~ ,  0 i(m) is the forward pointing unit timelike normal to I: at i(m). 
Thus kv = - 2,; j ,  where ; denotes covariant differentiation using (4)g. 
Covariant differentiation using g is denoted with a vertical bar. Let a = a'@ 
p(g) be a two-contravariant tensor density, whose tensor part a' is defined by 
a' = ((trk) g - k)# , where # indicates the contravariant form of a covariant 
tensor with indices raised by g#  =gG; similarly b denotes the covariant form 
of a contravariant tensor. In the Hamiltonian formulation of Arnowitt, Deser, 
and Misner, k plays the role of a velocity variable and a is its canonical 
momentum. 

Now suppose we have a curve in Ew(M, v ~ , ( ~ ) ~ ) ;  that is, a curve iA of 
spacelike embeddirigs of M into (V4,(4)g). The A-derivative of this curve 
defines a one-parameter family of vector fields ( 4 ) ~ , A  on the embedded 
hypersurfaces by the equation 

(see Fig. 5.5-1). The normal and tangential projections of ( 4 ) ~ X h  define a curve 
of functions NA: M+R and vector fields X,: M+TM on M by the equation 

(')xZA 0 i, (m) = NA (m)(4'Z,A o i, (m) - T, i, 0 X, (m) 

where ( 4 ) ~ X A  is the forward pointing unit timelike normal to Z,. If NA >0, 
then the map 

F: I x M+ V4; (A, m) w iA(m) 

is a diffeomorphism of I x M onto a tubular neighborhood of i,(M) = Z,, if 
the interval I = (- p, /3) is chosen small enough (see 2.7.5). In this case we call 
either the curve iA or the embedded spacelike hypersurfaces I:,,= i,(M) a 
slicing of V4 X 

The functions NA and the vector fields XA are called the lapse functions $ 
and shift vector fieIh. 6 

rn 
3 

*Compactness of M is more than a technical convenience here. The noncompact case has a 2 
different flavor. Bee the articles of Choquet-Bruhat, Fischer, and Marsden [I9781 and Hansen, 
Regge, and Teitelboim [I9761 for the later case. !3 
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Using F: I x M - +  V4 as a coordinate system for a tubular neighborhood 
of Z,  in V4, coordinates ( x  '), i = 1,2,3 on M ,  and ( x a )  = (A, x i ) ,  a = 0,1,2,3 as 
coordinates on I x M ,  we can write the pulled back metric Fz(4)g as follows: 

where g = (gA), j  and gA = i,*(4)g. 
Let kA be the curve of second fundamental forms for the embedded 

hypersurfaces 2, = iA(M) ,  and let nA be their associated canonical momenta. 
The basic geometrodynamical equations are contained in the following 

statement; the notation is explained below. 

Let the vacuum Einstein field equations  in((^)^) =O hold on V,. Then for 
each one-parameter family of spacelike embeddings { i A )  of V4,  the induced 
metrics gA and momentum nA on ZA  satis& the following equations: 

(Evolution i ag/aA = 2~ ( (n ' )  - g(trn')) + Lxg 

Equations) a "/ax= - ~ ( ~ i c ( g ) -  f R ( g ) g ) '  A g )  

Y 
$ and 

(Constraint [ % ( & n ) = ( n ' : n 1 - i ( t r n f ) ' - ~ ( g ) ) p ( g ) = ~  

Equations) I &(g3 -2(~,n)=277!,,=0 
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Conversely, $ if is a slicing of (V4,(4)g) such that the abuve evolution and 
constraint equations hold then (4)g satisfies the (empty space) field equations. 

Our notation in this statement is as follows: (nf-a')'j=(nf)"(n')i,, 
d: nf = ( ~ ' y ( n ' ) ~ ,  Hess N= Nliu. AN = - gw,ilj, and Lxn= (Lxnf) p(g) + 

sl(diuX) p(g) is the Lie derivative of the tensor density a=nfp(g) [note 
LXp(g)=(divX) p(g)]. The Ricci tensor R,, of (4)g is denoted ~ i c ( ( ~ ) g )  and 
that of g by Ric(g). R (g) is the scalar curvature. We write Ein('g)= Ric(g) 
- R (g) g, the Einstein tensor, and note that Ein(g) = 0 iff Ric(g) = 0. 

One can prove the above statement directly by breaking up the statement 
RaB = 0 (or better G4 = Rap - i ~ ' g ~ ~ )  into RU = 0, R, = 0, and R, = 0 and 
using the Gauss-Codazzi equations (see Sect. 2.7). 

Now in a sense we wish to make precise, the evolution equations are the 
Hamiltonian equations for the Hamiltonian density N X +  X.&. Also, in a 
sense we will not consider here, the momentum map corresponding to the 
symmetry group (4)g =all spacetime diffeomorphisms is 

The constraints are then just the condition that this natural conserved 
quantity vanish identically (see Exercise 5.5G). Write the quadratic algebraic 
part of an/ah as 

This is the spray of the DeWitt metric, that is, the terms quadratic in n'. 
The terms in the evolution equation for m may be interpreted as follows: 

a~ - = NS, (n, n) 
ah 

geodesic spray of the 
DeWitt metric 

force term of the scalar 
curvature potential, i.e., 
the term R (g) in 

Y 

+ (Hess N + g A ~ ) ' #  p(g) "tilt" term due to 
nonconstancy of N 

d 
"shift" term due to a Z 
nonzero shift I3 
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Our goal now is to rewrite the equations in a way that makes their 
dependence on the slicing (i.e., on N , X )  and their Hamiltonian nature more 
explicit. . 

We consider the space % of Riemannian metrics on M, and the diffeo- 
morphism group 9 of M. 

Let T%w% x S2 denote the tangent bundle of %, where S2 is the 
space of Cw two-covariant symmetric tensor fields on M. Let sj denote the 
space of Cw two-contravariant symmetric tensor densities on M. Define 
T * % ~ % X S ~ = { ( ~ , ~ ) ( ~ E % , T E S ~ ) .  We shall think of T*% as the 
"L~-cotangent bundle to %." For k E Tg% w S,, s E c% w s;, there is a 
natural pairing 

Thus T*% as defined is a subbundle of the "true" contangent bundle. Since 
P% is open in S, X Sj, the tangent space of T*% at (g, T) E T*% is 
qg,,)(T*%) - s 2  xs:. 

On T *% we define the globally constant symplectic structure 

in the usual way : for (h,, w ,), (h,, w,) E T( ,,)(T* %) = S, X Si, 

Let 

be defined by 

so that 

Y J-'=(; - , ' ) : s ~ x s ~ + s ~ x s ~ , ( ~ , ~ ) H ( - ~ , ~ )  
E 
4 
m Then, as usual, B 
00 
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Let C m  = C W ( M ;  R )  denote the smooth real-valued functions on M, 

C," =smooth scalar densities on M 

!X =smooth vector fields on M 

A: = smooth one-form densities on M 

Consider the functions 

Using functional derivative notation (see the previous examples), the 
evolution equations may be written as Hamilton's equations with Hamilto- 
nian N X + X- &, that is, 

(This is a long but straightforward calculation to show the equivalence.) If we 
take the lead mentioned above, we can write these equations concisely using 
adjoint notation (adjoints are taken relative to the L' pairing above): 

The Einstein system, defined by the evolution equations and constraint 
equations abooe, can be written as 

(Evolution 
equatiom) 

(Constraint 
equations) 

Notice that in this sense the constraints determine the dynamics. From a 
more general point of view, this situation is covered by the Dirac theory of 
constraints (see Exercise 5.3L). v 

A way to arrive at these equations is to start with the four-dimensional 
S 

variational principle 6 1  R C4lg) ,ug4)g) =O and break it into space and time 
components and then take the corresponding variations. 2 

The above adjoint form of the Einstein equations can be extended to z 
include field theories coupled to gravity, that is, nonvacuum spacetimes. This @ 



5 HAMILTON- JACOB1 THEORY A N D  MATHEMATICAL PHYSICS 485 

extended form is at the basis of a covariant formulation of Hamiltonian 
systems (Kuchar [1976], and Fischer-Marsden [1976]). For example, the 
canonical formulation of the covariant scalar wave equation O+ = m2+ + PI(+) 
on a spacetime V, = (I x M,(4)g) in terms of a general lapse and shift is as 
follows: Consider the Hamiltonian 

for the scalar field (the background metric is considered as implicitly given 
for this example). We construct the stress tensor, a two-contravariant sym- 
metric tensor density 5 by varying %(+,a+) with respect to g: 

T= -2D,X(+, a+)* - 1 

and a one-form density &(+, ~r,) from the relationship 

so that &(+,s+)= --a+-d+. This condition expresses & as the conserved 
quantity for the coordinate invariance group on M (Exercise 5.5G). If we set 
a = ( % ,  &), then the Hamiltonian equations of motion for + in a general 
slicing of the spacetime with lapse N and shift X are 

exactly as for general relativity. A computation shows that this system is 
equivalent to the covariant scalar wave equation given above. 

If we couple the scalar field with gravity by regarding the scalar field as a 
source, the equation for the gravitational momentum as/ah is altered by the 
addition of the term ~ N S ,  and the equation for ag/ah is unchanged. The 
constraint equations become Xgeom (g, a)  + Xsca,,(g, +, s+)  = 0 and 
Xgeom (g, a) + 'JCscala, (+, a+) S O .  More generally, if one considers the total 
Hamiltonian X ,  = X,,, + Xfe, and a total universal flux tensor &, = &,,,, 
+ (and if the nongravitational fields are nonderivatively coupled to the 
gravitational fields), the general form of the equations 

0 
remains valid. (For the case of Yang-Mills fields, see Arms [1977,1978].) 
Here, cp, represents all nongravitational fields, sA the conjugate momenta, 
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and (P, = (X,, &,). These results provide a unified covariant Hamiltonian 
formulation of general relativity coupled to other Lagrangian field theories. 

Many of the ideas from Chapter 4 can be used in general relativity. One 
example is given in Exercise 5.5.G. In fact, if the reduction procedure is 
carried out, there results an important new Harniltonian system called the 
space of gravitational degrees of freedom. See Fischer and Marsden [1976a,b, 
19781. For approaches to the symplectic structure directly from the four-di- 
mensional point of view, see Szczyryba [I9771 (some background theory is 
given in Guillemin and Sternberg [1977]). 

EXERCISES 

5.5A. Let 3C be a real Hilbert space and A a generator of a one-parameter group U, 
of isometries in X. Assume A -' is a bounded operator. Then show: 
(i) A is Hamiltonian relative to w(x,y) = (A - 'x,y) 
(ii) X can be given a complex (linear) structure relative to which U, is 

unitary. 
Apply this result to the Klein-Gordon equation. (Note: This is related to 
results of Weiss 119671 and Cook [1966].) 

5.5B. Consider the symmetric hyperbolic systems of Friedrichs: 

where u takes values in R N  and +(x), b(x) are N X N matrices with aj(x) 
symmetric. 

(i) Letting 

a0 a+ 
U=(dx'.....7& ' 0 )  

show that the Klein-Gordon equation may be written as a symmetric 
hyperbolic system. 

(ii) If there is a uniformly positive-definite symmetric matrix c(x) such that 
ca, = 0 and 

then the energy 

H(u)=+{(u, u)+(u, cu)) 

is conserved. (See Exercise 5.5A.) 
(iii) Write Maxwell's equations as a Hamiltonian system. X 

5.5C. Let X denote complex Hilbert space with w(x,y)=lin(x,y). Let G =  S1= @ 
{z E CI IzI= l} act on X by @,(x)=zx. Show that: 4 m 
(i) this action is symplectic; 8 

(ii) a momentum mapping for the action is #(x) -z = f llxl12z; 9 
0 

(iii) the corresponding reduced symplectic space (see Sect. 4.3) is projective 
Hilbert space, %. 8 
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(Note: The Bargmann-Wigner theorem states that any complex linear one- 
parameter group of Hamiltonian transformations of % are implemented by a 
unitary one-parameter group on %; this is proved in Varadarajan [I9681 using 
different terminology.) 
Show that the linear beam equation 

is Hamiltonian, as is the nonlinear equation 

(K represents the stiffness). 
(a) In Example 5.5.8 write down the momentum map explicitly following the 

ideas in Sect. 4.2. (Note that the tangent space to 9, at a point q consists 
of maps v oq- ' ,  where v is a divergence-free vector field parallel to the 
boundary.) 

(b) Identify the co-adjoint action of 9,, on c9,m all one-forms on M that 
are divergence free and parallel to aM with pull-back of one-forms. 

(c) Identify the reduced phase spaces for Euler's equations with subsets of 
the space of all divergence-free vector fields on M. 

Let X be a Banach space with weak symplectic form o. Let A: Y 4 X  be a 
linear Hamiltonian operator and let B: Y  X Y+X be a continuous symmetric 
bilinear map such that, for fixed x, B(x, .) is linear Hamiltonian. Then show 
that the nonlinear operator G (x) = Ax + B (x,x) is Hamiltonian with H ( x )  = 
HA (x) + f o(B (x, x), x). Generalize. 
Let M be a compact manifold and % the space of Riemannian metrics on M. 
Let the group of diffeomorphisms 9 act on % by pull-back. Let T*% be the 
set of pairs (g,n) of metrics and tensor densities as in the text. Show that Gi) 

induces a symplectic action on T*%. Compute its momentum mapping 
(using the formulas of Chapter 4) to be 

where &(g,a), =24,, twice the divergence of a. Generalize by replacing % 
by a general space of tensors. (See Fischer and Marsden [1972l). 
(a) (Quantum Mechanical Systems with Spin). Let M be an oriented 

Riemannian manifold and a: E-+M a spin bundle (see Exercise 4.2H). 
Let X be the Hilbert space of L2 sections of E and let H,, be a 
self-adjoint operator on X. Let 9 be an action of a Lie group G on M 
that preserves the volume form p on M, and let rC, be an action of G on E 
covering 9, which is an isometry on fibers. Let H, be invariant under the 
action 9 on X induced by 4. Show that the expectation of i(& +&) 
(defined in Exercise 4.2H) as a differential operator in X is a constant of 
the motion. 

(b) For M = R 3, E = R~ x C2, deduce that the function 
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(orbital + spin angular momentum), where (j, k, I) is an even permutation 
of (1,2,3) is a constant of the motion. 

(c) Define a notion of spin bundle appropriate for the Dirac equation on a 
Lorentz manifold and prove a result like (b) in Minkowski space. (See, 
e.g., Hitchin [I9741 and references therein.) 

5.51. (Bharucha-Reid, and Chernoff) The Heisenberg and Schrodinger Pictures. Let 
X be complex Hilbert space and F, a one-parameter unitary group with 
generator A = iHw. (This situation, discussed in the text, is usually called the 
Schrodinger picture.) Let & be the space of Hilbert-Schmidt operators on X 
with norm IIT112= Trace(T*T). Let G,(T)=F,TF-,. Show that GI is a one- 
parameter unitary group on & (the Heisenberg representation). Show that the 
generator Y of G, is given as follows: D (Y) = { T E & IT: D (A)+D ( A )  and 
AT- TA is the restriction to D (A) of an element B E & ) and Y (T) = B. 

5.5J. Relate the generating function defined by Gardner [I9711 for canonical trans- 
formations of the KdV equation to the generating functions defined in Sect. 
5.2. 

5.5K. (Adler, Kostant, her ma^, van Moerbeke) The Toda lattice. Let G,g be as in 
exercise 4.6G and (P,w) the co-adjoint orbit of C described there. Let 
I, = trck/k. Show that {I,, I,) = 0 and that H = I, = f xP; + axe2(*-*+I). De- 
duce that the Hamiltonian system (P,w,H) is completely integrable. Find a 
Hamiltonian system on T* G which, when reduced according to 4.3.4(v), yields 
the one here. This model is a discrete version of the KdV equation on R; see 
Adler [1978,9] and Ratiu [1979]. 

5.X. (Tulczyjew) An elastic beam. Consider an elastic beam in Euclidean space. 
The equilibrium configuration of the beam with no external forces is a 
straight line I. Small deflections induced by external forces and torques can 
be represented by points of a plane M perpendicular to the line I. The 
distance measured along I from an arbitrary reference point is denoted by s. 
We select a section of the beam corresponding to an interval [sl,s2] and 
assume that external forces and bending torques are applied only to the ends 
of the section. The configuration manifold Q of the section of the beam is the 
product TM x TM with coordinates (qi, 9'3, qf, q':), i, j, k, I= 1,2. The force 
bundle F =  T* TM X T* TM has coordinates (qi, q'3, f 2k, tZ1, qlm, ql:f lp, t I,). 
The coordinates f2, and tZ1 are components of the reaction force and the 
reaction torque respectively at 92:. f Ip and tl, are components of the force and 
the torque applied to the end of the beam section at qlm. If 
(6qi, ~ q ; ~ ,  6f 2k, atZ/, 8qlm, 89;: 6t I,) are components of an infinitesimal dis- 
placement u in F at (92: qiJ, fZk, t2/, qlm, q;: f lp, t',) then the virtual work is 

w = f 1i6qli+ tIi6qii- fZiaq2j-- tZi6q; 

=-<%a), 
where 

19' fZidq2'+ tZidq;i- f lidqli- tLidqii 

is the special symplectic form on F (see 3.31). 
2 
13 

In the limit s2+ s, the configuration manifold Q' is the bundle TTM with 2 
coordinates (qf q'j, gk, g.") and the force bundle F' is the bundle T P T M  8 
with coordinates (q( qfJ, fk, tl, gm, c&, i,). The special symplectic form be- 2 
comes Z 

a'=jdqi+f;.dcji+ r,dql'+ tidP. 2 
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Equilibrium conditions are 

where kij is a tensor characterizing the elastic properties of the beam. These 
conditions express the vanishing of the total force and the total torque, and 
also Hooke's law. In addition to these conditions there is a constraint 
condition 4'= qri, (i.e. the configuration of the bent beam is a differentiable 
curve.) This condition defines a constraint submanifold 

We use on C coordinates (qf 4; q k )  related to coordinates (q:  q'< 4 ' )  by 
q i  = q i .  Show that these conditions define a Lagrangian submanifold S'CF' 
generated (in the sense of 5.3K) by - L, where 

is the potential energy per unit length of the beam and is defined on C. 
Finally, show that the equivalent equations 

define a Hamiltonian vector field X on F' and that the kagrangian submani- 
fold S' is the image of the field X. 

5.6 INTRODUCTION TO NONLINEAR OSCILLATIONS 

This section is intended to provide a transition between the more formal 
analytical dynamics we have been considering and the qualitative theory that 
constitutes the next three chapters (Part 3). 

Nonlinear oscillations is a whole subject on its own and our intention is 
merely to highlight a few points relevant to Hamiltonian mechanics. For a 
more extensive discussion, see, for instance, Hale [1963], Minorsky [1974], 
Andronov, Witt, and Chaikin [1966], and Pliss [1966]. 

Let us begin by recalling the linear situation and the small oscillation 
approximation, a topic initiated by Lagrange, and-now standard in virtually 
every elementary mechanics text (Goldstein [I9501 is particularly readable). 

5.6.1 Proposition. Consider the Lugrangian system L = K-  V ,  where 

Y s 
4 
m 

and 
z 
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on Jt2". Assume that the matrices mq and cq are symmetric (this is no loss of 
generaliw) and mq is positive-definite. Then there is a linear change oj coordi- 
nates 

n 
Q'= J 

j =  1 
14 

such that the Lagrangian in the new coordinates Q;  Q' is 

c=: K- 
where 

and 

The new coordinates Q ', . . . , Qn, Q ', . . . , (in are called normal modes and 
Lagrange's equations become 

Q ' + ~ Q ' = o ,  i = l ,  ..., n 

where 

If ci > 0 (i.e., A, are purely imaginary, or equivalently, E = K +  V is positive-defi- 
nite), there are n one-parameter families of periodic orbits. Setting q 

= a , w , / 2 7 ~  are called the fundamental frequencies. 

Proof: The result follows from a theorem in linear algebra which states that 
two quadratic forms, one of which is positive-definite, can be simultaneously 
diagonalized by a linear transformation. This, in fact, has already been 
proved in 3.1. Indeed, consider the inner product on Rn given by 

m 
v, 

It is an inner product since mq is positive-definite. Then there is an orthonor- 0 

ma1 basis for this inner product that diagonalizes the quadratic form V. This 
2 

change of coordinates defines the matrix 9''. E? 3 
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This transformation on q',ql is the lift of the transformation on q' alone; 
thus it induces a symplectic transformation of the corresponding Lagrangian 
systems. 

Note that A,, . . . ,An, -A,, . . . , - & are the characteristic roots of the linear 
Hamiltonian system X,  and so can be computed in the original coordinates. 
Thus, to compute the resonant frequencies, the change of coordinates need 
not be made. 

In the new coordinates, the system decouples into n harmonic oscillators 
and so (if A, are purely imaginary) there are n one-parameter families of 
periodic orbits. There may be more periodic orbits depending on whether or 
not A,, . . .,An are rationally related. If we start with general initial conditions 
Q1(0), (i' (01, the solution curve is 

(ii (0) 
Qi(t)= Qi(0)cos(yt)+ - sin (ui t) 

''4 

so each component has period 2m/q. If components with indices i E I  c 
{ 1,. . . , n) are excited [i.e., Qi ( t )  is non trivial, i E I], we have a periodic orbit 
if and only if there is a number T and nonzero integers ki such that 

T= ki-2m/q for all i E I 

This is equivalent to y = ry,.cJj, i j  E I, ru rational; that is, a resonance between 
the ith and jth normal modes. Thus there are no periodic orbits other than the 
obvious ones iff A,, . . .,An are painvise independent over the integers 2, that is, 
no nontrivial relation of the form mi&+ mjXj=O, mi,mj€Z exists for any 
i#j. 

It is natural to ask if any linear Hamiltonian system with purely imaginary 
eigenvalues can be brought into the form of n uncoupled equations of the 
form Q'+GQ'=O, that is, if we can bring X ,  to the following real normal 
form : 

A 
The answer is no. The problem of bringing a general X, to some normal form 
by a real canonical transformation was solved by Williamson 

2 [1936,1937,1939]. See also Wintner [1934], Laub and Meyer [1974], and 
z Burgoyne and Cushman [1974]. For a statement of Williamson's result, see 

these references and Arnold [1978]. 



492 2 ANALYTICAL DYNAMICS 

However, there are three important cases where the above normal form 
(RNF) is valid: * 
(a) When A,, . . . , h, are all distinct and are all pure imaginary (see Sect. 3.1). 
(b) Under the hypotheses of 5.6.1. Here the h.'s need not be distinct, but are 

assumed to be pure imaginary. 
(c) If H is positive-definite. [This generalizes (b) since, under the conditions 

of 5.6.1, E is positive-definite if the 4 are pure imaginary.] 

In the last case, then, we have (at least) n periodic orbits on each energy 
surface. 

The case (c) is the most satisfying since it corresponds to stability of the 
linear dynamical system, as discussed in Sect. 3.4. This result goes back to 
Krein [1950], Gelfand and Lidskii [1955], and Moser [1958]. 

We present a version due to J. Cook [I9661 as it is valid in infinite 
dimensions as well. (See also Segal [1966].) 

The infinite-dimensional version of (c) takes the following form: 

5.6.2 Theorem Let X be a real Hilbert space carrying a strongly nondegener- 
ate symplectic form w. Let F, be a continuous one-parameter group of symplectic 
linear transformations. Suppose that the following stability condition holds: for 
each x, y E X, the function t w(I;,x, y) is bounded on R. Then X can be made 
into a complex Hilbert space such that w is the imaginary part of the inner 
product, and such that the operators I;, are unitary. 

If X is a finite-dimensional symplectic space and H is a real-valued 
quadratic function on X that is positive-definite, we know that the orbits of 
th~flow of XH are bounded (by conservation of energy) and thus the stability 
condition above holds. With respect to a new Hermitian inner product, XH is 
skew adjoint, so iXH can be diagonalized by a unitary transformation. This 
change of coordinates is a complex change in X, but since X has a complex 
structure, we can express it in real terms. (Recall that on a complex Hilbert 
space a complex unitary operator regarded as a real linear operator is 
symplectic.) Thus: 

5.6.3 Corollary. If E is a finite-dimensional real symplectic space and H is a 
positive-definite quadratic form on E, there is a set of real canonical coordinates 
relative to which XH has the matrix (RNF) given above. 

We shall give another proof of this below that does not rely on complexifi- 
cations. 

X 
d Proof of 5.6.2. (Assumes some knowledge of functional analysis.) By Theo- 

rem 3.1.18, we can introduce a complex structure J and a Hermitian inner $ 
*If we look for normal forms on a complexified symplectic space, things are somewhat simpler, but are 
not as useful as the real normal forms. See Siege1 and Moser [I9711 and for an elegant approach using 
Lagrangian subspaces, Duistemaat [1973]. m % 
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product on X such that w is the imaginary part of the inner product. 
Accordingly, we may as well suppose that X is a complex Hilbert space to 
begin with, with w(x, y) = - Im(x, y). The group F, consists of real-linear, 
symplectic transformations. Our goal is to construct a new complex structure, 
with respect to which the operators F, are complex linear (hence unitary). 

We first note the following consequence of the stability condition: for 
each x, y E 3C, - Im(&x, y) = w(E;x, y) is bounded, - oo < t < oo . Hence, by the 
uniform boundedness theorem II4II is bounded in t. 

We want to renorm X so that the 4's are not merely uniformly bounded, 
but isometric. The basic idea is to "average" the original inner product over 
the group R. If R were compact, we could simply integrate over the group. 
Instead, we shall use the following: 

5.6.4 Lemma. Let & = BC(R) be the space of bounded continuous functions 
on R, with the supremum norm. Then there is a functional y E & * such that 
y(1) = 1; y is positive, that is, if j > 0, then yCf) > 0; and y is translation 
invariant, that is, y Cf,) = y Cf) , where j, (x) = f (x + a). 

Prooj Define yn € & * by 

Because the unit ball of & * is compact in the weak* topology, there is a 
subnet 15, converging in this topology to p E & *. That is, y (j) = limp,, Cf) for 
every f. It follows immediately that y is positive with y(l)= 1. AS for 
translation invariance, note that 

which vanishes as n-oo. Hence yCfa,-n=O. V 

A more sophisticated argument (see Segal [1966]), using the Markov-Ka- 
kutani fixed point theorem, enables one to prove an analog of the lemma for 
"amenable" groups-in particular, abelian or solvable groups. 

We can now finish the proof of 5.6.2. Define a real symmetric bilinear 

Y form on X by the relation 

m 
8 
2 Here the subscript t indicates our averaging of the bounded function 
z t~ Re(&x,&y). By the translation invariance of y and the group property 

of F we have, obviously, s(F,x, F,y) = s(x,y). Moreover, s is a symmetric 
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nonnegative form. Finally, by the positivity of y, we have 

where M=supII4;,II. On the other hand, we have 11~11~=ll~-,~,x11~< 
M ~ ) ) F , x ~ I ~ ;  whence 

1 1 ~ 1 1 ~  < M2s(x, X) 

Thus s(. , -) is a real inner product equivalent to the original inner product on 
X. 

Accordingly, by the proof of Theorem 3.1.18, there is an invertible 
bounded linear operator To, skew-adjoint relative to s, such that 

Since w and s are invariant under F,, it follows that F, and To commute. 
Hence F, and Jo commute, where Jo is the isometric factor in the polar 
decomposition of To. The operator Jo satisfies J: = - I, hence gives a complex 
structure-which makes the F; unitary. H 

Aftemative Proof of 5.6.3 (Weinstein [1971].) Let T > 0  and V ,  be the sum of 
the eigenspaces of XH corresponding to eigenvalues of the form 27~ni/7, 
where n € Z. Then clearly any orbit in V ,  is periodic with period dividing T. 
Since H is positive-definite, H -'(l)n V ,  is a compact submanifold of V, 
consisting of periodic orbits; moreover, H - '(e) n V,, e > 0 is diffeomorphic to 
a sphere by definiteness of H. It must be odd dimensional since XH is 
nowhere vanishing on it; equivalently, V, is even dimensional, a fact we know 
from the symplectic eigenvalue theorem. Now as X, is linear, there is a 
two-dimensional subspace El of V ,  containing a one-parameter family of 
these closed orbits (parametrized by €1. Since XH is  tangent to and nontrivia! 
on El, El is nondegenerate and so we can choose canonical coordinates q,p 
on E,; XH is then given in El by (aH/ap, - aH/aq). Let H(q,p)= aq2+ bpq 
+ cp2 on El ; since H is positive-definite, a > 0, c > 0, and 4ac - b2 > 0. Write 
H (q,p) = aq2 + cjT2, where j = p  + yq and where y = b/2c and 

Now d q ~ d p  = d q ~ d g  so q , j  are canonical coordinates and in them 

so XH has the matrix 2c . We get the required (RNF) on E, by 
2 

[ -02% 0 1- 2: 
changing to the coordinates q= pq, j= ( l / y ) j  for suitable y. !2 
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Now one chooses an a-orthogonal complement to E, (as in 3.1.2), picks 
another two-dimensional E2 containing a family of closed orbits, and repeats. 

This brings XH into (RNF) on V, and then one repeats for all the V,. 
Since the different (nontrivial) V, are w-orthogonal (by 3.1.2), we get the 
desired (RNF) on all of E. H 

If we have a nonlinear system whose energy has the form 

and if the origin is a fixed point that is, aV/aqi(0)=O, then the (quadratic) 
term in the Taylor expansion of V about 0 gives a system of the form 5.6.1. 
Ignoring the nonlinear terms here is called the small oscillation approximation. 
- More generally, one can consider a Hamiltonian H on a symplectic 
manifold (P,a). Suppose xo is a fixed point, so dH (x,)=O. If D~H(x,,) is 
positive-definite, one might hope that the motion near x, is decribable by the 
small oscillation approximation, that is, by replacing H by its quadratic part. 
(Recall from Sect. 3.4 that the eigenvalues, of DXH(x0), which we can label 
XI,. . . , k,  -XI,. . . , -An, are then purely imaginary.) For instance, does the 
nonlinear system possess n periodic orbits on each energy surface near x, as 
the linearized system does? This question actually leads one into deeper 
waters. 

Before describing this situation, a couple of elementary classical examples 
are relevant. The reader is asked to fill in the details for himself. 

5.6.5 Examples (a) The simple pendulum: q + ksinq =0, k > 0. Here a 
study of the energy surfaces q2/2 - k cos q = constant yields the phase portrait 
shown in Fig. 5.6-1. (The Morse Lemma will simplify your efforts; the global 
structure of the level sets H - I ( & )  is a good example to illustrate the ideas of 
Morse theory.) 

(b) The van der Pol or LiCnard equation* (without friction or forcing): 
q = ;(I - q2). Again, this is easiest to analyze by looking at the level surfaces 
of the energy 

+ (q2 - 3) = constant 

See Fig. 5.6-2. 
Y 
2 Now we will turn to a study of periodic orbits for nonlinear Hamiltonian 
3 systems in the small oscillation region. Our main goal is a proof of Liapunov's 
8 * 
0 

*The names "van der Pol and Liknard equations" refers to equations of the form ii+ f(u)lif g(u) 
= 0. We have taken f (u) = 0 and g(u) = f (q2  - 1). This form arises in several applications. 
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I small oscillation approximation; 
/ period = 2n lG  

riod of orbit - ~ o  

as the sadd!e 
connection 1s 

4 
approached 

Flgure 5.6-1. The simple pendulum; q = - ksin q. 

small oscillation 

Flgure 5.6-2. Phase portrait for the equation q = f (1 - qZ). 

theorem that, in effect, justifies the small oscillation approximation, at least if 
certain technical conditions are met. 

We shall begin with a rather general result on perturbations of periodic 
X orbits for vector fields possessing an integral. Our exposition follows Duis- 

termaat [1972], although this sort of result is found in several places, such as $ 
Hale [1969]. w In 

2 
d 

5.6.6 Theorem. Let X, be a family of ck vector fields on a manifold M, z 
0 < E < E~ depending in a c manner on E, k > 1. Write X = X,. % 
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Let H : [0, eO) X M-+ R : (E ,  x )  w HE ( x )  be a Ck function on [0, eo) X M that 
is constant on the orbits of X,. 

Let xo E M and let y be a periodic orbit of X with period To > 0 passing 
through x,. Let y lie on a regular energy surface 

Let be the flow of X, and Ft = E;! Assume: 

( i )  ker(Dx FTO(x0) - Id)  is two dimensional; 
(ii) X ( X O ) ~  Im(DxFTo(x0) - Id). 

Let Sxo be a transverse section at x,. Then for 5 le- e0l sufficient& small 
there is a unique X(E, e )  near xo and in Sxo and T(E, e)  near To (depending ck on 
e, e) such that the solution starting at X(E,  e) is periodic for X, with period 
T(E,  e), and energy e. 

ProoJ For e near eo and E near 0, Z , ,= He-'(e) form Ck submanifolds 
depending c on E ,  e. Let x' ,  . . . , x n  be coordinates around x,. We work in this 
chart without explicit mention. 

Let 

so that zeros of O are periodic orbits. 
Let Z =  kerDH(xo) and let r: Rn-+Z be projection. Clearly we can write 

Z , ,  as the graph of a map.q(x, e, E)  defined on a neighborhood of 0 in Z .  
Thus finding zeros of (1) is equivalent to finding zeros of 

called the reducedperiodicity equation.* 
Now 

and 

D,*(xo, To, e o , o ) = ~ ( x ( x o ) ) = x ( ~ o ~  

Notice that we have Dx FTJxo) . X (x,) = X (x,), that is, X (x,) E 
ker(Dx FTo(x0) - Id)  n 2, and, by conservation of energy, dH (x,) .X (xo) = 0. 

"so, from H (FT0(x)) = H (x ) ,  we get dH (xo) o (DFTJx0) - Id)  = 0. By a di- g 
4 mension count, then (i) and (ii) imply that (if) ker(Dx FTo(xo) - Id)  n " ker dH (x,) is one dimensional spanned by X (x,) # 0. 3 
d 

*This plays the same role as the bifurcation equation in bifurcation problems, where this 
procedure is called the Liapunov-Schmidt procedure (see, e.g., Hale [1977]). 
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Therefore, as a map of Z x(interva1 about To) to 2, condition (i') says 
that D x 4  is one-to-one on a transverse subspace to X(x,) and (ii) says that 
D,4 is independent of the range of Dx4. Thus D ( x , n 4 ( ~ o ,  To,eo,O) is an 
isomorphism on a transverse to X (x,) and so the result follows by the implicit 
function theorem. . 

We now turn to the application of this result to Hamiltonian systems. The 
proof will be done by the technique of "blowing up the singularity." 

5.6.7 Theorem (Liapunov). Let (P, a) be a symplectic manifold and H be c', 
l a  2. Let xo be a critical point for H and let X;(x,) be the linearized 
Hamiltonian system. Let X; (x,) have characteristic exponents 

Assume 
( i )  A, = ia,, a ,  > O ,  that is, A,, -A1 arepure imaginary, 

and the non-resonance condition 
(ii) no 4, j = 2, . . . , n is an integer multiple of A,. 

Then there is a one-parameter family ye defined for 0 < E < E, of closed orbits 
of X, that approach xo as E+O and whose periodr approach 2.rr/a1 (see Fig. 
5.6-3). 

Proof: We can work in T* Rn and let x, = 0 and H (x,) = 0. We blow up the 
singularity by letting 

1 X ( x ,  E )  = - H ( E X )  
e2 

Figure 5.6-3 
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where H2= ;D2~(O),  h is C*, and h and its first two derivatives vanish at 
x = 0; h (x, 0) = 0 and h (x, E) = O(E) uniformly in x near xo. 

We can introduce a linear symplectic change of coordinates so that H2 
takes the form 

(see 3.1.2). The two corresponding subspaces are o-orthogonal and invariant 
under Xk(xo) = XH2. 

Let y be the closed orbit qf+p:= 1; it has period To=2a/a,. Choose xo 
arbitrarily on y. We will verify conditions (i) and (ii) of 5.6.6 [where X, is the 
Hamiltonian vector field of X(X,E)]. For (i), note that D , F ~ ~ ( X ~ ) = ~ ~ ~ O ,  
where A = XH2(xO)= X;(X,). NOW to prove (i) we must show that 

We know that the eigenspace corresponding to eigenvalues ia, and - ia, is in 
ker(e T"A - Id). If (q,p) E ker(e T"A - Id), then 

so (q,p) would be on a periodic orbit for A, with period dividing To; that is, 
( y , p )  would be an eigenvector of A with eigenvalue an integer multiple of a,. 
[Thus ker(etAo -Id) equals the eigenspace for ia, and - ia,, which has 
dimension 2.1 

As for (ii), x, lies in the subspace spanned by q,,p,, as does Ax,#O, since 
this space and its complement are invariant under A by construction; but 
since the space spanned by q,,p, lies in the kernel of e '4 - Id, Ax, E lm(e ToA 

-Id) is impossible. 
Thus by 5.6.6, X(X,E) has a periodic orbit for each E sufficiently small. 

But a periodic orbit through X(E) for X(X,E) yields a periodic orbit through 
E~X(E) for H(x). (If ~ ( t )  is a periodic orbit for X, y(t)=~x(t)  is one for H.) 
The result therefore follows. . 

This "blowing up" argument also allows one to show that the periodic 
orbits fill up a C1 manifold tangent to the eigenspace corresponding to f ia,. 
This argument requires one to keep track of the differentiability and parame- 
trize the manifold by polar coordinates (Duistermaat [1972]). The C' result is 
due to Kelley [1967c], and the analytic result is due to Siegel (see Siegel and 
Moser [1971]). The Cr case (if H is c '+~ the orbits lie on a Cr manifold) may 
be deduced by using the Birkhoff normal form (see below and also Moser 
[1976]). 

The blowing up technique (also called resealing) is a useful general tool in 
bifurcation theory, the theory of singularities (see below and, e.g., Takens 
[1971], Hale [1977], and Buchner, Marsden, and Schecter [1978]) and in 
singular perturbation theory. 
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The Liapunov theorem has in it the important nonresonance condition 
that is related to the problem of "small divisors." (This terminology arises 
naturally when the power series approach is used, cf. Siegel and Moser 
[1971].) The blowing up technique enables one to deal with certain resonant 
cases, for example, the 2 : 1 resonance (A, = 2A,). For a discussion and 
application, see Duistermaat [I9721 and Cushman [1973]. The literature on 
these resonant cases is extensive; the reader interested may scour the bibliog- 
raphy; Roels [I9711 and Henrard [I9731 are representative. 

For a study of those resonant cases the Birkhoff normal form has played a 
key role. We now give a brief informal discussion of it. For details and 
convergence questions, Siegel and Moser [1971] and Moser [1973a] should be 
consulted. See Deprit [I9691 for an efficient algorithm. 

Let H = H , + H , + . . .  + H , + - - -  be a formal power series on a 
symplectic vector space (V, w), where Hn is a homogeneous polynomial of 
degree n. Generally, let [fl, be the homogeneous polynomial of degree k in 
the formal power series expansion of a function f; thus [HI, = H,. 

Suppose that the linear Hamiltonian vector field XH2 on ( V, w) has purely 
imaginary eigenvalues and can, be put in the real normal form (RNF) 
discussed above. The formal power series H is said to be in Birkhoff normal 
form if LxHe)H = 0 that is, LXH(z)Hn = 0 for all n > 2, where H(2) = H,. 

Formally, the flow of XH(x, y )  is exp(tadH)(:), where (x, y) are sym- 
plectic co-ordinate functions on ( V, LO), adHf = { f, H )  for f E C "( V, R), and 

* tn exp (tad,) = 2 ,r ad;, where ad; = adH o . . o adH 
n = O  -Z&-' 

Note that since adHxi = aH/ayi and adHyi = - aH/axi, adH(x,y) = XH(x,y). 

5.6.8 Normal form algorithm. Suppose the formal power series H is in 
normal form up to terms of degree n, that is, LXHo,[H], = 0 for 2 < i < n - 1. 
We now find a homogeneous polynomial Fn of degree n such that the 
symplectic diffeomorphism 

has the property that LxH(2,[cp:nH]n=0, then the terms of degree n are in 
normal form while the terms of degree i < n - 1 are unaffected because of (1) 
and hence remain in normal form. Now X 
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Let P, = P,(V,R) be the vector space of homogeneous polynomials of degree 
n on V and let LXH(,, operate on P,. Since X,, is in (RNF), 

Pn = ker LXH(,, n P,, @ im LXH(2, n Pn 

Write 

H, = H; + G, E ker LX,,(,, n P, @ im LxH(,) n Pn 

then choose F, so that LXHn,Fn = - G,. Thus 

LxH,,,F, + H, = - G, + H,' + G, = H,' E ker LXH,,, n P,  

Hence by (2) [ q z H ]  E kerLxHm. Thus q;"H is in normal form up to terms of 
degree n. 

To see what all this means, write 

and introduce complex conjugate coordinates zj = xj + %, 5 = xj - iyj, then 

and 

Thus in terms of zj,q7 LxH,,, becomes 

Every real homogeneous polynomial of degree m may be written 

= 5'zjZ1 
X VI + I l l  = m g 
9 where cj, = i;l,. Since 
Cr) 

B z 
Z zk5': = (a, k -  l)zk.T' z j= 1 



~ ~ i ' € k e r ~ ~ ~ ~ ~ n P ,  if and only if (u,k-l)=O and ikl+lll=m. Thus 
~ e ( z  "2') and lm(z '2') for (a, k - I) = 0 and lkl+ /I1 = m span kerLxHm n P,. 

5.6.9 Example. Take 01=(1,2), m=3, k=(k,,k,), and I-(E,,Ia. We must 
find solutions of 

Since O <  k,,k,,I,,I,<3, O<Ik,-l,I, Ik,-121<3; thus, 

are the only possible solutions of the first equation of (3). For (4) the only 
possibility is k, = 2, I, = 0, k, = 0, I, = 1 while for (5) the ody possibility is 
k,=0, 1,=2, k,=1, E,=O. 

Thus 1 ~ e z ~ ~ , = x , ( x ~ - ~ ~ ) + 2 x , ~ , ~ ,  and ~mz:~,=2x,y,x,-y~(x:-y~) 
span the kernel of in P3. This gives the fo l lohg  normal form on PA?,. 

+2c,x, y, y,+2c,x, y,x,- c,y,(x:-y~) +(higher-order terms) 

This is a 2 : 1 resonance and the cubic terns ~llust be taken into account in the 
blowing up tecbque. For details, see Duistemaat [1972], and for a study of 
the topology of the problem, see Gushman [1975]. 

If a,, . . . ,an are independent over 5 that is, if a,a, 4- . . . + anan = (b for 
integers ai irnplies aj = 0, i = 1,. . . , n, them arguing as above, we see that each 
EI, is a function only of the products ziZi, i =  1,. . . ,n. This is the form for the 
Birkhoff n o m l  form that is usually given. The con&tion that a,, . . . , ol, are 
independent over Z clearly irnplies that there are no resonances (i.e., on each 
energy surface for the linearized problem there are exactly n periodic orbits). 

The difficulties with the resonances might make one thiBljk that the 
situation in the presence of general resonances is hopelessly complicated. 
Actually this is not so. h e a d y  Seifert [I9471 showed that for the motion of a 
particle about eq~librium in the presence of a potential with a nondegenerate 
~ n i m u m  there (see 5.6.11, that there is at least one periodic orbit on each 9 

5l energy surface near equilibrium. In a sense this is a problem in geometry 
because one can reduce it to a problem in geodesics using the Jacobi metric 
(see Sect. 3.7). There are, naturally, a few complications. However, the key 2 
thing is that no non-resonance assumptions are made. 2 

The general case is due to A. WeinstBn. $ 
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5.8.10 Theorem (A- Weinstein). k t  (P, w )  be a syqlectic mngold a d  H :  
P+ R be c2. k t  x, be a critical point of H and let D 2~ (xO) be positi~e-definite 
there (so, by 5.6.3, the linearized system has at least n periodic orbits on each 
energy sudace). 

Then on any energy sudace H -'(H (x,) -b E ~ )  for E sufficient& sml l  them 
ore ae least n periodic orbits of X, whose periods are close to that of the 
linearized system. 

The original proof of Weinstein [1973a,b] uses algebraic topology (Lius- 
ter~ck-ScKrelman category) to estimate the number of closed orbits. Moser 
[I9763 gave a proof based on Hadton's variational phciple and bifurcation 
theory @lowing up?) and the category result. Finally, Weinstein [1978a] gave 
another yet simpler and more general proof using the variational argument 
more fully and ideas on perturbation of critical m a d d d s  due to Bott El9541 
and Reeken 119731. See also Bottkol [I9773 and Rabkowik [[]1978bj. 

Hn general, exalnples (Duistemaat [1972], S c ~ d t  and Sweet [1973], 
Moser 119761) show that without the resonance condition, the periodic orbits 
do not lie on madold§ throu& x,, but only on cones. 

There is a global result due to Weinstein [1978b] that is dosely related to 
5.6.10. Namely, if H :  T"SRn+R and Z, i a regular energy surface of H that 
is the boundary of a compact convex regon (or if Z, is close to such a 
surface), then there are n gePiodic orbits of X, on Z,. This is related to 5.6.10 
tbrou& the fact that for E small, H -'((N(x,) + E ~ )  are approximate ellipsoids 
by the Morse l e m a .  Some related global results are found in Chow and 
Mallet-Paret [1977], Chow, Mallet-Paret, and Yorke I19771 and R a b i n o ~ k  
[ 1978aj. 

We conclude this section with a brief account of nodinem oscililations in 
a more general setting. One can imagine Harnilto~an systems as pivotal 
points in the farnily of all dynamical systems. We can pertwb them in purely 
Hamiltonian ways (Chapter 8) or we can destroy their Hadtonian character 
by forcing them or adding on dissipative terms. The latter moves the system 
into the context of Chapter 7. 

We shall codine ourselves to a few remarks and examples on the aspect 
of nodinear oscillations comected with bifurcation theory. Bifurcation 
theory for zeros of maps is a well-developed subject, but is not our concern 
here (see, e.g., Hale [1977]). We are concerned with c8ynanic bifurcation 
theory. We consider vector fields XA on a makfold M dependkg on a 
parameter X E R P .  As A changes, the dynarnical system X changes; if a 
qualitative change in the flow 4A occurs at A=$, we call &, a bgurcation 
point. 

We begin by descrlblng the singlest bifurcations for one-parameter sys- 
tems, that is, p = 1. In a certain sense these bifurcations are the generic local 52 

9 rn ones. (See Chapter 7 for detailis.) If one imposes a s y m e t y ,  howver, what is 
8 generic may change, as we shall explain. 
2 
Z 5.8.19 Saddle Node. This is a bifurcation of fixed points; a saddle and a 
2 sink come together and a ate one another, as shorn in Fig. 5.6-4. A 
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t A 

bifurcation 
h 

sink saddle 
point 

saddle-node bifurcation eigenvalue evolution 

Figure 5.6-4 

simple real eigenvalue of the sink crosses the imaginary axis at the moment of 
bifurcation; one for the saddle crosses in the opposite direction. The symmet- 
ric situation of a saddle source is also possible. 

If an axis of symmetry is present, then a symmetric bifurcation can occur, 
as in Fig. 5.6-5. This occurs in Euler buckling for instance (Zeeman [1975]). A 
small asymmetric perturbation or imperfection "unfolds" this into a simple 
nonbifurcating path and a saddle node. 

sink saddle ----------------- 

symmetric saddle node a smd imperfection 
Figure 5.6-5 

5.6.12 Hopf Bifurcation. This is a bifurcation to a periodic orbit; here a 
sink becomes a saddle by two complex conjugate nonreal eigenvalues cross- 
ing the imaginary axis with nonzero speed. As with the symmetric saddle 
node, the bifurcation can be sub- (unstable closed orbits) or super- (stable 
closed orbits) critical. (See Marsden and McCracken [I9761 for calculations to 
determine which one.) Figure 5.6-6 depicts the attracting case. 

The precise statement and proof of the Hopf theorem may be given using 
the same blowing-up technique we used to prove Liapunov's theorem. (In X g 
fact, the latter may be deduced from Hopf's theorem; see Alexander and 
Yorke [I9771 and Schmidt [1976].) m 

8 
The physical idea behind the Hopf theorem is that as X increases the 

system is excited, and beyond a certain critical point excitations and dissipa- 
tion balance to enable self-sustaining oscillations to be supported. E 

2 
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saddle 

Figure 5.6-6. The Hopf bifurcation. 

These two bifurcations are local in the sense that they can be detected by 
linearization about a fixed point. There are, however, some global bifurca- 
tions that are more difficult to detect. A saddle connection is shown in Fig. 
5.6-7. In this example note that at bifurcation the system may be Harnilto- 
nian, as in 5.6.5(b). 

stable 
closed 
orbit 
growing 
in 
amplitud 

Flgure 5.6-7. Bifurcation point. 

These global bifurcations can occur as part of local bifurcations of 
systems with additional parameters. This approach has been developed by 
Takens [1973a] who has classified certain generic or stable bifurcations of 
two-parameter families of vector fields on the plane. This is an outgrowth of 
extensive work of the Russian school led by Andronov. An example of one of 
Takens' bifurcations with a symmetry imposed and depending on parameters 
A,, A, is shown in Fig. 5.6-8. 

For an example of a physical system (panel flutter) in which the bifurca- 
tion illustrated in Fig. 5.6-8 occurs, see Holmes [I9771 and Holmes and 
Marsden [1977a, 1977b1. 



m e t r i c  7 @ saddle / 'I I 

/ orbibs 
(dynamic saddle-node) 

Flgure 5.6-8. Takens' (2,-) normal form showing the local phase portrait in each region 
of parameter space. 

Some of the phenomena captured by the bifurcations outlined above have 
been known to engineers for many years. In particular, we might mention the 
jump phenomenon of Duffing's equation (see Timoshenko (19741, Holmes 
and Rand [1976], and Hale [1977]) and the more complex bifurcational 
behavior of the forced van der Pol oscillator (Hayashi 119641 and Kohes  and 
Rand [ 1 9771). 



AN OUTLINE OF QUALITATIVE 
DYNAMICS 

The qualitative theory of flows has evolved into a vast subject since 
the early work of Poincaie, Liapunov, and Hadamard in the 1880s. Its 
offspring-topological dynamics, differentiable dynamics, and Hamiltonian 
dynamics-have become huge domains on their own, increasingly disjoint 
since the pioneering days of Birkhoff in the 1920s. 

This part is concerned with the qualitative theory of dynamical systems, 
emphasizing the Hamiltonian case. There is a change in style from Part 2 
necessitated by the volume of material covered. While Part 2 included most 
proofs and was reasonably complete, this part will often refer the reader to 
other sources for proofs. The qualitative theory culminates in the Hamilto- 
nian theory where we describe some important recent results. 



Topological Dynamics 

This short chapter provides a backdrop for the next two chapters. We 
have deliberately set off this material so that the distinction between the 
topological and differentiable aspects of dynamical systems is clearly main- 
tained. Here we collect only the small number of topics in the topological 
dynamics of continuous flows that are used in the sequel. 

6.1 LIMIT AND MINIMAL SETS 

Suppose X is a vector field on a manifold M. An orbit of X is the image of 
a maximal integral curve of X. The conception of M decomposed into orbits 
(perhaps oriented with arrowheads) is known as thephaseportrait of X. In the 
topological theory the emphasis is on topological properties of the flow F and 
so one usually starts with a continuous flow on a (Hausdorff) topological 
space M. However, to keep in mind the fact that the flows we are concerned 
with usually come from vector fields X, we shall still regard X as given. 

An original program in the qualitative theory of Poincaie is the classifica- 
tion of all phase portraits on a given manifold, perhaps up to equivalence 
under homeomorphisms of M preserving (oriented) orbits. Although some 
results have been obtained (see Kneser [1924], Whitney [1933], Kaplan [1940], 

: Ralph Abraham and Jerrold E. Marsden, Foundation of Mechanics, Second Edition 
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and Markus [1954]) in the two-dimensional case, it became clear rather early , 
that this program was too ambitious. 

A more modest program, initiated by Birkhoff in 1912, aimed at the 
classification of only the "final motions" in the phase portrait: the asymptotic 
behavior as time goes to infinity. The fundamental concepts of this program 
-limit and minimal sets, recurrent and almost-periodic motions- have been 
central to topological dynamics ever since. For further information in this 
area, Sell [I9711 is strongly recommended. 

In this section we give the basic properties of limit and minimal sets, and 
illustrate their role in the qualitative theory by the PoincarC-Bendixson- 
Schwartz theorem for the two-dimensional case. 

6.1.1 Definltlon. Suppose X is a vector field on the manifold M with integral 
F: 9, c M x R+M. Then the X u  limit set of m, a= +, -, or 2 ,  is defined by 

and 

where Z denotes the integers. Also, let A> = U {Aa  (m)lm E M )  , a = +, -, rt , 
and Ax =A:. 

The A+ (resp. A-) limit set is sometimes called the w (resp. a) limit set. 

6.1.2 Proposition. If m is a complete, the limit set ha(m) is the set ojpoints 
moE M for which there exists a sequence {t,) with t n ~ o a o  and F(m, t,)+mo, 
for a = + or a = - . If m is not a complete, then Xu(m) is empty for a = + or 
a= -. 

Proof: Let A, = F [ { m )  X(n, GO)]. Then by definition, m,,EA+(m) iff mo€ 
cl (A,) for all n € 2 .  Let (U,) be a sequence of open neighborhoods of mo such 
that n ~ , U , = { m o ) .  As A,>Ad for n<n', moEcl(A,) for all n € Z  iff 
U, n A, = + for all n E Z. If mo E X  +(m), choose t, E (n, ao) such that F (m, t,) 
E U,. Then t, > n, so t, tends to ao as n goes to ao, and F(m,t,) converges to 
m,. The converse and the case a= - are similar. The second assertion is 
obvious. . 

For example, Fig. 6.1-1 illustrates a possible situation on R ~ .  

d 
6.1.3 Definition. Let X be a complete vector field on a manifold M with flow 
F. A subset S of M is called positively iiroariant iff 4 ( S )  c S for all t > 0 and 
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Flgure 6.1-1 

negatively invariant i f f  4 ( S )  c S for all t < 0. S is called invariant if it is both 
positively and negatively invariant (cf. 2.2.28). A subset S of M is a minimal set 
iff S is closed, nonempty, invariant, and no proper subset of S has these 
properties. 

6.1.4 Prcpsl!icn. If X E %(M) is complete and S D a minimal set of X, 
then S  is connected. If S and T are minimal sets, then either S =  T or 
S n  T = g .  

ProoJ: Suppose S  is not connected. Then components of S are closed, 
nonempty, and invariant, which contradicts minimality of S. If S  and T are 
minimal sets and S  n T Z 0 ,  then S n T  is closed, nonempty, and invariant. 
Byminimality, S n T = S = T .  

6.1.5 Proposition. Let X be a vector field on a compact manifold M. Then 
X a (m) is closed, nonempty, connected, and invariant (a  = + or a = - ). 

X 

@ Plwf: It is clear that Xu(m) is closed. To show that it is invariant, let 4 
mo € A " (m)  and m, = F, (m,). Suppose 5 (m)+m,. Then 5 +,(m)+m,. Thus 3 
m, E X u  (m). Connectedness of X u  (m)  follows at once from the fact that in a 

z compact Hausdorff space, a nested sequence of closed connected sets has 
connected intersection (see Sect. 1.1.7). 
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The classification of minimal sets begins with the simplest examples, 
called critical elements of  X.  

6.1.6 Deflnition. An equilibrium point (rest point, critical point) of X is a 
point m E M such that F;(m) = m for all t E R. A periodic point of X is a point 
mEMsuch thatforsomer>O, Ft+,(m)=Ft(m)foralltER, andtheperiodof 
m is the smallest r/>,O satisfiing this condition. A closed orbit is the orbit of a 
periodic (nonequilibrium) point. A critical element of X is either a set { m ) ,  
where m is an equilibrium, or a closed orbit. The set of all critical elements of X 
is denoted by rx. 

It is not hard to see (Exercise 6.1E) that a closed orbit is an embedded 
circle, every point in a closed orbit is a periodic (nonequilibrium) point, and 
all of  these periodic points have the same (positive) period. Thus, we may 
speak o f  the period of closed orbit, or of  a critical element. 

6.1.7 Proposition. Suppose X is a uectorfield on a manifold M. If y c M is a 
critical element of X, then y is a minimal set. Moreouer, i f  M is compact, then 
Au(m) contains a minimal set (o  = +, -, 2). 

ProoJ: Obviously { m )  is minimal if m is a critical point. I f  y is a closed 
orbit, then it is closed, invariant, and nonempty. In addition, y is minimal, for 
i f  m , , m , ~  y there is a t such that F,(m,)= m,. Also, if  M is compact, Au(m) is 
nonempty, closed, and invariant by 6.1.5, hence contains a minimal set. W 

An important theorem on minimal sets in the two-dimensional case is the 
following. 

6.1.8 Theorem (A. Schwartz). Suppose M is a compact, two-dimensional 
manifold and X E %(M). Let A be a minimal set of X that is nowhere dense. 
Then A EF,; that is, A is a criticalpoint or a closed orbit. 

For a proof see A. Schwartz [I9631 or Hartman [1973, p. 1851. 
This result, and the next two, assume that the vector field is smooth 

(actually c2), and belong to differentiable dynamics. However, the conclusions 
are topological. Moreover, Hajek 119681 shows that the closely related 
Poincarh-Bendixon theory in R~ follows using only C O  hypotheses. W e  have, 
therefore, placed these c2 results here. For a C 1  counterexample, see Denjoy 
[1932]. 

X 
6.1.9 Corollary. Let M be a compact, connected, two-dimensional manifold, $ 
X E % ( M )  and A a minimal set of X. Then either 

( i )  A is a critical point; 
(ii) A is a closed orbit; 

(iii) A = M ~ ~ ~ M = T ~ I = s ' x s !  
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Here is the method of proof. Suppose (i) and (ii) do not hold. Then, by 
6.1.8, the interior of A is nonempty, that is, int(A)Z@. Also int(A) is 
invariant, as Ft is a homeomorphism. Thus, bd(A) is closed and invariant. By 
minimality of A, bd(A) = 0. Hence A is both open and closed and so A = M. 
As A is minimal, it contains no critical points or closed orbits (6.1.7) and, by 
a theorem of Kneser [1924], M= T'. 

The next result shows that, in two dimensions, limit sets are usually tori or 
closed orbits. 

6.1.10 Theorem (Poincar&-BendixsonSchwartz). Let M be a compact, 
connected, orientable two manifold and X E % ( M ) .  For m E M suppose A+ ( m )  
contains no critical points. Then either 

(i) A + ( ~ ) = M = T $  or 
(ii) X + ( m )  = y is a closed orbit. 

The idea of the proof is as follows (see Schwartz [1963]). By 6.1.7 h + ( m )  
contains a minimal set, so by 6.1.9 either A+(m) = M = r2 or A+(m) contains 
a closed orbit. Then by a geometric argument special to the two-dimensional 
case, one finds that in fact A+ ( m )  = y. 

For further details on PoincarC-Bendixson theory see Hartman [1973]. 

EXERCISES 

6.1A Prove the converse in 6.1.2. 
6.1B Construct an example of a vector field on R* in which only one point is 

contained in a minimal set, and another in which every limit set is empty. 
6.1C Discuss 6.1.8 in the case M is not orientable. 
6.1D Prove that a closed orbit is an embedded circle, or periodic points of a common 

petd~d. 

6.2 RECURRENCE 

Many different notions of recurrent or almost-periodic motion have been 
explored in topological dynamics. Here we collect some of those needed in 
the differentiable theory. One of these recurrence results, the Poincark re- 
currence theorem, was already given in Exercise 3.4F and related ideas of 
ergodicity were discussed in Sects. 2.6 and 3.7. 

!2 
5: 6.2.1 Detlnltlon. If X E % ( M )  with integral F: 9, c M X R+M and rn € 
8 
2 M, then m is a nonwandehgpoint of X iff (m, t )  E 9, for all t >0, and for all 

neighborhoodr U of m E M and all to 2 0 there is a t > to such that U n I;,(U) is 
nonempty. Let 5;2, denote the set of all nonwanderingpoints of X E %(M). 
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6.2.2 Proposition. If X E % ( M )  and is + complete, then ax c M is closed 
invariant, and cl (r,) c cl (A,) c Q,. 

ProoJ: Let %€ax be a sequence and m,+m as n+m. Let U be a 
neighborhood of m and to > 0. Choose N so that mn E U if n 2 N. Then since 
mN E 52, and mN E U, there is a t such that U n Ft ( U )  # 0. Hence m E Q,. 
Thus Q, is closed. 

Let m €52, and t ,  E R. To show that m,  = Ftlm €ax, let U be a neighbor- 
hood of m,  and to> 0. Then F-tI(U)= U,  is a neighborhood of m and so 
there is a t>to such that U,nl";(U,)#Q. Hence O # F t l ( U , n ~ ( U l ) ) =  
l";I(Ul)n F,(q1(U,)= U n Ft(U). Thus m,  €52, and so Q, is invariant. 

It is obvious that r, c A, and hence that cl(r,) c cl (A,). It remains to 
show that AS;cQ,. Let moEA> so mo=limn,,Ftnm for some m E  M and 
tn+am. Let U be a neighborhood of mo and to > 0. But there is an N such 
that F,"m E U if n > N. Let a = +. Since t ,  -+ + m ,  we can choose n, > n ,  >, N 
such that t = t,, - tnz > to. Then F, m E U n F,(U) since F, m = F,en2m. The 

"1 "1 

case a = - is similar. 

6.2.3 Definition. For X E % ( M ) ,  recall that a point m E M  is complete if it 
is both + and - complete (i.e., its orbit is defined for all time). If m is 
complete, the hull of m is the orbit closure, H ( m )  = el{ Ft (m)l t E R ) . A point 
m E M is called compact if it is complete, and H ( m )  is a compact set. We say 
m E M is a recurrent point of X if it is complete, and for all neighborhood U 
of m E M ,  

is relatively dense in R: that is, there is a (large) r > O  such that for all a E R, 
[a, a + r] n hu# 0. Let Rx denote the set of all recurrent points. 

The connection between recurrence and minimal sets is this classical 
result of Birkhoff [1966, p. 1991. 

6.2.4 Birkhoff Recurrence Theorem. ( i )  A set H c M is a compact 
minimal set of X E % ( M )  iff H = H ( m )  for some compact recurrent point 
m E M .  

(ii) If H c M is a compact minimal set and m E H, then m is a compact 
recurrent point. 

ProoJ (i) Suppose H is compact and minimal. Let m E H. We will show 
SC that m is compact, recurrent, and H =  H(m).  Since H is compact and 

invariant, the orbit through m lies a priori in H and so is complete (see Sect. 
2.1). By invariance of H, H ( m )  c H and so H ( m )  is compact. Since H is $ 
minimal, H(m)= H. It remains to show that m is recurrent. If not, there 2 
would be a neighborhood of m such that hu is not relatively dense in R. Then z 
for any n there is an an E R such that [cw,, cu, + n] n h, = 0; that is, Ft(m) @ U 
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for all a,, < t < a,, + n. Now, by compactness, F,+,,,(m) = m,, has a conver- 
gent subsequence, converging to, say, m,. Clearly, F,(mn)@ U for t €  
[- n/4,n/4] and, letting n-+co, we see that the whole orbit of m, does not 
meet U. This contradicts the fact that H is minimal. 

Conversely, suppose m is compact and recurrent. Then, clearly, H = H(m) 
is compact and invariant. Suppose H were not minimal. Then there is a 
closed invariant set B c H. If m E B, the orbit of m would belong to B and 

# 
so, as B is closed, H (m) c B, which is impossible if B # H (m). Thus m @ B. 
Let U, V be disjoint open neighborhoods of m and B, respectively. Since 
B c H, there exists a sequence t,,+ca (or - co) such that (m)-+mo E B. 
Since the orbit of m, lies in B, for t, sufficiently large Ftn(m)€ V and 
F, (4" (m)) E V for all t E [ - Pn, P,], where Pn -+ co . But from recurrence, there 
is a r > 0 such that &(F,-(m)) E U for some t in any interval of length r.  This 
is a contradiction for n large enough. 

Part (ii) is contained in the first part of the proof of (i). . 
This argument also yields the following, which can be taken as a char- 

acterization of minimal sets (cf. Gottshalk-Hedlund [1955]). 

6.2.5 Corollary. A nonempty set H c M is minimal if and only if H (m) = H 
for every m E H. 

The different notions of recurrence are related as follows. 

6.2.6 Proposition. If X E %(M), rx c Rx c Qx. 

We leave the proof as an exercise. 
The literature of topological dynamics is replete with further notions of 

recurrence, which fit between r, and Qx in this scheme. 

EXERCISES 

6.2A. (a) If m is recurrent, show that X +(m)= XP(m). 
(b) If m is recurrent, show that it is pseudorecurrent: 

m€X+(m)nh-(m) 

6.2B. Prove 6.2.6. 

6.3 STABILITY 

There are many different notions of stability of an orbit of a vector field. 
In this section we give a unified definition of several of these in terms of 

" continuity of set valued mappings. ;3 
2 Throughout this section we suppose that for a manifold M we have 
;z chosen a metric p, and let jl, denote the Hausdorff pseudometric on 2M 

induced by p (see Sect. 1.1). 
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As the topology on the subset of compact subsets in 2M induced in this 
way is independent of p, the definitions that follow are indifferent to the 
choice of p, if M is compact. 

6.3.1 Notation. Let M be a manifold and X a vector field on M, with integral 
F: qX c M X R-M. For (m, t )  E 9, let m, = F(m, t). Then for each m EM, 
let 

m ~ = U { m , ~ ( m , t ) ~ ~ ~ , t < 0 ) ,  the - orbitofm 

m,=m+urn- ,  thefullorbitofm 

These will be denoted ma, where a can be +, -, or 5 .  
In a similar way, if O : U c M+M is a diffeomophism onto O( U ) ,  let 

9, c U X Z be the set of points (u, n)  such that On(u) is defined, where 
On (u )  = O - . . O(u) ( n  factors) for n > 0, O0 the identity, and On = (O - ') -" i f  
n < 0. Let Fo : qo+ M :  (u, n)+On (u ) ,  and un = F,(u, n) for (u, n) E 9,. Then 
define u, as above, and X u  (u )  analogous to 6.1.1. 

In either case above, we define 

S o  ( m )  = {m' E M [ X u  (m') c cl (ma) )  

and 

A  " ( m )  = ( m' E M 1 m' is a complete and lim p(m,, mi) = 0 )  
t+am 

if m is a complete, and A  " ( m )  = { m )  otherwise. S + (m)  and S - (m)  are known 
as the inset and outset of m, respectively. 

We also let 2 y  denote 2M (the set of all subsets of M )  with the Hausdorff 
topology, and 2 f  denote 2M with the discrete topology. 

Then eighteen notions of stability of orbits may be defined as follows. 

6.3.2 Definition. Let M be a manifold with X E X ( M ) ,  or 0: U c M+M a 
diffeomorphism onto O(U). Then m E M  is called a"-stable with respect to X, or 
O, where a=o, a, or L and a= +, -, or +, iff 

( i )  a = o (orbital stability of Birkhoff) 
a : M+2r; m' H m: is continuous at m; 

(ii) a = a (asymptotic stability of Poisson) 
S o  : ~ + 2 f ;  m' H Sa(m') is continuous at m; 

(iii) a = L (Liapounov stability) 
A  ": ~ - 2 f ;  m' H A  "(m') is continuous at m. 

0 If m is not a"-stable with respect to X (or O) we say m is a"-unstable with z 
respect to X (or O). !2 
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Perhaps more familiar is the following equivalent form. 

6.3.3 Proposition. Let M be a manifold, X E %(M) [or O: U c M-M a 
dijjeomophism onto O(U)] and m EM be a complete. Then m is am-stable iff 
for eoery E > 0 there is a 6 > 0 so that p(m', m) < 6 implies 

(i) a = o; j(mm, m:) < e@ is the Hausdorff metric); 
(ii) a = a; lim p(m,, m:) =O; 

t+ooo 
(iii) a = L; lim p(m,, mi) = 0. 

t+ooo 

This follows directly from the definitions above and the definition of 
continuity. For other forms of these definitions and additional types of 
stability of orbits, see Coppel [1965]. The three cases a = o, a, L for a vector 
field and a= + are illustrated in Fig. 6.3-1. 

6.3.4 Proposition. Under the conditions of 6.3.3, if m is Lm-stable, then m is 
a "-stable. 

The first part is clear and the second follows easily by continuity of the 
flow of X (or O). 

These conditions simplify if m is a rest point, and in this case m is 
Lm-stable iff in is a"-stable, but of course osstable remains weaker. (For the 
eigenvalue conditions for Lo stability, see 2.1.25.) 

Another notion of stability is attraction. 

6.3.5 Definition. A subset A c M is an attractor of a complete vector field 
X E %(M) if it is closed, invariant, and has an open neighborhood Uo c M that 
is (i) positively invariant, and (ii) for each open neighborhood V of A (A c V c 
Uo c M) there is r > 0 such that U, = E;;(Uo) c V for all t > r .  An attractor 
A C M is stable if for evety neighborhood Uo of A C M there is a neighborhood V 
of A C M such that c Uo for all t 2 0. If A c M is an attractor, the basin of A 
is the union of all open neighborhoods of A satisfying (i) and (ii) above. 

6.3.6 Examples (a) Figure 6.3-2 illustrates a rest point that is an attractor 
in R but is not stable. Its basin is all of R ~ .  

(b) Consider the flow of 

u+u-u+u3=0 
in R2. There are three rest points at (0,0),(+ 1,O). The flow and basin of 
(- 1,O) are sketched in Fig. 6.3-3. The determination of the basins of ' attraction is actually not entirely trivial. The proof uses the function V(u,ir) 2 

9 = u2 - u2 + a u4, which decreases on orbits (a Liapunov function) (cf. Ball " and Carr [1976] and references therein). B 
d 
Z For the determination of the attractors or, more generally, the limit sets in 

the topological context, Liapunov functions are very useful. For general 
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(i) cw = o (orbital stability) 

(ii) cw = a (asymptotic stability) 

(iii) cw = L (Liapounov stability) 

Figure 6.3-1 

Figure 6.3-2 
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information, see LaSalle [1976], and for a substantial application, see, for 
example, Ball [1974]. 

EXERCISES 

6 . 3 ~ .  Prove6.3.3 and6.3.4. 
6.3B. Find a vector field on R 2  and m € R 2  that is o+-stable using the standard 

metric, but that is o+-unstable using some other equivalent metric. 
6.3C. Find a vector field on R 2  and m  € R 2  that is a+-stable, but not o+-stable. 
6.3D. Relate a+-stability of an equilibrium or closed orbit to attractor stability, for 

a=o,a,L. 



CHAPTER 7 
Differentiable Dynamics 

In this chapter we give a survey of differentiable dynamics as a backdrop 
for the contrasting Hamiltonian picture of the next chapter. This area, revived 
by Lefshetz, Peixoto, Reeb, Smale, and Thom in the late 1950s, is still 
advancing rapidly. 

7.1 CRITICAL ELEMENTS 

One of the main goals of differentiable dynamics is to determine the 
location of critical elements (i.e., fixed points and closed orbits) in the phase 
portrait and the asymptotic behavior of nearby orbits. The latter is revealed 
by a linear map derived from the flow, characterized by the characteristic 
exponents or multipliers of the critical element. For equilibrium points these 
have been defined and discussed in Sect. 2.1. Special reference is made to 
Liapunov's theorem 2.1.25. Details on the sense in which the linearization 
Xr(m0) of a vector field X at a equilibrium mo approximates the flow of X 
near m,, in cases not covered by 2.1.25 are discussed in the next section; see 
also Hartman [1973] and Nelson [1969]. 

The basic tool in the investigation of the asymptotic behavior of orbits 
close to a closed orbit is the Poincark map on a local transversal section, 
defined as follows. Y 

E 
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7.1.1 Definition. Let X be a vector field on M. A local transversal section of 
X at m E M is a submanifold S c M of codimension one with m E S and for all 
s E S, X (s )  is not contained in T,S. 

Let X be a vector field on a manifold M with integral F: 9, c M X R+M, 
y a closed orbit of X with period r, and S a local transversal section of X at 
m E y. A Poincare map of y is a mapping O:  Wo+ W, where: 

(PM 1)  Wo, W ,  c S are open neighborhoods of m E S, and O is a diffeomor- 
phism; 

(PM 2)  there is a continuous function 6 :  W,+R such that for all s E Wo,  
(s, r - 6 (s)) E qx, and O(s) = F(s, r - 8 (s));  and finally, 

( P M 3 )  i f tE(0,r-6(s)) , thenF(s, t )@Wo(seeFig,7.1-1) .  

7.1.2 Theorem (Existence and uniqueness of Poincare maps). ( i )  If X is 
a vector field on M, and y is a closed orbit of X, then there exists a Poincark 
map of Y. 

(ii) If 0 :  Wo+ W ,  is a Poincark map of y (in a local transversal section S 
at m E y) and 0' also (in Sf at m' E y), then O and 0' are locally conjugate. 
That is, there are open neighborhoods W 2  of m E S, W ;  of m f  E S f ,  and a 
diffeomorphism H : W2+ W;,  such that W ,  c W o n  W, , W ;  c W,!, n W; and the 

Figure 7.1-1 
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diagram 

commutes. 

Proof: (i) At any point m E y we have X(m)#O, so there exists a flow box 
chart (U,rp) at m with r p ( ~ ) =  v x I c Rn- '  x R (2.1.9). Then S=rp-'(v x 
(0)) is a local transversal section at m. If F: 9, c M x R+M is the integral 
of X, 9, is open, so we may suppose U X [ - r ,  r] c 9,, where r is the period 
of y. As F, (m) = m E U and F, is a homeomorphism, Uo = F,-'u n U is an 
open neighborhood of m E M with F, Uo c U. Let Wo = S n Uo and W2 = 
F, W,. Then W2 is a local transversal section at m E M  and F,: Wo+ W, is a 
diffeomorphism (see Fig. 7.1-2). 

Now if U2 = F, Uo, then we may regard Uo, U2 as open submanifolds of the 
vector bundle V x R (by identification using rp) and then F,: Uo+ U2 is a 
diffeomorphism mapping fibers into fibers, as cp identifies orbits with fibers, 
and F, preserves orbits. Thus W2 is a section of an open subbundle. More 
precisely, if n : V X I-+ V and p : V X I+ I are the projection maps, then the 
composite mapping 

has a tangent that is an isomorphism at each point, and so by the inverse 
mapping theorem, it is a diffeomorphism onto an open submanifold. Let W, 
be its image, and O the composite mapping. 

Figure 7.1-2 
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We now show that @: Wo+= W, is a Poincark map. Obviously (PM 1) is 
satisfied. For (PM 2), we identify U and V x I by means of cp to simplify 
notations. Then n: W2+ W, is a diffeomorphism, and its inverse ( r )  W2)-': 
W,-+ W2 c W, x R is a section corresponding to a smooth function a: Wl+= 
R. In fact, a is defined implicitly by 

or pFT w, = anFT w,. Now let 6 : Wo+ R : w, H arFT w,,. Then we have 

Finally, (PM 3) is obvious as (U,cp) is a flow box. 
(ii) The proof is burdensome because of the definition of local con- 

jugacy, so we will be satisfied to prove this uniqueness under additional 
simplifying hypotheses that lead to global conjugacy (identified by italics). 
The general case will be left to the reader. 

We consider first the special case m=m'. Then we choose a flow box 
chart (U,cp) at m, and assume S u S ' c  U, and that S and S' intersect each 
orbit arc in U at most once, and that they intersect exactly the same sets of 
orbits. (These three conditions may always be obtained by shrinking S and 
Sf.) Then let W2 = S, Wi = S', and H: W2-+ W; the bijection given by the 
orbits in U. As in (i), this is easily seen to be a diffeomorphism, and 
Ho@=@'oH. 

Finally, suppose m Z m'. Then Fa (m) = m' for some a E(0, T), and as 9, is 
open there is a neighborhood U of m such that U X {a) c 9,. Then Fa(U n 
S)=  S "  is a local transversal section of X at m'E y, and H =  Fa effects a 
conjugacy between @ and O" = Fa 0 O o Fa-' on S". By the preceding para- 
graph, @" and @' are locally conjugate, but conjugacy is an equivalence 
relation. This completes the argument. . 

If y is a closed orbit of X E%(M) and m E y, the behavior of nearby 
orbits is given by a Poincare map O on a local transversal section S at m. 
Clearly Tm@ E L(TmS, TmS) is a linear approximation to O at m. By unique- 
ness of @ up to local conjugacy, 12",,0' is similar to TmO, for any other 
PoincarC map 0' on a local transversal section at m ' ~  y. Therefore, the ' eigenvalues of Tm@ are independent of m E y and the particular section S at E 

9 m. 
rn 
0" 

7.1.3 Definition. If y is a closed orbit of X E % ( M ) ,  the characteristic 
z multipliers of X at y are the eigenvalues of Tm@, for any Poincart? map O at any 

mEy. 
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Another linear approximation to the flow near y is given by TmF, E 
L(TmM, TmM) if m E y and r is the period of y. Note that c(X(m)) = X(m), 
so TmF, always has an eigenvalue 1 corresponding to the eigenvector X(m). 
The (n - 1) remaining eigenvalues (if dim(M) = n) are in fact the characteris- 
tic multipliers of X at y. 

7.1.4 Proposition. If y is a closed orbit of X EX(M) of period r and c, is 
the set of characteristic multipliers of X at y, then c,u (1) is the set of 
eigenvalues of T, F,, for any m E y. 

Proof: We can work in a chart modelled on Rn  and assume m = 0. Let V be 
the span of X(m) so R" = TmS 03 V. Write the flow Ft(x,y) = 
(F,'(X,~), F:(X,~)). By definition, we have 

and 

Thus the matrix of TmFT is of the form 

where A =  D,F:(~). From this it follows that the spectrum of TmF, is 
{l>uc,.  

If the characteristic exponents of an equilibrium lie (strictly) in the left 
half-plane, we know from 2.1.25 that the equilibrium is stable. Likewise, we 
have: 

7.1.5 Proposition. Let y be a closed orbit of X E %(M) and let the char- 
acteristic multipliers of y lie strictly inside the unit circle. Then y is aymptoti- 
cally stable. 

We can sharpen this statement a little using the following. 

7.1.6 Definition. Let X be a vectorfield on a manifold M and y a closed orbit 
of X. An orbit e(mo) is said to wind toward y if mo is + comjdete and for any 
transversal S to X at m E y there is a to such that Fto(m0) E S and successive 
applications of the Poincark map yield a sequence of points that converges to m. V s 

We also use the term "wind toward" for equilibria m to mean merely a + 4 

complete orbit &(mo) that converges to m as t+ + oo. To prove that an orbit s 
3 winds toward a closed orbit it is sufficient to use any PoincarC map, by 

7.1.2(ii). Then the following implies 7.1.5: 8 
rn 
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7.1.5' Proposition. Let y be a closed orbit of X E X ( M )  and let the char- 
acteristic multipliers of y lie strictly inside the unit circle. Then there is a 
neighborhood U of y such that for any mo E U, the orbit F,(mo) winds toward y. 

This follows easily from: 

7.1.7 Lemma. Let f: S+S be a smooth map on a manifold S with f(so) = so 
for some so. Let the spectrum of f lie inside the unit circle. Then there is a 
neighborhood U of so such that if s E U, f ( s )  E U andf" (s)+so as n+oo, where 
f " = f o f o . . .  of ( n  times). 

The lemma is proved in the same way as 2.1.25. 

7.1.8 Definition. If X E % ( M )  and y is a critical element of X, y is an 
elementary or hyperbolic critical element iff none of the characteristic multipliers 
of X at y has modulus one. 

The local qualitative behavior near an elementary critical element is 
especially simple. Also, elementary critical elements are isolated (see Abra- 
ham-Robbin [1967, Chapter V]). 

Nowadays, hyperbolic is frequently used in place of elementary. 

EXERCISES 

7.1A. Show that every (topologically) closed orbit is a point on a one-dimensional 
embedded submanifold. Find an example of an orbit that is not a submanifold. 
(Hint: Consider a vector field on the torus with irrational slope.) 

7.1B. Let X E%(M), cp: M-+N be a diffeomorphism and Y=v,X. Then: 

(i) m E M  is a critica! point of X iff ~ ( m )  is a critical point of Y and the 
characteristic multipliers are the same for each. 

(ii) y CM is a closed orbit of X iff cp(y) is a closed orbit of Y and the charac- 
teristic multipliers are the same. 

7.1C. Complete the proof of 7.1.2. 
7.1D. Prove Lemma 7.1.7. 
7.1E. Let y be a closed orbit of XE %(M). For m, m ' ~  y, show that m is a"-stable if 

and only if m' is. Show that it is also equivalent to a"-stability with respect to 
any Poincare map on a transversal section. (In such a case we say y is 
a"-stable.) Show that the hypotheses of 7.1.5 imply y is a"-stable. 

7.1F. Derive a formula for the derivative of the Poincare map at the fixed point, as 
X the integral of a linearized equation along the closed orbit. 
d - 
4 

9 
TS! 7.2 STABLE MANIFOLDS. a 
2 A key featpre of differentiable dynamics is the smooth structure of the 
2 insets and outsets of an elementary critical element-thus in this context they 

are renamed: stable and unstable manifolds. 
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7.2.1 Definition. If X E X ( M )  and A c M is a closed invariant set, let 

for u = + , - , or k , where ha ( m )  is the ha limit set of m. If y is an elementary 
critical element, S + ( y )  is called the stable maniyold of y, and S - ( y )  the 
unstable manifold of y. 

Note that S +(y )  is the union of orbits that wind toward y (with increasing 
time), and S - (y)  the union of orbits that wind away from y (wind toward y 
with decreasing time). Compare with 6.2.1. 

The following theorem, which is basic to the qualitative behavior near a 
critical element, has a long history going back to PoincarC. For the proof, see 
the appendix of A. Kelley in Abraham-Robbin [1967], Hartman [1973], 
Robbin [I9711 or Hirsch, Pugh, and Shub [1977]. 

7.2.2 Theorem (Local center-stable manifolds). If y c M is a critical 
element of X E X ( M ) ,  there exist submanifolds S,+, CSl+, C ,  CS,-, S,- of M 
such that: 

( i )  Each is invariant under X and contains y. 
(ii) For m € y, Tm (S,+) [ resp. Tm (CSl+), Tm (C,) , Tm (CS,-) , T (S,-)I is the 

sum of the eigenspace in TmM of characteristic multipliers of modulus < 1 
[resp. < 1, = 1, > 1, > 11, and the subspace T,y. 

(iii) If m E Sp then ha ( m )  = y (a  = + or - ). 
(iv) S,+ and SIP are locally unique. 

Note that the configuration of these manifolds is slightly different in the 
two cases covered: y = { m ) ,  a critical point, in which case Tmy = {0), or y is a 
closed orbit, in which case T,y is the subspace generated by X(m).  The two 

C 

critical point with g 4 

closed orbit with 
Ihl I <  1, Ihzl> I 
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cases are illustrated in R~ in Fig. 7.2-1. The theorem says, in addition, that if 
y is elementary, then the nearby orbits behave qualitatively like the linear 
case. 

These manifolds are called respectively the local stable (Sl+), local center- 
stable (CSI+), local center (C,) , local center-unstable (CS,-) , and local 
unstable (St-)  manifold of y. Compare 7.2.1. 

In the case of an elementary critical element y, we have only the locally 
unique manifolds Slu(y), (a= + or -). These are easily extended to globally 
unique manifolds by expanding the local manifolds by means of the integral 
of X. Recall from Sect. 1.5 that A subset S c M is an immersed submanifold if 
it is the image of a mapping f :  V+M that is injective and locally a 
diffeomorphism onto a submanifold of M. 

7.2.3 Corollary (Global stable manifold theorem of Smale). If y is an 
elementary critical element of X E % ( M ) ,  then S +(y )  and S - (y)  are immersed 
submanifolds. Also, y c S +(y )  n S - (y) ,  and for m E y, TmS +(y)  and TmS -(y)  
generate TmM. If n+ is the number of characteristic multipliers of y of modulus 
greater than one, and n- the number of modulus less than one, then the 
dimension of S o  ( y )  is n -, (if y is a critical point) or n -, + 1 (if y is a closed 
orbit), for a = + or - . 

In the case of an elementary critical point on a two-dimensional manifold, 
there are from the stable manifold point of view, three possible local phase 
portraits (see Fig. 7.2-2). 

The stable and unstable manifolds of all critical elements are special 
features of the phase portrait that are second in importance only to the 
critical elements. 

In the previous section we obtained the basic stability criterion for closed 
orbits in terms of characteristic multipliers. 

A deeper stability theorem is the following. 

7.2.4 Theorem (Pliss-Kelley). Let X be a vector field on a manifold M and 
a = + or -. Let y c M be a critical element of X, and S +, S ,  C the stable, 

0 

2 stable node saddle 

Flgure 7.2-2 

unstable node 
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unstable, and center manifoldr of y, respectively. Then y is am-stable with respect 
to X on C iff m is a'-stable with respect to X on CSa. 

For the proof, see Kelley [1967b] or Duistermaat [1976b]. For example, if 
C and S + only occur, and o+-stability on C is established, then it holds in a 
neighborhood of m E M. 

From the local center-stable manifold theorem we also obtain a condition 
for instability. 

7.2.5 Proposition. Let X E % ( M )  and y be a critical element of X. Then i f  y 
has a characteristic multiplier of modulus greater than one, y is a+-unstable. 

This completes the basic ideas of stable manifold theory, for critical 
elements-equilibria and closed orbits-that are the simplest minimal (or 
nonwandering) sets. One of the greatest breakthroughs of differentiable 
dynamics was the discovery-by Smale in the early 1960s-f the generaliza- 
tion to arbitrary nonwandering sets. The obstacle here is the lack of a 
spectrum (analogous to the characteristic multipliers) to use in the definition 
of the hyperbolic (elementary) property. Here is a snapshot of the general 
theory of stable manifolds. For full details, see Hirsch, Pugh, and Shub 
[1977], Duistermaat [1976b] and Fenichel [1977]. 

7.2.6 Definition. Let A c M be a closed set (not necessarily-and not 
usually-a submanifold) invariant under the flow of a complete vector $eld 
X E %(M).  Let TAM denote the restriction of the tangent bundle of M to A. 
Then a spectral splitting of TAM with respect to X is a splitting 

as a Whitmq sum of C O  vector bundles on A, invariant under the derived flow 
{ T+,) on TM, such that there exists a Riemannian metric on M, with associated 
norm 1 1  - 1 1 ,  constants C,  , C, > 0 and constants A, ,  A, with Al <A2 such that, for 
all t > 0, 

(+) IIT+t(e)ll> ~2e""llell i feET,+M 
and 

- IIT+t(e)ll< ~1e"~llell i f e E  T i M  

In this case, the interval [A,, A2] is the spectralgap, and the inequalities (+) and 
(-) are known as the exponential dichotomy. Similarly, multiple splittings are x 
considered, such as the double splitting: 

TAM= T L M  03 T ~ M  03 T, fM 
d 

with two spectral gaps, [A,, A,] for T - M  @ { T ~ M  CJ3 T Z M )  and [A,, A,] for 
{ T ~ M ~ ~ T ~ M } @ T , + M  with A,<A,. Z? 8 
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Thus, for e E T i M  ( a  = +, 0, -) there is an exponential trichotomy: 

For example, the case A, ==A3 =O occurs as follows. 

7.2.7 Definition. Let A c M be a closed set, invariant under theflow {+') of a 
complete vector field X E %(M). Then A is a hyperbolic set of X iff there is a 
double splitting 

with spectral gaps [A, , A*], [A3, A4] satisfying 

and T ~ M  is a real line bundle or zero. 

Note that either XlA=O or else X has no equilibrium in A (i.e., X J A  is 
nowhere zero) and T ~ M  = ( X  ( m ) )  the span of X ( m )  for m €A. Thus T i M  
@ T T M  is a bundle of hyperplanes transversal to the orbits of X in A. It is 
known (e.g., Duistermaat [1976b]) that the invariance of these subbundles 
under {T+') need not be assumed in 7.2.6, and, further, that the splitting (for 
any given gap) is unique. 

There is a corresponding concept for discrete flows. Throughout this 
chapter, we will ignore this parallel theory to minimize confusion. 

Finally, most of the results of generalized stable manifold theory for 
smooth flows can be obtained from the following master theorem. Note that 
compactness of A is assumed and everything is C" here. 

7.2.8 Stable IManifoEd Master Theorem. Suppose A c M  is a compact set, 
invariant under the flow {+') of a complete vector field X E % ( M )  , and 

is a spectral splitting with gap [A ,  h + ]  and Riemannian metric g. 
( i )  Then there is a g-uniform neighborhood of the zero section in T L M  

X 
A 
2 
4 N ; = { ~ E T ~ M ~  Ilell,<6) 
c;l s 

for some iS >O and a C 0  embedding 
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7.2.9 Stable Manifold Theorem for Hyperbolic Sets (Smale [1967]). 
Suppose A C  M is a compact set, invariant under the flow { r p t }  of a complete 
vector field X E % ( M ) ,  and hyperbolic with Riemannian metric g and distance 
d. Then for any initial point x E A the stable manifold (isochron) W + ( x )  is an 
injectively immersed open k -  cell. If y is a point of the inset of A and 
y E S +(A) ,  or equivalently A + ( y )  c A, then y E W + ( x )  for some unique x € A .  
Also, the inset is the union of stable manifolds, 

and this union is a continuous bundle over A, invariant under { r p t } .  

An identical statement applies to the outset, and unstable manifolds, 

EXERCISES 

7.2A. Deduce 7.2.2from7.2.8. 
7.2B. Deduce7.2.3from7.2.2. 
7.2C. Deduce7.2.9from7.2.8. 
7.2D. Deduce 7.2.3 from 7.2.9. 
7.2E. Prove 7.2.5. 

7.3 GENERIC PROPERTIES 

At one point in the history of differentiable dynamics, it was hoped that 
even though an arbitrary phase portrait was too complicated to classify, at 
least the typical garden variety would be manageable. And so began the 
search for generic properties of vector fields. An early result, property (G2) 
described below, was found by Markus [1960]. Since then, most properties 
proposed eventually fell to a counterexample, and the ever-widening moat 
between the generic and the classifiable became known as the yin-yang 
problem. In any case, this section-a survey of the known generic properties 
of differentiable dynamics-is understandably brief. And be warned: none of 
these results is applicable to Hamiltonian dynamics. 

We wish now to express the fact that a property is actually generic, and we ' begin by making this word precise. The main requirement is a topology on s 
g %(M).  As the definition of the topology is somewhat involved, we give here 
r? 

2 just an outline. For details, see Abraham-Robbin [1967, Chapter 111. 
g If U c E is an open subset of a vector space and F is a vector space, we 
Z may put on the vector space W (U,F) of Cr mappings f from U to F(r  < oo) 

with D 9: U+ L$ (E,  F )  bounded ( k  = 0,. . . , r; D f =A a structure of Banach 
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space by def&ng the following Cr norm: 

Let %(M) be the set of Cr vector fields on M. If (U,q) is a chart on 
M,q( U) = U' c E, (TU, Tq) is a natural chart on TM, and for X E 3' (M) we 
have a local representative X, E CW(U', E). If U' is contained in the image of 
a larger chart and is bounded in E, then X, E 3' (U', E). Thus there exists an 
atlas @ ={(U,,qi)) on M such that X ,  E ~ ' ( V , E ~ )  for every i, and the @ 
uniform topology on %(M) is the smallest topology such that the mapping 
X-X, is continuous for all i. If M is compact, it may be shown that this 
topology is independent of the atlas @ ; it is then called the Cr topology. If M 
is not compact, we may take the union of @ topologies for all admissible 
atlases @ on M having the boundedness property above, which is the Whitney 
Cr topology on EX' (M). 

We may now say precisely what we mean by a generic property of vector 
fields. 

7.3.1 Definition. The space of Cr vector fields on M with the Whitney Cr 
topology is denoted by EX'(M). A property of vector jields in EX'(M) is a 
proposition P (X) with a variable X E EX' (M). A property P(X) in EX' ( M )  is 
generic i f  the subspace {X E EX' (M)I P (X)) c EX' (M) contains a residual set 
(see Sect. 1.1). A property P (X) in %(M) is Cr generic if {X E %(M)I P (X)) 
is the intersection of %(M) with a subspace of %(M) containing a residual set. 

Note that a property generic in EX'(M) is Cr generic in %(M) with the 
relative Whitney Cr topology. For it can be shown that the C w  vector fields 
%(-M) c % ( M )  is a residua! set. Also, %(MI is a Banach space if M is 
compact, and is thus a Baire space. For noncompact M, EX'(M) is still a 
Baire space with the Whitney topology (see Morlet [1963]). Thus in either 
case, residual sets are dense, so if P(X) is a generic property, every vector 
field can be approximated as closely as we wish by one with the generic 
property, see Hirsch [1977]. 

We may now state very easily the main results. 

7.3.2 Definition. A vector field X E %(M) has property (G2) if every critical 
element is hyperbolic. 

Y This property (defined in 7.1.8) implies that the critical elements are 
isolated and have stable and unstable manifolds, denoted S+(y) and S -(y). 
We do not define a separate property (GI), but (G2) begins a sequence of ;3 
generic properties (Gi). 2 

Another property of vector fields concerns the position of the intersections 
of these stable and unstable manifolds. 2 
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7.3.3 Definition. A vector field X E %(M) has property (G3) if X has prop- 
erty (G2) and if m E S +(y) n S -(6) for any critical elements y and 6, then 
TmS +(y) and TmS -(a) generate TmM, that is, S +(y) and S -(a) intersect 
transversally at m. 

7.3.4 Theorem (Kupka-Smaie). If M is compact and r > 1, the property 
(G 3) on %(M) is C r  generic. 

This theorem was proved independently by Kupka [I9631 and Smale 
[1963a] in the case of a compact manifold M. The proof consists of a long 
sequence of careful approximations which, when written out in full detail, fill 
thirty pages (Abraham-Robbin [1967]). The theorem has been extended to 
the noncompact case by Peixoto [1967b]. See also Palis and deMelo [1975]. 

Two additional properties have been shown to be C' generic: (G4) and 
(G5). 

7.3.5 Definltion. For a vector field X E %(M) let Cx denote the set of initial 
points m E M such that the orbit o(m) is complete and has compact closure, and 
recall that 9, is the set of lzonwandering points of X. Then 

is the o-compact-nonwandering set of X. The vector field X has property (64) i f  

where rx is the union of all critical elements of X. 

Note that if M is compact, Os = 9,. Also, as cl(rx) c92 always, (G4) is 
equivalent to c cl (r,). Compare (G3). 

7.3.6 Theorem. Property (G4) is C'  generic. 

This was established by Pugh [I9671 for compact M using his closing 
lemma, and Robinson [1970a] for the general case. 

The genericity of (G5) also follows from this very difficult lemma. 

7.3.7 Definition. A regular Jirst integral of a vector field X E %(M) is a 
proper function f:  M-+R of class C'  such that f is not constant on any open 

A subset of M, and L, f = 0. A vector field X E %(M) has pmperty(G5) if X has 
no regular first integral. 

m 
Li 
0 

7.3.8 Theorem. Property (G5) is C' generic. 

f i  
Z For a proof, see Peixoto [I9591 and Robinson [1970a]. 
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It is this theorem which suggests that, generically, a Hamiltonian vector 
field X, has no regular first integral other than H itself. Let S3= { X  E 
%(M)IX has property (G3)) with the C' Whitney topology. A different type 
of stability has been introduced by Pugh. 

7.3.9 Definition. A vector field X E S3 is critically stable or has property (G6) 
i f  the mapping cl(F) : 9, +2r : X H cl(r,) is continuous at X. 

7.3.10 Theorem (Pugh). If M is compact, thenproperty (G6) is C' generic in 
%(MI. 

This is in fact a fairly easy corollary of the Kupka-Smale (G3) density 
theorem. This was proved very ingeniously by Pugh [I9671 using properties of 
set valued mappings with the Hausdorff metric, and used by him with the 
closing lemma to prove the (G4) density theorem. See also Robinson [1970a]. 

EXERCISES 

7.3A. Prove that if M is compact and X E %(M), then Cx = M and = ax. 
7.3B. Find an example X E %(R 2, with Qs # ax. 
7.3C. If X €%(R2) has a regular first integral f, show that the critical points off 

include the equilibria of X. 
7.3D. Is the vector field X,, of the Hopf bifurcation (Sect. 5.6) critically stable? 

7.4 STRUCTURAL STABILITY 

Structural stability was an early candidate for a generic property of vector 
fields. Although it turned out to be generic only in the two-dimensional case, 
it may be important in applications. Some weaker notion of stability may be 
found to be generic eventually. In any case, we outline now some of the 
results of this program, initiated by Andronov and Pontriagin [1937]. 

7.4.1 Definition. Let X be a vector field on M. Then X is C r  structurally 
stable i f  there is a neighborhood 8 of X E % ( M )  in the Whitnty C r  topology, 
such that Y E 8 implies X and Y are .topo~ogicaliy conjugate, that is, thty have 
equivalent phase portraits: there is a homeomolphism h: M+M carrying 
oriented orbits of X to oriented orbits of Y. The set of Cr  structurally stable 
vector fields on M is denoted by Z',(M). 

7.4.2 Definition. A vector field X E % ( M )  is said to be a Morse-Smale Y 
E system if it has properties ( G  3),  (G4),  and (F): it has a finite number of critical 9 

elements. rn 

i2 
d 

For the two-dimensional case note that (G3) is equivalent to: No orbit Z 
connects two saddle points; that is, there are no saddle connections. f2 
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7.4.3 Theorem (Pelxoto). If M is compact, orientable, and two dimensional, 
and 1 < r < a, then: 

( i )  X E Z', ( M )  iff X is a Morse-Smale system; 
(ii) Z', is an open, dense subset of % ( M )  in the C r  topology. 

For the proof see Peixoto [1962]. 
For higher dimensions, the foregoing approach fails because of'the follow- 

ing results. 

7.4.4 Theorem (Smale [1964a]). For every n>2, there exists a compact 
manifold M, a vector field Xo on M, and an open neighborhood U of X,E 
% ( M )  in the C'  topology, such that every X E U has property (G4) but not 
property 

7.4.5 Theorem (Anosov [1967]). For each n > 2, there is a compact n-mani- 
fold M and X E % ( M )  such that X is C' structurally stable but does not have 
property (F) .  

7.4.6 Theorem (Smale [1966]). There is a manifold of dimension four such 
that in the C' topology, 2; is not dense in %'(M). 

Concerning the relations between properties (Ga) and structural stability 
there are the following results. 

7.4.7 Theorem. Let M be a compact manifold. If X E % ( M )  is C ' structur- 
ally stable, then X has: 

( i )  property (G3) (Markus [1961]); 
(ii) property (G4) (Pugh [1967]); 

(iii) property (G5) ( Thom, see Peixoto j 1967al). 

When the nongenericity of structural stability was accepted, weaker 
concepts of stability were proposed. Here is an important one, due to Smale 
[1970b]. 

7.4.8 Definition. If X, Y E  %(M) ,  with nonwandering sets Q ,  and limit 
sets Ax, A,, then X and Y are A-conjugate (resp., 0-conjugate) if there is a 
homeomorphism h : Ax-+Ay (resp. h : Qx+Q ,) preserving oriented orbits. A 
vector field X E % ( M )  is A-stable (resp. O-stable) if it has a C ' neighborhood 
G(t in % ( M )  such that Y E  G(t implies Y is A-conjugate (resp. 8-conjugate) to 4 
X. 8 

2 
z As Ax cQx c M, it is obvious that A-stability is weaker than Q-stability, 

which is weaker than S-stability. Within days of the proposal of these weaker 



536 3 AN O U T L I N E  O F  QUALITAT IVE  D Y N A M I C S  

notions of stability, the first of the counterexamples was constructed (Abra- 
ham-Smale [1970]), killing hopes that they might be generic properties of 
vector fields. 

Concerning stability stronger than structural, here is a key result. 

7.4.9 Theorem [Palis-Smale (1970)l. Morse-Smale implies structural stabil- 
ity. 

Let 2, c %(M) denote the Morse-Smale vector fields (7.4.2) and Z, c 
K ( M )  the a-stable vector field ( a=  S,  A, or a). 

Then we have, in summary, the tower of stability 

where G4is the set of vector fields satisfying generic properties (G2) to (G4). 
Here the double inclusion sign cc (informally) signifies inclusion and a 
large gap. Finally, recent results (Zeeman [1975]) allow replacement-in the 
tower of stability--of the smallest set (2, = Morse-Smale vector fields) by a 
much larger one (2, = Smale-Zeeman vector fields). 

Parallel to the tower of stability is another: 

the tower of absolute stability. This parallel tower, and its geometric descrip- 
tion, is set out in the next section. 

EXERCISES 

7.4A. Prove that in the two-dimensional case property (G3) is equivalent to: No 
orbit connects two saddle points, and (G2). 

7.4B. Characterize a-stability in terms of continuity of a set mapping, a = S,  A, 0. 

7.5 ABSOLUTE STABILITY AND AXIOM A 

We may think of the generic vector fields 9, as heaven bin) and the 
Morse-Smale systems Z, as earth bang). Differentiable dynamics attempts 
to build a tower from earth to heaven, in spite of warnings from Puritan poets 
and others (Abraham [1971]). 

The literature is full of examples demonstrating the largeness of the gap 
between the top of the tower of stability Z, and heaven. And so, in 1970, s Smale proposed a new tower, the A-tower, based on his "Axiom A" of 1966: 

4 
m 

EM c c aNC cc G4 vr o 
Q) 

d 
Although it subsequently turned out to be a little shorter than the tower of Z 
stability, it has wonderful features: geometric descriptions, statistical $ 
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mechanics, algebraic classification, reasonable bounds for numbers of critical 
elements, and so forth. These features are still being elaborated; for details, 
see Takens [1973a], Duistermaat [1976b], Bowen [1975], Manning [1975], 
Robbin [1972a], and Hirsch-Pugh-Shub [1977], and Bowen [1978]. 

The definitions of as, and aN, require a substantial diversion, as we 
shall see. And throughout this section, let M be compact, to keep things 
simple. 

Recall that for X E %(M), cl(rx) is the closure of the critical elements of 
X in M, cl(Ax) is the closure of the a and w limit sets, Ox is the set of 
nonwandering points, Rx is the set of recurrent points, and 

always (6.3.2 and 6.3.5). 

7.5.1 Definition. A vector field X E % (M) satisfes Axiom A [or has property 
(A)] if Ox is hyperbolic, and (G4), cl(rX) = Ox. Let (M) c %(M) denote 
the set of vector fields satisfying Axiom A. 

We know (G4) is generic, but (A) is not (Abraham-Smale, [1970]). The 
geometric characterization of Axiom A vector fields is based on the following. 

7.5.2 Spectral De~omps l i lon  Theorem (Smaie, 1967j. If X E @(M) (with 
M compact), then Ox is a finite union of painvise disjoint closed connected 
invariant sets 

G x = O , u . . .  uO, 

which are topologically transitive: there is a dense orbit in each. 

These components, Oi, are called the basic sets of X E a. They play the 
same fundamental role in differentiable dynamics that minimal sets play in 
the topological theory. Yet, basic sets are rarely minimal. It is known that the 
flow of X within a basic set is not only topologically transitive, but even may 
be mixing (in the sense of ergodic theory) (see Bowen [1975]). 2 

4 There are three sorts of basic sets: an equilibrium point, a closed orbit, 
CCI 

3 and a chaotic set. A chaotic set means simply any basic set other than a 
critical element. 

Z If A0(m) is in the basic set Oa(o = +, -) we say the orbit of m goes from z O- to O+. 
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7.5.3 Definition. If X E &(M) and O, Oj are basic sets, then we write Qi+Oj 
i f  there is an orbit which goes from Oi to Oj. 

This is simple to visualize if X is Morse-Smale, and we may pretend that 
any Axiom A flow is a Morse-Smale system with some of its critical elements 
"blown up" into chaotic sets. 

A directed graph (or quiver) may be drawn to symbolize the relation + on 
basic sets. This will have a finite number of vertices (if M is compact) 
corresponding to the basic sets, and directed edges (arrows) for the relation. 
This is the Smale quiver of X E &(M). If, in addition, each vertex is labelled 
with its inset and outset dimensions and the dynamical system (Oi,XIOi), and 
each directed edge labelled with its intersection topology, we could hope that 
the flow of X could be recovered from the labelled quiver. At present this is 
unknown, but see Robinson and Williams [1977]. 

Now we are ready to return to the A-tower of Smale. 

7.5.4 Definition. A vector field X E & (M) satisfies property ( N C )  , or has the 
No Cycle property, if there are no cycles: 

(where s > 1 and Og # Oik for j # k )  in its Smale quiver. Let aNC c & denote the 
set of X E & satishing property (NC) .  

Note that for X E 6ENc we may orient the Smale quiver in a descending 
"order," the source vertices at the top and sinks at the bottom, and saddle- 
type basic set vertices in between. However, + is not an order relation, but 
just a partial ordering. 

The first justification for the definition of &Nc as a rung of the A-tower 
was the celebrated O-stability theorem of Smale [1970a]: for discrete flows, 
aNC c 2,. Shortly afterwards, this inclusion was also established for continu- 
ous flows, by Pugh and Shub [1970a]. 

7.5.5 &Stability Theorem. For vector fields on a compact manifold, aNc c 
2,. 

For the remaining set in the A-tower, as,, the stable and unstable 
manifolds must be reconsidered. 

Let X E &(M) and O be a basic set of X. Then O is a compact connected 
invariant set with a hyperbolic structure. So according to the stable manifold Y 
theorem the inset of O is a continuous cell bundle of stable manifolds of 
points of O, 
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and similarly, for the outset, 

s - ( 9 ) =  u w - ( x )  
~ € 9  

Further, the flow on 9 ,  la), has a dense orbit. Suppose x E 9 has X + ( x )  = 
9. Then So(9)= So(x) ,  as defined earlier (6.3.1). For any m E  M, X+(m) is in 
one of the basic sets, say Qi. Thus m E  W + ( x )  for some unique ~ € 9 ~ .  
Likewise, m E W - ( y )  for a unique y EQ,, where Qj+Gi. These two injectively 
immersed cells intersect at m, 

In addition, the inset and outset meet, 

Note that if m' is a point on the orbit of m, m# m', then m E W +(x), 
m ' ~  W+(x l )  implies x f ~ S + ( O i ) ,  but x ' e  W+(x) .  To unite the distinct 
isochrons through distinct points on the same orbit, we introduce yet another 
version of stable manifold. 

7.5.6 Definition. For X E @ ( M ) ,  complete, and m,EM let @"(mo)= 
ut,,Wo(mt), a= +, -. If y c M  is an orbit, let T@(y)=@(mo) for any 
mo E y. These are the suspended stable (a = + ) and unstable (o = -) manifolds 
of Y. 

Note that if y is an equilibrium point, @"(y)= Wu(y).  If y is a closed 
orbit, then Fk'(y)= Su(y).  If y is in a chaotic hyperbolic set 9, then 
F k  ( y )  C so (9). 

The complete theory of differentiable dynamics has two parallel, distinct 
branches: discrete and continuous flows. Each is necessary for the other, and 
they are nearly identical. In the research literature, the discrete case is usually 
treated explicitly and the continuous case is sometimes disposed of with a 
wave of the hand. One reason is that the distinction between stable manifolds 
and their suspensions is a major annoyance. Throughout this chapter, we try 
to treat the continuous case exclusively, for expository reasons. But many of 
the references to the literature cross to the discrete track. 

We return now to the A-tower of Smale, in the continuous version. 

5 7.5.7 Definitlon. A vector field X E & ( M )  satisfies property (ST)  or the 
Strong Tranwersality property i f  for all m EM, the suspended stable and 

2 unstable manifolds meet transversally, 
13 
2 @+ ( m )  m @-(m)  
z 

Let as, c @ denote the set of vector fieldr satisfying this property. 
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This completes the definition of all levels of the A-tower. It is easy to see, 
directly from the definitions, that Z, c gST. If the definition of 2, were at 
hand, it would be equally evident that Z ,CZ,C&~~,  and that this short 
tower is a very natural progression. So, to complete this tower, we lack only 

That is, Strong Transversality implies No Cycles. To prove this, it is necessary 
to bridge over to the third tower, of absolute stability. The construction of 
this bridge, a tour de force of global analysis, is well described in Robbin 
[ 1972al. We will finally obtain: 

(see Fig. 7.5-1) to complete the A-tower. Meanwhile, the inclusions 2, cZAS 
c Z,, comprises the third tower, which we will now establish. 

Figure 7.5-1. The three towers of differentiable dynamics. 
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Let c'(M, M) denote continuous maps with g a Riemannian metric on M 
and do the induced metric on c'(M, M). We endow the vector fields X(M) 
with the C" Whitney topology, and let 11 11, denote the C0 sup norm induced 
by g. 

7.5.8 Definition. A vector fieId X E %(M) is absolutely structurally stable i f  
there is a neighborhood % of X E %(M), a function @: %+CO(M, M), and 
a real number K > 0 such that for all Y E %: 

(i)  dl)(Id&f,@(y))G K ~ ~ y - x ~ ~ O ;  

(ii) @ ( Y )  carries oriented orbits of Y to oriented orbits of X. 

Let ZAs denote the set of absolutely structurally stable vector fielh in 
%(MI. 

From condition (ii) above, it is evident that Z,, cZ,. The added condi- 
tion (i) is a sort of Lipschitz condition. While not obviously motivated, it 
simply grew out of the attempts to characterize as,; see Robbin [1972a] for 
full details. Here is the result due to Robbin [1971a], Franks [1972], Robinson 
[1975a], and MaiiC [1975a, 1975bl. 

7.5.9 Theorem. For compact manifolds, @,, = Z,,. 

The proof in the context of continuous flows is found in Duistermaat 
[1976b]. 

Finally, we come to absolute Q-stability, a concept due to Guckenheirner 
[1972]. We suppose, for a start, that we have X E%(M) with nonwandering 
set Q,, and use the notations of 7.5.8. Let I, = ZdlQ, E C0(QX, M). 

7.5.1 0 Definition. A vector field X E %(M) is absolutely astable i f  there is a 
neighborhood % of X E %(M), a function @: %--+C0(QX, M), and a real 
number K > 0 such that for all Y E %: 

(9 dO(IX, @(Y)) 9 KII Y-XIIo; 
(ii) Zm [a( Y)] = !d ,; 
(iii) @(Y) is a homeomolphism that carries oriented orbits of X in 3, to 

oriented orbits of Y in Q,. 

This compares with 7.4.8, as 7.5.8 compares with 7.4.1. And as Z, cZ,, so 
also Z,, c Z,,. This inclusion of the tower of absolute stability is trivial. The 
final inclusion is the following, due to Franks [1972] and Guckenheimer s 

g [1972] in the case of discrete flows. Knowing of no explicit proof in the 
m 
3 literature for continuous flows, we append a question mark to "theorem." But 
$ the techniques of Duistermaat [1976b] should be easily adapted to prove this. 
z 

7.5.11 Theorem (?) For compact manifolds, X A a c  @,,. 
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Referring again to the tower picture (Fig. 7.5-l), all of the sets are defined 
and all the inclusions explained. This final step completes the A-tower by 

but a direct proof of as, c aNC should be possible, using the homoclinic 
technique of Abraham-Smale [1970]. 

We have been vague about the topmost inclusions--@ cg,, for ex- 
ample-as the literature is incomplete, and they are not too important. 
Clearly, @ c 4,. But @ c Q5 is questionable, and @ c 4, is probably false. So 
we may consider 

as the current state-of-the-art A-tower. Except for Zz (see Zeeman [1975]), 
this was described in Smale [1970a]. 

What of the future? The gap @ cc 4, still prevents pilgrims from climb- 
ing to heaven by performing good works. In these heights, however, is a 
glimmer. Recent work on Lorenz' equation suggests a promising way to 
weaken hyperbolicity in Axiom A. See Guckenheimer [1976a], Rossler [1976], 
Williams [1977], Ratiu and Bernard [I9771 and Shaw [I9781 for a description 
of the strange nonwandering set of this vector field on W 3. 

We have not mentioned an important consequence of Axiom A: The 
equilibria are isolated points in a. Thus $2 consists of isolated equilibria, 
isolated closed orbits, and distinct chaotic basic sets. In these latter sets, 
closed orbits are dense and there are no equilibria. It is this feature that is 
violated by the Lorenz system. Hopefully, it will lead to a new rung, or a new 
tower. 

Finally9 we should point out that large parts of the theory of @ have not 
been mentioned-especially symbolic dynamics, entropy, and homology 
-and the interested reader should go to the bibliography. The review articles 
such as Markus [I9751 and Robbin [1972a], and basic books such as Manning 
[1975], Bowen 119751, Hirsch-Pugh-Shub [1977], Bowen [1978], and most of 
all Smale [I9671 should be consulted. 

EXERCISES 

7.5A. Identify the basic sets and draw the Smale quivers for the vector field 
X = - grad(n, where f: TZ+ R is any Morse function: all critical points x 
are nondegenerate (see 3.2.3). Does X satisfy Axiom A? @ 

7.5B. Find a vector field X E X(R3) having a cycle of hyperbolic sets. 4 
m 

7.5C. Prove X, c as,. 8 
7.5D. Prove eS, c gNC directly. 2 
7.5.E. Prove (and publish) 7.5.11. Z 
7.5.F. Is c 8,? 8 
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7.6 BIFURCATIONS OF GENERIC ARCS 

Bifurcation of vector fields refers to an instability within a parametrized 
family of vector fields. Let M be a paracompact manifold, so %(M) is a 
Frkchet space. We suppose that the differential calculus has been developed 
in this context, as described in Chapter 1. Let C be a finite-dimensional 
manifold. 

7.6.1 Definition. A Crcontrolledvectorfieldis a Crmap y: C+%(M). The 
control space of y is C and M is the phase space. In case C is an open disk at 
0 E Rn and y is an embedding, then y is called an n-dimensional family of vector 
fields, or an n-parameter perturbation of Xo=y(0), the focus of p. A point 
c E C is a robust point of y if there is an open neighborhood U of c E C such that 
for all u E u,-y(u) and y(c) are topologically conjugate vector fields. A point 
c E C is a bifurcation point of y if it is not a robust point. k t  CB ( y) denote the 
set of bifurcation points of p 

As the control c E C is changed, the phase portrait of X, = y(c) is un- 
changed (up to topological conjugacy) until c crosses the bifurcation set C,. 

Note the similarity between ordinary points in C and structurally stable 
vector fields in %(M). Let '9 denote the bad set in %, that is, of nonstructur- 
ally-stable vector fields 

'9 =%\Zs 

It looks as if CB ( y) = y -'(3 ). This is not so, although CB(y) c y -I('%), or 
equivalently, c E CB( y) implies X, E '9 . For the image y[C] can hit '% a 
glancing blow, from one side, without actually entering a distinct component 
of Z,. Worse yet, y[C] c '% is possible. 

Within differentiable dynamics, the study of bifurcations may be regarded 
as the experimental branch. A two-way street, it brings experimental results 
into the theory of structural stability, and brings applicable results from 
theory into the empirical domain. 

The earliest work on bifurcations known to us is the famous experiments 
of Chladni in 1787. A contemporary of Beethoven in search of new musical 
instruments, he sprinkled fine sand on hand-held glass and copper plates, 
which he bowed with a cello bow, and discovered his famous nodal lines. The 
pressure of the bow is the control parameter. 

Inspired by Chladni, Melde discovered analogous bifurcations with 
stretched strings, while Faraday (1831) and Matthiessen (1868) examined 
vibrating fluids, disagreeing over the results. The discovery of the vector field 

$I: modelling these phenomena by Mathieu (1868) led to the initiation of a 
mathematical theory of bifurcation by Lord Rayliegh (1877). Among other 
things, he correctly explained (1883) the disagreement between Faraday and 
Matthiessen by interpolating a bifurcation between their control parameters. 

z This explanation was rigorously justified much later by Benjamin and Ursell 
[1954]. 



544 3 AN OUTLINE OF QUALITATIVE DYNAMICS 

The origin of bifurcation theory, as a branch of differentiable dynamics, is 
generally attributed to PoincarC [1885], the father of dynamics. The current 
emphasis--on the relationship between bifurcations and structural stabili- 
ty-emerged in Andronov and Leontovitch (1938). For further history of this 
period, see Minorsky [1974, Chapter 71. The theory assumed its modern form 
during the 1960s, especially in the work of Sotomayor [1974]. 

In this section, we give a brief introduction to the theory of generic 
bifurcations for arcs (n = 1) and finally say a few words about planar families 
(n = 2). This represents more-or-less the current frontier of the theory. 

We wish to make clear right at the start that an exact theory does not yet 
exist. As long as there is a gap in the tower of stability (described in the 
previous section) bifurcation theory will be a house of cards. Why, then, carry 
on so long about this subject? There are two equal and opposite reasons. The 
theorists of differentiable dynamics see bifurcation theory as a tool to extend 
the tower jf stability to heaven by dissecting the bad set 93 = X\X,. Their 
idea is to study a little slice C of X ,  through $8, as if it were the whole thing. 

Meanwhile, the applied dynamics community feels that attractors are the 
only observable features of a phase portrait, in experimental situations. For 
example, see Abraham [1972a] or Ruelle and Takens [1971]. In these situa- 
tions, only a finite number of parameters can be varied. The universal 
experiment consists of a black box with n control knobs. A microcomputer 
inside models a dynamical system with n parameters evaluated by the knobs. 
When an initial point is fed into a slot at the top of the box, an a-limit set 
plops out the bottom. After numerous repetitions with different initial points, 
most of the attractors are located. Then, one of the knobs is incremented a 
bit, and the process repeated. (Experimental dynamics is slow and tedious, yet 
a robot mathematician has been built to automate this process; see Stein and 
Ulam [1964].) 

A theory useful to this group would provide an encyclopedia of generic 
bifurcations. Meanwhile, an experiment interesting to the theorists wodd 
draw pictures of all bifurcations the theory should eventually classify. (The 
experimentalists are ahead at the moment.) Both groups are inspired, to some 
extent, by the success of the unfolding technique for singularities of functions, 
described in Thom [1975]. 

Like vector fields, only generic families are interesting, or manageable. 
What is a generic family? 

As for vector fields, a generic property of families is defined in terms of 
residual sets in C? '(C, X(M)), the set of all Cr controlled vector fields with 
control space C and phase space M. But in what topology? There are two 
choices in use: The Cr Whitney topology and the Cr graph topology. The 
latter is defined as follows. 

For ,u E C? r(C, X(M)), let G, E !?? (C x M) be defined by 

6 

Visualizing C x M with C horizontal and M vertical, G, is a vertical vector 
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field. Thus 

6: e r ( c ,  EX(M))+F(C x M )  

This is a standard construction in global analysis. The Cr graph topology in 
(? '(C, %(M)) is defined by pulling back the Cr Whitney topology of 
% (C x M). 

7.6.2 Delinilion. Let (? ',(C, GX(M)) denote (? '(C, EX(h4)) with the Cr 
Whitney topology, and (? ',(C, %(M)) denote the same set with the Cr graph 
topology. A property P ( y) for p E (? ' (C, %(M)) is Gr-genedc (resp. Pr-gene&c) 
if 

is residual in the Cr graph (resp. FVhitney) topology. 

7.6.3 ProposRion. The graph map 

is continuous. 

Thus the graph topology is contained in the Whitney topology, and both 
are Baire, so residual sets are dense. A set residual in (? ', is automatically 
residual in (? >, so it is harder for a property to be generic in the graph 
topology. 

This will make it possible for the reader to go to the literature without 
getting lost. In the sequel, just plain generic (for a property of control systems) 
will mean 6'-generic, and we will consider C 1  families. 

So now, the known results of bifurcation may be described as generic 
properties of families of vector fields. 

Most of these concern the one-parameter case n = I. It is already known 
that planar perturbations are f s i a t e i n d y  complicated (Takens [1974a] and 
Arnold 119721); some examples were mentioned in Sect. 5.6. But take courage, 
much is revealed by arcs. 

The first result on generic arcs of vector fields, yE(?'(I, %(M)) ,  I= 
[ -  1, I ]  c R, is special to the case dim(M)= 2 This is very important for the 
understanding of the general case. 

Recall that the two-dimensional case is special, from the perspective of 
structural stability, because there 

!? 
4 Z, = Z, 
m 

8 
is generic, in fact open and dense (7.4.3), whereas for dim(M) > 2  
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is a long reach. In fact, Morse-Smale (X EX,) means, in the two-dimen- 
sional case: 

(F) finite number of critical elements, y ,, . . . , yk 
(63) all hyperbolic, and 
(64) Q=A=T: for all initial points m EM, the limit sets a(m) and w(m) 

must be critical elements, so 

y- =a(m)+w(m)= y+ 

For the critical points there are three hyperbolic cases: source, saddle, and 
sink. For the closed orbits, there are two hyperbolic cases: source, and sink. 
The basins of the attracting critical elements are dense, the complement 
consists of the sources, saddles, and insets of saddles. This is the famous 
theorem of Peixoto [1959]. Note that the two-dimensional minimal sets (see 
6-49) are not allowed. Neither are saddle connections: y- = a(m)+w(m)= 
y +, where both y - and y + are equilibria of saddle type. 

In this context, the first result of modern (generic dynamic) bifurcation 
theory gives a very satisfactory analysis of generic arcs. 

7.6.4 Theorem (Setsmayor 119681). The foklowing property is generic, for 
arcs of vector jelds on wo-dimensional manifolds; p E Ci(I ,  %(M)):  

( i )  The b$urcation set I, c I is closed, and nowhere dense. 
( i i )  I, = p - '(9 ), that is, whenever X, fails to be Morse-Smle for some 

c E I, then c is actually a bifurcation point, c E I,. 
(iii) Whenever c passes a bifurcation point b E I,, exactly one of the following 

four violations of the Morse-Smale conditions occurs: 
Q,: one of the equilibria is nonlzyperbolic 
Q,: one of the closed orbits is nonhyperbolic 
Q,: two equilibria of saddle type (not necessarily distinct) have a saddle 

connection 
Q,: nontrivial recurrence, Q # cl (T) , so X, has (63) and (F) , but not 

(64). 

For the proof-an elegant application of transversality theory (and excel- 
lent diagrams)-see Sotomayor 119741. The idea is to show that Q,, Q,, and 
Q, describe a submanifold Q in % ( M )  of codimension one (plus bits of junk) 
then perturb an arc p: I+EX(M) to be transversal to Q. The distinction 
between Pgeneric and G-generic must be treated carefully. 

To make the transition to generic arcs on phase spaces of higher dimen- 
sion, d h ( M )  > 3, we must first of all give up the condition (F) of finiteness of 
Q. The reason for this is that, in case dim(M) = 3, for example, we can have a 
two-dimensional outset Out(y-) meeting a two-dimensional inset In(y+) 
Iransversally, in a one-dimensional orbit. Thus, saddle connections y - -+y + 

cannot be perturbed away. And if there is a cycle, 
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with all Inset-Outset intersections transversal, then it is known that 
Out(yi) n In(yi) transversally for each i= I , .  . . , k. Further, each intersection 

Out(yi) n In(?,) is contained in the nonwandering set fd and even in cl(r) ,  the 
closure of the set of critical elements. This situation is called a homoclinic 
tangle, or a generic cycle. When, in an arc of vector fields, a saddle connection 
is created that completes a cycle, this tangle becomes a large-scale addition to' 
the nonwandering set-an a-explosion-and the sets cl (r) c a are necessarily 
infinite. 

Thus, for dim(M) > 2, we start with the tower: 

rather than the tower of structural stability. Recall that in this tower, 

E M =  Morse-Smale 
as, = Axiom A + Strong Transversality 
ZAs = Absolute Structural Stability 
ZA, =Absolute Stability 
aNC = Axiom A + No Cycles 

@=axiom A 
9, = Kupka-Smale + [c l (r )  = $21 
9, = Kupka-Smale 

%(11.ir)= All CM vector fields 

Corresponding to the approximation theorem of Sotomayor in the case 
dim(M) =2, which gives arcs that are nice with respect to the Morse-Smale 
set Z, c %(M),  is the following, which yields arcs in general position with 
respect to the Kupka-Smale set 9, c % ( M ) .  This combines results of 
Brunovsky [1970], Sotomayor [1973b], and Newhouse and Palis [1973b]. 

7.8.5 Theorem sf Generic Arcs. The following property is generic, for arcs 
p E C 1 ( I ,  %(MI) of vector 3el& on 3nite-dimensioml nzanifoldr: 

(i) The bifurcation set I, c I is closed. 
( i i )  4 = I ,  u 14, where 

J3 = p-'(% \ G,) 

are closed, I ,  is countable and nowhere dense, and I,  n int(1,) = 0. mm, 
Y wheneuer X, fails to be Kupka-Smale, or has nontrivial recurrence, 2 
4 $2 +cl(I'), then c is actual& a bifurcation point. 

(iii) menever c passes a b@rcation point b E I,, exactly one of the following 

2 three violations of Kupka-Smale occurs: 
Z Q,: one of the equilibria is quasi-hyperbolic 
g Q,: one of the closed orbits is quasi-hyperbolic 
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(2,: two critical elements (not necessarily distinct) have a saddle connec- 
tion which is quasi-transuersal. 

(iv) menever a gasses a bifurcation point b E I,, X, has nontrivial recurrence 
Q #= cl (I"). 

Here quasi-hyperbolic means, roughly, that the critical element fails to be 
hyperbolic through the passage of only one (or, a single complex conjugate 
pair) of the characteristic exponents across the imaginary axis (compare the 
Nopf bifurcation described in Sect. 5.6). Similarly, quasi-transversal means, 
more or less, that the two imersed manifolds cross nontransversally in the 
simplest way, by only one dimension too much. For the precise definitions, 
see Newhouse and Palis [1973b] (beware, the definition of bifurcation there 
uses Z,, in place of 8,-we could call this absolute bifwmeion), where the 
Q-explosion caused by creation of a homoclinic tangle is fully dissected. 

At this point you may ask: m a t  happens to the phase portrait of X, as c 
passes b E I, such that Q, occurs, i = 1, 2, or 3? We return to this question in 
the next section, at least for i =  l or 2, and give there some examples. Also, 
the diagrams in Sotomayor [1973b] are very instructive. 

Before ending this section, it would be appropriate to describe the generic 
bifurcations for k-parameter families k >  1. But unfortunately not only is 
there precious little known here, but worse yet, what is known is frighteningly 
complex. These discoveries we owe to h o l d  and Takens-who ventured 
where others feared. Considering the two-parameter analogs of Q, and Q,, 
Takens finds generic properties and normal forms for the simultaneous 
passage of two principal characteristic exponents across the imaginary axis. 
The resulting classZication is not finite, due to "certain symrnetry properties." 
For an excellent discussion, see Arnold [I9721 and Takens [1973a]. Also, see 
Fig. 5.6-8. 

EXERCISES 

7.6A. Prove 7.6.3. 
7.6B. Draw a microscopic portrait of a homoclinic tangle. 

Y 
7.7 A ZOO OF STABLE BIFURCATIONS z2 

4 
To be interesting, a controlled vector field or family of vector fields 3 

should be more than generic-it should be stable. The motivation sf stability 2 
and the corresponding definitions are similar to those for vector fields. As the z 
theory of stable families is hardly begun, we will not present these definitions. 2 
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Presumably, a tower will be constructed (for arcs) 

where S stands for simple arcs, Z for stable arcs (however defined), and 9 
for generic arcs, having all known generic properties-including those of 
Brunovsky, Sotomayor, Newhouse, and Palis, described in the preceding 
section. The first proposal for Z (Sotomayor [1973b]) was promptly defeated 
as a generic property (Guckenheimer [1973a]). 

As this subject settles down, it will hopefully be extended to k-parameter 
families with k >  1. The concorrnitant maturation of stability theory for vector 
fields will aid this extension. In the mea;rwhi!e, one miat say that the theory 
of stable bifurcations consists of a few prototypical examples, which ought to 
be stable according to any reasonable definition. That is, if one perturbs 
them, no qualitative features seem to change. 

In this taxonomic section, we describe these prototypical bifurcations. In 
the descriptions, yielding to our softness toward the viewpoint of applications, 
the bifurcations of attractors will be especially emphasized. Let M have a 
probability measure a, that is, a measure with o(M)= 1. The probability of 
putting rn E M  into the top of tbe empirical black box, and having a limit set 
Q, =w(m) plop out the bottom, is PI = o[In(Q,)]. So if 9, is an attractor, the 
probability is the volume of its basin B, = In@,), and otherwise we expect 
PI =o. 

We consider single, isolated, stable bifurcations of arcs. Thus y: I= 
[ - 1, I]+%(M) and I, = (0). For simplicity, we imagine y[ - 1,O) c Z,, and 
y is "stable," hence generic, that is, X,, = y(O) is a bifurcation characterized by 
Q,: Q,, or (2: in the theorem on generic arcs (7.6.5). We consider a taxonomy 
of five types: 

I. Local: near a Q, equilibrium 
II. Local: near a Q, closed orbit 

III. Global: caused by a Q, saddle connection 
IV. Global: caused by a local bifurcation 
V. Global: other types--especially those caused by chaotic sets 

Without further ado, here is the zoo of prototypical bifurcations. Each 

Y 
illustration consists of three parallel movies, using the following conventions: 

e4 
2 - 4 track of an attractor 

------ track of saddle or repellor 
$ o[o~'] a repellant equilibrium (resp. closed orbit) 
2 @ a quasi-hyperbolic set 

@[eS'] an attracting equilibrium (resp. closed orbit) 
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Figure 7.7-1. Static Creation. 
Type: I-Local Q, 
Other names: True bifurcation; Fork; Saddle-node 
History: Poincar6 I 1  8851 
Modern reference: Takens [1973a] and Sotomayor [I9741 
Minimum dimension: One 
Description: The vector field contracts near a point p E M .  All changes are inside a small 

ball B at p. The solid cylinder of orbits through B are pinched like a p o n w .  The 
cylindrical surface (the husk) is pinched to a goblet at p. This goblet becomes the inset 
In(p) of the new equilibrium poinl. This becomes a separatrix, confining the basin d a 
new attractor within the goblet. 

ation (replace y by - p). 
The new separatrix can receive outsets from several critical elemenls. 
Instead of an attractor and a saddle, any two equilibria p, q with dim In(p) = dim In(¶) 

+ 1 can be created. 
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Flguw 7.7-3. Dynamic Creation. 
Type: 11-Local Q2 
Other names: True bifurcation; Hard self-excitation 
History: Poincark [I8851 
Modern reference: Bmaovsky [1971a], Takens 119731 
Minimum dimension: Two 
Description: Suddenly, an attractive closed orbit appears, with a s d  basin. Nearby, a 

new closed orbit of saddle type-the phantom dual-has a hypersurface shaped like a 
jello aspic mold for an inset. This surface is a new separatrix, delimiting the new basin. 
The new characteristic exponents diverge from zero. 

Variants: Dual suicide (replace p by - p). 
The new closed orbits need not be an attractor and an adjacent sadae. 
Any pair of closed orbits of adjacent type will do: 

dim Zn( y ,) =; dim Zn(y2) + 1 

The separatrix (inset of new saddle) can receive outsets (saddle connections) from 
several saddles or repellors. 
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Figure 7.7-4. Subtle D~vision. 
Type: II-Local Q, 
Other names: Subhmonic resonance, flip 
History: S t e b e t z  [19313]. 
Modern reference: Bmnlovsky [1971], Iooss and Joseph [1977], Newhouse and Palis [1976]. 
Minimum dimension: Two 
Description: An attractive closed orbit y becomes a thick [dim Zn(y) = dim M -  11 saddle, 

as one of its characteristic multipliers passes through - 1 [or, equivalently, a characteris- 
tic exponent passes thi~ough (2k + l)i]. A new attractive closed orbit, of twice the period, 
is emitted. 

Variants: Murder (see next figure) 
The closed orbit affected could be a saddle, which loses one dimension of thickness. In 

this case, the emitted !subhamonic saddle cycle is as thick as the original. 
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Figure 7.7-5. Murder. 
Type: 11-Local Q2 
Other names: Destabilhtion; Nard self-excitation (with gil reversed) 
History: None? 
Modern reference: Bmnovsky [1971], Iooss and Joseph [I9771 
Mnimum dimension: Two 
Description: Exactly like subtle division, except that a thin h a m o ~ c  is absorbed, 
rather than an attractivie subbannonic enoitted. 
Variants: The attractive closed orbit killed could be a saddle. Then a subbmonic 
saddle cycle one-dhenlsion tEmer arrives, and the original saddle cyde loses one 
dimension in Ihickness. 
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Figure 7.7-6. Naimark. kcitation. 
Type: 11-Local Q, 
Other names: Hopf bifurcation; Naimark bifurcation 
History: Naimark [l959] 
Modern reference: Ruelle-Takens [1971], Marsden-McCracken [1976], Ilooss [1975-19761 
Minimum dimension: Two 
Description: Similar to I-Iopf excitation, but starts with an attractive closed orbit. A pair of 

conjugate characteristic multipliers traverse the unit circle outwards (or exponents cross 
the imaginary axis rightwards) and an attractive invariant torus T is created surround- 
ing the closed orbit-rtow a thick saddle. 

Warning: The torus is not a basic set, but will contain a finite number of closed orbits, 
some attracting. 

Variants: The attractive closed orbit might be a saddle. 
An invariant torus of higher dimension T k  can become excited to a Tk+' (Takens 

excitation; cf. Iooss and Chencinere [1977]). 
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Figure 7.7-7. Saddle Switching. 
Type: III-Equilibrium saddle to equilibrium saddle 
Other names: Basin bifiurcation 
History: ? 
Modern reference: Sotoimayor [1974] 
Minimum dimension: Two 
Description: The outset of a saddle is moved from one attractor to another. Enroute, it 

must pass the separatrix of these basins, which is the (thick) inset of another saddle. En 
passant, there is an illegal (but quasi-hyperbolic) saddle connection (touchk). In these 
phase portraits, one basin is shaded. Only the basins are changed in this bifurcation- 
possibly in topology as well as volume. 

Variants: The inset of any equilibrium of saddle type can be moved, but here we are 
interested in the thick insets (hypersurfaces) which comprise the separatrices between the 
basins of attraction. Tlhe passage of a thick inset through any outset may be quasi-trans- 
versal-in higher dimensions-even though that outset be completely engulfed (touchk) 
at contact. 
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Flguse 7.7-8. Birkhoff rechambering. 
Type: 111 
Other names: Signature bifurcation 
History: Birkhoff [l935] 
Modern reference: Newhouse-Palis [1973a] 
Minimum dimension: Three 
Description: This particular example starts with the gradient vector field of the usual 

height function on T 2 ,  then multiplies by S1 to get a flow on T 3  with a global section. 
There are four closed orbits: a repellor at the top, two thick saddles (y , ,  y2) (dimZn = 

dim Out = 2), and an attractor at the bottom. This is then perturbed so Out(y,) n In(yJ is 
transversal. We illustrate the crossection T 2  flattened a bit. The action in this movie has 
Out(y,) fixed, while Zn(y2) rotates. At the bifurcation point c=O the two cylinders are 
coincident, Out(y ,) = Zn(y2). This is a quasi-transversal intersection, in three dimensions. 
After rotating through Out(y,), Zn(y,) looks much as before. But the topology of the 
intersection (called! the signature by Birkhoff) is changed. The two infinitely crossing 
cylinders in T 3  look like a Chambered Nautilus shell, hence the name, rechambering. 

Variants: This is characteristic of saddle connections involving closed orbits, in dimen- 
sions greater than two. 
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Flgurs 7.7-9. Blue sky catastrophe. 
Type: V-Other 
Other names: Disappearance into the blue 
History: Ruelle-Takens [I97 11 
Modern reference: Alexander and Yorke [1978]; Devaney [1978a] 
Minimum dimension: Two? 
Description: As y approaches 0 from the left, the period of the attracting closed orbit 

tends to infinity. 
Variants: Closed orbit need not be attracting. 

Out of the blue: reverse y. 
There is a chaotic basic set, and the closed orbit disappears into it. 
The closed orbit m,ay disappear into a cyclic saddle connection (see Fig. 5.6-1). 
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Flgura 7.7-10. The Ma~m Sequence. 
Other names: Generic e:volution 
History: Abraham [1972a] 
Modern reference: Takens [l973a] 
Minimum dimension: Three 
Description: A vector field with no attractors moves along a generic arc, passing a 

sequence of stable bifurcations. In the first ( p -  - 1, stable creation) an attracting 
equilibrium is born. Thereafter, the other nonfatal, increasing bifurcations occur. A large 
family is produced. One generation is illustrated here. 

Variants: Countable. 
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7.8 EXPERIMENTAL DYNAMICS 

The prior section suggests that, whenever a vector field is perturbed, a 
nent. And there are so many possibilities-according to 

the nascent theory-especially if there is more than one dimension of per- 
turbation. (One example: TRe Takens bqurcation was illustrated in Sect. 5.6. 
See Fig. 5.6-8.) 

One wonders: If a particular vector field is taken in hand, its portrait 
drawn, then varied, does all this happen? So there comes a time when a 
theorist might turn to experimental work. 

In this section, we will say just a few introductory words about the history 
and prospects for this field--experimental dynamics. 

A. The special device period: 1787 - 191 8. 'GxJe have already had occasion 
lo speak of the pioneering work of the musicians Chladni and Melde in the 
era of Beethoven, the consequent work of Faraday, Lord Rayleigh, and so on. 
We may not fairly distinguish this line of inquiry (which continues in the 
present day) from experimental physics, hydrodynamics, continuum 
mechanics, and so on. 

B. The radio period: 191Gii953. Vacuum tube oscillators and radio 
frequency circuits were used to draw phase portraits for forced oscillations of 
vector fields in the plane-that is, two-parameter families. Subharmonic 
resonance was thoroughly studied. 

The works of van der Pol, Appleton, Lienard, McCrum,  Roelle, 
Duffing, Strutt, Pederson, and many others are systematically explained in 
Hayashi [1953a], the outstanding experimentalist in this period, and 
Stoker [1950]. 

C. The analog period: '8953-4962. As modular architecture evolved in the 
electronic industry, it became possible to model most classical vector fields 
(with polynomial or sinusoidal coefficients). The oscillator was replaced by 
the analog computer. High-speed and graphical output are the outstanding 
characteristics of these machines, still widely used. See Shaw [I9781 for an 
outstanding example. 

D. The digital perlod: 1962 on. Mathematicians lost no time in adapting Y 
the general purpose digital computer to the problem of phase portraiture of 5 

4 dynamical systems. The pioneering works of Lorenz [I9621 and Stein and m 

Ulam [I9641 are still studied. The curent trend is toward utilization of new ' 2 developments in computer graphics for phase portrait output, and special 

LZ 
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architecture to implement faster portrait algorithms, see Abraham [1978]. It 
seems likely that this field will expand quickly, along with the electronic 
revolution. 

To date, the leading accomplishments of the experimentalists are the 
discoveries of Nopf bifurcation by van der Pol, of subhamonic resonance by 
Duffing, and the onset of turbulence by Lorenz, Stein and Ulam. 



CHAPTER 

In this chapter we outline the recent developments of this very specialized 
qualitative theory. The typical picture of a Harniltonian system that emerges 
is extremely colfnplex, poorly understood, and still evolving. n e  main results, 
which differ rather sharply from the differentiable case of the preceding 
chapter, are relevant for a number of applications including the rigid body 
and the n-body problem. The latter will be briefly discussed in the next 
chapters. 

8.1 GR1TIGAL ELEMENTS 

In this section we consider the characteristic multipliers for critical ele- 
ments of Harniltonian vector fields and explain why such a critical element 
cannot be expected to be elementary in general. 

First we take up the case of a critical point. Suppose (M ,  w )  is a symplectic 
manifold, H E %(M) ,  and XH is the Wamiltonian vector field with Harnilto- 
nian N. Recall that m E M  is a critical point of XH iff XH(m)=O and 
obviously this occurs iff dH(m)=O, that is, rn is a critical point of W. The 
characteristic exponents of XH at m are defined as the eigenvalues of the 
linear mapping XA (in) E L ( Tm M ,  Tm M )  and T,M is symplectic with the f o m  
w(rn). The main restriction on the characteristic exponents in the Harniltonian as 

E 
Ralph Abraham and Jerrold E. Marsden, Foundation of Mechanics, Second Edition 4 m 
Copyright O 1978 by The Benjamin/Cummings Publishing Company, Inc., Advanced Book 
Program. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 2 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or 
otherwise, without the prior permission of the publisher. 3 
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case results from the fact that Xk(m) is infinitesimally symplectic, that is, is a 
linear Hamiltonian system. See Sect. 3.y.k 

From the infinitesimally symplectic eigenvalue theorem it follows that the 
characteristic exponents of XH at a critical point m E M occur in pairs (A, -9 
of the same multiplicity. Thus if A is a characteristic exponent, so are & -A, -A, 
all of these having the same multiplicity. The exponent zero always has even 
multiplicity. 

We see now why a Hamiltonian critical point cannot be elementary in 
general. For m is elementary iff there are no characteristic exponents on the 
imaginary axis. However, if there are exponents + ij3 of multiplicity one, 
small perturbations in H,  thus XH and X;(m), perturb the exponents only 
slightly, and the exponents + ij3 are trapped on the imaginary axis. Moreover, 
it follows that the stable and unstable manifolds of the critical point m E M 
have the same dimension, and the center manifold is even dimensional. The 
center manifold cannot in general be removed by a small perturbation of W 
alone, although its dimension may be reduced by four if there is a purely 
imaginary exponent of multiplicity two. 

In the remainder of the section we consider analogously the case of a 
closed orbit y c M of the Hamiltonian vector field XH. The characteristic 
multipliers of XH at y are the eigenvalues of the tangent TmO, where m E  y 
and O is a PoincarC map on a local transversal section. Alternatively, the 
characteristic multipliers are the eigenvalues (omitting one + 1) of the tangent 
TmF,, where m E y, F is a flow box around y, and 7 is the period of y. As F, is 
a symplectic diffeomorphism and F,(m)= m, we get the following restriction 
on the characteristic multipliers. 

8.1.1 Proposition. The characteristic multipliers of XH at a closed orbit 
y c M occur in pairs - (A, A-I) of the same multiplicity. Thus if A is a characteris- 
tic multiplier, SO are A, A -  I, 1- I, all haaixg the same multQlicity. ?'he mzlk@!ier 
one always occurs with odd multiplicity at least one. 

This is an immediate consequence of the symplectic eigenvalue theorem. 
We see that y can never be elementary, as there is always at least one 
multiplier equal to one, and thus of modulus one. 

Even restricted to an energy surface Z,, the PoincarC mapping (see 8.1.3) 
must satisfy the symplectic eigenvalue theorem. Thus, as in the case of a 
critical point we still expect in M (resp. in 2,) stable and unstable manifolds 
of the same dimension, and possibly a center manifold of even (resp. odd) 
dimension that cannot be eliminated by small perturbations of the 
Hamiltonian function. E 

9 Following Robinson [1970b] we strike out the redundant characteristic 
* multipliers (CM's) as follows. 8 * 
0 

8.9 -2 Definition. The p~ncripal chractenisdc muldpIiers, or PCWs of XH at y 
are deSned as follows: the CM 1 of multiplicity 2k + 1 is a PCM of multiplicity 
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k, the CM - 1 of multiplicity 2k is a PCM of multiplicity k. To a unimodular 
CM pair (X, X ;  lhl = 1 ,  Im(h) >0) of multiplicity k corresponds the single PCM 
A with multiplicity k. To a real CMpair (X, A-I; IRe(A)I > 1 )  of multiplicity k 
corresponds the single PCM h with multiplicity k. And finally, to a CM 
quadruplet (X, ;/ h - : X -  ' ; I A I > 1, Im (A) > 0)  of multiplicity k corresponds a 
pair of PCM's (A, A) of multiplicity k. Counting multiplicitiesy the 2n - 1 = 
2(n - 1 )  + 1 C W s  have been replaced by ( n  - 1 )  PCWs (see Fig. 8.1 - 1). If A is 
a unimodular PCM of y, h = exp (27ria) with a E [0, +I, then a is a 
frequrency of y. 

The following proposition gives some additional infomation about the 
PoincarC map in the Hamiltonian case. Note that if y is a closed orbit of X,, 
then we may assume y lies in some regular energy surface Z, since near y, dH 
must be nonzero. 

8.1.3 ProposRon. Let (M, a )  be a symplectic manifold, N E %(M) and y a 
closed orbit of X, lying in a regular energy surface 2,. Then there existsa local 
transversal section S at m E y and a Poincark map 0 :  Wo+ W ,  on S, such that 
the following hold: 

( i )  ( Wo , to,) and ( W ,  , w ,) are contact manifolds, where wi = Fay ij : y.+M 
being the inclusion, j = 0, 1; 

(ii) 63 is a canonical transformation; that is, 0 preserves H, and there is a 
function 6 E S ( W o )  such that 0*w,=w0-d~r\dH; moreover, 6 is the 
period shift of the Poincari map described in 7.1.2, p. 523; 

(iii) There exists E > O and regular energy surfaces 2,. for e' E ( e  - E, e + E )  , 
such that (S,,, we,) is a symplectic submanifold of codimension two and 
631 W o n  Set is a symplectic diffeomorphism onto W ,  n S,,, where Set = S n 
Z , ,  i : S,,+ M is the inclusion mapping, and wet = i*w. 

Flgure 8.1-1. A typical symplectic spectrum for a closed orbit of a Namiltonian system Z 
(multiplicities in parentheses) for eight degrees of freedom. !3 
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PWO$ Let (U,go) be a Hamiltonian flow box chart at m E  y and S be 
defined by t = 0. Then, if i: S-+M is inclusion, 

as t o  i=O. Hence (i) is clear. Also, since y is compact, there is an open 
neighborhood V of y on which dW J. 0. Hence Z,, = V n W - '(e') is a regular 
energy surface for e' in some interval (e - E, e + E), and, restricted to S n Z,, w 
becomes Z:=',,dqir\dpi, so the first part of (iii) is clear. For (ii), a simple 
computation shows that for s E S .  

where @(s) = F(S,T - 6 (s)) as in 7.1.1. Also, as F,-,(,, is symplectic and 
HoF,-~(,)= W ,  we have 

so that (ii) follows. Finally, (ii) implies (iii) by restricting to 2, .  H 

Thus, on S,,, O preserves the volume element 

a classical and useful fact (see, for example, Pars [1965, p. 4463). In addition, 
the properties of 8.1.3 and this consequence hold for any transversal section S 
(sufficiently small). This follows from existence and local conjugacy. Recall 
that time t and energy W are canonically conjugate coordinates according to 
the Hamiltonian flow box theorem. According to the preceeding theorem, we 
have constructed a chart (U, +) at m E: y so that 

Y s : ""(6("),li,&("),~) 
9 
rn 
8 

where ~ ( u )  = H (m) - N (u) and 6 (u) is the time along the orbit throu& u, 
from the PoincarC section S, defined by 8(u)=O. 

We refer to this in future as apower chart (see Fig. 8.1-2) 
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Figure 8.1-2. A power chart at a point in a closed orbit. 

Now we return to the fact that the closed orbit y cannot be elementary, as 
there is always at least one CM equal to one, hence on the unit circle. The 
multiplier one corresponds to an eigenspace on which the PoincarC map is the 
identity in first approximation, suggesting the possihiliry of the existence of 
an entire cylinder of closed orbits {y,) with a parameter s in which y is an 
element y = yo, say. 

8.2.1 DellnltBon. An orbit cylinder of X, is an embedding r : S ' X (a, b)+M 
such that for all eE(a,  b) ,  ye =I?[&'' X { e ) ]  is a closed orbit of X,. An orbit 
cylinder is regrclar if W [ye]  = e, and I? is transversal to every energy surface Z,. 
That is, El o r has no critical point. See Fig. 8.2- 1. 

Using the implicit mapping theorem, we now show the existence of an 
orbit cylinder if y has the characteristic multiplier one with multiplicity one, 
or equivalently, if one is not a PCM of y. Y 

The proof is rather similar to the proof of 5.6.6 on the existence of $ 
periodic orbits for perturbed systems. rn 

3 
00 
0 

8.2.2 Regular orbit cylinder theorem. If y is a closed orbit of X,, then it is z 
contained in a regular orbit cylinder ijf one is not a PCM of y. !4 
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ProoJ: Let ( U, +) be a power chart for y, 

where 6 (u) is the time since the PoincarC section S and ~ ( u )  = e - H(u) .  Let O 
denote the PoincarC map, represented in this chart. Thus, within 6 = 0, 

where P, Q: WA-Rn-' are the nontrivial components of 8. We now define 
auxiiiary maps: 

t): W;+Rn-'xRn-'  

and 

where 2 
0 
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Now 8, is symplectic (8.1.3) and 

Thus: one is not a PCM of y iff it is not in the spectrum of D8,(0,0). 
Furthermore, 

Thus: one is not a PCM of y iff D+,(8,0) is an isomorphism. Thus, by the 
implicit mapping theorem, there are charts a, : U, X V, c S, X (e - E, e + .5)4 
U' X V' and a, : V 4  U' so that a, \C/ o a, ' ((q,~),  e') = (q,p). Define a one- 
dimensional submanifold C in S by a, '({O, @)) X V'). Suppose V' = (e - E', 
e + E') and c = a, ' 1  {(B,@)) x V'. Then, for e' E V', +(c(e')) = (O,@) or 
@(c(e')) = c(ef), or 8 is the identity on C, and the orbit ye, of c(e') is closed. 

Clearly u {ye.) = F ( C  x R) is diffeomorphic to a cylinder, where F is the flow 
of X*. IC1 

In general, this cylinder cannot be extended for all energies without 
encountering a singularity, that is, a critical point or a closed orbit for which 
the hypotheses of the theorem fail. In particular, as the transversal intersec- 
tion of the orbit cylinder with energy surfaces is one of the defining properties 
for a regular orbit cylinder, the hypothesis (no PCM= 5 )  may fail because the 
orbit cylinder becomes tangent to an energy surface. 

This situation has been studied by Robinson [1970a] who found a nonde- 
generate way for tangency to occur SO that the orbit cylinder may be 
continued past the nondegenerate tangency. We now describe this nondegen- 
eracy condition. 

Again, let (U,+) be a power chart at mEy, a closed orbit of XH.  If 
e =: H (m), then y c 2, and S , = " I  C I-e> where S is the P~incarC sectinn ( I S  = 0). 
Let n-: S4Se be the map whose representative with respect to (U,+) is the 
projection 

Note that in the proof of the preceding theorem $'=(n- 8)'- n-', where the 
prime denotes local representation. 

Using the auxiliary map n-, we may now give the nondegeneracy condition 
of Robinson. 

Y 
8.2.3 Definition. A closed orbit y of XH is O-elementay if there exists a $ 
power chart at a point m E y such that with its Poincark section projection n; * s 
Poincark map 0, and section S, the linear map z 

is surjectiue. 
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It is easy to show that this condition is independent of the point m E y and 
the power chart. 

Global analysts will recognize this as the definition of transversal intersec- 
tion a fi a 0 8 for the two maps 

in a neighborhood of m E S e .  Or, equivalently, @Pi I (for the maps @,I: 
S+S) mod lr (see Abraham and Robbin [1967]). 

Note that the time 6 in the second case of 8.2.4 is related to the period r, 
of the closed orbit y, by 

so the period 7, may be used as the cylinder parameter. 

8.2.4 Orbit cylinder theorem (Robinson). If a closed orbit y of XH is 
0-elementary, it belongs to an orbit cylinder. firthermore, either no PCM of y is 
one and the cylinder is regular, or, exact& one PCM of y is one (multiplicity 
one) and the period parametrizes the cylinder: r ( yA) =A. 

The proof is a simple modification of the argument given above for the 
regular case. 

EXERCISES 

8.2A. Demonstrate 8.2.2 directly in the case of a Hamiltonian derived from a 
Riemannian metric. 

8.2B. Show that the family of closed orbits produced in Liapunov's theorem (5.6.7) is 
a regular orbit cylinder. 

8.2C. Show that 8.2.3 is independent of the power chart. 
8.2D. Prove 8.2.4 in the irregular case. 

8.3 STABlLlTV OF ORBITS 

We consider now the question of orbital stability of critical elements in 
the Hamiltonian case. We have seen that if a critical element has a stable 
manifold, it also has an unstable manifold and is therefore a+ unstable for all 
cases a =  o,a , l .  Thus there is the possibility of stability only if all of the 
characteristic multipliers have modulus one. This case, in which the entire 
manifold is a center manifold for the critical element, is called an elliptiie ' element, a pure center, or the oscillatory epse. If the characteristic multipliers $ are expressed (I, e "1, . . . , e "i%-l)  for a closed orbit, or ( e  "'1, . . . , e "4.) for a 

m 
8 critical point, ai E[O,2a), the real numbers {or,/2a) are called the frequencie 
$ (or, in the case of a closed orbit, the transvere frequendes). 
2 In the oscillatory case, the flow is a rotation in linear approximation, so 

asymptotic Liapounov stability is not to be expected. Orbital stability is 
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natural, however, and always occurs in the case of a critical point in two 
dimensions. Thus the natural question for a Hamiltonian vector field is this: 
When is a critical element of pure center type o+-stable? Certainly this has an 
obvious importance in celestial mechanics, for example, in Laplace's problem 
of the stability of the solar system. 

In this section, we give some limited results on stability of oscillatory 
critical points and closed orbits. 

We begin by rephrasing the results obtained in Sect. 5.6 on Liapunov's 
theorem. 

8.3.1 Deflnlllon. Let (M, a )  be a symplectic manifold and H E F(M) .  Then a 
critical point m of X, is called X elemntary if each of the following conditions 
hold: 

( 1 )  Zero is not a characteristic exponent 
( i i) If A is a characteristic exponent with realpart zero, then A has multiplicity 

one. 
(iii) If A and p are characteristic exponents with real part zero and imaginary 

part positive, then A and p are independent over the integers; that is, i f  
nlA+n2p==0 for n,,n2E;T, then n,=n,=O. 

Thus the critical element is X elementary iff the frequencies are indepen- 
dent over the rationals. The nonelementary case is sometimes called the 
problem of small divisors in celestial mechanics. 

Of course X elementary is not as elementary as elementary, and the 
qualitative behavior of orbits close to an X elementary critical point can be 
much more complicated. In addition to the center manifold, which exists in 
any case, we get in the X elementary case an additional very important 
simplification in the behavior of nearby orbits, the splitting of the center 
manifold into the two-dimensional invariant subcenter manifolds discovered 
by Liapounov. 

8.3.2 Theorem (Llapounov sukenler subililiy). Let (M, a)  be a symplectic 
manifold. IY E F ( M ) ,  and m E M be an X elementary critical point of X,. 
Then, if ip  is a characteristic exponent of m ( P E R), there is a WO-dimensional 
submanifold Cp with m E Cp such that: 

( i )  T,Cp is the eigenspace corresponding to the characteristic exponents ib 
and - ip; 

(ii) Cp is an invariant submanifod of X,; 
(iii) Cp is a union of closed orbits yr such that there is a dfleomophism 

cp: Cp+D1 ( D ,  is the disk of radius one in R2) with cp(yr) a circle of 
radius r about O= cp(m). Moreover, if 7, denotes the period of y,, 
limr,o~r = 2n-/ p. 

See Sect. 5.6 for the proof and discussion. (The hypothesis that the 
characteristic exponents are independent over Z is of course a little stronger 
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than required; we only need to know that no other characteristic exponents 
are integer multiples of iB for Cp to exist.) 

Note that if all characteristic exponents are imaginary, then TmCB,@ - . - @ 
TmCpk = TmC in the linear case. 

For the case of an X elementary critical point, the subcenter stability 
theorem gives a splitting of the center into two-&mensional invariant mani- 
folds that are o+-stable. Thus a very important question is: Under what 
conditions does stability on all subcenter manifolds i w l y  stability of the 
center? This is somewhat similar to the center-stable theorem, but at present 
we do not even have a plausible conjecture to offer. 

In the case of a closed orbit of oscillatory type, the analogous questions 
are still important, and in addition we do not even know the existence of 
subcenter manifolds. (See Exercise 8.3E.) Stability in a given subcenter 
manifold is, however, the subject of Moser's theorem. 

Consider the case of two degrees of freedom, M= P W ,  where W is a 
two-dimensional manifold. If Z, is a regular energy surface, y cZ, a closed 
orbit and S a local transversal section in Z,; then 2, is three dimensional, and 
S is two dimensional. A Poincari: map 8 on S can be considered a diffeomor- 
phism in the plane R keeping the origin fixed. Then y is a pure center iff To@ 
is a rotation. In this case the entire three-maifold 2, is a center (or 
subcenter) manifold for y c 2,. Moser9s theorem gives a sdfident condition 
for the existence of a dense set of iaava~anb circles in S, thus iravlariant tori in 
Z,, implying 0'-stability of y. In the remainder of this section we describe 
Moser's results without proofs. These results are applied, in Sect. 10.3, to the 
restricted three-body problem. 

To gain some perspective for the results we are going to describe we pause 
momentarily to consider the history of the problem. 

PoincarC already realized how important the study of area preserving 
maps of the plane are for systems of two degrees of freedom. ']These maps 
model the Poincare map on a transversal to the closed orbit y within an 
energy surface as just described. Thus fixed points of this map give closed 
orbits near y. 

Motivated this way, PoincarC 119121 formulated his ""last geometric theo- 
rem": Any area preserving homeomorphism of an annulzks in 4t2 to itself which 
shifts the two botrndaly circles in opposite directions has at least &o$xedpoints. 

Poincari: did not claim a general proof; this was supplied by Bbfioff 
119131. In his book El9271 BirkhoK shows how this and related results apply to 
problems on closed geodesics and the three body problems.* 

Next came the Birkhoff-Lewis theorem 119331 that allowed one to prove 
Y the existence of S i i t e l y  many periodic points of arbitrarily hi& period. This 
t-4 
51 theorem remains of interest today (cf. the remarks following the proof of 
0 
A 10.3.7 below). For an elegant proof of this result, see Moser [P977J. The ' Birkhoff-Lewis theorem is of interest because it is not restricted to systems z 
Z 

'See Arnold [I9781 for further discussion. 
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with two degrees of freedom,* whereas the result of Moser which we now 
describe is so restricted; however, in this case it is also more powerful. Most 
of the key results were discovered first by Arnold [1963] in the analytic case. 

To formulate the results we need the following terminology. 

8.3.3 Definition. Let U c R be an open neighborhood of the origin. A C * 
mapping F :  U-+R is an (a9 P)-nonmalfom9 a E [0, 2 ~ )  and ,8 E R9 if F(u)  = 
ae i ( a + f i I U I Z ) +  R4(a) (in complex notation, R identified with the complex plane), 
where for some K > 0, JR4(u)I < ~ 1 ~ 4 1 ~  for all u E U. A C mapping F: U+R 
is an a-twist mpping $ F(0) = @, and DF(@) has eigenvalues ekia. 

We consider R 2  a symplectic manifold with symplec,tic form d x ~ d y ,  as 
usual. 

The following is an outgrowth of the Birkhoff normal form discussed in 
Sect. 5.6. 

8.3.4 Theorem (BlrkhoNSlernberg-Moser normal form). If 2": U cR2+ 
R 2  is an a-twist mapping with a not zero or an integral multiple of ~ / 2  or 
2 1 ~ / 3 ,  then there is a ~ymplectic chart at E R~ such that the local representa- 
tive of F is an (a, p)-normal firm, and sign( P )  = ( +, 0, or -) jbr all symplectic 
charts having this properly. 

For the proof, see Sternberg [I9691 and Siegel and Moser [1971]. The 
excluded values of the eigenvalues of DF(@) are illustrated in Fig. 8.3-1 

8.3.5 Definition. An a-twist mapping is an elemntary twist mpping if a is 
not zero or an integral multiple of ~ / 2  or 2 ~ / 3 ,  and the invariant /3 is not zero. 
A cycle in U is a homeomolphic image of the circle S'. 

8.3.6 Theorem (Moser h i s t  stabillw). If F: U c R 2 + R 2  is an elementary 
twist mapping, then: 

(i) In every neighborhood of 0 E U, there is an invariant cycle a having no 
periodic points. That is, F(a) = a, and for all u E a and integers k, Fk(rc)# 
a. 

(ii) For all E > 0 there is a 6 > 0 such that the set of invariant cycles in D,(O) 
has measure greater than ( 1  - ~ ) ( 2 ~ 6  '2). 

(iii) For every neighborhood V of O E U and integer k there are points v E V 
such that Hk(v) = O. 

For the proof of (i) and (ii) see Siegel and Moser [1971]. For the proof of 
(iii), see Arnold and Avez [1967]. 

By applying this theorem to the Poincar6 map O on a local transversal 2 
2 section S within the energy surface Z,, we obtain a condition for 0'-stability 7 
rn of y c Z ,  in the case of two degrees of freedom. 3 
2 

*In fact, with the right technical conditions, Moser's proof works for systems with infinitely z 
many degrees of freedom. 8 
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8.3.7 Corallay. Suppose XH is a Hamiltonian vector field on a symplectic 
four-manifold M, y is a closed orbit of X, in a regular energy surface Z,, and O 
is a Poincark map of XHIZ, at y c 2,. Then in the oscillatov case (characteris- 
tic multipliers I, e""), if O is an elementary twist mapping, y is 0'-stable 
within 2, and within M. 

B~Qo$ It follows at once from 8.3.6 that y c Z ,  is 0'-stable. To show that 
y c M is 0'-stable, we consider a local transversal section S" for y c M. Let 
I' = U {ye,[ e - E < e' < e + E) be a cylinder of closed orbits through y = ye, 
N(y,,) = e'. Then if Z ,  is a regular energy surface containing ye,, S,, = S" n 2 ,  
is a local transversal section for ye,. We may suppose in addition that S" and 8 
are constructed, so is a PoincarC map on Set. Then Oe is an 
elementary twist mapping by hypothesis, and the derivatives of 8 ,  of all 
orders are continuous functions of e'. So for e' sufficiently close to e, 8 ,  is an 
elementary twist mapping also. Thus for some E'>O, ye, is 0'-stable for all 
e' E(e - e',e+ E').  Then it follows easily that y c M is 0'-stable, as y is 
compact and N is invariant. BFIl 

The conclusion of Moser's twist stability theorem is illustrated in Fig. 
8.3-2. The nested concentric tori (which contain no closed orbits among 
themselves) delimit invariant regions which contain closed orbits of long 
periods, according to 8.3.6(iii). It is further known (see Arnold [1963b], 
Arnold and Avez [I9671 and Zehnder [1971]) that these occur in pairs, elliptic 
and heteroclinic-hyperbolic. The complex picture that emerges, which 
PoincarC was reluctant to draw in 1899, is illustrated in Fig. 8.3-3. It is this 

5 picture that is proposed by Thom [1975, p. 271 as the Wamiltonian analog of 
S the attractor in differentiable dynamics under the name vague attractor. We 
9 
m shall call this configuration VAK, for Vague Attractor of Kolmogorm, and for 
8 
3 the goddess of vibration in the Rig Veda. 

z Note that within the VAK are smaller VAKs. If one of these is magnified, 
the same picture (with time dilated) is obtained; a solenoid. 
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Figure 8.3-2. The VAK drawn in a three-dimensional energy surface. 

This picture is central to much of the writings of PoincarC and Birkhoff on 
Wamiltonian dynamics. The classic of Birkhoff [I9351 is still well worth 
reading for further understanding of it. Markus and Meyer [I9741 trace the 
idea back to Eagrange (1762), while Whittaker 119591 gives some credit to D. 
Bernoulli (1753). 

The Moser theorem admits a generalization to systems of three or more 
degrees of freedom (see Moser [1963a] and Arnold [1963a, 1963b]), but the 
generalization does not imply 0'-stability. The escape of orbits through the 
non-bounding concentric tori, known as Am~old diffusion, is important; see 
Arnold [1978]. 

For discussion of stability in the elliptic case, see Robinson [1970b] and 
Markus and Meyer [1974]. They propose a more rigorous condition of 
nondegeneracy for critical points of elliptic type, the general elliptic point. 
Combining suggestive results of Arnold [1963b] and Sternberg [1969], Markus 
and Meyer offer a very plausible conjecture, generalizing the twist theorem 
(8.3.6) for general elliptic points. Although the stability corollary (8.3.7) does 
not generalize, nonergodicity would follow. 

Moser [1973a] states that the invariant tori are Lagrangian submanifolds 
(compare 5.3.32). This fact can probably be exploited, although to our 2 
knowledge it has not been. S 9 

By the Oxtoby-Ulam [ 194 11 theorem, area preserving homeomorphisms of 
the annulus are CO generically ergodic. For Cr, r 2 2, Moser's result shows 2 
that Cr area preserving diffeomorphisms of the annulus are not generically z 
ergodic. For c', Takens 119711 has shown that Moser's theorem breaks down, 8 
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Figure 8.3-3. The VAK, according to Arnold [1963b]. 

yet Winkelnkemper 119771 shows by an "elementary" argument that even 
there C' area preserving diffeomorphisms are not generically ergodic. 

The vague o+-stability to be expected near a general elliptic point or 
closed orbit cylinder (VAK point or band) in higher dimensions can be 
expressed by means of an expectation function. 

vr 
o Let M have a Riemannian metric with derived distance function d, and 
2 measure p. If y is a critical element of X, and r > 0, let 
2 
L2 ~ , ( y ) =  { m ~ ~ l d ( m y ) < r )  
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and 

which we will suppose to be measureable. 
Then the stabilip expectation of y is the function e,: R +-+R: rt+e,(r) 

defined by 

If y is a true attractor, then e,(r) is one for O< r 9 ri, where ri, the inner 
radius, is the radius of the largest disk contained in the basin of y, B (y ) .  For 
ri < r < r, the expectation decreases. Here r,, the outer radius, is the radius of 
the smallest disk completely containing B (y) .  For r > r,, Bri(y) = B ( y )  so 
e,(r) decreases llke 1 / rd ,  d=dim(M) .  This behavior is illustrated in Fig. 
8.3-4. 

Now suppose y is a VAK.  If d=4 and y is a closed orbit, the measure 
conclusion (ii) of the Moser theorem (8.3.6) simply expresses the fact that 

lim e, ( r )  = 1 
r-0 

This is illustrated in Fig. 8.3-4 also. Therefore, let us say that a critical 
element is a vtpgarte atbxtor if e,(r)--+l as r+O. Then we conclude this section 
with the following prediction: -- 

8.3.8 Conjecture. Generically, elliptic equilibria and closed orbit bands are 
vague attractors. 

-~7- Ihis inciudes the conjecture of Mafkus and Meyer 119741. in the n-body 
problem, Brjuno 119721 uses a VAK model to explain the Kirkwood gaps in 
the asteroid orbits. 

True attractor Vague attractor 

Flgarre 8.3-4. The stability expectation function. 
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The VAK in infinite dimensions, including this vague stability property, 
has been proposed by Thorn 119751 as a model for the stable states of 
quantum mechanics. 

8.3A. Compute Taylor's formula to order four for an a-twist mapping both in 
complex and in real notations. 

8.3B. Find necessary conditions, on the second and third derivatives at the origin of 
a chart, that an a-twist mapping be changed to an (a,p)-normal form. 

8.3C. Show that if 0 and 0' are Poincarb maps on local transversal sections S and 
S' of dimension two, and O is an elementary twist mapping, then so is O'. 

8.3D. Show that if XH is a Hamiltonian vector field, S is a local transversal section, 
Z is a regular energy surface, and S =  S nZ, then S is a local transversal 
section of XHIZ. 

8.3E. Find conditions on a symplectic diffeomorphism, at a fixed point of purely 
elliptic type, for the existence of invariant subcenter manifolds of dimension 
two. 

As critical elements in the NaIlliltonian case are not generally elementary, 
we will now describe alternative notions of nondegeneracy for this context. 
Recently, fairly complete results on the genericity of these properties have 
appeared. 

8.4.1 Definition. A Hamiltonian H E F(M), or a Hamiltonian vector field 
X, E %,(M) or X E Xe&M), has properzy ( H I )  iff every critical point is 
X-elementaiy. 

The genericity of this property was established by Buchner [1970]. 

8.4.2 Theorem. Property ( H l )  is Cr generic in '%&-(&I) for all r > 1. 

The proof-a delicate exercise in transversality and matrix varieties-is 
characteristic of all these recent results. A good exposition is found in 
Robinson [I  97 1 a]. 

In the case of closed orbits, a condition on the transverse frequencies- 
corresponding to the defining property [[8.3.l(iii)] for the oscillatory frequen- 
cies of an X-elementary point-could be proposed as a generic condition. 

5 But unlike the equilibria, which are generically isolated points, the closed 
orbits must lie in orbit cylinders { y e ) .  As the cylinder parameter e varies, the 

" phase portrait near ye may behave as in an arc of vector fields and violate the ;3 
restraining relation on transverse frequencies, at least at exceptional (bifurcat- 

z ing) values of e. And so, the properties (H2) and(H3), which will be analogs of 
m (62) and (63),  must take orbit cylinders into account. 
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To describe (Hz) on the transverse frequencies of ye and their dependence 
e, we make use of a power chart. Suppose y is an 0-elementary closed orbit 
X,, m E y, and (U,+) is a power chart at m, 

+: &R X R ~ - ~ X R  XR*- '  

.. ~-(a,q>&,p) 

and let 

be the local representative of the PoincarC map on the transversal section 
defined by 6 = 0. Suppressing the presewed energy coordinate, let 

denote the reduced map, where W&, E Rn-I X Rn-' is an open disk at (0,0) 
such that W;, X (- a,a) c Wh. Note that for each E E ( -  a,a), cpE is a sym- 
plectic diffeomorphism from Who to W;,, and the cIssed orbit ye of the orbit 
cylinder is represented by a fixed point (cly,,pE) of +e. 'Flnese fixed points lie on 
a smooth curve through (a,@) parametrized by E. Thus 

has the PCM's of ye (and their inverses) as its spectrum. Clearly, the choice of 
the power char? ( U ,  cp) is animpc?rtant. But we have created, for any 0-elernen- 
tary closed orbit y, an arc 

corresponding to the tangent of the energy-restricted PoincarC section map 8, 
of each closed orbit ye near yo in its orbit cylinder. This is the essential 
construction of this section. We shall call this map the tan@& arc of yo with 
respect to ( U, ql). 

8.4.3 Detinltlon. A Hamiltonian uector field X ,  E %(Ad) has propefiy (H2) $I: 

if s - - 
1112- 0: all closed orbits are O -elementary and for all integevs N > 0, ~ r r  

N2-N: if{&: eE( -a ,a ) )  isanorbit cylinder, and 8 z 
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its tangent arc with respect to any power chart, then the transverse frequencies 
{q} are linearly independent over the integers { - N, . . . , N } for all but a finite 
set of points e E ( - a, a): 

Zpiai is an integer 

(no resonance of order < N ) .  

Of course, independence of ai over Z is the same condition that is needed 
for the Birkhoff normal form (see Sect. 5.6). An additional condition for 
nondegeneracy of higher-order terms in the Birkhoff normal form, and 
implying the existence of invariant tori, could be added to H2. See Markus 
and Meyer [1974]. This definition, a triumph in itself, is due to Robinson 
[1970a]. It is good enough to render his density theorem only moderately 
difficult. 

8.4.4 Theorem (Robinson [d978a, b.]). Property (112) is C r  generic, r > 2. 

The proof requires making the tangent arcs transversal to bad sets 
B, e S ~ ( R ~ " - ~ )  where (N2-N) is violated, by perturbation. As B,, contains 
submanifolds of codimension 1, transversal intersections in isolated points are 
inescapable. Hence, the result cannot be i-nnproved, and bifurcations along 
orbit cylinders -the famous resonances of celestial mechanics-are charac- 
teristic of generic Hamiltonians. We return to this problem in a future 
section, 8.6. 

The situation for intersection of stable and unstable manifolds is similar in 
that unreasonable behavior is inescapable at isolated closed orbits within an 
energy cylinder. This situation has been thoroughly analyzed in Robinson 
[1970b]. 

Recall that for a closed orbit or equilibrium point of a Hamiltonian vector 
field, the stable manifold W+(y) corresponds to the CM's strictly within the 
unit circle. The unstable manifold WP(y), with the same dimension as 
W+(y), corresponds to the CM's strictly outside the unit circle. And the 
center manifold (defined locally only) corresponds to the oscillatory CM's, 
which are even in number. Obviously, W+(y) and W-(y) cannot intersect 
transversally at y if there is a center manifold. So we can only ask for 

( R  means intersect transversally) in a property(H3), analogous to (G3), for the 
Hamiltonian case. But even then, there remains a problem due to the 
conservation of energy: for y cZ,, Wt(y)cZ,  also. So we can ask, at best, 
for transversal intersection within 2,. Let us denote the transversal intersec- 

G tion of W+(y)\ and W -(y)\ y within C, (e = H(y)) by W+(y) X W-(y). But 
even this condition is too much to ask for all y. 
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For suppose X, has the generic property H2, so all closed orbits lie in 
orbit cylinders. Further, these cylinders are tangent to energy surfaces only at 
isolated closed orbits. In between two such critical (that is, 1 is a PCM) 
closed orbits is a regular orbit cylinder. And for a regular orbit cylinder {ye ) ,  
e= N(ye),  the dimensions of W + ( y e )  and W-(ye )  are constant. But given two 
regular orbit cylinders, r and A, the condition 

is bound to be violated for isolated energy values. 
So if I' = {ye/  e E (a ,  b ) )  is a regular orbit cylinder, the sets W +(r) = u 

{ W +(ye)le E (a ,  b ) )  and W -(r) = u { W -(ye)le € ( a ,  b ) )  will be called the 
stable and unstable ribbons of the regular orbit cylinder r. And now, we could 
ask for the transversal intersection of stable and unstable ribbons as submani- 
foIds of M. Taking into account, again, that a center manifold for ye implies 
W + ( r ) n  W P ( r )  at ye nontransversally, we write 

to mean W + (r)\r and WP(A)\A intersect transversally vvitlrin M 
So here, at last, is Robinson's definition. 

8.4-5 Definition. A fimiltonian vector field XH E &(MI has pribpe~y 4H3) 
if: 

N3-0: it has property (222); 
1113 - 1 : all equilibrium points lie on different energy surfaces; 
N3-2: if m is an equilibrium point of X,, 

W3-3: i f  m is an equilibrium and y is a closed orbit in the same enerp 
surface, then 

W + ( m )  x W - ( y )  and W - ( m )  X ~ + ( y )  

N3-4: if I' and A are regular orbit cylinders, then 

H3-5: for all but a countable set B of closed orbits, 

W + ( y > X  W - ( 6 )  
0 

113-6: every bad closed orbit /3 E B is interior to a regular orbit cylinder (that 
is, 1 is not a PCM). f3 
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Again, the definition is adapted to the transversality technique used in the 
proof of the density theorem. 

8.4.8 Theorem (Robinson [I 970b]). Property ( H 3 )  is Cr-generic, r > 2. 

The proof is described well in Robinson [1971a]. An additional condition 
for nondegeneracy of the purely oscillatory, or elliptic, closed orbits is 
established in Robinson [1970b] and also in Markus and Meyer [1969,1974]. 
This could be added to (W3) and guarantees invariant tori, and nonergodicity. 

The remaining generic properties are less trouble. The next, ( 6 4 )  (closed 
orbits dense in the nonwandering set), was established as generic in &(m) in 
Pugh 119661. But this result was improved by Takens [I9721 who showed that 
the homoclinic hyperbolic closed orbits are dense in the nonwandering set. 

Recall that C, denotes the set of initial points m E M  such that the orbit 
o(m)  is complete, and has compact closure, and that !2; = cl [C, n G,]. The 
property (64) was expressed as cl(I',) tag. So now let h, denote the union 
of all hyperbolic closed orbits y of X of homoclinic type. Here hyperbolic 
means dim W +(y)  = dim W - (y )  = i d i m ( ~ )  and homoclinic means 

8.4.7 DeBlnlllon. A Hamiltonian vector jeM X, E &(M) has propeHy (H4) 
if 
H4- 1 : every hyperbolic closed orbit is homoclinic; 
H4-2: homoclinic closed orbits are dense in the (compact) nonwandering set: 

cl [h,"] = a&. 

This definition is due to Takens 119721, who proved it is a generic 
property, at least if M is compact. (This condition is not necessary, however.) 

8.4.8 Theorem. Property ( H 4 )  is Cr-generic, r > 1. 

The next, property(65), excludes regular first integrals. In the Wamiltonian 
case, we always have one-the Namiltonian itself, so ( 6 5 )  must be modified. 
This, also, is due to Robinson [1970b]. 

8.4.9 Definition. A function j E  % ( M )  is a r e ~ l a r  see@& integral of a 
fimiltonian vector field X, E &(M) iff {f, H )  = 0, and f is not constant on 

x any open set of any level surface Z, of H. A Hamiltonian vector field 
X, E q ( M )  has prope~y (H5) iff either 

4 * H 5 - 1 : XH has no regular second integral; or 
;3 

H5-2: intQgH=@. 
z 

8.41.9 0 Theorem. Property (115) is C '-generic, r > 1. 
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In fact, Robinson [1970b] shows that (H3) and (64) &ply (H5). 
For property ((Gg), critical stability, there is an analog for Manailtonim 

systems. This follows from the Hamiltonian closing l e m a  of Puglm and 
Robinson. But as the normal situation for Nanailtonian vector field is cl(r) =. 

M, critical stability will not be hportant. 
This ends the current list of generic properties for the H ~ l t o ~ a n  case. 

A1 are easily aadpted from the analogs of differentiable dyolafies, except 
(H2) and (H3). 

The theory of generic orbit cyjinders may evolve further in the future. A 
new direction is indicated in Nevvhouse [1977aj, which shows that the density 
of elliptic closed orbits may be genefic. Furthermore, recent work of Markus 
and Meyer indicates that generically Ha~l ton ian  systems contain 
solenoids of all types. 

We have seen several reasons why a Harniltonian vector field cannot be 
structurally stable. For example, compare the stability of closed orbits under 
perturbation of the energy (8.2.2) with the necessity of properly (G2), or the 
necessity of (G5) (7.4.71, which is violated by the Harniltonian function itself. 

From the experimental point of view, we may substitute other versions of 
structural stability that are more appropriate to the Harniltonian case. For if 
we assume that the mathematical mode: of a theory is a conservative 
Hamiltonian system, the uncertainty of the experimental domain is repre- 
sented by perturbations of the Hamiltonian function. That is, we arbitrarily 
exclude non-Hamiltonian and nonautonomous perturbations. Then for stabil- 
ity of the phase portrait under perturbations within &(M), we get an 
appropriate analogue of the previous definition 7.4.1 by restricting it to the 
subspace &(M) c % ( M ) ,  with the mitney C r  topology. 

8.5.4 Detinillon. A IPamiltonian vector field X, on a vmlectic  manifold 
(M, a) is36 ' stmc1pkral& stable (or the Hamiltonian H is % "+%tmc&raI& 
stab&) if there is a neighborhood 8 of X, E &(M) in the W i t n q  Cr topolog 
such that X, E 8 inzplies X, and X, have equiualent phase portraits. 

As this notion of stability is very strong, and is lcnown to be nongeneric 
(Robinson [1970b], the construction is outlined below) we might seek a 
weaker one. 

Perhaps an intermediate notion requiring stability of the phase portrait on 
a single energy surface 2, under perturbations of the Hamiltonian and the 
energy e is more appropriate. N 5 

2 
4 

8.5.2 DetEnOtlon. Suppose X, E &(M) and 2, = H - ' (e )  is a regular energy 8 
suvface. Then X,IZ, is 22 stmcbural& stable iff there is a neighborhood (3 of 2 
X, E % ( M )  in the Whitnq Cr topology, and an E > 8, such that i f  X(, E 8 and z e' E ( e  - E, e %- e ) ,  then K -'(e') is a regular energy surface, and there is a 
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homeomorphism h : H - ' ( e ) + ~  - '(e') that maps orbits of XH I H - ' (e )  into 
orbits ofX,/K-'(e).  

It seems plausible that X structural stability implies 2' structural stability 
on any regular energy surface. Perhaps this would actually be the case if in 
8.5.1 we had required in addition that the phase portrait homeomorphism h:  
M--3.M preserve the energy surfaces, or in other words that there exists a 
function h,: R+R such that the diagram 

commutes, and if in 8.5.2 we had permitted E=O.  In any case, 2" structural 
stability is weaker in some sense, and close in spirit to the applications. 

As generically X, has property (H5), or X,I2, has no first integrals, this 
avoids the conflict between structural stability and the existence of first 
integrals. 

This version of stability is also nongeneric because of hbinson's exam- 
ple. 

Another stability defiition has been proposed by Thom 11975, p. 261. 
This calls for a stronger type of equivalence of phase portraits. k symplectic 
diffeomorphism replaces the homeomorphism, and in addition, it is required 
to preserve parametrization of the integral curves, not just the orbits. 

Recall that if ip: (M,w,)+(N,w,) is a syqlectic diffeomorphism and 
N E 'T(N), then ip*X, = X,,,. 

8.5.3 Dellmition. A Hamiltonian vector field XH E &(M) is Tr  stmchrralb 
stable ijf there is a neighborhood !.9 of XH EWXj1"vI"j (in the Ffliiitiii~ C r  
topology) such that X,E Q implies there is a symplectic difSeomorphism 9: 
M+ M such that y*XH = X,. 

If M is connected, the last condition is equivalent to the comutativity of 
the diagram: 

where c is Vanslation by a constant. This implies preservation of energy 
surfaces, a natural condition. This is not generic, either, despite Thorn's 2 

"P conjecture [1975; p. 261. 
0 

iz; Finally, we might consider the structural stability of a Namiltonian vector 
field X,  restricted to an energy surface 2,. That is, the phase portrait in 2, 
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should be stable under perturbation by arbitrary vector fields tangent to Z,. 
This appeals to those who doubt that the universe is conservative. Of course, 
it implies that reslpicted to Ze the phase portrait has all the generic properties 
of differentiable dynamics; (Gi), i = 2,. . . ,6. This is extremely unlikely. 

In fact, the exannple of Robinson shows that none of these notions of 
stability is appropriate in the Hanultonian context. Here is the idea of his 
construction. 

Let X, be a generic Hanulton vector field, with H3. Then there are 
numerous orbit cylinders, occasionally tangent to energy surfaces. Let F be a 
band of an orbit cylinder, between tangencies-a maximal regular orbit 
cylinder T= {ye). Mong F, the PCM9s of ye vary continuously with e. For 
some exceptional values of the energy, the dimension of the center manifold, 
FV0(-y,) c Z,, will change. Deleting these exceptional orbits, F is broken into a 
finite number of slrhcylinders T,, each with constant dimensions of W+(ri), 
W -(Ti), and WO(Fi). Here FV0(-y,) cZ, and FVO(r) = u { FV0(-ye)l -ye cF). Note 
for one of these, say r,, if ye E r ,  has u PCM9s (or, equivalently, 221 CM's, 
note u < n - 1) on the unit circle, and dim(M) = 212, then 

dim w'(~,) = 2u + l 
dim wO(T,) = 2u i- 2 

dim W' (ye) = dim W - (ye) = n - u 

dim W+(To)= dim W-(r,)=n-u+ 1 

dim To = 2 

The purely hyperbolic bands (u = 0) are unusual. So suppose T, is not purely 
hyperbolic, with 1 < u < n - I transverse frequencies for each ye EF, (u = n - I 
is the purely elliptic case). For the moment, we will call this a @pica! band. 
Then the result of Robinson [1970b], which elinninates all the preceding 
notions of structural stability from the Harnilto~an context, is the following. 

8.5.4 Critical Instabill& theorem. Let XH E &(M) be a fimiltonian vector 
field with a @pica1 band A, and ?i' any neighborhood o j  % E & ( M )  in the 
Whitney Cr topoloa, r > 1. Then there is a Hamiltonian vector jeld X', E 1I' 
such that the sets o j  critical elements FXH and rXK are not homeomorphic. 

Nasty. The idea of Robinson's constructive proof is to introduce a 
perturbation confined to a neighborhood of a closed orbit 6, in the typical 5 
band, so that the center manifold ~ ~ ( 8 , )  is perturbed to a VAK (nest of $ 
invariant tori) with typical closed orbits denser than in the original phase 
portrait. 2 

Conteqlation of this situation shows that an appropriate notion of z 
structural stability for Hamiltonian d y n a ~ c s  must be extremely vague and 2 
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fuzzy, if not downright statistical. This is a real obstacle to a reasonable 
philosophy of stability in the Hamiltonian context, and no relief is visible on 
the horizon. Yet, it is possible that further study of generic arcs of symplectic 
diffeomorphisms will yield a sort of stability for vague attractors, excepting a 
countable (but perhaps dense) set of exceptional values of the parameter, 
where the VAK's change topological type. 

8.6 A ZOO OF STABLE BIFURCATIONS 

In Hamiltonian dynamics, orbit cylinders provide built-in one-parameter 
families. These arcs have been endowed with generic properties-analogous 
to Sect. 7.6 in the differentiable context-within property H3. The bifurca- 
tions that result-analogous to those drawn in Sect. 7.7-become part of the 
phase portrait of a single Namiltonian vector field. Thus the restricted vector 
field X,IZ, is more or less analogous to an arc of vector fields with the energy 
e as parameter. However, in this case, the manifold 2, may bifurcate, as well 
as the phase portrait. 

In this section, we illustrate the bifurcations and terminations of generic 
orbit cylinders, as discovered by Deprit and Henrard [1968], Meyer and 
Palmore 119701, and Meyer [1970,1971a]. This is the beginning of a complete 
taxonomy of orbit cylinder pathology, as general techniques of Takens 
[1973a] point the way. 

In these examples, we consider only dim(M)=4, and X, with N3. The 
techniques of Meyer are based on the PoincarC generating function (see also 
Weinstein [I9721 and Arnold [1978, Appendix 91). 

Discussion of Figure 8.6-6 : The Burst. First, an orbit cylinder can originate 
or terminate at a critical point. This bifurcation, a metaphor for asexual 
creation, was known to Liapounov, and is described in the Liapounov 
theorem (Sect. 5.6). It is similar to the Hopf bifurcation in the context of 
one-parameter families of vector fields. 

Let m E M  be an X-elementary equilibrium of X,. Two cases arise (as 
n =2): either m is a saddle-center, with CM's [exp(+.Zmia),p,p-'1 with 
a E (0,;) and irrational, p > 1 real, or rrf is a pure center, with CM's 
[exp(+ Zmia), exp(l2miP)l with a,  P E(O, ;), and irrationally related. Take the 
saddle-center case first, and let A c T,M be the eigenspace of exp(k2nia). 
By the Liapounov theorem, there is a two-dimensional submanifold C c M  
tangent to A at m consisting entirely of closed orbits of transverse frequency 
approximately a ,  the center manifold of m. The center manifold must there- 
fore be an orbit cylinder I' closed by the point in, as shown in Fig. 8.6-1. As $ X,  is assumed HZ, this cylinder is HZ-N for all N. Suppose this cylinder is 
parametrized as { yA) =I?, with y, tending to rn as X > O tends to zero. The 
flow normal to yA, for X sufficiently small, is governed by the CM's (p,pP')  

z of in, as C= I' u {m) is tangent to A at m. Thus the CM pA of yA approaches p 
Pa 

as X tends to zero, and therefore is eventually real. Thus a disk in C around in 
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Figure 8.6-l(e). Phantom burst. The Liapounov bifurcation, in n = 2  degrees of freedom, 
for a single hyperbolic orbit cylinder incident at a critical point of saddle-center type along 
the center. A three-dimensional energy surface is shown as a two-dimensional surface of 
rotation. The PCM's of the critical point are shown below the PCM of the approaching 
closed orbits. Were r is shown dashed because it is hyperbolic, and therefore qualitatively 
invisible. 

2, = sphere, e = e' (burst) 
or hyperboloid, e > c> e' (reincarnation) 

Flgure 8.6-l(b). Stable burst. The Liapounov bifurcation in n = 2  degrees of freedom for a 
pair of elliptic orbit cylinders incident at a critical point of pure-center type along the 
sub-centers. In four dimensions they do not intersect. The PCM of y t  is shown above the 
PCM's of m with the PM of y," at the bottom. 
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consists entirely of closed orbits of hyperbolic type (real PCM) closed by m. 
In our qualitative view only elliptic orbit cylinders (unimodular PCM) are 
significant because of their generic orbital stability (8.4.4), so this case is of no 
qualitative significance. 

Now consider the second possibility, in which m is an elliptic equilibrium. 
Let A c T,M be as before, and B c T,M be similarly the eigenspace of the 
CM's exp(k2viP). The Liapounov construction now applies to both A and 
B, so we have two orbit cylinders (not intersecting) closed by m, comprising 
the two subcenter manifolds of m, say 

Here the PCM of y," approaches exp(2via) as X tends to zero. That is, the 
transverse frequency of y," approaches a. Similarly, the transverse frequency 
of yff approaches P. If the period of a closed orbit y is 7, then its orbital 
frequency is 2v/7. The orbital and transverse frequencies must not be 
confused. In this case, the transverse frequency of y," approaches the orbital 
frequency of yf, and vice versa. Eventually, both y," and yff are of elliptic 
type, and therefore of qualitative significance. As PCMf 1 in either case, the 
parameter X can be taken to be the energy. Suppose m is a local minimum of 
N. Then each energy surface 2, near m is a three-sphere, whch contains two 
elliptic closed orbits y,* and y!, collapsing to m as e approaches its minimum 
value c =  ll(m), as shown in Fig. 8.6-l(b). This represents the simultaneous 
creation in vacuo of twin stable oscillations of (possibly) large orbital and 
transverse frequencies, with amplitude increasing from (or decreasing to) zero 
as e passes its critical value c at rn, the relative extremum, the stable b m l  
catastrophe. 

In case m is a local maximum, the parameter is reversed. 
In the saddle case, the energy surfaces are hyperboloidal, and each 

contains a closed orbit y,* for e > c, yF for e < c. As e passes c, y! shrinks, 
dies, and is reborn as yea, reinmnatbn. 

D~SCPISS~B~ of Figure 8.6-2: Creation. In the case of n = 2  degrees of 
freedom, a closed orbit y has only one PCM y, either real (1 yl> 1, the 
hyperbolic case), unimodular ( y = exp (27~ia), a E (0, i),  the elliptic case), or 
both ( y =  k 1, the degenerate cases). Thus for n=2, the bad set B, corre- 
sponds to y = exp(2via) with a E [0, i], and there is a nonzero integer p E 
[ - N, N] such that pa is an integer, or a = q/p since a is nonnegative, we may 
assume without loss of generality thatp is positive and q nonnegative, so y is 
a pth root of unity. In other words, for an orbit cylinder {y,) in the case 

5 n = 2, we have non-PI2 behavior whenever the PCM lu, is apth  root of unity, 
S p = 1,2,. . . , and so forth. In the rest of this section we will consider these cases 4 

one at a time and describe the results of Meyer [I9701 who classified all the 13 
generic phenomena that arise with n =2. He calls these the genericp-bifurca- 
tions, and in this section we consider the first case, p = I, which Meyer calls 
an extrernal closed orbit. Thus we have a regular orbit cylinder {y,) with 
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ELL IP WYP 

Figure 8.6-2. Creation. A hyperbolic to elliptic transition via tangency of an orbit cylinder 
(here shown as a surface of revolution, hyperbolic dashed, elliptic solid) to an energy 
surface (here, a horizontal plane). The PCM for the elliptic, transitional, and hyperbolic 
cases are shown alongside. The transitional orbit is unstable, and therefore belongs to the 
dashed portion of r. 

PCM p, and yo is extremal, or po= 1. By the Regular Orbit Cylinder 
Theorem, the orbit cylinder is tangent to the energy surface Z,, c = H(yo), 
and on one side. Generically, Meyer shows that this occurs only when iu, 
changes transversally from real to unimodular values, passing through 1 at 
A =  0, so y, changes suddenly from hyperbolic to elliptic type (or vice versa) 
as h increases through zero, as shown in Fig. 8.6-2. Also, he shows that yo is 
orbitally unstable. 

With the energy e as parameter, the vector field XHIZe=Xe suddenly 
develops an unstable periodic orbit yo for e= c of large amplitude, presum- 
ably by a h g l n  catas&ophe: the closing of a recurrent orbit. For e > c, this 
extremal orbit yo splits into two closed orbits ye- and y z ,  where ye- = y, for 5 
some A < 0 and is hyperbolic, and y: = y, for some h> 0 and is elliptic. As $ 
only y,+ is qualitatively "visible," a single elliptic closed orbit has suddenly 8 
made its appearance in the phase portrait of Xe, as e increased past e=  c, and 2 
nearby is its phantom dual ye-, which is qualitatively invisible. Alternatively, z 
the process could be read in reverse, as the instantaneous annihilation of a 2 
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large closed orbit, through cancellation by a phantom dual. We therefore call 
this phenomenon creation (or an~MIatiora). 

Dlscusslsn of Figure 8.6-3: Subtle Division. Next letp = 2, the two-bifurca- 
tion or ~ranszsitional orbit of Meyer 119701. As I is not a PCM in this case (or in 
fact in any of the remaining cases) the orbit cylinder may be parametrked by 
the energy according to the regular orbit cylinder theorem. Thus r=  {ye}, 
pe = BCM (ye), and pc = - 1. Generically, according to Meyer, the transitional 
orbit yc occurs only for a transversal change of iu, from unimodular to real 
values through the comrnon point - I ,  and y, undergoes ""transition9' from 
elliptic to hyperbolic type as e increases throu& c, or vice versa. This aspect 
is similar to the extremal orbit of creation, but pe moves through - 1 instead 
of f 1. But in this case energy is the parameter, and there is a further 
pathology in the incidence at. yc cI' of another orbit cyfinder A =  {8,le< c}. 
Two cases arise. %n the first, 6, is of elliptic type. As e approaches c from 
above, 8, a tends to a double covering of yc and the orbital frequency of 8, 
approaches half the orbital frequency of yc. Thus we may consider 6, a 
sub-harmonic of yc, approac&ng resonance as shown in Fig. 8.6-3. Meyer has 

TRANS 

?i 
9 
C9 

8 
$ Rpun 8.6-3. Subtle division. An ehptlc to hyperbolic transillon via crosskg of PCM ' through - 1 with emission of a subtly halved elliptic cylinder. The transitional orbit is 

stable. 
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shown that the transitional orbit y, is orbitally stable. Thus as e increases 
through c, we have the significant orbit ye replaced by the qualitatively visible 
sub-harmonic 6,, while ye itself becomes invisible. Qualitatively, the behavior 
is not changed very much, as ae is approximately a double covering of y,, so 
the orbital frequency and amplitude of the oscillation are not catastrophically 
changed. Only later, as e increases considerably, will it become apparent to 
an observer that 6, has doubled its period because 6, is no longer running 
twice around in a neighborhood of ye. Hence we call this phenomenon s&le 
halving. Read the other way, with energy decreasing with time, a visible 
oscillation doubles over itself and resonates with a phantom oscillation 
having twice its orbital frequency, a subtle doubling. These are two versions of 
the first of the two cases arising generically when the PCM is - 1. 

D~seussisn of Figure 8.6-4: Murder. In this case, the arriving sub-harmonic 
orbit cyiiiider A =  (ae j is of hyperbolic type and approaches from the other 
side of Z,, that is, along the elliptic part of I?. Therefore, the configuration is 
identical to subtle division, with "elliptic" and "hyperbolic" interchanged 
everywhere in Fig. 8.6-4, and the energy parameter reversed. Thus ye changes 

N Y?' 

TRANS 

ELL IP NYP 

Figure 8.6-4. Murder. An elliptic to hyperbolic transition via crossing of PCM through 
- 1 with absorbtion of a sub-harmonic hyperbolic cylinder. The transitional orbit is 
unstable. 
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from elliptic type (e <c) to hyperbolic type (e >c) at y,, the transitional orbit, 
which in this case is orbitally unstable. The hyperbolic sub-hamonic 6, (e <c) 
approaches a double covering of ye as e increases to c, and the orbit cylinder 
A terminates at y,, as shown in Fig. 8.6-4. Only y,, for e<c, is visible. The 
phantom killer 6, approaches the stable orbit ye as half its orbital frequency. 
At e = c resoaamce occurs, 6, disappears, and ye dies. For e >c, ye persists only 
as a ghost, so we call it mmder. In this case also, the transition can be 
interpreted with the parameter (energy) reversed. Thus a ghost (-y,) suddenly 
materializes (becomes elliptic), and emits a phantom sub-hamonic (4 ,  hyper- 
bolic) materianuation. 

Dlseussion sf Rguee 8.6-5: The Phantom Kisses. The cases already de- 
scribed cover transitions between hyperbolic and elliptic states (PCM= ". 1) 
and the remaining p-bifurcations (PCM=pth root of unity, p = 3,4,. . .) all 
must occur along orbit cylinders, parametrized by the energy, which remain 
elliptic during the bifurcation. The case p = 3 and one of the two cases with 
p = 4 are very similar. The orbit cylinder I? = {ye) is elliptic, and ye has PCM 
exp(2.rriae). For e = c, the transverse frequency is ar, = f [resp. f 1, and generi- 
cally, a, passes transversally through this value. Nearby are two other orbit 
cylinders of hyperbolic type: 

As e approaches c from above or below, 6, approaches a triple (resp. 
quadruple) covering of ye, as shown in Fig. 8.6-5. Both cylinders terminate at 
y,, which is orbitally unstable. The set of closed orbits 

with 13~ = y, may be considered an orbit "cylinder," degenerate at e= c. The 
phantom 6, approaches ye, resonates to its third (resp. fourth) harmonic, 
kisses r at y, = 6, (an excited state), undergoes subtle frequency diuision (falls 
to its ground state), and departs again. The actor ye loses his stability 
momentarily, but recovers immediately. An observer sees nothing but this 
momentary instability, if anything. 

Discussion of Figure 8.6-6: Eml~sion. The second case of four-bifurcation, 
and all cases of p-bifurcation forp > 4 (there is generically only one phenome- 
non for each p >4, according to Meyer) are similar. Again T= {ye) is an 

$ ellipuc orbit cylinder, and the transverse frequency a, passes transvenally 
through q = $ [resp. q/p, p >4, l < q < (p/2)]. There are two nearby orbit 
cylinders, an elliptic one A =  (8,) and a hyperbolic one E= {E,}, both defined 
only for e >  c. As e approaches c from above, both 6, and E, approach a 

E p-fold covering of ye, A and E terminating at y,, as shown in Fig. 8.6-6. The 
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EL LIP 

@ 
ELLIP 

Y s 
4 
m 

Flglure 8.6-5. Phantom kiss. A crossing of a PCM past exp(2aia), a = j, a three-bifurca- - 
tion, with a kiss by a hyperbolic sub-harmonic. The original elliptic cylinder is unperturbed. 6 
The 4-kiss, in which a passes $, is identical, except that the osculating sub-hamonic has Z 
one-fourth the orbital frequency instead of one-third, as shown, of the elliptic cylinder. 2 
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Y 
2 
4 
m 
8 
2 Figure 8.6-6. Emission. A crossing of a PCM past exp(2~ia ) ,  a pth root of unity, p 2 4, 

with emission of elliptic and hyperbolic sub-harmonics of one-pth the orbital frequency of 
ILf the original elliptic cylinder, shown here for p = 4. 
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critical orbit y, is stable. Here something significant happens. As e increases 
through c, the stable orbit ye splits into two stable orbits, ye and 4, the latter 
at a subtly divided (sub-hamonic) orbital frequency. Although no change is 
observed in the principal actor ye, a new actor is emitted from y,, along with a 
phanto~ll twin ee. We call this eIlliission. Read in reverse, it is called absorption. 

For these bifurcations of orbit cylinders in the case of two degrees of 
freedom, an elegant treatment is suggested in Takerns [1873b]. 

Another bifurcation situation arises if the Hamiltonian vector field is 
perturbed by a k-parameter family, Itk--+9&(iW). Even for k =  1, the bifurca- 
tions along orbit cylinders will correspond to the two-parameter bifurcations 
of differentiable dynamics. But at an equilibrium point, one-parameter bifur- 
cations in the Hamiltonian case correspond to one-parameter bifurcations in 
the differentiable case. One example was discovered in the study of the 
Lagrange equilateral eq~ilihria in the restricted three-body problem by Brown 
[I91 11. See Deprit and Henrard [I9681 for the early history. The mathematical 
foundation for the Brown (or Trojan) bifurcation with two degrees of free- 
dom is given by Meyer and Schmidt [1971]. Also, an analogous bifurcation 
for orbit cylinders in the case of three degrees of freedom has been studied by 
Mrein [l950], Moser [1958], h o l d  and Avez 119671 and Robinson 11971cj. 
These are different types of resonance phenomena. 

Discussion of Figures 8.6-7 and: 8.6-8: Resonance. (also called the Brown 
bifurcation or Trojan bifurcation) Consider a Hamiltonian depending on a 
single parameter, R+F(M):  y I-+ N,,, M =  w = T*R 2, and X, = XHp has an 
equilibrium at the origin, for all p. The bifurcation will take place at O for 
y = 0. For y < 0, O is elliptic, and the four CM's are on the unit circle. At 
p. = 0, the two distinct conjugate pairs become coincident. And for p > 0, O is 
purely hyperbolic. 

For p <0, two elliptic orbit cylinders terminate at 0: either the burst or 
reincarnation must take place. For y > 0, there are no orbit cylinders near 0, a 
saddle point. Where did they go? Meyer and Schmidt prove that they collapse 
to a point (the bubble), or drift away as a single orbit cylinder (liberation). 
Both cases are illustrated in Fig. 8.6-7. It is the latter case that occurs in the 
restricted three-body problem for a mass ratio near Routh's critical value 
(exactly where is explained at the end of Sect. 10.2). 

Finally, at an equilibrium of a Hamiltonian vector field perturbed by a 
one-parameter family, we may have a passage of CM's on the unit circle, as 
shown in Fig. 8.6-8 (compare Fig. 8.6-7). Also, for lal/ < la2/, the passage (as p 
increases through zero, or any other value) of a2(p) through a multiple of 
@I(P), 2 

a2=ka l ,  ~ E Z  7 m 

creates a simiIar phenomenon, known as resonance. In this case the hypothe- 
ses of the Liapounov Sub-Center Theorem are violated, and bifurcations $ 
occur. Related bifurcations occur in a passage of p past a critical value yo, 

z 
E? 
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Figure 8.6-7. Two resonance bifurcatiom. An equilibrium point of a Ha~l tonian vector 
field ( n = 2  degrees of freedorn) depending on a real parameter p. The CM's of the 
equilibrium point change as shown. (See Figs. 8.6-I@) and 8.6-2.) 

where a relation 

3 
$2 

h,(~.lo)=ka,(PoI> I , k E Z  
4 * is satisfied. These are the subhmmo~c resonanem that generally occur in this 
8 
OP context, for almost eoey wlzce of the parameter p. The general idea of these 
0 

z bifurcations is this: corresponding to the frequency or, is an orbit cylinder 
r,(p) incident at the equilibfium m = m,(p) and compfising the subcenter 
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CM1s OF THE EQUILIBRIUM 

CE's OF THE EQUILIBRIUM 

Flguse 8.6-8. Resonance 

manifold of a,. Another orbit cylinder r,(p) comprises the subcenter mani- 
fold of a,. In most cases, both are stable: a stable burst configuration. 
Between these energy cylinders, are numerous bridges, consisting of orbit 
cylinders incident upon both r,(p) and I',(p) in an orbit cylinder bifurcation 
such as subtle division, murder, phantom kiss, or emission. Let B ( p) be such a 
bridge cylinder. Then as p passes the bifurcation value p,,, the entire bridge 
B (p) collapses into the equilibrium mo(po). 

The full description of these equilibrium resonance bifurcations is conjec- 
tured in Deprit and Nenrard [I9691 and proved in Schmidt 119741, in the case 
of two degrees of freedom, and (k, I) relatively prim. 

8.7 THE GENERAL PATHOLOGY 

We now combine these results and the invariant tori of Kolmogorov, 
Arnol'd, and Moser in a single picture. Suppose M has dimension four, H: 
M+R is Cr, r sufficiently large, and the Hamiltonian system X, satisfies all 
of the generic conditions envisioned so far. Then X, has a set C of isolated 2 
critical points that are of hyperbolic (real or complex), saddle-center, or $ 
elliptic type. Write C = C, u Cs u q. Each point m E C has a different energy 
H(m). The complement M\C is foliated by energy surfaces Z, of dimension 
three. A point m E C, has two-dimensional insets and outsets, and no center z 
set. A point m E C, has one-dimensional insets and outsets, and a two-dimen- 3 
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sional center, which is a hyperbolic orbit cylinder. A point rn E Ce has two 
sub-centers of dimension two, each an elliptic orbit cylinder-either the burst 
or reincarnation. The remaining closed orbits comprise orbit cylinders that 
originate and terminate with these center cylinders, or on each othhe Each 
orbit cylinder l7 may be tangent to an energy surface only at isolated values 
of its cylinder parameter-the creation and annihilation events. At each of 
these isolated tangencies, the cylinder changes from hyperbolic to elliptic 
type, or vice versa. TEle creation bifurcations of a given cylinder divide it into 
bands of closed orbits, parametrized by the energy. At isolated closed orbits 
in these bands, there may occur either subtle division (arrival of an elliptic 
cylinder of half the orbital frequency) or murder (arrival of a hyperbolic 
cylinder of half the orbital frequency). In either case, the original band 
changes from elliptic to hyperbolic type. Omitting the transitional orbits of all 
three types, the components of the rest of the original cylinder r is a union of 
connected orbit bands, each completely eelliptic or completely hyperbolic. 
The hyperbolic bands have further bifurcations: rechambering-at isolated 
closed orbits where insets and outsets cross (quasi-transversallfl-and 
renesting-where the critical instabilities occur (8.5.5). 

The hyperbolic bands may only terrninale in certain ways: 

-by bursting at an equilibrium; 
-on an elliptic band at a kiss, murder, or emission; 
-or by transition to an eiligtic band through creation, subtie division, or 

murder. 

At isolated orbits in an elliptic band E, hyperbolic cylinders may touch E 
in one of the kisses, resonating to either their third or fourth octaves at 
contact. On the rest of E, the transverse frequency q of ye = E n Ze passes 
continuously through rational and irrational values. At each rational value, 
the emission of a pair of sub-harmonic cylinders occurs, one elliptle and one 
hyperbolic. A few of these are illustrated in Fig. 8.9-1, vc.ithin a three-dimen- 
sional submanifold S c M ,  which is txansversal to the cylinder E (S n E is a 
curve) and such that S is a transversal section for each orbit yecE.  The 
energy subsurfaces Se = % n Ze are drawn as horizontal subspaces, and the 
curve S n E is a vertical line. Each Se is a transversal section for ye within Ze, 
so closed orbits 6, of an ernitted cylinder A appear as periodic orbits of the 
PoincarC section map of Se. As e varies, the periodic points corresponding to 
6, trace curves in S, which appear as ribs of an upside-down umbrella. At 
each e with q rational, such an umbrella originates with 2p ribs if ae is apth  
root of unity. The ribs alternate elliptic/hyperbolic and are tangent to Se at 
xe = yen S, according to Meyer 119701. Only a few umbrellas are drawn in 
Fig. 8.7-1, but in fact, S is practically full of them. See Figs. 8.3-3 and 8.7-2. 

Now fix an elliptic closed orbit ye c E. As XH satisfies property H2, the 
PoincarC section ,Ye has many concentric invariant circles around xe = yen S, 
corresponding to invariant tori around ye, on which X, is an irrational 
rotation, according to the Moser stability theorem. The ribs of emitted 
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' / (bottom view) 

>( - Hyperbolic orbits 
intersecting S,. 

- Elliptic orbits 
intersecting S,. 

PCM passes 5th r 
emission of SxtS 

PCM Dasses 4th root, 
emission of 4xfS, 40'~. 

r n S, section of cylinder K' 

Flgure 8.7-1 Nested umbrellas. A cross section S of an elliptic orbit cylinder r showing the 
loci of successive emitted sub-harmonic cylinders. The energy surfaces, S, = 2, n S, shown 
as horizontal planes, are actually two dimensional. The intersection S nT, shown as a 
vertical line, is actually one dimensional. Pictorials of all the bifurcations, shown schemati- 
cally (four dimensions represented as three) in the previous illustrations, could be made in 
this manner. Only a few ribs of three umbrellas are shown. There is a countable set of 
umbrellas. 

umbrellas for x, = y, n S below xe pierce the annuli bounded by the Moser 
circles. As x, gets closer to xe, the ribs emitted from x, pierce progressively 
smaller annuli. For a givenp, there will be a finite number of umbrellas of 2p 
ribs, so the ribs of the umbrella of x, must get increasingly numerous as x, 3 
approaches x,. E: 4 

Further, the VAK around ye and within 2, generates a "VAK cylinder" as 3 
e is changed: each invariant torus T* of recurrent motion generates a cylinder $ 
T* X I ,  and each pair of (elliptic/hyperbolic) closed orbits of long period z 
between two T*'S generate a pair of (elliptic/hyperbolic) orbit cylinders. 2 
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CREATION CREATION 

REINCARNATION 

ANNIHILATION BURST 

Each elliptic band is encrusted with nested umbrellas. 

E l l i p t i c  c linder @Stable transition 
..------- Hyperbo6c cylinder o Unstable transition 

@Critical point 

Flgure 8.7-3. Section of a typical cylinder. A typical cylinder, from birth (here from a 
saddle-center critical point, initially hyperbolic) evolves through successive cabstrophes to 
death at a burst. Only a few of the many possibilities are shown. All orbit cylinders are 
represented as curves. Energy surfaces are imagined to be horizontal planes, except near the 
critical point. This indicates the generic pathology in the case of n = 2  degrees of free- 
dom. - elliptic cylinder; ------ hyperbolic cylinder; @ stable transition; 0 un- 
stable transition; C3 critical point. 

Eventually, e passes a critical elliptic orbit y,, where the twist invariant goes 
through zero, and renesting occurs. Unknown discontinuities may occur. 

Finally, sweep the whole picture around the orbit cylinder E to return to 
M. Difficult to visualize? This is the garden variety elliptic orbit band. 

A few possibilities for a typical orbit cylinder are shown in schematic 
form in Fig. 8.7-3. Here, orbit cylinders are shown as curves--dotted for 
hyperbolic, solid for elliptic. Energy surfaces appear as horizontal planes. 

This, then, is the typical behavior of a Hamiltonian system with two 
degrees of freedom. For higher dimensions, the burst phenomenon produces 
more cylinders, and various liberations and bubbles are possible. The transi- 
tional bifurcations are similar to the cases described. The p-bifurcations in 
higher dimensions should admit many new catastrophes. Worse, resonance 
bifurcations must be expected whenever the transverse frequencies are ration- 
ally related, not only when one of them is a root of unity. 

8.8 EXPERIMENTAL MECHANICS Y 
N 

Of course, observational astronomy is one type of experimental $ 
mechanics, and many important results began with planeta~y observations. 
But the experimental possibilities opened up by the development of fast 2 
numerical machines, especially digital computers, have had the largest impact z 
on Hamiltonian dynamics. As soon as these machines and integration soft- 3 
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ware were available, Hamiltonian systems were among the first studied. Thus, 
the historical remarks of Sect. 7.8 apply here as well. 

The literature on experimental mechanics was dominated from the start 
by the restricted three-body problem, and this development is probably as 
essential as rocketry to the physical exploration of the solar system. 

In this section, we describe three examples. 

8.8.Mxample. An early classic is Nenon and Heiles [1964], who studied 
the motion of a star in a cylindrical galaxy by numerical integration. This 
reduces to a Lagrangian system 

Fixing energy e, a global section is obtained with section map 

where V, is a neighborhood of (0,0) in the (y,y) plane. This is constructed by 
projecting the energy surface 2, into l Z 3 ,  

and taking the section S defined by x-0. Figures 8.8-1(a)-8.8-1(c) show the 

Figure 8.8-I(a). 81/12. The complete picture in the y , j  plane for a given value of the 
energy: e = = 0.08333. 
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Figure t).t)-I(b). 8,,,. The complete picture in they,); plane for higher energy: e=O.I2500. 

Figure 8.8-I(c). El8,/,. The complete picture in the y,); plane for higher energy: e= = 

0.16667. 

phase portraits of 8,, as calculated by Henon and Neiles, for three values of 
the fixed energy e and the potential X A 

0 
They found that some of the discrete orbits appear to lie on dosed curves, 
which are rotated irrationally by 8,, as expected because of the Moser twist z 

e? theorem. These curves have been added to the phase portraits. The iirnal 
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Figure 8.8-1(d). VAK density versus energy. Relative area covered by the curves as a 
function of energy. 

drawing, Fig. 8.8-l(d), shows the density of these curves as a function of the 
energy e. This is similar to the expectation of stability for a single VAK 
shown in Fig. 8.3-4. The co ntaries in Fig. 8.8-1 are quotations from 
Nenon and Neiles [1964]. Compare Fig. 8.3-31 For further discussion, see 
Churchill, Pecelli and Rod [1978b]. 

Gommenta.ary on Fig. 8.8-4(a). Each set of points linked by a curve corre- 
sponds to one computed trajectory. In fact, more trajectories and more points 
on each have been computed than shown on this picture. It appears that in 
every case, the points seem to lie exactly on a curve. These curves form a 
one-parameter family that fills completely the available area, within the outer 
curve. 

"In the middle of the four small loops are four invariant points of the 
mapping (not represented on the figure); they correspond to stable periodic 
orbits. The three intersections of curves are also invariant points, correspond- 

X 
ing to unstable periodic orbits." (From Henon and Heiles 119641.) 

d 
a Commentary on Fig. 8.8-Vb). Here we continue to have a set of closed 

curves around each stable invariant point. But these curves no longer fill the 
whole area. All the isolated points on the figure correspond to one and the 

z same trajectory, just as the points on one of the closed curves; but they 
e? 
g behave in a completely different way. It is clearly impossible to draw any 
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curve through them. They seem to be distributed at random, in an area left 
free between the closed curves. Most striking is the fact that t&s change of 
behavior seems to occur abruptly across some dividing line in the plane. 

""The picture is even more complicated than the above description would 
suggest. For example, the five little loops in the right of the diagram belong to 
the same trajectory; the successive points Pi julnp from one loop to the next. 
Let US call this feature a chain of islands. Other such chains have been found 
in various parts of the diagram. The number q of the islands in a chain can 
apparently have any value. As a rule, the dimensions of the islands decrease 
very rapidly when q increases. Each chain is associated with a stable periodic 
orbit; the q islands surround the q points which correspond to that orbit. 
Note that each set of closed curves on the figure can be considered as a chain 
constituted by ody one island; in both features no ergodic orbit seems to 
appear. The following properties are aiso suggested by our rewhs: 

(1) there is an idinite nurnber of islands (and of chains); 
(2) the set of all the islands is dense evewhere; 
(3) but the islands do not cover the whole area since they become very 

small; there exists a "sea" between the islands and the ergodic trajectory 
is dense everywhere on the sea. 

But, of course, mathematical proofs are needed to establish these points." 
(From Henon and Heiles [1964].) 

Cornmentaw on Fig. 8.8-Vc). With even higher energy the picture again 
changes drastically. All the isolated points correspond to one trajectory, and 
it is apparent that this "ergodic" trajectory covers almost the whole area 
within the outer line. Its random character is most strikhgly seen when one 
plots the successive points; they jump from one part of the diagram to 
another withnut aay zpparent law. Two of the sets of closed curves, these on 
the j axis, have now disappeared, presumably because their central invariant 
point has become unstable. The two other sets of closed curves have degener- 
ated, each one into a chain of two small islands, successive points Pi jumping 
from one to the other. No other chain of islands has been found; probably 
they still exist, but the dimensions of the islands are so small that finding 
them is difficult. 

"The open circles in the middle of the diagram correspond to a trajectory 
of a new kind, intermediate between the closed curves and the ergodic 
behavior. They are approximately situated on an eight-shaped line, but with 
an important dispersion around it. The ultimate behavior of such an orbit is 
not known; perhaps the points will always remain in the vicinity of the same 
line, and fill an eight-shaped band; or perhaps they will after some time 
penetrate into the ergodic region. Some recent results, not shown here, are in $ 
favor of this last hypothesis." (From Henon and Heiles [1964].) m 

8 
2 

Comrnentav on Fig. 8.8-1 (d). "A remarkable feature of Figs. 8.8-l(a)-8.8- 2: 
l(c) is the complete change in the picture over a moderate interval of the 2 



energy e. For e=0.08333, the area is completely covered with curves; for 
twice that value, the curves are almost completely replaced by an ergodic 
region. 

"ln order to study this transition in more detail, we have computed, for a 
number of values of e, the proportion of the total allowable area in the y , j  
plane which is covered by curves. 

"'The figure shows the results. Up to a critical energy (about e=  8.1 1) the 
curves cover the whole area; there is no ergodic orbit. For higher energies the 
area covered by curves shrinks very rapidly. Thus the situation could be very 
roughly described by saying that the second integral exists for orbits below a 
"critical energy," and does not exist for orbits above that energy. e =  is the 
energy of escape in the potential; for e > i, the equipotential lines open and 
the star can eventually escape to infinity, if the orbit is ergsdic. The area in 
the y , j  plane becomes infinite and the relative area ceases to have m e a ~ ~ g .  
No obvious connection exists between the critical energy and the energy of 
escape; in the present case the critical energy is less than the energy of escape. 
But results from computations with U= 4(x2 -ky2 - ~ 4 ~ ) ~  not shown here, 
indicate the opposite situation, as do the results of computations by 
Ollongren [I9621 with an approximation to the Galactic potential." (From 
Henon and Heiles [1964].) 

4- 

3 
..-# Figure 8.8-2. Genealogical tree of the Trojan manifold for Routh's mass ratio. 
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8.8.2 Example. As early as 1965, a computer graphic film was made of 
""bus orbits" in the three-body problem by kentsdorf. (See Fig. 10.3-2.) 
Computational techniques for such graphics are well described in Daniel and 
Moore [1970]. 

8.8.3 Example. The previous section described some outstanding features 
of the phase portrait of a typical Hamiltonian vector field in four dimensions. 
According to the theory, some wild behavior is possible: bifurcating layers of 
infinite umbrellas of VAK nests, and so on. One might wonder if any real 
system is this complex, in spite of PoincarC's warnings about the three-body 
problem. Deprit and Henrard [I9681 describe how the liberation phenomenon 
was discovered by digital simulation. And furthermore, they have attempted a 
full experimental exploration and mapping of the phase portrait of the 
restricted three-body problem in the neighborhood of the point corresponding 
(roughly) to the Trojan planets in the Sun-Jupiter system (see Sect. 10.3). 
Their results are shown in Fig. 8.8-2. Connpare with Fig. 8.7-3. 

Gommenlav on Figure 8.8-2. "Each orbit is represented by a point; two 
orbits having the same Jacobi constant lie on the same horizontal line. A 
branch of periodic orbits is represented by a curve; it is a solid curve as long 
as the constituent orbits are stable; otherwise it is a dashed line. A bifurcation 
orbit or a self-resonant orbit is indicated by a hollow circle, while an ejection 
orbit is marked by a black disk. The genealogcal tree condenses all the 
information gathered so far about the Trojan manifold for RoutWs critical 
mass ratio." (From Deprit and Henrard 119681.) 



PART 

Although many new and important applications of analytical dynamics 
bespeak its broad role in the theoretical sciences, the grandfather of the entire 
edifice is celestial mechanics, or the study of the n-body problem. Bn this Part 
we introduce the simplest cases. Far from being simple, we shall see that all of 
the preceding results must be used. 

At this point, we return to our policy prior to Part III. Henceforward, we 
include complete proofs for the principal resuits. 



CHAPTER 

The Two-Body Problem 

In this chapter we establish the classical results on the two-body problem. 
These are expressed in a form dictated by the three-body problem, discussed 
i~ the next chapter. 

9.1 MODELS FOR +\NO BODIES 

In this section we consider several mathematical models for the two-body 
problem and their interrelationships. The experimental domain might be the 
Eath and Sun, a binary star, and so forth. As the heuristic deriva+,ioa of the 
models from Newton's gravitational theory is so well known, we shall not 
discuss it, its experimental domain, nor its interpretation. 

9.4.1 Definition. The fimt mdel  for t k  two-bdy problem ( I )  is a system 
(M, Hlq m, p) , where: 

( i )  M= T* K W =  x R~\& di = {(q ,  q).)lq where M has the canoni- 
cal symplectic structure; 

(ii) m E M (initial conditions); 
(iii) p ER, p > 0 (the mass ratio); 

aC 
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(iu) Pip E S ( M )  defined by 

where g , q' E R ~ ,  p, p' E (R~)* ,  and I I I I denotes the standard norm in Jt3. 

The predictions of the model are: the maximal integral curve of the Hamilto- 
nian vector field XH, throzlgh m, the orbits m, of m (u = +, -, 9 ), and limit 
sets wa(m). 

Note that collision points, represented by the set A, are excluded from 
R3 X W 3  SO that N p  E T ( M ) .  Also, X,, is not complete as integral curves can 
"run off the manifold" in finite time due to collisions. 

9.1.2 Proposition (Conservation d linear momentum). In model I the 
components of p+p' (relatiue to the standard dual basis) are constants of the 
molion. 

Po05 Consider the Lie group G = (R 3, + ) acting on W by translations: 
"P,(q, q') = ( q  + r, q' + r)  for r E 6. On M = T* W consider the induced action 
9 T+ (see Sect. 4.2) given by 

A computation analogous to the one done for the linear momentum in Sect. 
4.2 shows that J :  M+(R~)",  J(q9q',p,p')=p+pf is a moment for the action 
c p P ,  and hence j($) is a constant of the motion for all $E(W3)* since the 
Hamiltonian P i q s  clearly +T+-invariant. Making $ successively equal to 
( 1 ,  O j  9, (0,1,0), and (0,0,1), we find that the maps (q j  q f jp jp ' )  ~p~ +p,!, 
i = 1,2,3 are constants of the motion. B 

The next proposition in effect changes us to coordinates relative to the 
center of mass. 

9.6.3 Pro'oposillon. There is a symplectic diffeomorphism F: M+N, where M 
is as in 9.1.1 andN=T*V, V = R ~ X ( R ~ \ { @ ) )  such that 

where Pip is given in 9.1.1. 

0 
Pro@$ Consider the diffeomorphism f :  W-+ V ;  (g, q') H (q, q - q'). The in- % duced symplectic diffeomorphism F= T v - ' :  T* W= M - + P  V= N is easily y 



9 THE TWO-BODY PROBLEM 621 

seen to be (q, q',p,pf) +-+ (q, q - q' ,p +PI, - p') with inverse 1"- ' : N+M given 
by (q, qf,p,p') (q, q - q',p +p', - p'). This gives the result. 

In 9.1.3, the components of p are constants of the motion for ' N p =  
N" F - '. If n E E represents the initial conditions and n = (h, g&,po,p&), then 
using the symplectic diffeomorphism (q, qf,p,p') t+ (q - cl,,q',p -p0,pf) ,  we 
may assume qo =. 8, p0 = O. Thus 

'Np  (q, q',p,pf) = 

along the integral curve, where ( l /p  + I)-' is called the reduced m s s .  
This leads naturally to another model that is "quivalent" in some sense 

(the one-body problem), This is an example of redaction by fist !ntegraIss, the 
general case of which was described in Sect. 4.3. (The approach of Sect. 4.3 is 
actually carried out in 10.4.2 for the planar n-body problem.) 

9.1.4 Dellnltion. The secod modelfor the two-body problem (11) is a system 
(M9 EI, rn) , where: 

( i )  M=T*U, u=R~\{@); 
(ii) m E M (initial conditions); and 

(iii) H E ~ ( M ) ,  defied by ~ ( q , p ) =  llg1i2/2- l / / j q / / .  

The predictions of the model are: the m x i m l  integral curve of the Hamilto- 
nian vector field X, through 9 and the corresponding orbits and limit sets. 

Note that we have now rescaled so the mass is one. 

9.X.5 Propsition (Consewation of angular momentum). In model II the 
following quantities are constants of the motion, 

(q2p3- q 3 p 2 9 4 3 p l - q b 3 , q f P 2 - q 2 ~ l ) = ( ~ 1 ~  G2,G3)  

where 
1 2 3  4==(4,4 ,¶ ) , P = ( P ~ Y P ~ Y P ~ )  

Pro@$ Consider the Lie group G= SO (3) acting on u=R~\{@) througk 
rotations: cp: (A,  q )  -Aq. On M = T* U consider the induced action 
cp P(,4, (q,p)) = (Aq,p 0 A - ') and recall from 4.2.15(ii) that J :  M+so(3)*, 
J=(G,,G2,G3) is a momentum mapping for this action, called angular 
momentum. Since the Harniltonian H is clearly cpP-invariant, j(() is a 
constant of the motion for all (Eso(3). Making ( successively equal to 

z (1,0, O), (0,1, O), and (0,0, l), we find that the maps (g,g)w Gi, i = ;; :. 3 are 
constants of the motion. w 
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Thus 9.1.5 tells us that the orbit of (q,p) lies in the hyperplane perpendicu- 
lar to (G,, G,, G,, G,, Gz, G,) at (q,p) in the standard metric. A rotation in 
~ ~ \ { 0 )  together with the same one in the phase variables is, as we have seen, 
a symplectic diffeomorphism (compare 9.1.3). Thus we may orient the above 
hyperplane to obtain the following "equivalent" model. Again this is a 
particular case of reduction. 

9.1.6 Definition. The third model for tPle two-body problem ( III)  is a system 
(M ,  H, m) where: 

(i) M = T*(R ,\ {@I), with canonical symplectic structure; 
(ii) rn E M (initial conditions); and 
(iii) H ~ F ( M ) d e j n e d b y  N(q,p)=11~11~/2-1/11q11. 

The predictions gf the model are: the maximal integral curve through m of 
the Namiltonian vector jeld X,, and the corresponding orbits and limit sets. 

Again, 1 1  1 1  denotes the Euclidean norm. 
From the coments  preceding 3.7.4, the above Namiltonian is hyperregu- 

lar with Lagrangian C on T(R,\{@)) given by 

Thus, in this case, the Lagrangian equations become 

where q : I+R ,\ (01, q(t) = (ql(t), q2(t)) denotes the base integral curve 
(3.5.17). We alsc have conservatior, ef energy: 

and angular momentum (area integral): 

The fiber derivative of the Harniltonian H (or Lagrangian C) relates X, to X, 
as we have seen in 3.6.9. Moreover, P;W: T*(R~\{@))+T(R~\{@)): (q,p) 
t-+(q,4) (relative to the standard bases) so we may freely pass between the 
two formulations. 3 

The fourth model is just the Lagrangian version of the third model, living 
in velocity space rather than momentum phase space. This distinction is 3 
trivial in this context, as we have already transformed the masses away, by 2 
normalization. Thus FH is essentially the idehtity mapping, and so also is the 
Legendre transformation, FC = P;W - '. k2 
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9.1.7 Definition. Thefoupbh modelfor the two-bodyproblem (IF') is a system 
(A! L, n) , where: 

(i) N=  T ( R ~ \ ( ~ ) )  with the symplectic structure we= (PC)*wo, w, the 
canonical synzplectic form on T*(R 2\ (0)) ; 

( i i )  n E N (initial conditions); and 
(iii) C E %(N) is the hyperregular Lagrangian defined by 

The predictions of the model are: the maximal integral curve of the 
Lagrangian vector field XE through n, and the corresponding orbits and liw~it 
sets. Here E E %(N) is the energy of C, 

Note that the symplectic structure induced on N, we=(f'C)*oQ is the 
standard one, 

where for n E W =  T(R'\(@)) we use the notations 

for the component functions. 
The fourth model has an associated angular momentum G E %(N) de- 

fined by 

This is the familiar momentum of the usual action of S0 (2) on R2, in the 
tangent formulation, except we here identify the dual Lie algebra of S0(2) 
with W. Thus, the momentum is a real valued function on T(R~\{@)). 

me Lagrangian vector field XE in model IV is the classical second-order 
system of Newton for the two-body problem. The well-known solution to 
these equations (a base integral curve of X, in model IV) is a conic section, 
possibly degenerate. In fact, if 6 = 0, the solution is a straight line (degenerate 
case), whereas if GZO, the path is an ellipse, parabola, or hyperbola, 
according as E < 0, E = 0, or E > 0, the sense of rotation being determined by 
the sign of G. We shall see all this in detail in the next section for the elliptical 
case. It is not simple, however, to obtain a formula for the global flow 
explicitly. For the details and a discussion of the use of the Jacobi metric, see 
Wintner [1941, Chapter IV]. 

Z We shall be mainly interested in the case of closed orbits (E<O, GfO), 
2 which we discuss in the next section. 
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9.1A. Work out the details that lead above to the conclusion that ~ ( ~ , 4 ) =  qlq2- 
qZq' is a constant of the motion in model IV. 

9.1B. Show in detail that the reduction procedure of Sect. 4.3 applied to the linear 
and angular momentum leads to models 11 and 111, respectively. 

9.2 ELLIPTIC ORBITS AND KEPLER ELEMENTS 

In model IV for the two-body problem a large open subset of the velocity 
space is filled with closed orbits. In this section we study this region, primarily 
because it is basic to the study of closed orbits of the restricted three-body 
problem. Then we shall do the same thing for the phase space. 

We begin by prescribing the domains of closed orbits, then introduce the 
c?assica? parzmeters of the ejliptic erbits h m v n  vxincsly as anomalies, 
elliptic elements, Kepler elements, and so forth. The balance of this section is 
devoted to the classical properties of these parameters, discovered by Kepler 
(1627), Newton (1687), and Lagrange (1808). 

Recall that for the planar two-body problem, in model IV (9.1.7) we found 
the following equations for the base integral curves (Lagrange's equations): 

with constants of the motion 

and 

E represents the energy and G is the derivative of twice the area swept out by 
the radius arm; that is why G is often referred to as the "area integral." To 
see this, denote by (r,a) a polar coordinate system in the plane; hence 
ql(t) = r(t) cos a(t), q2(t) = r(t)sin a(t), and the area swept out by the radius 
arm when the angle a goes from +, to +2 is f lt;r2(a) da =A. We conclude 

then that dA /da = + r2(a) and hence dA /dt = f r2(t)&(t). A straightforward 
computation shows that X 

dA = +r2(t)dr ( t )  = - 
dt 
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The fact that 6 is constant along the integral curves of X, means that 
dA /dt  = constant and hence that the radius arm sweeps out equal areas in equal 
times. This is Kepler's Second Law discovered in 1602 (gublished in 1609). 

9.2."1roposlllonm 11 in the above model, E<0 and G+0 on the base 
integral curve (computed from initial conditions qo, QO), then the curve is an 
ellipse with eccentricity b = ( 1  + ~ E G ~ ) ' / ~  semimajor axis a = ( - 2E)-' and one 
focus at the origin (Kepler's First Law). Also, the rate of sweeping out an area 
by qt is constant and the period of the closed orbit is r = 277a3/2 (Kepler's Third 
Law). 

Bmo$ It readily follows that 

so that 

Similarly, 

which gives ~ ~ + ~ ~ = 1 + 2 ~ 6 ~  and ~ ~ = A q ' ( t ) + ~ q ~ ( t ) + r ( t ) ,  that is, in 
polar coordinates q1 = r cos a ,  q2 = rsin a ,  

where ~ o s p = A / l / A ' + ~ ' ,  s i n p = ~ / ~ A ' + B ~ ,  and ,B represents the 
argument of theperihelion, that is, the angle formed by and the ql-axis (see 
Fig. 9.2-1 or 9.2-2). That /3 has indeed this interpretation follows from the fact 
that r ( P )  is minimal. From the general equations of the ellipse in polar 
coordinates and since 1 + 2 ~ 6 ~  > 0, we see that the above equation represents 
an ellipse with eccentricity b = I/- = ( 1  + EG') ' /~  < 1. Since the 
numerator in the expression for r(a)  must be equal to a( l  - b2), we conclude 
a =( -2E) - ' .  The above equation thus represents an ellipse with one focus at 
the origin, a and b given in the statement and inclined by the angle ,8 with 
respect to the 4'-axis. Finally, the rate of sweeping out area by the vector a is 

x the constant 6 / 2  as we saw earlier. Since the semi-nninor axis of the ellipse is 
a(1- b2)'/', the area of the ellipse is na2(1 - b2)'/2, and hence the period is 

9 

C 

Note also the compatibility condition 0 < 1 + 2 ~ 6 ~  < 1.  
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" t  

Figure 9.2-3. Construction of the apocenter J from initial conditions ((lo,@,,) with E < O  
and G > 0. 

Given initial conditions qO,& the orbit may be easily reconstructed by 
geometrical means as indicated in Fig. 9.2-1. Recall that the sum of the 
distances to the foci is always 2a. (VVe assume E<O, G#O.) 

The position of q=(q',q2) on the elliptical orbit is described by the 
various "anomalies" or angular parameters in [0,2n)= 5' '. 
9.2.2 Definition. Consider a point qt moving on the ellipse described in 9.2.1 
in accordance with the equations of motion. Then the following quantities are 
defined in Fig. 9.2-2, all in S ': 

a ( t )  , the polar angle; 

u ( t) , the eccent~c anom&. 

We also defie, in case the eccentricity b +O, 

p, the aygumnt oft& pen'hlion (a constant) ; 

f ( t )  = a ( t )  - P, the tvlre anornab, and 

I ( t )  , the mean anomly, defined by 

A 
where T E ( - 7,0] is the rime ofperiheliM passage, that is, q, = P, and thus the $ 
initial mean anornab is lo = - (2n/  7 )  T E 10,277). Note that lo = a (0) - p. rn 

2 
00 

d 
That this diagram can be constructed follows at once from the equations 

of the ellipse. Y2 2 
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Figure 9.2-2. Definition of the anomalies, and related parameters. 

9.2.3 Proposition (Kepler's Law). In the situation described abmie, we have: 
for all t  E 10, T), 

(i) r( t)=a(l-bcosu(t)) ,  and 
(ii) I(t)=u(t)-bsinu(t).  

Prooj (i) In Fig. 9.2-2, if ly,A = liql - A  1 1 ,  and so forth, 

X 
= ( a m  sin u)' + a2(cos u - b)' 

s 
9 = a2(1 - b cos u ) ~  
r;, 
8 
$ since %A = alf- sinu. This relation follows from the well-known prop- 
z erty of ellipses which states that Ql:,A/qlA =(I - b2)-'/' and the fact that 

QIA = asin u. As r > 0, the result follows. For (ii) we have, from the law of 
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areas: 

l( t)  $ -T  areaq,OP - -=-- 
2n 7 area ellipse 

Now the ratio QfA/qtA is constant, being (1 - b2)-'/2. Now imagine the plane 
of the circle inclined towards the plane of the ellipse in such a way that the 
circle projects onto the ellipse. The angle between these two planes has cosine 
equal to rl,A /QtA = and hence 

area rl,@P area 4,O P - - 
area ellipse area circle 

1 (a2u a =- -- - ab sin u 
m 2 \ 2  2 

\ 
I 

which gives the result. IZI 

To study the three-body problem in later sections, it will be important to 
introduce coordinates that follow these elliptic orbits. The classical sequence 
of coordinate transfomations~artesian to Keplerian to Delaunay to Poin- 
car6 variables-spanning the nineteenth century, will be developed in the 
next section. The basis of this development is the calculation by Wittaker 
[I8961 of the Lagrange brackets of the Kepler elements-the parameters a, P, 
a, and b just defined for the elliptic orbits-to which we now turn. We shall 
interpret these first in the tangent and then in the cotangent bundle, obtaining 
at the end two couples of (nonequivalent) formulations of the Delaunay and 
PoincarC models. 

Recall from the closed orbit characterization of Proposition 9.2.1 that 
proper elliptical orbits were obtained for all initial conditions (ig,e)E N =  
T(R 2\  (0)) such that 

where b, the eccentricity, satisfies b2= 1 +XG2.  Motion along the ellipse is 
direct (counterclockwise) if G > 0, and retrograde (clockwise) if G <Q, as the 
construction of Fig. 9.2-1 shows. 

We restrict attention now to the direct elliptical orbits. To deal with the 
angular variables, we use the torus. Just as we interpreted the circle S ' as the 2 
reals rnod2~, s 1 = R / ( 2 ~ ) ,  we now identify the two-torus T' with the plane 5 
mod2n. This we denote by 2 

T ~ =  S1 x S ~ W R ' / ( ~ T ) X ( ~ T )  6 2 
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which is isomorphic (as a Lie group) to the usual torus (see Sect. 1.1). As a 
Lie group, this manifold has trivial tangent bundle, so we will identify 

for convenience in dealing with the angular variables. 
Finally, we are ready to define the first change of variables, the Kepler 

map. 

9.2.4 Definition. In the context of model IVfor the planar two-body problem, 
the direct eBlriE,deaI Bornin of N = T ( R  2\ (0)) is the open subset 

The KepIer domin of T j ~ ~ j  is the subset 

where S c R2 is the open half-strip defined by 

The Kepler elemnts are the following functions: 

a: & -+ S ', the polar angle at epoch defined in 9.2.2; 
p: & -+ S ', the argument of the perihelion, defined in 9.2.2; 
a: 6 +R +, the semi-major axis, defined in 9.2.1; and 
b: & -48, 11, the eccentricity, from 9.2.1. 

The KepIer map is 

If this map is to serve as a change of variables, it ought to be a 
diffeomorphism. 

9.2.5 Proposition. The Kepler map is a em diffeomorphism. 

The proof, wkch belongs to analytic geometv, is left as an exercise. The 
implications are not only that the Kepler elements are new coordinates in the 
direct elliptical domain, but also that, topologically, this domain is a thick- 
ened two-torus. 

The classical analog of the Kepler map is usually expressed in the full 
two-body problem of three degrees of freedom. In that six-dimensional 
context, it becomes 

E? k: n i-, (a, /I, a, b, I ,3)  
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and the additional Kepler elements-inclination I and longitude of the ascend- 
ing node &-are known as the orientation elements. They orient the orbital 
plane in W 3. 

Note: In most texts of celestial mechanics, the Kepler variables we call 
(a,& a, 6)  are denoted (e, ij, a, e). 

Returning to the planar problem in the Lagrangian context, we have 
specialized the domain to the open set & c N = T(W 2\(0)), which is a 
symplectic manifold with the standard form 

Then we introduced a classical change of coordinates 

The new domain, also has a standard symplectic form a , ,  so it is natural to 
ask whether the Kepler map is symplectic (K*wl =we or K*we=a1) or not. As 
Lagrange knew well, it is not. In fact, he calculated K,we by the method of 
Lagrange brackets, which he introduced for this purpose. We present this cal- 
culation in Sect. 9.4, after introducing the Delaunay variables in Sect. 9.3. 

So far, the whole formulation has been on the tangent bundle. For reasons 
that will become clear in Chapter 10, we also need a formulation on the 
cotangent bundle. 

Recall that models 111 and IV were equivalent by the Legendre transfor- 
mation that in this case is just the identity, qi=q', qi=p , ,  i =  1,2. Since the 
base integral curves of X,  (in model III) and X,  (in model IV) are the same, 
Proposition 9.2.1 remains unchanged with the exception of the expressions for 
a and b that in this case are 

where G((q,p) = q'p2 - 45, . Proper elliptical orbits are obtained for all initial 
conditions (q,p) E M - P(R 2\ (0)) such that H(q,p) < 0, G(q,p) )Z 0, b(q,p) 
> 0. 

The direct elliptical domain in this cotangent formulation is 

The Kepler domain of T*(r2)= r2 X is the subset 

where S c R is the open half-strip defined by 

S= {(a, 6) Elie2 1 a>O, b€(O, 1 ) )  



9 THE T W O - B O D Y  PROBLEM 631 

The Kepler elements (a,P,a,b) are the ones defined in 9.2.4, and the Kepler 
map in this cotangent formulation will be denoted by 

It is a Cw-diffeomorphism (9.2.5): & * and X *  are open subsets of M and 
T'*(T2), respectively, so they carry in a natural canonical way symplectic 
structures defined by the two-forms d q l ~ d p ,  + d q 2 ~ d p ,  on & * and d a ~ d a +  
d p ~ d b  on X*.  Is symplectic? As we shall see, it is not. Since the 
computations involved are identical with the ones for K: & + X ,  we shall 
work out the details only for K. Notice that X and X *  are in fact one and 
the same space; only the interpretation differs. 

As the Kepler elements turn out to be noncanoniGal coordinates for the 
direct elliptical domain, we proceed immediately to a further change of 
variables. These, suggested by Lagrange's calculation of K,w, by his bracket 
method, were introduced by Delaunay [1860]. 

We will use the "angular variable" idea or, more precisely, action-angle 
variables (see Sect. 5.2). Let S' denote il2mod2n9 and 

for any manifold M. For an angular variable w E @(MI,  its differential is a 
one-form on M ,  dw E % *(M) ,  see Ex. 2.4F. 

Denote the coordinate functions of 7'(T2)= S X S ' X R X R by ( y, 6, i., 8). 
Note that y,6 E @ ( T ( T ~ ) )  are angular variables, not real-valued functions. 
Note, if ( y ,  a,?, 8 )  E X ,  then 

+>O and 0<8<1 

For K: 6 - X :  (q',q2,q1,q2)i--s(ol,p,a,b) and X = K ( G ) ,  so for some n ~ & ,  

-j = a(n)  E R +, the serni-major axis 

8 = b ( n )  E (0, I ) ,  the eccentricity 

by 9.2.4. 
Here are the Delaunay variables. 

X 
A 

9.3.1 Definition. Let n, A E 6 ( X )  be defined by 
m 
8 
OP o T :  X C T ( T ~ ) + S ~ :  (y,6,i.,8)1-+6 



and I', A E %(K) by 

Let g, l E @(& ) and 6, L E %(& ) be defined by composition with the Kepler map 
K : & -+ X, that is, 

These are the Belaunay uan'ables of model Ii? 

For reference, we collect here the relationship between the Delaunay 
vat-ia"oes and the anomalies defined previously in 9.2.2. 

9.3.2 Proposition. The angular variable g E @ ( & )  is the argzcment of the 
perihelion of 9.2.2, g= B. The variable l E @(& ) defined in 9.3.1 is the same as 
the initial mean anomaly (or mean anomaly at epoch) of 9.2.2, 1 = I,. The 
function 6 E %(& ) defined in 9.3.1 is the angular momentum of model I x  
6 -. 6, and the function L E %(& ) is related to the energy of 9. I .  7 by 

1 +2L227=0 

or, equivalently, L2 = a, the semi-major axis function defined in 9.2.1. 

Putting together the Delaunay variables into a map and identifying 
T ( T ~ ) =  T~ x lZ2, we get 

where "i) = D (X). Further, let A = D 0 K:  & c T ( R ~ ) - + ~  c T ( r 2 ) ;  see the 
following commutative diagram: 

9.3.3 Definition. The map A: & - 4 0  is the Dekauylay m p  of the direct 3 
elliptical domain &, and "i) = A(& ) is the Delaamy domit .  El 9 

m 
23 

9.3.4 Proposition. (i) The DeIaunay domain is o 9 

9 = r 2 x 0  C T ~ X R ~ ~ T ( T ~ )  i3 
E! 
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Kepler Domain Delaunay Domain 

where 8 c R2 is the open set 

( i i )  The Delaunay map is a diffeomorphism. 

The open set 8 c R 2  is a triangle in the first quadrant illustrated in Fig. 
9.3-1. Thus, the Belaunay domain 9 = T~ x 0 can be visualized as a "figure 
of double revolution," or thickened torus. Of course, this reveals the topology 
of the elliptical domain & c T(R2). But this was already established, by 9.2.5, 
as & w r2 x S, where S C R ~  is an open half-strip. This is also illustrated in 
Fig. 9.3-1. 

PPQO$ AS X = T' x S, by definition (9.3.3), 

But D: X + q  : (y, 6, j ,  8) H(S, y - 6, r ,  A), where r ,  A depend only on the 
fiber coordinates f,8. Thus D is fiber preserving. On the zero section, I) is a 
toral isomorphism. On the fiber, the map V: ( f , $ ) ~ ( r , A )  has Sacobian 
matrix 

' which is nonsingular on S.  And trivially, V is a bijective map with V(S) = 8.  s 
9 - 
h 
0 

2 The Kepler map K: & +X is a diffeomorphism, but not symplectic. 
Z However, the Delaunay map A =  D o K is a symplectic diffeomo~hism. This 

will be established in the next section. 
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We turn now to the formulation of the Delaunay variables on the 
cotangent bundle. Denote the coordinate functions of ~"*(T~)Fz S ' x S ' x R 
x R by (y,6,7,8) and, as before, y and 6 E @(T*(r2 ) )  are angular variables, 
not real-valued functions. Hence, if ( y ,  6,7,8) € X *, then 7 > 0, 0 <8< 1. 
Since K: & *+X* is a diffeomorphism (q,p) H (a, P, a, b),  for some m E M =  
T*(R 2\  {O)), 7 = a(m) E R + , semi-major axis, 8= b(m) E (O,1) eccentricity. 

Similar to 9.3.1 we define the following maps [T, ACE@(%*), r, X E  
9 ( X  *)I: 

Let g, I E @(& *) and 6 ,  LE '%(& *) be defined by 

These are the DeIaunay variables on the cotangent bundle. As in 9.3.2, these 
variables have the following interpretation: 

g = P, the argument of the perihelion (9.2.2); 
I ,  the same as the initial mean anomaly 1, (9.2.2); 
6, - the angular momentum (9.2.6); 
L ==a"' or 1 + 2 z 2 ~  = 0, where a is the semi-major axis and H the 

Hamiltonian. 

Define the map 

where 9 * = B ( X * ) .  Let E=DoR: & * c T * ( R ~ ) + ~ * c T * ( T ~ )  be the 
Delaunay map in the contangent formulation. 9 * = z(& *) = B(% *) is the 
Delaunay domain in the cotangent formulation. See the following c o m t a -  
tive diagram: 
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Redoing the proof of 9.3.4, we conclude that the Delaunay domain is 

where 8 * is the open set 

o *= ( ( T , X ) E ( R ~ ) * = R ~ ~ O < F < X )  

and that the Delaunay map a is a diffeomorphism. We shall prove in the next 
section that a is a symplectic diffeomorphism, 

9.4 LAQWMGE BfRACKETS OF KEPLER ELEMENTS 

Recall that w, Gerioies the standard sympiectic form 

we= dqlr\dgl + dq2r\dg2 

on & c l'Yt2, while w, denotes the corresponding symplectic form 

on 'X c T(r2)  [or 9 c T(T2)]. In Sect. 9.2 we posed the question: Is the 
Kepler map symplectic, K,we=w,? (It is not.) In Sect. 9.3 we asked: Is the 
Delaunay map symplectic, A*we= w,? (It is.) 

Here, finally, is Lagrange's result. 

9.4.1 Theorem (Lagrange, 11808). With K: & -aX as above and we the 
standard symplectic form on & c TR~, the push-fomard of we to X by the 
Kepler map is 

The proof, a somewhat intricate calculation, is set aside in the next 
section. 

We can express this equivalently in the original domain by pulling back 
the Lagrange formula with the Kepler map. 

9.4.2 Corollary. With K: & 4% as above and we the standard symplectic 
form on &, 

Y 
2 we= dgr\dG+ dlr\dL 
4 

where g, I E @(& ) and 6, L E %(& ) are defined in 9.3.1 and identified in 9.3.2. 
Equivalently, the Delaunay map A: G -a9 is a symplectic diffeomorphism. 

2 
3 The corollary follows directly from Lagrange's theorem. 
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This result establishes the equivalence of the following fifth model for the 
planar two-body prob lemat  least for the direct elliptical domain (9.2.4) of 
model IV (9.1.7). , 

9.4.3 Definition, The Delauncly model for the two-Body problem (Vj) is 
(9, K, d )  , where ""3 c T ( r 2 )  is the Delatlnqy domain (9.3.31, the energy 
function Y ( g ,  I, G, L) = - 1 /2L2, and d E ""3 (initial codition). 

Note that the retrograde elliptied domain 

could have been included in this model. Then the domain 60 u 9- would 
consist of two components; each a thickened torus. 

Of course, Lagrange would not recognize his result in the form 

So now, we translate to Lagrange9s bracket notation. 
Recall from Sect. 3.3, that the Eagrange bracket is a matrix of functions 

defined by a chart on a symplectic manifold. Take (6, w,) as the symplectic 
manifold and K: &-+% c T ( r 2 )  as the chart. Of course this is not a 
coordinate chart in the formal sense, as the first two components are angular 
variables rather than real coordinates. The trivial extension of Lagrange 
bracket theory to this context is an exercise in Sect. 3.3 (Exercise 3.39). 

Thus the Eagrange bracket for 

: (,"I, q2j ,', Q 2 )  +-? (a, pa a; b) 

is the skew-symetric matrk of functions on & 

comprising the Eagrange brackets of the Kepler variables. By 3.3.23(iii) 
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we may compare with 9.4.2 

we= dgr\dG + dlr\dL 

to obtain the classical form: 

9.4.4 Propsition. The Lagrange brackets of the Kepler elements are giuen 
by the skew symmetric matrix: 

Pro@$ As functions on & we have g = P, I= a - /I, G = [a( l  - b2)]1/2, L = 
all2 (see 9.3.2 and 9.2.1) and hence dg = dB, dl= da - dp, 

and 

Thus 

Comparison of the two expressions of w,  yields the result. H 

This is Lagrange's result, in its original form. Its proof will be completed 
in the next section, where we give Whittaker's proof of 9.4.1. 

Lagrange's result in the contangent fomulation is 

E,(dqlr\dpl + dq2r\dp2)=dnr\df+ dhr\dx 
Y 

where E :  G *+%* is the Kepler map in cotangent formulation. As a 
corollary, we conclude that the standard canonical two-form dqlr\dp, + dq2r, ' dp, on & * has the expression 2 
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where g,l E&(& *) and GEE 9(& *) are defined in 9.3.5. This statement is 
equivalent to the fact that a: & * + 9  * is a symplectic diffeomorphism. 
Redoing the same computations as in 9.4.4, we find that the Lagrange 
brackets of the Kepler elements in cotangent formulation are given by the 
skew symmetric matrix 

As in 9.4.3 we can use this to formulate the Delaunay model on the 
cotangent bundle. 

9.4.5 Definition. The Delaunay model Lor the two-body problem (VP) in 
cotangent fomlation is a triple ( 9  *, K, d*), where 9 * c-T:(lr2) is the 
Delaunay domain, d* E 9 * the initial condition, and K( g, I, 6, L) == - 1 /2E2 
the Hamiltonian. 

By construction, both models V and VI are Hamiltonian, V on the tangent 
and VI on the cotangent bundle. However, note that both models have 
degenerate Hamiltonians, and thus are not equivalent via a Legendre transfor- 
mation. 

9.5 WHInAKEB'S METHOD 

In this section we prove Lagrange's theorem (9.4.1) of 1808, using the 
method of Whittaker [1896]. (A modern reference is Brouwer and Clemence 
[1961].) In particular, this will complete the proof that the Delaunay variables 
are canonical, a result needed for the three-body problem. 

Our proof consists of three steps. The first is the factorization of the 
Kepler map, 

E so &we= V ,  W*wE; the second is the calculation of ( P  X B),we= w' by 
means of Wittaker's lemma; the third step is the calculation of (I x GJ)",w' 2 
by brute force. 3 

The idea of the map B is to reduce the direct elliptical domain 6 ,  z 
considered as the union of elliptical orbits parametrized by the semi-major 
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axis a, the eccentricity b, and the argument of the perhelion P, to the case of 
ellipses in standard position, that is, P = 0. 

Using the function P: 6 +S' defined above, we will define a map 

by rotation in R 2  through the angle - P, which depends upon initial condi- 
tions (q,Q)E &. This map rotates velocities as well as positions. Thus, if p: 
S' x R ~ + R ~  is the usual action of S ' =S0(2)  on R 2  by rotations, its induced 
action on the tangent bundle is 

Now - p :  &-+s', where & C T R ~ ,  so the graph of - P ,  gr(-P): 
& + S 1  x T R ~ ,  can be composed with p T.  

9.5.1 Bellnilion. The mitlaker m p  is the composite 

that is, B (q, Q )  = (p(  - j3 (q, 41, q)  , p( - p (q, 4) ,@). The ellkgcal ~ n g  3 c TR 
is the image of the Whittaker map 3 = B (6). The suspended mittaker  nap is 

9.5.2 Propsillon. The suspended Whittaker map is a diffeomorphism, the 
elliptical ring is a submaniSold of TR2 of codimension one, and the Whittaker 
map is a submersion of corank one. 

ProoJ: gr(- P )  is a diffeomorphism onto its image and clearly p T  is a 
submersion of corank one. Hence B = p T ~ g r ( -  p )  is a submersion of eorank 
one. It follows that the Jacobian of /3 x B = W is nonsingular. Bijectivity of W ' then implies that W is a diffeomorphism. Hence W(& ) = S1 X 3 is a four- 

$ dimensional submanifold of S 1  x T R ~ ,  that is, % is a three-dimensional 
" submanifold of T R  2. E 
d 

i$ To conclude our first step, we shall express the map V= K O  W-'  directly, 
B so the factorization K= Vo  W will be useful. 
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Let us begin with a point (g,4)E &. How do we calculate the Kepler 
elements K(q,  4) =(a, P, a, b) for this initial point? The construction of the 
elliptical base integral curve is illustrated in Fig. 9.2-1. The parameters 
( p, a, b) describe the ellipse-argument of the perihelion, semi-major axis, and 
eccentricity, respectively. These three correspond to the radius in polar 
coordinates. The remaining element a is the argument of the point q along 
the ellipse, and is analogous to the angle in polar coordinates. Note that 
I =  a - p, the true anomaly, is the angular distance from the perihelion to g. 

Now rotate q and 4 by -P(q,4). We obtain the same elliptical diagram, 
but with the argument of the perihelion transformed to zero. Thus points in 
CR = B ( & ) c &  are parametrized by the elliptical elements a and b (semi- 
major axis and eccentricity) without change, and the angular variable has 
become I== a - ,8. This establishes the following charactekation of the factor 
V .  

9.5.3 Proposition. Let 

bedefinedby GJ=(Y,a,b), where y=a-P, restrictedto %c&.  Let I: S1+2i" 
be the identi&. Then V is I X 5 followed by a switch of the fist two arguments, 
and then by the addition of j3 in the first argument, that is, V= ( I  X TI-. 

Broo$ Consider the diagram 

Here v: S ' X  S ~ X R ~ + X C  T(r2): (P,y,a,b)t+(a= y+p,p,a,b) and hence 
V =  ( I  x 5) -  = v 0 ( I  X 5). We have then: 

and so we see that K= Vo  W. The diagram above expresses V as a composi- 
tion of diffeomorphisms (ignoring proper specification sf the domain 
( I ~ T ) ( S ' ~ C R ) ~ ~ ' ~ ~ ' x ~ ~ a t t h e b o t t o m o f t h e d i a g r a m ) .  M 3 

2 
4 

This completes the first step, the factorization. This may seem a bit 3 
tedious, but the geometric motivation is simple enough. 2 

Next, the second step. We must calculate W,wP For this coqutation we z 
use the composite definmtion W= P x (p 0 gr(- P)). 3 
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If a : S ' x % -+% is projection, and i : -+ TR is the inclusion map, let 
w, = a* i*wp Let Q : S ' x TR 2-+S be the projection on the first factor and let 
dQ be its differential, as in Exercise 2.4F and the remarks preceding 4.2.18. 

9.5.4 Proposition. The push-fonuard of the symplectic form we with the 
Whittaker map is 

where 6, = G W - ' = W* G, and G : & c TR2+R is the momentum of the 
S ' = SO (2) action p on TR = R X R intelpreted as a real-valued function. 
(See the end of Sect. 9.1 and Exercise 9.1A.) 

Pro@$ To obtain this from Wnittaker's i e m a  (4.2.20) we reexpress the 
result we want in terms of the pull-back, that is, 

where /3 = W*Q = Q 0 W: & +S is the argument of the perihelion. Here 
& S i x %  S ' X T R ~  and w,=a*i*we. But ioaoW=B since 
W= /3 X B, and hence W*w, = W* a*i*we= B*w@ so we are reduced to show- 
ing that 

where B: & is the Wrhittaker map. But this is exactly VVhittaker's 
lemma (4.2.21) for the map - P. gl 

This completes the second step. Note that W,we= w! + dQr,dG1 implies 
K,we = V* W,we = V,o, + v,(dQ~dG,) = T/,w, + d(Q V - ' ) A ~ ( G ,  V-I). 
Recall from 9.5.3 that V(P,p-pq,p-pd)=(a,P,a, b), that is, ~ - ' ( a , b , a ,  b) = 
( P , ~ - ~ q , p - ~ & ) ,  SO (Qo~/-')(a,P,a,b)=/3, that is, Q O V - ' = T ,  the map 
defined in 9.3.1. Also, 6,. V - I =  G O  W - ' 0  V-I= GOK-'=I'  (by Definition 
9.3.1). Thus we have found that 

and comparing with our goal-the Lagrange theorem (9.4.1)-it remains to 
show that V,wi = dhr\dA, where X(y, 6, );, 6') = y - 6 and A ( ~ ,  8, j., 6) = 
This is the third and final step. 

SC 
2 

9.5.5 Propsilion Whlnaker, 1896). With V: S' X %-+T(T2) as in 9.5.3, 
m 2 ~~=a*i*wa,rin9.5.4andX,A:T(~~)+~asin9.3.1,thepush~onuardofw, 

by V is given by 
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Pro@$ Finally, we must do a brute force calculation in classical style, 
following Wittaker's original method. The coqonents of &w, are given by 
the Eagrange brackets as functions on X c T(r2), the Kepler domain (see 
3.3.23), and these functions are independent of time in the following sense 
(see 3.3.24). Let Xo denote the original Hamiltonian vector field on 6 ,  
defining the two-body problem in the positive elliptic domain. Let X ,  denote 
the push-forward of this vector field to the suspended elliptical ring S h 9, 
and let X, = W*X,, where W :  & -aS1 x 9, is the suspended VVhittaker map. 
This is a globally Harniltonian vector field with respect to the (unusual) 
symplectic form 

and for this vector field Xi: a complete system of integrals is provided by the 
Keplerian elements. That is, the function 

(here n = aW3l2 is the m a n  motion) is a coq le te  system of integrals for X, in 
the sense of 2.1.10. Thus the components of V, %we= V*w, + d n ~ d r  in 
~ ( 7 ' ~ )  are independent of the first component y by Lagrange's theorem 
3.3.24. Since a (as a function on X )  and r are clearly independent of the first 
component y, we see that V,w, has components independent of y and of 
time. Thus 

and the Lagrange brackets r[y:6D2 and so forth depend only on the coordi- 
nates 8, c, and d. We may therefore calculate them at any convenient point 
on the integral ellipses, say at perhelion. As usual in the classical Lagrangian 
context, the coqutation is done in terms of the inverse chart V-', ex- 
pressing the old coordinates ( P, x, i) in terms of the new (y, 8, d, c). As 

is defined by the Keplerian elements, we have 

X where y is on the ellipse with semi-major axis c, eccentricity d, argument of A 
the perihefion 0, and angular distance y -8  from penhelion. Note that $ 
penhelion is described [in T(T~)]  by y = 8. Then is detemuned by tangency 
to this ellipse in standard position. 2 

So we must express the components (X, Y )  of y, and (2, f )  of j and their z 
partial derivatives as functions of (y98,c,d), and substitute in the classical 2 
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expressions for [y,6], and SO forth given in 3.3.23. The functions X, Y,k, Y 
are obviously independent of 6, and the computations need only be done at 
perihelion y = 6. Introducing the auxiliary variable X = y - 6, the mean 
anomaly, and writing a for c, b for d, the functions X(A,a,b), Y(X,a, b) are 
provided by the explicit solution of the dynamical system X,, as given in 
9.2.1. Their change in time is given by X(t) = nt, where n = a-3/2, SO (see Fig. 
9.5-1) 

At perihelion (A = 0) the component functions X, Y of V -' may be 
developed as Taylor polynomials in A, from the equations of the ellipses, as 

Thus, the partial derivatives with respect to a, b,X at perihelion are given by 
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From these and general expressions for the Lagrange brackets in 3.3.23(iv) 
we find that 

[a, ba =0, gb, An = 0, [A, aJ = an/2 

For example, 

Thus, the only nonzero term in the expression for &u, in terns of Lagrange 
brackets comes from [IA,aJ, and so 

On the other hand, since A =  a'/* and n= in the present notation, we 
have 

and so V,w, = d h ~ d A  as asserted. 

We now turn to the cotangent bundle formulation of Whittker's result. 
We proceed as before in three steps and will only sketch the proofs, since they 
are entirely similar to the ones just given. 

Step I .  Here we want a commutative diagram 

0 
As before, the idea of the map 5 is to reduce the direct elliptical domain i3 & * c T * R ~ ,  considered as the union of ellipses parametrized by semi-major 
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axis a, eccentricity b, and argument of the perihelion P, to the case of ellipses 
in standard position only, that is, with /3 =O. 

Using the function P: & *+S ', we will define a map B:  & *+ P R  by 
rotation in R 2  through the angle - P, which depends upon initial conditions 
(q,p) E & *. Thus, if p: S ' x R '-+R2 is the usual action by rotations in R 2 ,  its 
induced action on the cotangent bundle is 

where 

Now - p :  & *-+sl, so that the graph of - P ,  gr(-P): &*+s'x T*R' can 
be composed with pT*. Then define the Whittaker map in cotangent formula- 
tion by the comutative diagram 

that is, B(q9p) = (p - p 6 , n q 9 ~  pp(q,P2_). The elliptical ring (R * c P R  ' is the 
image of the Wittaker map (R* = B(& *). The suspended Whittaker map is 

Exactly as in 9.5.2 it can be proved that W is a diffeomorphism, (R* is a 
codimension one submanifold of T* R2, and B is a corank one submersion. 

Identical azgugents as those preceding 9.5.3 lead u_s to define J= 
( I x  - 5)-=v0(1 XT) ,  where I :  S1+S1  is the identity, 5 :  ( R * + s ' x R ~ ,  
G J =(y,a,b), y=ar-j3, and v: s ~ x s ~ x R ~ + X * C T * ( T ~ ) ,  v(P,y,a,b)=(a= 

y + P,P,a, b). Hence we have the diagram 
Y -, 
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We have then 

- - 
that is, V o  W= E, which completes the first step. 

Step 2. This consists in the proof of 

where 6: & * c T*R2+R is the classical angular momentum in cotangent 
formulation (i.e., the momentum for the action p T* of S1 on T*R*), Q: 
s'X T * R 2 - + ~ '  the canonical projection on the first factor, and w ,  = a*i*w,, 
a : S ' x *+a * being the projection and i : * 4 T*R the inclusion. This 
proof is identical to 9.5.4 with the sole difference that one uses the mittaker 
lemma in cotangent formulation (see 4.2.17 and 4.2.19). 

Step 3. This step consists in the proof of the fact that 

As before, this can be reduced to a simpler statement involving only v 
- 

by noticing that S , ( c o  W-') = G o v- ' o V -  ' = G OK-, = f ,  
G O  T/-i(a,@,a,b)=/3 [since v(P,P-p4,P~Pp)=(a,P,a,b)], that is, Qo v-'= 
n. We shall have then 

so all we have to prove is 

m 
8 

But it is clear that the whole proof of 9.5.5 goes through in this ease, just by 
replacing formally everything that was on the tangent bundle with variables 
in the cotangent bundle. i! 
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9.6 PO IN CAR^ VARIABLES 

The main weakness of the Delaunay model is that it does not contain the 
circular Kepler orbits (b =O; see Fig. 9.3-2). The inverse A-': 9 -6 of the 
Delaunay map can be extended so that its image contains the circular orbits, 
but the extension is no longer injective. The situation ?s analogous to that for 
polar coordinates (r,@) in the plane. These coordinates are described by a 
map p:  R'\(~)+Ts' (see Fig. 9.6-1) for which p - '  can be extended by 
mapping the entire @-"axis" (r = 0) into the origin. 

For the purpose of studying the circular orbits (in Chapter 101, the 
Poinear6 model is helpful, and is obtained from the Delaunay model by an 
additional symplectic diffeomorghism II. The mapping P = IT o A relating the 
new model to E in model IV (9.2.4) then extends to a diffeomovhism on &,, 
the domain of counterclochise elli.ptical and circular orbits in model IV. This 
Boincark difjeomolphism P, preserves integral curves, so the Poincare model is 
"quivalent" to model IV restricted to &, . 

3 We begin by constructing TII on a larger domain N c lj"(r2) that contains 
E: 9 ; we shall call this mapping fi. Let ( x ' , ~ ' , ~ ' , ~ ~ )  be "coordinate functions" 4 

in T(T')= 2:' x R', with (x',x2) angular variables. Then we define the open 3 
g set W c T ( T ~ )  by N= { ( ~ ' , x ~ , y ' , ~ ~ ) ~  y 2  -yl >0). Let T' denote the circle S' 
z parametrized by [0,47r); that is, T' is the quotient space of R mod47r7 and in 

T(R X 7'') we use coordinate variables (a', a', P ',p2) with a2 cyclic (mod4~). 
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Then define 

fi: N+T(W X 2"'): ( x ' , x ~ y ' , y 2 ) ~ ( a ~ a 2 , P ' , P 2 )  

where 

9.6.1 Propsition. The image n (N)  = I? c T(R X I") is an open subset, and 
fi: N-+Z is a p~vmplectic diffeomorphism (with respect to the natural symplectic 
forms; that is, l 3 * ( d a ' ~ d p ' + d a ~ ~ d ~ ~ ) = d x ~ ~ & ~ + d x ~ ~ & ~ ) .  

The proof is a simple computation and left as an exercise at the end of 
this section. 

We may now apply this symplectic diffeomorphism to the Delaunay 
model ( 9 ,  K,d) to obtain the PoincarC model (9 , ,  Q,p). We let 9 = n ( 9 )  c 
T ( R  X 2''). Then, as l3= fil9 is a symplectic diffeomorphism, we have 

2 1 2  13,XK=XKo,-I (see 3.3.19). But K(xl,x ,y ,y )= - (9.4.3) and 
p2oII=y2, SO y 2 0 n - ' = P 2  and K ~ T l [ - ' = - i ( p ~ ) ~ .  This new model is 
related to the fourth model ( 6 ,  L, n) by the Delaunay mapping A: & 49 
composed with the mapping l3: 9 - 9 .  The composite mapping P = PT A: 
& 49  is the Paincare mapping, and traditionally the component functions of 
this mapping are denoted by 

Then since P = Tli A and A(q', q2, q', g2) = (g, 1, G, L) (see Fig. 93-11, we may 
write 

h = g + l  

[= (2(L - ~ ) ) ' / ~ c o s ~  X 
5? 
9 
m 

A = L  8 
2 

As these equations express the connection between the new model and 
model IV, and thus the experimental domain, it is suggestive to relabel the 
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coordinates (a  ', a2, P ', /3 2, by (q, A, <, A). Then the new energy function be- 
comes Q = - 1 /2A2. 

We now extend this model sligbtly to include the circular orbits. ]In model 
IV, the domain W includes all orbits, { n  E N I E (n) < 0 < b (n )  < 1 ,  G (n)  =#= 0) 
contains elliptical orbits only (b+O), and & contains the direct elliptical 
orbits only. 

Since b = (1 + 2 ~ 6 ~ ) ' / ~  = (1 - G2/a)U2 = (1 - G ~ / L ~ ) ' / ~ ,  & is defined by 
the condition 0 < 6 < L. Thus the enlarged domain &, c N defined by 0 < G 
< L contains all elliptical and circular orbits. It does not hllow immediately 
that &, is an open subset of W; however, this seems plausible if we recall that 
a circular orbit may be completely surrounded by elliptical orbits, as 
illustrated in Fig. 9.6-2. 

On the other hand, in the Poinear6 model, (($17) are polar coordinates in 
the plane with radius r = (2(L - G))'/~. As 0 < G < L in & , r = 0 is excluded 
from 9 = II(q). Thus we may extend 9 to a larger set 9, c T ( R  X T' )  by 
adding the points ((0, A, 0, A)lA E T1, A > 0). ObviousIy 9, is open. Call 9, the 
Poinear6 domGn. 

We now extend the PoincarC mapping P: & 49 to a mapping P,: 
&,+9, to include the circular orbits. From Fig. 9.2-2 we see that for a 
circular orbit the polar coordinate a replaces the sum g +  l=X. We may 
therefore define 
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with G = L or n E &, \& by defining X = a and A = L = 6. This is clearly a 
bijection on 6 ,  \&.  We now summarize the properties of the PoincarC 
mappings. Let w2 denote the standard synnplectic form on T ( R  x a"'), that is, 

9.6.2 Theorem. The subsets &, c T ( r 2 )  and 9, c T ( R  X T ') are open. The 
Poincari mapping P,  : &, 49, dejned by P,(m) = (5 A, & A) for m € 6 is a 
diffeomophism, where 

and P,(m) = (0, A, 0, A)  for m E &, \&, where h = a, the polar angle of Fig. 
9.6-2, and A= L. Also, 

The proof is straightfornard and is left as an exercise. Note that P, is 
symplectic. In the model (9, Q,p) with Q = - 1 /2n2,  Q may be extended to 9, 
without singularity. Thus our last model is the following. 

9.6-3 DeBbltion. The Poincare model for the ~oan~wc~o~kwise  eljktical m d  
circulav orbits of the two-body problem (VIP) is ( 9 ,  , $2, p)  , where 9, = PI(&,) ,  
Q(q, A, & A)  = - 1 /2A2, the energy function, and p E 9, the initial conditions. 

This model is related to model IV by the Poincart diffeomoqhism P,. 
We now describe the construction of the Poincark model on the cotangent 

bundle starting with the Delaunay model, on the cotangent bundle (VI). Since 
V and VI were not equivalent, the cotangent PoincarC model will not be 
equivalent to VII. Its advantage will become clear in Chapter 10. 

We proceed as above. Let M c T*(r2 )  be the open set M =  
{ ( x ' , ~ ~ , y , , ~ ~ ) ~ ~ ~ - ~ ,  >0} and denote by T' the circle S' parametrized by 2 

S [0,47~), that is, T' is the quotient space of R m o d 4 ~ .  In P ( R  x T ' )  we use 7 
m 

variables ( a  ', a2, P,, P2) with a2 cyclic ( rnodh) .  Define S 
2 
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where 

P2(x1, x2,Y19Y2) =y2 - 
Then it is eazy to show (see 9.6.1) that n ( ~ ) =  $ c T*(R X T') is an open 
subset and n: M-+$ is a symplectic diffeomorphism with respect to the 
canonical symplectic structures, that is, 

We apply this symglectic diffeomorphism to the Dglaunay model (VI) 
( 9  *, E9 d*). Let 9 * = n ( 9  *) c T*(R X T '). Since n = nl9 * is symplectic, - 
n.XK= X,,,,-, (3.3.191, and because - - ~(x1,x2,y, ,y2)= - 1/2y: (9.4.6), 
= y2, that IS, y2 0 E- I = P2. Thus K 0 II- ' = - 1 /2P; is the new Hamiltonian - - 
on 9 * . Call F= I'I 0 A : G * 49 * the Poincari mapping in cotangent formula- 
eion. We shall denote the component functions by 

Since q2,pl,p2) = (g, I, G, L) (see Fig. 9.3-3), we may write 

The new Hamiltonian is G = - 1 /2h2. 
We can extend this model to include the circular orbits. Recall that & * is 

defined by the conditions W < O < b < 1, 5 > 0. But since b = (1 + 2 ~ 5 ~ ) ' / ~  = 

(1 - C2/a)'l2 = (1 - 62/L2)1/2, G * can be defined equivalently by 0 < G< L. 
$ Define the enlarged elliptical domain 5: c M = P(R~\{o)) by the condition 
* O < G < L; it will contain all elliptical and circular orbits. The same reasoning 3 

as above shows us that 6: is open in M. 
Z In the Poincark modeLde9bed above (<,@ are polar coordinates in the 

plane with radius r = (2(L - G))'l2. Since O < G < L in & *, r = O is excluded 
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- 
from 9 * = II(g *). We extegd 9 * to-a larger domain 9: c P ( R  X TI) by 
adding the points ((0, A,o,A)~AET',A >o). 9: is clearly open and 8:  
&:+s: 

i P(m) for m e & *  6 (m) = 
(0 ,A=a90,K=L=6) formE&:\&*(i.e.,L=6) 

Were a is the polar coordinate, which in the case of circular orbits replaces 
the su_m A =  g +  I. 9: is called the Poincari domain in cotangent formulation 
and P, the Poincark mapping. 6 is a symplectic diffeomorphism (see 9.6.2) 
and also 

In the model ( 9  *, Q,p*) described above, Q=  - 1/2h2, so that a may be 
extended to 9: without singularity. Thus we obtain the following model. 

9.6.5 Def nilion. The Poimar4 model for t k  comterclockwise ell@tr'eal and 
circukr orbits of the two:boody problem k eotmgeent fomlati~n {VIII) is 
(s:, Q,p*),  where 9: = PI(&:) is the Poincari domain, p* E 9:, the initial 
condition, and A, n )  = - 1 /2n2 the Hamiltonian. 

Note that this model has a degenerate Hamiltonian. It is completely 
analogous to VII, but not equivalent (via the Legendre transformation) to it. 

9.6A Prove Proposition 9.6.1. 
9.6B Prove Theorem 9.6.2 (Hint: Use the fact that A and I3 are symplectic and 

4.4.2.) 

9.7 SUMMARY OF MODELS 

We now have eight models for the planar two-body problem. Some are 
restricted to small domains (such as direct elliptical orbits), and some are in 
Hamiltonian form and others in Lagrangian. Were we list for reference each 
of the models in both formats. (This will enlarge the number of models to 13.) 
The notation (2BIIII) will mean model I1 for the two-body problem in 
Hamiltonian format. 

The Wamiltonian models are: 

(2BIH) This model is a system ( M ,  H", m, p), where: 

(i) M= T* kV with canonical symplectic structure, 



(ii) m E M (initial conditions); 
(iii) y E R, y > 0 (mass ratio); 
(iv) Hfi E 9(M) given by 

where q, q' E R 3, p,pl E (R 3)' and 1 1  1 1  denotes the Euclidean norm in 
R 3. 

(2BHIH) This model is a system (M,N,m), where: 

(i) M = T* U with canonical symplectic structure, U= R 3\  (0) ; 
(ii) m E M (initial conditions); 
(iii) H EF(M) given by H(q,p)= 1 [ ~ 1 1 ~ / 2 -  I/l[qll, where g ~ ~ 3 ,  p 

and 1 1  11 denotes the Euclidean norm in R ~ .  

(2BIIIH) This model is a system (M, W,m), where: 

(i) M = T*(R 2\  (0) with canonical syrnglectic structure; 
(ii) m E M (initial conditions); 

(iii) N E ~ ( M )  defined by N(q,p)=lJpJ1'/2-l/JjqlJ, where g€R2 ,p€  
( R  2)*, and 1 1  1 1  denotes the Euclidean norm in R 2. 

These are our three models from Sect. 9.1. 

(2BIVH) This model is a system ( M ,  H, rn), where: 

(i) M =  T*((O, oo) X S ') with canonical symplectic structure; d r~dp ,  C don 
4% ; 

(ii) rn E M (initial conditions); 
(iii) N E ( M )  defined by 

where (r,8) E(0, CQ) X S ', (P,,PO) 

Note that this model is obtained from (2BIHIH) from the symplectic 
diffeomorphism 9: (0, CQ) x S'+R'\{@), +(r, 19) = (rcos 8, rsin 8) so that pr = 
cos @, + sia @p2, pB = - r sin I9p, + r cos Bp2. 

Y 
!2 The two Delaunay models from Sect. 9.4 follow. 
9 
r;, 
$ (2B'VM) This model is a system (9, K, d), where: 
d 

(i) (9 c ~ ( 2 " ~ )  is the Delaunay domain (9.3.3) with standard (noncanoni- 
!2 cal) sympleclic form d g ~ d G  + d l ~ d L ;  
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(ii) d E 9 (initial condition); 
(iii) K E 5 ( 9 ) ,  the energy function, defined by 

This is a Hamiltonian model on the tangent bundle, the Hamiltonian being 
the energy function K. m i l e  all the previous models are hyperregular, this 
one has degenerate Hamiltonian. 

(2BVIN) This model is a system (9 *,Kd*), where: 

ii(i) 9 * c T*(T~) is the Delaunay domain in cotangent fomlation (9.3.5) 
with canonical symplectic form dgr\dG+ d l ~ d x ;  

(ii) d' 6~ 9 * (initial condition); 
(iii) RE 5 ( 9  *), the Wamiltonian, defined by 

(Again, the Wamiltonian is degenerate.) 
The last two Hamiltonian models are the Poincarb models from Sect. 9.6. 

(2BVIW) This model is a system (9, ,  Q,p) where 

(i) 9,c T(R x T' )  is the PoincarC domain (9.6.3) with standard (noncanon- 
ical) symplectic form d q ~ d t  + dX/\dA; 

(ii) p E 9, (initial condition); 
(iii) Q E 9(9,), the Hamiltonian, defined by 

(This model again has a degenerate Hamiltonian.) 

(2BVIIH) This model is a system (T:,Q,p*), where: 

(i) 9: c T*(R X T ' )  is the PoincarC domain in cotangent formulation 
(9.6.4) with canonical symplectic form dqr\dZ+ d h ~ d x ;  

(ii) p* E 9: (initial condition); 
(iii) a € 5(9:), the Hamiltonian, defined by 

(Again a degenerate Hamiltonian.) 
The Lagrangian models are the following. 

& 
(2BIL) This model is a system ( N ,  Lp,n,p), where: 0, 9 

(i) N =  TW, W= w x R 3 \ ~ ,  P = { ( 4 , q ) l q  E R ~ ) ,  with standard (noncanon- 5 
ical) symplectic form 2 
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(ii) n E N (initial conditions); 
(iii) p E R, p > 0; 
(iv) LP E S(N), the Lagrangian, given by 

where q,q',g,# and 11  1 1  denotes the norm in w 3. The energy 
function is 

This model is the Lagrangian counterpart of (2BIw. The next one is the 
Lagrangian counterpart tto (2RIIH). 

(2BIPL) This model is a system (N, L, n), where: 

(i) N = T(R 3\  (0) with the standard (noncanonical) symplectic structure 
defined by 

(ii) n E N (initial conditions); 
(iii) L E %(N), the Lagrangian, given by 

where q, tj E R and I /  11  denotes the Euclidean norm in R 3. The energy 
function is 

E(!& 4) = +114112- I / l l ~ l l  

(2BIIIL) This model is a system (N, k, n), where: 

(i) N = T(R 2\ (8)) with the standard (noncanonical) symplectic structure 
given by 

(ii) n E N  (initial conditions); 
(iii) L E S(N), the Lagrangian, given by 

Y 
!2 L(% Q)= $114112+ 1/11~11 
9 
m 
8 where q, q E R and 1 1  11  denotes the Euclidean norm on R 2. The energy 
OP o function is 
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This model is the Lagrangian counterpart of (2BIIIH) and is IV in Sect. 
9.1. 

(2BIVL) This model is a system (N,L,n), where: 

(i) N=  T((0, m) X S') with the standard (noncanonical) sy~llplectic struc- 
ture given by d r ~ d i  + r2d$*dbi; 

(ii) n E N (initial conditions); 
(iii) L E (N), the Lagrangian, given by 

where (r, 8) E (0, oo) X S ', (L,  6) E R 2. The energy function is 

Note that this model is the Lagrangian counter part of (2BIVII) and can also 
be obtained from (2BIIIL) using the diffeomorphism 

The model of most use in the previous treatment was the restriction of 
model (2BIIIL) to F ,  the direct elliptical domain. We shall call this model 
(2BIIleL). Noti~e that the models (2BVN) to (2BVIIE-I) do not have Lagrangian 
equivalent since their Namiltonians are degenerate. 

9.7A. Establish all the equivalences stated in this section between the Lagrangian 
and Harniltonian models. 

9.8 TOPOLOGY OF THE TWO-BODY PROBLEM 

This section will carry out the topological program for the two-body 
problem outlined in Sect. 4.5. It is convenient to work with model (2BIVIf) of 
Sect. 9.7 as in A. Pacob 119731, even though this topologicaI analysis of the 
invariant manifolds was first done by S. Smale [1970a] using modd (2BIVL); 
noncanonicity of the symplectic form in (2BIVL) is the reason for our 
preferring the Harniltonian formulation. 

The mechanical system with symmetry under consideration will be 
(M, K, V, G), where 

M =  (0, oo) X S ' considered as a Riemannian manifold with the metric 

2 K is the kinetic energy of the metric above whose expression on P M  is given 2 
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V is the potential energy given by V(r, 8) = - 1 /r; G = SO (2) = S ' is the Lie 
group that acts on M by rotations, that is, if $ ESO(2) is the rotation 
through an angle q, 

so that the induced actions on the tangent and cotangent bundles are given 
by 

Clearly, G acts by isometries and leaves V invariant. 
The Hamiltonian of the system is 

The momentum mapping J: P M + R  is given by J(r,B,p,,p,)=p, and is 
clearly invariant under the action of S1 on T*M. 

Let us first determine the "unpleasant set" AcM, where J,: T:M+R is 
not surjective, x = (r, 8). The expression of J,: (p,,p,)~p, shows that J, is 
surjective for all x EM, so that A=@. It should also be noted that 
&(r, B,pr,p,) = dp, so J has no critical points on T*M, that is, a(J) = 0 .  

'me next determine the effective potential. First, we compute the one-form 
ol, defined by the conditions 

~ ( ~ ( x ) )  = inf K(a) 
a E J; '( P )  

If x =(r, 8) is fixed, then 

4 
so that %(x) is the minimum of i(p,2+ p2/r2) with respect to p,, which is 8 
attained for pr = 0, that is, 

z 
2 .,(x) = cyy.(r, 8 )  = (r, @,0, p) 
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/' 
/ 
I Flgurs 9.8-1 

Hence the effective potential is given by 

whose graph is shown in Fig. 9.8-1. For y =0, the effective potential is 
Vo(r)= V( r )=  - l / r  whose graph is the dotted line in Fig. 9.8-1; it does not 
have critical points. 

By Proposition 4.5.8, the set of critical points of the energy-momentum 
mapping is given by 

which is pictured in Fig. 9.8-2. Note that this set is not closed, so the 
bifurcation set X,, , may be bigger than Z b x  ,. 

9.8.1 Theorem (Smaie [1970a]). (a )  If y f O ,  the invariant manifolds are 
given as follows: 3 0, 

(i) i f  h > 0, I,,, , w s ' x R ( a  cylinder) ; 
(ii) i f  -1/2y2<h<0, I , , , p w ~ l ~ S 1 ( a  torus); 
(iii) i f  - 1 /2y2  = h, Ih,, w s ' ( a  circle); 
( iv)  i fh<-1/2y2,  I,,,,=0. 
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(b) If y = 0, the invariant manifoldr are: 

(i) ifh<O, I,,,~s'xR; 
( i i )  ifh>/O, I ~ , ~ ~ S O X  S'XR. 

Pro@$ (After A. Iacob [1973].) (a) The first thing to notice is that on 
I,:, = (X x J ) -  '(h,p), h > V,(r, 8) and hence, in particular, h > - 1/2p2; this 
will then prove (iv). Indeed, the defining equations of I,,, are 

$ (p~+P~/ r2 ) - l / r=h ,  P ~ = P  

that is, 

so that h > T/,(r,8). 
Now, if h = - 1/2p2, the equation above, together with the fomula for V,, 

yields r== y2, p,-0. Indeed, since - 1/2y2 is the minimum of i/,(r,8) and 
- 1/2y2 - Vp(r, 8 )  > 0, we must have V,(r, 8) = - 1/2y2, hence p,. =O; this 
happens at r = y2. Hence I,,, = {( y2, 8,0,0) ER, X S x R XR}, which is a 
circle. This proves (iii). 

For (i) and (ii) note that (h, y) will be a regular value of X x J and hence 
Y I,,, is a two-dimensional submanifold of T*M. We have s? 
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so that I,,, is a two-dimensional manifold that is a product, S' being one of 
the factors. The vector fields 

are tangent to the submanifold I,,, by conservation of energy and momentum 
and they are clearly linearly independent on I,,,. Thus I,,, is parallelizable* 
and, using the classification theorem for two rnanifolds (see, e.g., Massey 
([1967], p. 37)), there are only two possibilities: S1 X R or S' X S'. Now, if 
- 1/2p2 < h < 0, then r is bounded below by r, and above by r,, so I,,,=S ' 
X S1 (see Fig. 9.8-1). If h > 0, then r is bounded below by r;;  so that 
I,,,=s' x R. 

(b) (p=O) Here (h,O) is a regular value for H X J  so that I,,, will be a 
parallelizable two-manifold (since X, and X, are linearly independent on 
I,,,). We have, as before, 

If h < 0, we must have h .+ l / r  > 0, that is, r < - l / h .  See Fig. 9.8-3, the graph 
of the second factor of I,,,, which shows that this factor is diffeomorphic to 
W. If h>O, the graph of the second factor (see Fig. 9.8-4) shows that this 
factor is diffeomorphic to two copies of R, that is, to SOX R. 

Looking at Figs. 9.8-3 and 9.8-4 it is clear how at h = 0 a bifurcation takes 
place: the point (- l / h ,  0) is "pulled" to the right until the graph ""beaks." 

9.8.2 Ccrolialag. The bifurcation set 2, , , is 

that is, Z,,, is the graph in Fig. 9.8-2 together with the coordinate axes. 

ProoJ: The theorem above shows that when crossing the coordinate axes, the 
topological type of lh,, changes, so the given set is in the bifurcation set. For 
case (p#O), a similar phenomenon occurs: the second factor, which is S' for 
h < 0, has a point that is pulled to the right until the circle "breaks," beco~lling y 
a line; this happens exactly at h =O. r~ 

52 
Z, ., is clearly closed and it is easy to see that on its complement H X J 

is a locally trivial fibration. H 8 
4 
0 

*A manifold M of dimension n is parallelizable if % ( M )  has elements X,, . . . , X,, that are linearly n 
independent at each point of M. 3 
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This completes the first two points of the topological program: the 
characterization of I,,, for all values of (h,p) and the specification of the 
bifurcation set Z,,,. 

Regarding the characterization of the flow on each I,,, we resort to 
A-I-old's theorern (see 5.2.23). On each two-dimensional &,,, this flow is a 
translation-type flow. On the circle obtained for h= - 1/2p2, the flow is 
periodic. Working in action-angle variables, the frequencies are computed 
and then it is easy to see that on the invariant tori obtained for p#O, 
- 1 /2p2 < h < 0, the flow is periodic. The orbits remain in the region between 
r, and r,. Except for h > 0, p =0, the orbits of X,, are always bounded away 
from the origin by a circle. 

Finally, if p = 0, Namiltonian's equations on I,,, take a particularly simple 
form: 

Y 
2 that is, 
4 

6. 

This shows that these trajectories lie on a ray from the origin characterized by 



662 4 CELESTIAL  MECHANICS 

the initial condition 80. If h  > 0, integration yields 

so that the trajectory goes from 0 to os as t goes from to to and from -oo 
to O as t goes from - oo to to all the time on the same ray 8 = 8,. If h  < 0, 
integration yields 

arctan 
fi ( - h)3'2 -1 .\/--h 

and thus the trajectory goes from O to the circle r = - I / h  and returns to 0 
along the ray 8 = 80. 

The apparent singularity at the origin can be removed by a compactifica- 
tion process suggested by the analysis above. For the Kepler problem in the 
plane, such a process goes back to Levi-Civitii. For the two-body problem in 
space (or in dimension n>2) ,  this is not so simple for the negative energy 
surfaces. In Moser [197O] it is shown that in arbitrary dimension n, for h <0, 
the surface W - ' ( h )  can be mapped horneomorphically to the unit tangent 
bundle of S n  punctured at the North Pole (collision states) and the flow on 
N - ' ( h )  is mapped to the geodesic flow after a change of independent 
variable. The proof is "elementary" and we recommend Moser 119701 for the 
proof of this and a number of important related issues. 



CHAPTER 

The Three-Body Problem 

In the preceding chapters, we have presented only a few "nontrivial" 
examples illustrating the general theory of Namiltonian systems and the 
important qualitative results. In this chapter we give a complete discussion of 
one of the most important systems to which the theory has been applied: the 
restricted three-body problem. The analysis requires the full power of the 
theory we have developed, and uses nearly every major result of the book. 

In this program we follow the method of Barrar [1965a, 1965bj based on 
the Poincar.4 variables, with minor modifications, in Sects. 10.1 to 10.3. Then 
in 10.4 we take a look at the topology of the n-body problem following the 
ideas of Smale [1970aj. 

10.1 MODELS FOR THREE BODIES 

We consider two bodies S and J moving in circles about their center of 
mass. We let y be the reduced mass so that O <  y < 1, where 

and 

8 MJ=mass of J = p  
E 

Ralph Abraham and Jerrold E. Marsden, Foundation of Mechanics, Second Edition 
Copyright O 1978 by The Benjamin/Cummings Publishing Company, Inc., Advanced Book 
Program. All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or 
otherwise, without the prior permission of the publisher. 



The problem is to d6teranine the motion of a small third body P moving 
under the influence of the first two and lying in the same plane. For example, 
the experimental domain might be the Sun, Jupiter, and a small asteroid, or 
the Earth, the Moon, and a space vehicle, and so forth. 

As in the two-body problem we omit those points where the potential is 
singular. Thus, we consider the following model (see Fig. 10.1-1). 

10.4 .I Delinilion. For t E A?, 0 < p < 1, let 

J, =((I  - p)cost,(l - p ) s i n t ) € ~ ~  
and 

J*= u { ( t , J t ) l t ~ R )  

The first Hamihian model for the rest&cted three-body problem (3BIW) is a 
system (M,  N; m, p) , where: 5 

( i )  M c R x T* (phase space) defined by ? 4 
m 
8 

M = R  x[R'x(R')* \ (S,UJ.)X(R')* ]  2 

with the standard contact structure; 
E 
Y 
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(ii) m E M (initial conditions); 
(iii) p E R, O < p < 1 ,  the reduced mass; and 
( iv)  H E % ( M ) ,  the Hamiltonian, defined by 

where 1 1  /I denotes the Euclidean norm, p(t, g) = 11 q - J, 11. and o(t, q) = 11 q 
- Stll. 

The prediction consists of the orbit of rn in the time dependent Hamiltonian - 
system XH. 

As in the two-body problem, to obtain a smooth Hamiltonian N E T ( M )  
we sacrifice comp?eteness of ,fH (co!?isioils). The assumptions that ihe three 
bodies lie in one plane and that P does not contribute to the gravitational 
potential are made to simplify the problem (restricted problem of three 
bodies). Note that N is not invariant under rotations and so we do not have 
conservation of angular momentum. 

lmporlant Remark. Because the model is invariant with respect to the 
involution ( q l ,  q2, p) t-+ (- q l, - q2, 1 - p), we can replace our assumption p E 
(09 1)  by p E (0, :I, that is, we can assume Ms > MJ. 

10.q -2 Proposiitlan. Let M and H be as in 10.1.1. Then there is a canonical 
transformation F: M-+R x T* W= lZ2\{ ( -  p, 0 ) ,  ( 1  - p, 0)) such that N'= 
H O F - '  +K,-i is given by 

ProoJ: Consider the clockwise rotation mapping 

F: M+R X T* W= N :  (t ,  ql, q2,pl ,p2)i--~ (t,x1,x2,Y1 Y Y ~ )  

where 

x1=(q1cost+q2sint) ,  y,=(p,cost+p,sint) 3 
13 
9 m ~ ~ = ( - ~ ~ s i n t + q ~ c o s t ) ,  y2=(-pIsint+p2cost) 
1CI 
0 

It is clear that F satisfies C1 and C2 of 5.2.6. For C3 we have, by 2.4.9, 



and by direct computation we see that 

~ * i j , = i j ~ + d ( q $ ~ -  q2pI)r\dt 

The proposition follows. B 

Thus F,Z, = 2,. by 5.2.14. Hence we obtain the following model. 

10.1 -3 Definition. The secorrd Bamiltonian modelfov the reslketed three-body 
problm (3BII1) is a system (M,  N, m, p), where: 

( i )  M E T * R ~  (phase space) defined by 

together with the natural symplectic structure; 
(II) r?? E M (initial mndi?'l'lio,es); 
(iii) 0 < p < I, the reduced mass; and 
(iv) N E T ( M )  (the Hamiltonian) is defined by 

The prediction of the model is the integral curve of X,  at m. 

The extra term in N may be considered the rotational energy introduced 
by the rotating coordinate system. 

10,"1.4 Proposition. The Hamiltonian H in model 3BIIE11 is hyperregular. 
The corresponding Lagrangian on T W  is given by 

with p, a as in 10.1.2 and notation as in Sect. 3.5. 

Pmo$ For N :  T* W-aR, 4;EI: T* W-+TW is given by (q ' ,  q2,p,,p2) 
t-+(ql, q2,p, - q2,p2 + q'), which is a diffeomophism.. Hence H is hyperregu- 
lar with inverse 

The action of H is (see Sect. 3.7) 

zi 
Hence C = A  - E, where E= Mo (FN)- '  and A = G 0 (FN) - ' ,  so that after y 
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simplification: 

A ( ~ 4 ) = : 1 1 4 1 1 ~ + 4 ' q ~ - q ~ q '  
and 

This gives the desired form for C .  

Formally, then, this transition to the Lagrangian formulation may be 
regarded as giving another "equivalent7'model. 

"1.1 -5. Definition. The second Lagrangan model for the restn'cted three-body 
problem (3BIIL) is (TW, C, x, p ) ,  where: 

(i) w = R ~ \ { ( - ~ , O ) ,  (1-p,O));  
(ii) x E TW; 

(iii) O <  y < 1 
(iu) C E F(TW) the Lagrangian, is defined by 

The prediction of the model is the integral curve of X,  at x. 

The symplectic structure on TW is given by the symplectic form 

we= CiV dqir\dq'+ C,j6, dqir\dqJ 

(see 3.5.6), that is, 

The prediction is obtained from the Lagrangian equations that in this case 
become: 

d2q2(t) 2dq1(t)  ---- - q 2 ( 0 - ( 1  - P )  
q2(t)  r q 2 ( t )  -- 

3 dt2 
dt 

t3 
~ ( 4 ( t ) ) ~  ~ t q ( t ) ) ~  

9 
together with the energy integral B 

o? 
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We obtain additional models for the restricted three-body problem by 
applying the Delaunay and PoincarC mappings to model 3BIIL. 

Recall that in model 2BIIIL the state space was N= T(R~\{@)) with 
standard (noncanonical) symplectic fonn dql,-,dq' + dq2,-,dq2, Lagrangian 
L(q,4)= (1tj112 + l/llqll, and energy function E(g,4)= f ((4112- l/l(q((. We will 
denote this HaIlliltonian E on the tangent bundle by E,,. The Delaunay 
mapping is a symplectic diffeomorplaism 

where & is the direct elliptical domain (9.2.4). 
In model 3BIIL the state space is N" TTW" where JVP=R2\{(- p,O), 

(I - p, O)), so A may be defined on 

Let 9"A(& n NC), which is an open subset of the Delaunay domain 9. We 
also have 

where 

and E,, is the Hamiltonian in model 2BIIIL. Thus E'= E O +  5, where 
E ~ = - ~ / ~ L ~ . I ~ K ~ = A , E ~ = E ~ ~ A ~ ~ , ~ ~ ~ ~ K ~ = K ~ + ~ , ~ ~ ~ ~ ~ K ~ = A . E ~  3 
= - 1 / 2 ~ ~  and RP=A,SP. Note that So= - f l l q 1 1 2  and 5 

4 
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10.6.6 Dellinition. The Delaunay model for the restkted three-body problem 
in tangent budle fomul@tion is the Jystem ( 9 5  KP, d, p) , where: 

(i) 9" A(& n N,) with symjdectic stmcture defined by 

where 

(ii) d E 9, (initial conditions); 
(iii) O < p < 1; and 
(iv) K" g, I, 6, L) = - (1 / 2  L2) + R, ( g, I, 6, L) , the energy function. 

The prediction in this model is the integral curve of the HamiItonian vector 
field X,, with initial condition d. 

As in the two-body problem, the Delaunay model is Hamiltonian on the 
tangent bundle. 

Note that in this model the domain 9Qnd the Hamiltonian K-epend 
on the parameter p. The model is "equivalent" to the second Lagrangan 
model 3BIIL restricted to an open subset (not necessarily invariant) of the 
state space, by a symplectic diffeomorphism preserving the Namiltonian 
vector field and therefore the predictions. For p =0, the model corresponds to 
the elliptical closed orbit domain of the two-body problem in a rotating 
coordinate system. The domain does not contain the circular orbits, nor can 
the model be extended in a straightforward fashion to include them. 4 

m 
8 From this Delaunay model one gets the PoincarC model in tangent bundle 

formulation. We just state here this model which we will not use later (it is 

8 too complicated) and leave its relationship to 3BIIL and the tangent 
g Delaunay model as an exercise. 
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'1 0.1.7 Definition. The Poincare modelfor the restdcted three-body problem in 
tangent bundle fornulation is the system (Of, Qq p, p) , where: 

( i )  9': = PI(§, n NP) with the symplectic structure defined by 

where 

(ii)  p E 9 0 ;  {initial conditiori); 
(iii) 0 < p < 1 (reduced mass); 
( iv)  Q v g ,  I, 6, L) = - 1/2L2 + PI ,SP (g,  I, 6, L), the energy function. 

The prediction in this model is the integral curve of the Hamiltonian vector 
field X,,, with initial conditions p. 

Here PI: §,+9', is the symplectic diffeomorphism from the enlarged 
elliptical domain &, onto the PoincarC domain 9, (see Sect. 9.6). 

Exactly as in the Delaunay model above, or in the PoincarC model for the 
two-body problem, this model is Hamiltonian on the tangent bundle. 

Since So= - ~ ) J q 1 J 2 ,  and 

we have 

The construction of the model is summarized in the following diagram: 

TR 
U 
N T ( R  X T ' )  

u u 
61 TP 
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The great disadvantage of both of the previous formulations on the 
tangent bundle is their use of nonstandard symplectic forms. The equations 
of motion are correspondingly complicated. We turn now to the formulations 
on the cotangent bundle that will provide us with more natural Delaunay and 
Poincark models. 

Recall that in model 2BIIIIH the phase space was M =  T*(R~\(Q))  with 
canonical symplectic structure and Harniltonian H (q,p)  = 1 1  p / 1 2  - B / / I  ql/. We 
will denote this Hamiltonian by H2,. The Delaunay mapping is a symplectic 
dif f eomorphism 

where F * c T*R' is the direct elliptical domain in cotangent formulation, 
both symplectic structures on & * and * being the canonaical ones. 

In model 3BHIH, the phase space is M p =  T*Wp, where Wp=lZ2\ 
((- ~ , 0 ) ,  (1 - y, 011, so a may be - defined on & *\({(- P, o),(B - y , ~ ) )  x R*) = 

6 * n Mp c T * R ~ .  Let 6D *'=A(& * n Mp), which is an open subset of the 
Delaunay domain in cotangent formulation. We have 

= - 1/2E2+ C-t Fp 

where 

and H2, (q,p) = 1 1  P1/2/2 - 1 / / I  411 is the Hamiltonian in model 2BJIIIH. Thus 
H" H O +  %? where ii"= - 1/2E2-t 6. If K " - ~ * H ~ = N ~ o Z - ~ ,  - - then - Ep= 
EO+ - 5, where K,=~,H" - 1/2E2 and E,=A,S,. Note that So=@ and 
R, = 8. 

1 0.1.8 Defin l tion. The Delaumy model for the rest~cted three-bo& problem 
in cotangent J~muHation is the system (q *,, EpP d*, y) , where: 

2 (i) 6D * p  = i(6 * n Mp) with the sympleoic structure defned by the canonical 
2 
9 - two-form 

Z 
(ii) d* 6D ""initial conditions); 
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(iii) 0 < p < l (reduced mass) ; and 
(iu) @' E %(q *p),  the fimiltonian, dejned by 

The prediction in this iirzodel is the integral curve of the Hamikonian oector 
field XE, with initial condition d*. 

In the Delaunay model in cotangent formulation the equations of motion 
are 

Note that in this model the domain 9 *+ and the Hanniltonian KP depend 
on the parameter p. The model is "equivalent9' to the second Hamiltonian . . -,A 1 ' 2 Q I T U  ,,,t,:,t,A t, ,- ,-,- ,.,I.,,+ ,,t ,,,,,, ,. ., .,,, ' nt\ r\$ th lllwuel a l l  I b J L I I b C b U  Lw all wpbII JUUJC.L (IIVC IlrvbbJJalllJ I I I V ~ ~ ; ~ ~ L L ,  L I L ~  

phase space, by a symplectic diffeomorphism presewing the Harnillonian 
vector field and therefore the predictions. For p = (a, the model corresponds to 
the elliptical closed orbit domain of the two-body problem in a rotating 
coordinate system. The domain does not contain circular orbits, nor can the 
model be extended in a strai&t-forward fashion to include them. 

For the study of the circular orbits in the case p =(a, the model obtained 
from the PoincarC model is more useful. As the derivation of this mode! is 
very similar to the case of the Delaunay model treated above, we will simply 
state the model and leave the relationship to 3BIIH and the cotangent 
Delaunay model as an exercise. 

10.1.9 Definition. The Poinmrk modelfor the resticted three-body problem in 
cotangent bundle fomulatio~ is the system (9:fi, atp ", y )  , where: 

(i) 9:" n Mp) with the canonical symplectic structure induced from 
T*(R X TI ) ,  that is, given by the two-form 

( i i )  p" € 9;' (initid conditions) ; 
(iii) ?< p < I (reduced mass); and 
( iv)  a" %(9:P),  the Biamiltonian, de$ned by 
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The prediction in this model is the integral curve o j  the Hamiltomian uector 
field X,, with initial condition p*. 

The construction of this model is summarized in the following diagram: 

U - U 

G * " M P  B u5 B P  

n 
T*(T2)  

Since F,,  & = 0, the equations of *notion for p = 0 are: 

The simplicity of the equations of motion is why the cotangent formulation is 
much more advantageous. (See Exercise 10.1C.j' 

10.1A. Derive the Lagrangian stated after 10.1.5. 
10.1B. Show that w, =A,(we) has the form asserted in 10.1.6. 
10.1C. (a) Show that on 9; we have: 

0 

2 This expresses the differentials of the Delaunay variables viewed as defined 

2 on 9; by rli-I: TB+OI)~. 
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Show that 

# Compute from here ( dO9  =XQo and write down the equations of 
motion. Then compare this with the simple equations for p=0 on the 
cotangent bundle. 

10.1D. Derive the Poincart model in cotangent fornulation stated in 10.1.9. 

10.2 CRITICAL POINTS IN THE RESTRICTED THREE BODY PROBLEM 

In this section we exarine :Be ci-;ticaI points in the restricted tl~ree-bociy- 
problem using model 3BIIL (see 10.1.5). These correspond to periodic orbits 
of period 277 in the time dependent model 3BIH. 

Recall that rn E TW is a critical point iff XE(rn) = 0 iff d E ( m )  = 0. Canry- 
ing out the differentiation yields the following. 

169.2.1 Proposition. The point (qt q: e', e 2 ) E  TW is a criticalpoint of XE iff 
4 = 0, and 4 is a critical point of the $.mctinp? V /. E( W )  de$ned by 

or equivalently: 

(i) 4i=42=o 

(ii) - Vq1=q1- 
iu(q'--++iu) - ( 1 - ~ ) ( 4 ~ 9 i u )  

-0, and 
D o3 

2 It turns out that there are five critical points; three with q2=0, the 
z collinear solutions (m , ,  m2, m,) of E'uler (1 767) and the two equilateral solutions 

(m,, m,) of L w n g e  (1773). 
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Flgjure 10.2-1. The equilateral triangle solutions of Lagrange. 

The Lagrange points may be found explicitly: 

m,=(+ - p  \ / J / z )  

and for them, a=p= I. The reader may verify by direct substitution that 
these are critical points. (See Fig. 10.2-1.) To show the existence of the 
collinear critical points and to show that there are no others, we analyze the 
geometry a little further. 

10.2.2 Definition. Let B : R 2 - + R 2  : (q', q2) t+ (p, a), the briQokev map, where 

as before, and p E (0, + 1. Let W+ denote the open upper half-plane ( q 2  > 0) , W- 
the open lower hay-plane (q2 < 0). Thus W= R~\{s ,  /) = W+ u W- u e,, 
where C, is the ql-axis with S = (- p, 0) and 9 = ( I  - p, 0) deleted. Write 
C , = c , u  c2u  c3 ,  where 

and C)I=B(C,), i=*, 1,2,3 andS=B(ky) .  2 
-7 
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These notations are illustrated in Fig. 13.2-2: the bipolar map, folding the 
plane onto the strip W' with cusps at the ppimaries S and 9. 

10.2.3 Proposition. The primavy image points are S f  = B (S)  =(I, 0) and 
9' = 19 ( 5 )  = (@,I). The image curves C,', C;, Ci are straight line segmeBts of 
slope + 1, - I ,  + 1 (uesp.) through S' and 9',  as shown in Fig. 10.2- I. The 
i m w  oj WJ W' = B ( W )  is the closed hag-str@ bounded by C', with the corners 
St, 5' removed. The wstrictiom B, = B ( We : ITo+ W' (0 = + , -) are d#eo- 
mopkaisms onto the open hasfsfsir@ ( w')? The restricfion B, = B 1 C, is a 
one-dimensional d#eomoqhism. 

The proof is a straigktforvvard verification. We shall use this map to locate 
the critical points of V E F ( W )  in 10.2.1. Note that to each value of the 
reduced mass p there corresponds a different bipolar map B. 

Note that V is symmetric with regard to the inversion q2t+ - q2 in W. So 
also is the bipolar map B. Thus it is no suqrise that there is a function 
U E F( W') such that V= k l o  B. In fact, the following is readily verified. 

10.2.4 Proposition. Let U E F( W")  be de3ned by 

P 1-P 
X k i ( p , o B ) = - ~ [ y p 2 + ( 1 - ~ ) 0 2 - p ( 1 - p ) ] - - - -  
c-4 P C  
52 

where w"=R~\{S ' , J ' ) .  Then 
s 

( i )  'V=&ToB 
;z (i i)  (41, ,q2) E W ,  is a critical point of V i$ B (q', q2) is a critical point of U 
3 (o= + >  -) 
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(iii) (ql ,  0 )  E C ,  is a critical point of V iSf grad(U) is orthogonal to the 
boundary Cf* at B (q', 0). 

Mote that 

( 4 1 ) 2 + ( 4 2 ) 2 = p ~ 2 + ( ~ - P ~ ~ 2 - ~ ( ~ - P )  

(as can be easily verified by substitution) for proving 0. Then (ii) follows at 
once from the preceding proposition. But establishing (iii) is a good exercise, 
which is easy if you have written out the details of the previous proposition 
(use also 18.2.1). 

We are now ready to seek the critical points of V,  and thus the equilibria 
of X, in the restricted three-body problem. It is easier to compute grad(U) 
than grad(V)-that is the motivation for introducing the bipolar map above. 
Obviously, 

and, wonderfully, the variables separated! 
The most interesting critical points may now be found at once, namely, 

the equilateral triangle solutions of kagrange. 

"a0.2.5 Proposition. There is exactly one critical point of U in the inferior of 
W' : p = a = 1. Thus there are exactly two critical points of V ojf the primly 
axis C,, rn, = (i - p, V 3 / 2 )  and rn, = (3 - p, - f i / 2 ) .  

Wow we must scour the boundary C', = C; u C;U C; for points satisfying 
(iii) of 10.2.4. We will find one in each component: rn,, rn,, and m,, the 
collinear solufiozs of Euler. We analyze the three cases separately. 

Case 1: Opposition. Corresponding to critical points of V on C ,  : q' < 
-p, q2 = 0, we seek points on C;  : p = a + l > 1, where B U is orthogonal, or 
Up = - U,. Substituting p - I for a in the equation e / ,  + Uo = 0, we obtain 

and as p, a # 0 in the domain of U, this is equivalent to 

(1) f (p)=P5-(3-p)p4+(3-2p)p3+(p-2)P2+2pP-y=0 X a 
As p ~ ( 0 ,  i], there is only one change of sign. By Descartes9 rule of signs, q 

m 
there is one real root, p,. From 10 

B 
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on C, we obtain one critical point m, = ( I  - p-p,,0). Since f ( I )<@ and 
f(+oo)>O, we conclude that p,>1. Thus (p,,p,- 1)EC,' and m,€C, .  

Case 11. Inferior conjunction. For critical points of V on C2: - p < q' < 1 
2-0, we examine U on C;: p + a = l ,  O<p,u<l.  Thus B U I C ;  if - P ,  9 - 

Up = U,. Putting 1 - p for 0 in Up - U, = 0, we obtain 

or, equivalently, 

This is identical to the quintic equation (I) above, except for one coefficient. 
This yields only one root p, that, since j(O) < O and f (1) > 0, lies in the desired 
range, 

providing m2 = (1 - p - p,, 0) E C2. 

Case III: Exterior conjunction. For the critical points of V on C,: 
1-p<q',q2=0,consider c;: p=o- l>Oand  Up+ Uo=OasinCaseI.%us 

This also yields one positive real root p,, hence one critical point m,= 
(1 - p + p,, 0) E C,. mote  that q' = 1 - p + p in this case.) 

For comparison, we collect here the three quintic equations: 

G i  
0 

and throughout, 0 <  p < i. As we proved above, we have the estimates 1 <p, 
2 and O<p,, so we have established the solutions of Euler. The situation is 

summarized in the following proposihon. 
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Figure 18.2-3. The potential V for q2 = 0  showing the three collinear solutions of Euler in 
the Earth-Moon system: y = 0.012277471. 

10.2.6 Pr~posltioeo, On the fold curve G,  there are exactly three critical 
points of I/: 

m , = ( l - p - p 1 , 0 ) E ~ ,  

and 

where the pi are determined by the ith quintic equation above, i = I, 11, I n .  

X A numerical calculation of the three collinear points yields the data in A 
Figs. 10.2-3 and 10.2-4. 52 

4 
The relative positioning of all five critical points for the Earth-Moon 5 

system is shown in Fig. 10.2-5. 2 
Next we turn to a study of the stability of these five critical points. Our 2 

first job is to study the characteristic exponents. This can be done in either $ 
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Figure 10.2-4. Position of the three collinear solutions of Euler as functions of the mass 
ratio. 

the Hamiltonian (3BIIH)  or the Lagrangian (3BIIL) models. Quite generally, 
if H is a hyperregular Hamiltonian on T*Q and L is the corresponding 
hyperregular Lagrangian, and if (qo,po) E T* Q is a critical point of X,, then 
HrN (qo,po) = (go, 0,) is a critical point of XE since (FH),XH = X, [or (FL),XE 
=X,]. In fact, the linear maps X&(q,,po) and XL(qo,uo) are similar and so 
have the same eigenvalues. 

From the Lagrangian equations in model 3BIIE we see that the compo- 
nents of XE relative to the natural chart are 
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where 

- V,(q)= - vq1(4)=q'- 
iu(q1-1+iu) - ( I - P ~ ~ ' + P )  

[ p ( d I 3  [o(4)I3 

and 

Thus the characteristic exponents are eigenvalues of the matrix represent- 
ing XL(rn): 

where k/, = B/,:,,. The characteristic polynomial is then 

This is quadratic in X~ so that solutions have the form a,,a2, - a l ,  - a2 as 
they must according to the general theory in Sect. 3.1. 

10.2.7 Theorem (Plummer [1901]). The Euler coIIinear points are unstable 
(i.e., not a "  stable for any @pe a "1. 

P o  It suffices to prove that at these points PO) does not have all its 
roots pure imaginary, for then (by the symplectie eigenvalue theorem) some 
eigergalue iiiusi have positive reai part and bence the fixed point bas an 
unstable manifold. This assertion is the same as the claim that P (5) =t2 + 
(4 + V ,  , + VZ2,,M + ( V ,  , k;, ; vf2) does not have two negative real roots. We 
shall, in fact, prove that P has two real roots of opposite sign, that is, P has 
two real and two imaginary roots [case (b) in Fig. 3.1-21. 

Direct calculation of the second derivatives gives 
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For q2=0 ,  V I 2 = 0  so ~ ( c ) = < ~ + ( L B +  V l l +  V22)(+ V11k/;2 and p = l q l - I +  
i i l l ,o=Iq '+~~l ,  thus 

- V, ,= I +2A and - VZ2= 1 - A  

where A =  ,u/p3 + ( I  - iil)/03. 
We note that - V, ,  > 0 and 

Thus the roots of f are real if d>8/9. We are going to in fact prove that 
- VZ2 < 0, that is, B > 1 at the three collinear points. Since - V,,  > O and the 
product of the roots is V,,$/,,<O, the roots will then be real and of 
opposite sign. 

We now show that - JfZ2 < O  at the three collimear points. For this 
purpose, we consider the function U (the potential in the variables p,a) from 
10.2.4: 

Write 

Thus, at q2 = 0, 

Now consider the two cases m2 and m,, m, xparately. First of all, along 
the axis between the masses (i.e., on C2) we have 

By the chain rule, 
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Hence if V, = 8, 8 U/ap = 8 U/ao, that is, 

(Since p < 1 - p, this implies that a > p.) Thus 

which is negative since O < p < l . 
We :urn to the case in which p= o + 1, that is, m,. Here 

and so if V ,  =0, we get, as above, 

that is, 

which implies that a < l < p . Thus 

is negative (the first factor is negative, the second positive). 
This argument also holds for m, by interchanging u and p. Bi 

18.2.8 Coralliaq. Each collinear solution has a one-parameter jamily of closed 
orbits about it, together with a stable and unstable nzan*ld 

X 
& 

This follows from the above proof and Liapunov's theorem. The closed 
S: orbits surrounding the collinear solutions lie on the center manifold and, 
@ since one eigenvalue remaining is positive, these closed orbits are unslable. 
0 

Z Next we turn to the equilateral triangle solutions of Lagrange, m, and m,. 
Here things are a good deal more subtle. 
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Substituting into the general expressions for V,,, V,,, V,, in the proof of 
10.2.7 we find that at 

and at 

[Notice that the matrix 

has b', , < 0 and deterxiinant TP(?  - p) > 0 SQ the potential has a rr,aximum at 
the equilateral solutions. This does not mean these points are unstable. 
Although our energy function E is kinetic energy plus potential energy V, and 
hence E has a saddle point at the equilateral solutions as well (three ""sable" 
and one '"unstable" direction), this does not imply instability. This is, basi- 
cally, why the Kolmogorov, Amold, and Moser results play such a key role; 
they allow one to still prove stability in such situations.] 

For the equilateral solutiofis the chzracterisf c equation becomes 

The roots are purely imaginary if 

1-27p(1-p)>0 
Y 
N 

that is, if O < p < p, = 3 - m/ 18 = .03852.. . . (The Routh critical value.) We 2 
? recall that we restricted 0 < p < $ ; with only 0 < p < 1 ,  there would be another m 
B 

critical value at = 3 + m/ 18 above which the roots are purely imagnary. 2 
The evolution of eigenvalues as p crosses p, is shown in Fig. 10.2-6. (The z 

pictures reverse as p crosses p2.) 2 
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1 1 1 
p - 5  @'"z 

(stable?) ( r~ns~ah le )  

For p, < p < i, the equilateral solutions are clearly unstable. For O < p < 
p,, Eeontovich 119623 proved (using a result of h o l d  [I9611 that gives 
invariant tori of quasi-penodic orbits) stability for all p except possibly those 
in 2 set of measilre zero. Then D e p d  a d  Deprit-Bartholorn 119641 using 
Moser9s ilnprovement of h o l d ' s  theorem showed stability for all but three 
values of p in this range. This is consistent with expenmental evidence; for 
the Sun-Jupiter system satellites (the Trc?;lans) are ~bserved near these pesi- 
lions (van de Karnp 21964, p. 1 141). 

The passage of p past p, is a HaIlliltolllan bifurcation involving a loss of 
stability. It corresponds to the Trojan bqurcation discussed in Chapter 8; see 
Meyer and Schmidt [I9711 and Deprit and Henrard 119681. 

EXERCISES 

10.2A. Complete the details of 10.2.1. 
10.2B. Show that the characteristic exponents for a periodic orbit of a hyperregular 

Narniltonian on P Q  are the same as those of the corresponding periodic 
orbit in the Lagrangian formulation. 

10.2C. Regarding the proof of 10.2.7, let A, c W denote the set 

where 

0 

g Clearly A, contains the disk around S of radius (1 - y)'/3 and the disk around 
Z J of radius (excepting of course the points S and J themselves). As 
2 (1  - y)ll3 > l -  y and y1l3 > y, conclude that these disks contain C2 and 
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Use this to prove the instability of m, (this is the ""easy" one of the three 
collinear solutions). 

10.3 CLOSED ORBITS IN THE RESTRICTED THREE-BODY PROBLEM 

In this section we will obtain some of the well-known closed orbits and 
periodic orbits in the restricted three-body problem. 

Recall that in 3BHH, the first model for the restmcted three-body problem, 
the iwii bodies rotate aroi-md "Le origin and the Hamilknian is time depen- 
dent. The systea is a vector field on M, c R  x T*B2 with a constant upward 
vertical component, and the orbits are always rising. The ""eajectory9' in the 
phase space is obtained by projecting an integral curve into T * R ~ .  Thus an 
orbit in this model can never be closed (that is, a cycle), but the integral curve 
might be periodic in the sense tha"ihe projected trajectory is a closed curve 
(nohecessarily simple, see Fig. lC.3-1); is. ,  if the orbit is t ~ ( t , m , ) ,  then for 
some 7 > 0, m, +, = m, for all 1. 

A periodic orbit in this sense, which spirals up covering a closed curve in 
phase spae ,  is the analog of a dosed orbit for the time-independent case. The 
projection into the phase space is called a closed orbit, but remember that it is 
not an orbit of an autonomous vector field, and may have self-intersections. 

Recall also that 3BIBTH, the second model, has the two bodies transformed 
to rest on the q'-axis, and the Hamiltonian is consemative. The models are 
related by a canonical transformation M,+R X MII, which preserves integral 
curves. Thus critical points in M,, become periodic orbits in MI with period 
271, hence "closed orbits" in the phase space of MI.  

In the last section we showed the existence of exactly five critical points in 
the second model, the collinear solutions m,, m,, m, of Euler and the 
triangular solutions rn4 and rn, of Lagrange. These critical points are mapped 
into periodic orbits y ,, . . . , y, of period 271 in the first model by the canonical 
transformation relating the two models. As m,, m,, and m, are unstable 
critical points, y, ,  y,, and y, are unstable periodic orbits. The stability of m, 
and m,, so also y, and y,, for O <  p < p, was also discussed. In addition, we 
recall that m,, m,, and m, have one-dimensional stable and unstable mani- 
folds and a two-dimensional center manifold. The critical points m4 and m, 
have purely imaginary characteristic exponents for p < p l ,  and for almost all 
such p, the two exponents on the positive imaginary axis are independent 2 
over the integers. Applying the subcenter stability theorem (8.32) we have in 
these cases one-parameter families of closed orbits y; with periods 7, depend- 4 

ing continuously on s. For nearly all s we have .r, =2p?s/q for relatively prime 2 
2 

integersp and q, and y; is mapped into a closed orbit y: in 3BIH of period z 
2p71. These are the closed orbits discovered by Liapoullov [1947]. !2 
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Summarizing, we have: 

10.3.1 Theorem (kiapounov). In MI  there are five closed orbits ofperiod 217 
corresponding to the critical points in MI, ,  and for almost all p, 0 < p < p, , 
evely neighborhood of any of these contains infinite4 many closed orbits of 
arbitrarily high period. 

2 As was noted in the last section, about m,, m,, m,  there are no exceptional 
p and about m, and m,  there are just three. 

m 
B Next we turn to the closed orbits that are obtained by "analytic continua- 

tion" from p = 0. These are of two types. The closed orbits of the first kind, 

E discovered by Poincark [I8921 are close to the circular Keplerian orbits in the 
g second model. The closed orbits of the second kind, discovered by Arenstorf 



690 4 C E L E S T l A L  MECHANICS 

[1963aj, are close to Keplerian orbits of arbitrary (positive) eccentricity. We 
shall treat both types simultaneously, using the cotangent PoincarC model, in 
a program suggested by Barrar [1945a]. 

The first step in this program is a trivial but very convenient criterion for 
closed orbits in model 3BIHW apparently discovered by Birkhoff 11950; v.1, p. 
9131 in 1914. If the initial condition m, is a symetr ic  collJunction at time 
t = 8, that is, a point of the f o m  rn, = gql, 42,P1,B2) = (413 0, 0,p2), and again at 
time t = r / 2 ,  mr12 = ( 'q' ,  O,0, 'p,), then mT = m,, so m, is in a closed orbit whose 
period divides r. This is simply due to the fact that model 3BIBH is 
unchanged when q2,p,, t are replaced by - q2, -p, ,  - t (see Exercise 10.3~4). 
Hence d ~ ( ~ ' ( -  t) ,  - 4,(- t) ,  - p l ( -  .?),p2(- 1))  satisfies Hamilton's equations 
for 3BHIIH. So, if c,(t)=(q~(i),q2(t),p,(t) ,p2(t)) is the integral curve such that 
c,(o> = m,, c , ( T / ~ )  = q12, then c,(f)=(4'(- 0, - 2 -  f), -A(-  2),pz( - 0) is 
the same integral curve satisfying c2(0) = rno,c2(- r / 2 )  = mrl,. Thus the map 
c(2) equal to c,(t) for t E [O, 7/21 and to c,(t) for 1 E [ - 7/2,0] defines a closed 
orbit. In particular, c , ( ~ ) =  m,,, = m, and Birkhoff's criterion is proved. It 
should be noted that in all the above analysis, p was arbitrary. Translating 
Birkhoff's criterion to the PoincarC model in cotangent formulation we obtain 
the following. 

10.3.2 Proposition. In the cotaa2genf Poincard model for the restricted three- 
bokdy problem $ an initial con&tion poE '??;"p is in symmetric conjunction --  
po = (qo, OP to, A,) at time t = 0, and again at time t = r /2 ,  that is pr12= 

- - 
( + q0 nr3 + to, A,) jor some integer n, then p, i~. a ~ l o s e d  orbit of X6r ( for  any 
p) whose period dioides r3 that is, pr = (qo, 2 n ~ ,  to, A,). 

The proof follows frpm what we have done. Note that $,=(2(z- 
c))'/2cos bp, qo = - (2(L  -  sin P. (See Exercise 10.3B.) 

The second step in the program is to find a closed orbit in the case r" =0 
using this criterion. Even thou& p = 0 corresponds to the two-body problem, 
not all orbits are closed because the coordinate system is rotating. In fact, we 
only find closed orbits when $ is rational, and the period is a multiple of T .  

"83.3 Gorolleq. l n  the cotangent Poincard - mo&l with p = Oj initial condi- 
tions oj  the j o m  Po = (qO. O, to, KO) with A; = m / k  (m, k integers) ure in 
closed orbits of XEO whose period d i u i h  2 k ~ .  I j  rn and k are relatioely prime, 
the period equals 2kn. 2 

ProojC From 10.1.9 we have xG0 = (- $, x-3  -6- 1 ,  ?, 0 )  so the flow is 

- - - 
(37,. A,, to, A& t ) ~  ~ , m i - ~ - ~ ~ s i n ~ , X , + ( h ~ ~ + ~ ) t ,  -qo"nt+$ocmt,hc, 

2 5 
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In the case of symetric conjunction, this becomes 

- - - 
so if &-3 = m /  k and t = kr, we have pk, = ( 2  qo, ( m  + k)r, 2 to, ho), wEcb 
satisfies the above c~terion. The proof of the last statement is left as an 
exercise. RI 

Note that in the above we obtain + qO, +go or - go, -go in p,, according 
as k is even or odd. In any case the period is a rational multiple of 277, and 
thus gives rise to a periodic orbit in model 3BIW. 

The third step in the program consists of showing that these particular 
closed orbits are preserved under small perturbations of p away from zero. 
This requires the consideration of the domain 9:', Harniltonian Q" vector 
field Xc,, and integral Fp,  all depending on the parameter p. It is important 
that all vary smoothly with p. We let 9" = 9,,, c 9 p W R  denote the 
domain of the integral F%f Xc, and we extend all of our models for the 
restricted three-body problem by allowing p to take on negative values, thus 
any real value. For each p we have 9:" T*(R xT ' ) ,  and we let 

and 

# .  Note that we may consider the fardy of vector fields {A'G,~ p EW) = X itself 
as a vector field on 9# . 

10.3.4 Lemma. In the context above, 
(i> the function a # :  9 # + ~  defined by Q # ~ ~ P " ~ Q s  of class C w ;  

9' c R x  T*(RX T') and 9' c ??# x R  are open sets; the vector field X # is 
C w; the mapping F # : 9 ' + 9 # defined by F # I 9" Fp (the integral of XB,) 
is none other than the integral of X8; and F a  is of class Cw; 

(ii) If y is a closed orbit of XGpo in 9:" with period T, then there is a 
neighborhood U of y c 9;" and 6, E > 0 such that U c 9;pf0r  all p E I=  ( po - 
6,p0+6), U x J c q p  for all pEI ,  whereJ=(-E,T+E),  and the mapping 

a 
g F: I x u X J + T #  : (&+, ~)WF"+,  t )  
2 
y is of class C O0. 
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The proof is a routine verification (see Exercise 10.3D). 
To show the closed orbits of 10.3.3 are preserved under smali perturba- 

tions of p around zero, we will separate the two cases of elliptic (5,ZO) and 
circular (go = 0)  orbits. We consider first the circular case, to obtain the closed 
orbits of the first kind of Poincart. 

We begin with a circular closed orbit yo of X ~ O  with initial condition 
po = (0,0,0, no), &-' = m / k ,  and period 2kn, m and k relatively prime. Thus 
in the notations of 10.3.4 we have the C" local integral 

and for p = 0 we have 

where n = k +  m, the  order of yo. According to the criterion 10.3.2 we seek 
( p, t ,  R) near (0, km, A,) such that 

PP (0,0,@, X; t )  = (0, nn, 0, R) 

as well, so that p =(0,0,0,n) is in a closed orbit y, of period 2(1+ a)km.& 
Obviously we have a job for the implicit mapping theorem, which we may use 
because everything depends smoothly on p as weii as the other variables. 

10.3.5 Theorem (Psinear&). In the cotangent Poincark model for the re- 
stricted three-body problem, the closed orbit yo of XQO containing the initial 
conditions b0 = (0,0, 0, xo), with = m/ k and period 2 h ,  is preseroed under 
perturbation of the mass ratio p away from zero. That is, there is an E > 0 and a 
C " function f :  ( - E, E)+R such that if p E ( - E, E )  , then fi%s in a closed orbit 
y, of Xs. of period 2 km, where p' = (O,O, 0, j( pj) , and f(8j = Kg. 

Pro@$ We consider the mapping 

where K c U is the intersection of U and the axis, K= ((O,0, 0, R) E U), and 
6 ( p, n) is the A-component of ~ ' ( 0 ~ 0 ~ 0 ,  X;_kr). By the discussion above, we 
seek to ""solve" the implicit equation G (  p, A) = nm for A as a function of p, 
where n = m 9 k ,  and we have 

6(0,;i,)=nm 

when xi3= m / k .  As 
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the implicit mapping theorem shows there is an E > O  and a mapping 
f: ( -  E, E)+R such that G ( p, f ( p)) = nr  for all p E (- E, E). The result follows 
at once from the criterion 10.3.2. 

Note that we also obtain the smoothness of the energy, or h(y,,) = f (  y), of 
the closed orbit y,,. In addition, we could have obtained by a similar 
argument a closed orbit yk of the same energy as y,,h(y~)=x,, for each p, 
but then the period of yk depends on y. Even more, there is a curve s H y," of 
closed orbits for each p, of which these are but two examples (see Exercise 
10.3E). 

We turn now to the second case, the elliptical orbits. We begin with an 
elliptical - closed - orbit yo of XGO of the type given by 10.3.3. Thus we have 
fi, = (0,0, to, Ro) with h; _= k, where m and k are relatively prime integers, 
and F~@, ,  kr) = (0, nr, 1 to, A,,), where n = m + k, so fi, E y, has period 2k17. 
For simplicity we suppose k even so that (+go) is obtained in h e  third 
component. Note that $,#0 in this case. As in the circular case (tO=O) we - - 
seek ( p, t,n) near (0, kr,  &) such that F"0,0, go, x; t )  = (0, nr, to;,, A). That is, 
we keep t, fixed (but not zero). 

10.3.8 Theorem (Arenstosl [I  963aj). In the cotangent Poincark model for 
the restricted three-body problem, the closed orbit yo containing fi, = (0,0, go, Ao) 
(where xi3 = m/ k, m and k being relatively prime integers, $',#0, and the 
period is 2ka) is preserved under perturbation of the mass ratio y away @om 
zero. That is, there is an e > 0 and C " functions S, g : (- E, e)+R such that ij 
p E (y E, E), then bp 1 s  in a closed orbit y,, of period g( p), where b p =  

(030, t o j  f (  PI), f(0) = A,, and g(0) = 2Im. 

The proof is very analogous to the previous one (which was inspired by 
+I.. ~uis one of Arenstorf and Barrar raiher than the oiigha! of PoincarC) and so 

may be relegated to the exercises. (See Exercise 10.3F.) 
A typical example of a closed orbit of the second lund of Arenstorf is 

illustrated in Fig. 10.3-2, both in the inertial frame of the Sun (similar to 
3BIH) and rotating coordinates (configuration space of 3BIIH). 

Here E and M replace S and 9, as the orbit is computed for p= 
0.012277471, corresponding to the Earth and the Moon. The orbit shown was 
computed at the G. G. Marshall Space Flight Center of the National 
Aeronautics and Space Administration and is reproduced here through the 
courtesy of Dr. henstorf. The interest in these "bus orbits" is evident from 
the fact that they pass very close to the Earth and to the Moon. 

Note that for the E range in Theorems 10.3.5 and 10.3.6 no collisions ' occur. Through Lemma 10.3.4(ii) we have chosen a domain in which the 
$ orbits do not run off the manifold in the times involved, hence do not arrive 
CCI at S or J in these times. The last theorem (efiptical case) can also be proved 

very similarly in the cotangent Delaunay model (see Barrar [1965a]), but the 
Z circular case cannot be attacked in that model because it does not contain 

circular orbits. 
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Figure 40.3-2. (a) Inertial frame. (b) Rotating frame. 
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Finally, we shall show the existence of the closed edits o j  the second kind 
of Moser and the o+-shbility of the closed orbits of the first kind of PoincarC. 
We obtain these two results of Moser simultaneously by applying the twist 
theorem to the closed orbits of the first h d .  The propam of the proof is 
quite analogous to a proof by Bansar /jd965b] of the eistence of the Moser 
orbits. 
- Let y, be a circular closed orbit for p=0, as in ~ e o r e m  10.3.5, with 
i$-'=m/k and period 2 k ~ .  By L e m a  10.3.4(ii) we may choose an open 
neighborhood U of y c 9':'~ such that for p E(- 6,6)  we have U c 9;' as 
well, and U x J c W ,  J = ( - @ , 2 k a + e ) c R .  Thus the antegal P p  of Xe, is 
defined for points (t,b) €9 x hi, or especially F v j ,  2 k r )  is defined for fi E U 
and 1 pl < 6. As above, there are no "collisions" in this range. Let 

- 
/. = =(o,o, 0, A,) tj: y, 

so 

Po(/: 2ka)  = ( 0 , 2 n ~ ,  0, i\,) = (0,O, CP, KO) =@ 

From 10.3.5, the Psincart orbits yp for sufficiently small p are defined by 
initial conditions ;lip = (0,0,0,/'( p))) and we have Fp (ajp, 2 k ~ )  =pP. 

To apply the Moser twist theorem, we must construct a local transversal 
section Sp for y, and PoincarC section map 8 p  on Sp such that 5'" and its . . 
derivatwes up to order four, at least, depend continuousl:: on the parameter 
p. We may then verify the elementany twist hypothesis for p = 0, and assert it 
is satisfied also for ~ F s O .  Note that the local transversal section should be 
tangenl to the energy surface B$,) defined by a'= a"(/'), which depends on 
p in two different ways. This construction is the heart of the proof of the 
following. 

10.3.7 Theorem (Maser). In the cotanpnt BoincarC model for the restrgted 
three-bo& problemj Ief yo be a closed orbit o j  XGO containing jo = (0, Oj O3 &) , 
with xi3 = m / k ,  rn and k relatively prinze integevs. Let y, denote the c h e d  
orbit o j  the first kind of XG, containing #P= (0, & 0, x,) gioen by 10.3.5 
(x, = f ( p)) Then i f  k / ( m  + k )  + p / q  jor q = 1,2,3,4 and any integer p, there 
is an e > 0 such that 

( i )  1 p1< 5 y, is o '-stable3 and 
(ii)  i f  I pI < E, V is a neig&lborhood o j  yp c ??:I", and N is a positive integer, 

there exisis a closed orbit o j  Xo, in V with period greater than N. 

P r o  We first construct the Poincart section map @%n the local transver- 
sal section S p *  Let e ( p )  =6p(b"=Gp(d denote the energy of the closed 
orbits of the first kind, and Bg = (a")-'(e( p)) be the corresponding energy 
surfaces. Restricting to the neigPlborhood U of y,c??"Of the preceding 
discussion, F y j ,  2 7 7 )  is defined for all p E hi. If U is taken sufficiently small, 
it contains none of the five critical points of XG,, so Zp= Cg n U is a regular 
energy surface. Let 3 denote the intersection of U and the coordinate 
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hyperplane in P defined by A = O  (in the PoincarC variables: q, A, g, and x). 
Then for p=0, the second (A) coqonen t  of Xco is not zero on 3, so 3 is a 
local transversal section of Xco. As X,-, depends continuously on p, there is an 
e, > O  such that 3 is a local transversal section of XG, if I p l < ~ , .  Hereafter we 
suppose I pi< e, and E, < e, (the E of 10.3.5). 

Note that the initial condition hp is in 5 for all p. Let S F =  3 n ZY As is 
a local transversal section and Z%n energy surface, S V s  a submanifold, 
necessarily of dimension two, and is a local transversal section of Xe,lZ'. As 
j' E S', there is a (locally) unique PoincarC map 8" of XE,lZQt E S'. 

This finishes the construction, and we now study the map 8' correspond- 
ing to the unperturbed orbit yo to establish the elementary twist hypothesis of 
Moser's theorem. Recall that 

We may thus solve the equation Go(+) = e(O) (even explicitly if we wish), for n 
as a function of (g2 + q2). That is, we have a C" (in fact analytic) function v: 
tT+ R such that 

for all (7, A, $).-Thus a point j = (7, A, 5, R) is in the local transversal section Z0 
iff A = O and A = v(i2 + q2) Con"der the integral FO(~, t )  of X,-O restricted to 
ZO. By integrating the equations Xgjo explicitly, we find (see the proof of 
10.3.3) 

As j €ZO we have h = v(i2+ q2), and we may choose for each EX' a time 
t =x(/) so that the point ~~(q ,O,$ ,p ;  X) is again in ZO, as in the definzition of 
the PoincarC section map. Namely, let x($, 0,q, v) = 2r(v -3 + 1)- '. Then we 
have 

This is in fact the PoincarC map on the local transversal section So. By 
choosing (9,g) as a coordinate chart in SO, we obtain 3 

El 
8 

8O(q, j) =(qcosX-gsinX qsinx+$cosx) 
rn ;3 
00 
d 

where X(q,$) = x ( $ ~ +  q2) is detemuned above. Looking back through the 
construction above, we have ~ ( q ,  $1 = 2r(vP3 + I)-', where v(q, $1 is defined 2 
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implicitly by 

and hc3 = m / k .  Luckily, the section map is alrea4 in (a, b)-normaljorm. For 
@lo, in complex notation, is @(v) = uei"(l"~2). It only remains to expand v(lvI2) in 
a Taylor formula to order four, which we leave as Exercise 80.3H. The result 
is 

X ( I U I ~ ) =  a+plu12+ 1 0 1 ~ ~ 0 )  

where CR (0) = 0, 

and 

As ,63#O, this is an elementary twist iff a is not zero or an integral multiple of 
77/2 or 3a/2 .  But this is the case iff k / n # p / q  for q= 1,2,3,4 or any integer 
P. 

This completes the proof that 8' is stable, and the result follows from the 
continuity of 8" in p. 

Concerning this theorem, it is possible to prove the existence of the closed 
orbits of the second kind (ii) without the "order of resonance" assumption 
k / n i p / q  (see Moser El9531 or Barrar [1965b]) by using the Birfioff fixed 
point theorem (Siegel and Moser [1971, ck. 221) in place of the Moser twist 
theorem. For stability the assumption k / n  # g / q  with q = 1,2,3 is known to 
be necessary ("border of resonance < 3") but Moser [1963a]/ states that the 
assumption k / n  f p / q  with q - 4 can "s removed. 

Finally, it is clear that the proof actually demonstrates a most important 
fact: the twist configuration (and 0'-stability) of the circular yo is preserved 
under any hmiltonian perturbation oj  Q0 that is symmetric with respect to the 
(q2,p,) plane. 

It is tempting to apply the method of this proof to the ciosed orbits of the 
second kind of Arenstorf to prove their stability. However, the PoincarC 
section map 8' in that case (gO#O) is not in (a,p)-normal form, so one is 
faced with a difficult problem in computing the- invariants a and /3. However 
a rather different argument proves that they are not 0'-stable, as follows. 

10.3.8 Proposition (E. Chsrosoffa). In the cotapzgent Poincark modeljor the 
wstricted three-bo4 problem the closed orbits o j  the second kind gioen by 
10.3.6 (the closed orbits of Arenstorfl are not o '-stablc 

P 
9 
m 

Pro@$ (See Fig. 10.3-3). From Proposition 6.3.3 and Theorem 10.3.6 it 
folIows that it is enough to show that the closed orbit obtained for y = O  and 

Z 
'Private communication. 
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q=O, X=O,  &-3=m/k, go+ 0 is 0'-unstable. As we saw in the proof of 
10.3.3, this orbit y is given by 

and it lies on the cflinder (torus, if we identify in the h-component O with 277) 

in R4 given by the equations 

g2+q2=G;, X = R, 

We prefer to look at this surface as a torus To by regarding X an angular 
variable. Let now X, be arbitrarily close to KO and su& that 1 2 ~ ~ / 7 1  is 
irrational. Then the orbit y' with initial cenditions (9, 4l,t0,A,) will lie or, the 
torus T ,  

$2+q2=g$, X = R 1  

and it will be dense in T,. If p denotes the Euclidean metric in R~ and 6 the 
corresponding Hausdorff -metric, we have p(y, y') = @(yLTl) by density of y' in 
T, . Let A be an arbitrary point on To, A = (17, , A,, a, A,) and let d = p(A , y). 

Denote by A,  the point on T ,  closest to A,  that is, A ,  =(qA,&,$.,.E,.x,). Let 
P E y be the point for which p(A ,, y) = p(A ,, P); P = ( ~ ~ , x ~ , S ~ ~ A ~ ) .  It is clear 
then that p(A ,, P )  > p(A, P). Thus we can write 

0 

l'he concIusion is that even though p(y(~) ,y f (~) )= lR , -Rl (  is arbitrafily z 
small, p(y, y') > d, that is, y is 0"-unstable. 8 
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EXERCISES 

Write down the equations of motion in model 3BIIN and show that they are 
unchanged when q2,p,, t are replaced by - q2, -p,, - t .  - - 
Prove 10.3.2. [Hint: Use the formulas that give (q,h,(,A) as functions of 
( g , ~ , G , L )  and the fact that g=P,  !=ao-P, a o = n ~ . ]  
Prove the last assertion of 10.3.3. 
Prove 10.3.4. [Hint: (i) Show first the openness assertions; you can use Lang 
[1972, p. 861; (ii) Use the fact that 9 8  is open and y is compact and inspire 
yourself by the proof of the existence and uniqueness theorem for PoincarC 
maps in Chapter 7.1 
In 10.3.5, show that in fact the perturbed orbit y, is in a one-parameter family 
of closed orbits by considering the mapping G : ( p, t ,  A) I+ A-componenI of 
~'(0,0,3,x; r )  as in the proof of 10.3.5. - 
Pr~ve  10.3.6. [Eint: Consider the mapping 6: ( y ,  t ,  h ) b ( q , X ) ,  the first two 
components of Fp(O, 0, go, h; t).] 
Relate the PoincarC and Arenstorf orbits (10.3.5 and 10.3.6) to the inertial 
frame, that is, model 3BIH. Show that for p=0  the period is 2nm, where 
n = m + k is the order of yo in the Poincark model. (See Fig. 10.3-1.) 
Complete the proof of 10.3.7 by computing the Taylor fornula to order four 
of v(t2+ $1. (Hint: See Barrar [1965b, p. 3683; watch out for the difference in 
sign conventions.) 
Prove the second to last statement of the section, that is, the statement in 
italics before 10.3.8. See Exercise ?0.3B. 
Fill in the details about the orbital instability of kenstorf's closed orbits as 
indicated at the be of the proof of 10.3.8. 

10.4 TOPOLOGY OF THE PMNAR N-BODY PROBLEM* 

Consider lz particles of masses m,, . . . , m,, moving in the plane R subject 
lo Newton's gravitational law. If we remove collisions from the model (as we 
did earlier), we obtain an incomplete but smooth Harniltonian vector field.? 

The configuration space is the 2n-dimensional manifold 

where 

and 

5 *Most of the results in this section are due to Smale [1970a, 1971bl with improvements due to 
Iacob [1973]. 
'AS mentioned in Sect. 9.8, two-body collisions can be regularized and are relatively harmless. 

m Using invariant manifolds and blowing up arguments, McGehee [1974,1975] analyzes the 
8 behavior of the flow near triple collisions, extending the classic work of Sundman [I9131 and 

Siege1 119411; such collisions cannot be regularized and for the three-body problem incomplete- 
ness occurs only via collisions. For four bodies, this is not true, as shown by Mather and 
McGehee [1975]. The result uses the instability of near triple collisions to impart infinite velocity 
to a "shuttle craft" in finite time. Some complementary results are given in Saari [1972]. 
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Clearly M' c (R 2)" is open. The velocity space is TM' = M' X (I8 2)" with the 
structure of a trivial vector bundle. Define a Eemamnian metric on M' by 

where x E M',  u, P, E 12r,Mf, u = (u,, . . . , un), v = (v,, . . . , q), and ac,-o, is the usual 
dot product in iV2. The kinetic energy of the metric is 

where 1 1  - 1 1  denotes the norm in R 2. Define the potential energy of the problem 
by 

and notice that V E F(M') ,  A being the set of shgularities of V.  
Thus we have a Lagran@an system with kaganaan L and energy 

function E E F ( T M f )  given by L= K- V O T - ~ , ,  E= K+ V O T ~ , .  Lagrange's 
equations for this system simply become 

where gra4 is taken with respect to the usual Euclidean metric on R2 in the 
ith factor of ( lZ2)" .  These represent the well-known Newton equations for the 
planar n-body problem. 

We can pass to the Hamiltonian formulation. The Eagrangian L= K- 
V O T - ~ ,  is hyperregular and the Legendre transfornation is 

where x E M', (o,, . . . , vn) - o E T,M'. Thus the kinetic enerG in colangent 
jormulation, whch will be denoted for simplicity also by K, is 

where (x ,  a) E M' x (R -- P M '  and 1 1  denotes the usual Euclidean n o m  
on Ha 2. (Actually, the kinetic energy in cotangent formulation is K O  g# .) The 5 
Hamiltonian of this mechanical system is W E F(T*M') 2 

s 
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10.4.1 Beflnltlon. The m p  C :  (R*)"+R' given by 

is called the cent. o f m s s  oj  the Wslem. 

In order to simplify the problem, we fix the center of mass of the system 
at the origin. In other words, we want to consider the linear ma~fo ld  

Since C has maimal rank, M has dimension 2n-2. The tangent and 
cotangent bundle of M can be identified with 

10.4.2 PrsposltCon. T" M is an inoariant submnqold of ar"" M' for the j7ow of 
the Hamil8onkm vector 3eId Xn E X ( P M'). m e  &'duced flow on 2W M is 
Hamiltonban with Hamiltonian M j P M ~  

Pro@$ (The solution to Exercise 4.32; Robinson [%97Sc]). We shall prove 
that T 4 M  is obtained from T4M'  using rebctisn by a Lie goup leaving H 
invariant, and that HI P M  is the reduced H a ~ l t o ~ a n .  This will then prove 
our claim according to 4.3.5. 

We let the additive goup R* act on M' by translation, 43: R*X M'+M': 

'H&e induced action on P M '  is 
X 
& 
52 aP: R*X T"M'+T"M' 
e? 

d 

6 and clearly H is inval?amt under this action. The momentum mapping /: 
T'M'+(R*)* is given by (see 4.2.1 1) J(x,a).f=a(t,,(x)). Since exp : R'+ 
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IW is the identity, 

so that 

that is, 

9 is a conshnt of the motion for XH and clearly J  is a submersion; O being a 
regular value for J ,  

is a submadold of T*M', invariant under the flow of I f H .  
The isotropy group of R at O E R under the coad~oht action is R and 

W acts properly and freely on J - '(0) so tbat J - "@)/R is a madold with a 
u ~ q u e  syrnplectic f o m  wO satisfykg  IT:^'= i,*w,, where w, is the canoIlica1 
syrnplectlic Porn on P M ' ,  T,: J -'(@)+.I - ' (@)/R~ is the cano~ca l  pprojee- 
tion, and 4 :  J -'(@))4 T'M' the hclusion. We shall defhe a d ~ f e o m o ~ f i s m  
j: 9 - " @ ) / R 2 + P ~  h the following way. Note that for each (x,a) €9 -"a)), 
there is a u ~ q u e  g E R 2, namely, 

such that 

Thus each orbit R ~ * ( x , ~ )  conhins a uique point 

n n n n N 

?(XI - xi)/ 2 mi,.  . . , mi(., - Xi>/ 2 mi 
i =  1 i =  l i =  1 i -  l m 

2 
Define f: J - '(0)- P M  by f (x, a) = (x,, a) and notice that f so defined is z 
smooth and invariant under the action bP9 that is, f o  @: =f for all g ~ ~ 2 .  It 
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is easy to see that f is an open mapping and that f is a su jective submersion. 
Hence f defines a smooth map g': J -'(@)/R'-+ P M  by fo ~r,===f.-It is easily 
verified khat g' is a diffeomo~&sm. In fact, is symplecdc, that is, f * i"w, = wo9 
where i: P M - +  T*M' is the Pnclusion. Since T, is a su jective submersion, 
this is satisfied iff T Z ~  i*W, = v$w0 = i:a0, that is, iff f+ i*u, = i;ww This 
relation is proved with a short ca%culation, which we leave to the reader, using 
the formula 

The conclusion is that Pa,, is the corrpect symplectic form on 

The reduced H a ~ l t o ~ a n  on J - "o)/R ' satisfies H, 0 T, =. H 0 i, (see 
4.3.5). Let [x, a] = vo(x, a). We have 

since, as we saw before, [x, a] = ex,, a]. Thus the image of H, by f - 5 s  exactly 
Hj T"M.  

'Baaus we showed that T*M with the hduced symplectic % o m  i*q, from 
T*Mr is the reduced symplectic m ~ f o l d  and HI P M  the reduced H a d t o -  
nian, so khat by 4.3.5 X,I T*M=XHl,, is a H a d t o ~ a n  vector field. a 

From this argument we see that no topolo@cal S o m a t i o n  is lost in the 
reduction, so we shall define our mecharmica1 system with symetny startkg 
on the reduced ma~fo ld .  The mechanical system with symetny in question 
will be ( M ,  KT V, G), where: 

xEiv.1 $j mixj=@ 2 i=  1 
2 
8 
" with the E e m a n ~ a n  metric z2 
00 
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u=(u ,,..., u,), o=(o ,,..., q ) E  L M ' ;  K E % ( P M )  is the h e t i c  energy in 
cotangent fornulation given by the m e t ~ c  g ,  that is, 

where a=(a,, . . .,a,) E T:M; P M  is identgied with 

I! !I denotes the Euclidean norm in V is the potential enerm given by 

6 - S ' = 30 (2) acts on M' in the following way: 

where &xk is the rotation by the angle B of the vector xk E R ~ ,  that is, if 
(x;,~;) = ~ k ,  

It is clear that M is invariant by @. Also Vo a%= Y for any 8, as is easily 
seen. The induced action on the cotangent bundle 1s given by 

S ' clearly acts on M', hence on M ,  by isometrics. 
The Hamidtonian H E %(F""M) is given by 

64 

it is invariant under the action @ of S b n  M. El 
4 

'Hrhe momentum mapping 9: T*M-+R is the usual angular momentum 
given by (see 4.2.1 1) 2 
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where 

and " v 9 *  denoting the dot product in R2. (Here and in what follows we 
identify R and R*.) 

Now we discuss the topology of the invariant and reduced invariant 
manifolds I,,, a d  ih,, of the eenrgy-momentum mapping H X J :  P M + R  X 
R. We shall atternpt bere to fiiHill the first two poiilts of the topoloacal 
program described in Sect. 4.5. 

First, we want to determine the set A c M ,  where Jx fails to be sujective, 
that is, where the isotropy group s,' of S' under the action @ has nonzero 
dimension. But it is clear from the formula defining that the action is free, 
so that for any x EM, s,' = ( I ) ,  that is, A = a. 

Next we cornpute the effective potential (in order to be able to dete 
the set X',,,). Recall from Proposition 4.5.5 the formula for or, € Q ' ( M ) :  

where Jx = JI T:M and Ex: R+ P;M is given by Ex([) =tM(x). We have 
tM(x)=(Ax,9..-9Axn)t, $0 

Thus J, o g,b Ex : R+ R is given by 

Y 
!2 
4 so that 
m 
8 
2 
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and hence 

Thus, the effective potential is 

Since A =a, any p E R is a regular value of J and hence by 4.3.8 the set of 
critical points a ( H  x J )  of H X J is exactly the set of relative equilib~a of the 
mechanncal system. Using the formula s (HI  J - '( p)) = ar,(e(Vp)) from Sect. 
4.5, the set of relative equilib~a is given by 

Thus the specification of a(Vp) detePmines the set of relative ewdibria. 
In what follows, we give a somewhat more concrete physical intevreta- 

lion of the relative equilibria. X 
'4 
2 

18.4.3 Betlnltlon. x = (x,, . . . ,xn) E M is called a central confipra~on $ the q 
m 

force acting on q computed at x is proportional to miq  for 1 < i < n, that is3 ij 2 
there exists A(x) E R such that z 

2; 

grad. v (x) = k i x i 9  1 9 i < n l?! 
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where 

The first tEng to notice is that X(x) is ~ILlqueIy dete 

letting Q (x) = Z?= ,miil~il12, we ob ta i  h(x) = - V(x) j Q (x) (since br is horn- 
geneous of degree - ?, Cy, ,xi-gradi V(x) = - V(k-)). The following is taken 
from Iacob [1973]. 

10.4.4 Thwrem. (i) x, E M is a central corzSiguration ij and only ij xo is a 
critical point o j  the map x H Q (x) v2(n), that is, x, E o(Qv2). 

(ti) x, E M is a central coi$ipration ij" and only ijf apjxoj is a relative 
equilibrium for p = r \I= E R. 

(iii) x, E M is a central configuration ij and only ij xoE a(Vp) jor 
p= ?\l- Y(x,)Q(x,) ER 

Proox (i) Sbce V(x) and Q (x) are never zero, 

that is, 

s 
'=? 
m (ii) By (i), xo E M Is a central configmation if and only if 
8 
op 
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We have 

By 4.5.12(iv), ap(x,) is a relative equilib~um if and o d y  if there exists 6 E R 
satisbing (3  g,b 0 CM)(xo) = such that w, is a critical point of V- K 0 gb tM, 
that is, 

d Y ( ~ , ) - ~ ( ~ d Q ( x ~ > = ( 3  

The choice t= 2 E R  yields the equivalence of the two 
condiitions, for 

(iii) By (ii), if x, is a central configuration, then for 
p' 

But VF(x)= V ( X > + ~ ~ / ~ Q ( X )  SO that this condition is equivalent to d$/,(x,) 
= 0. 

Conversely, if x, E a(Vp) with p = 5%- Q(a,)V(x,) , then, since 
o ( H  x 3 )  = upEwol,(o(VP)), ap(xo) is a relative eq~a&bfiu~l and by (ii), x, is a 
central codigurat~on. Ri 2 

e 
If we denote by C,, the set sf central configurations in the planar n-body 5 

problem, we have g - 
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10.4.5 Coroileq. cDRe(C,,)= C,,; if aER\{O), aC, = {axlxE C,,) = C,, (& 
is the rotation thmugh an angle 8). 

PmoJ Since Vo d P R a  = V, V ,  0 cDR = Q, we conclude e V 2  o a, a = e V 2  and 
taking the differential of this equaEty at x,, since Txo@, is an isomovhism, 
we conclude x, E a ( e v 2 )  if and ody if @Ra(xQ) E C,,. 

For the second equality, note that V2(ax) = (1 /a2) V(x) ,  Q (ax) = a 2 ~  (x),  
so that (V,v2)(ax)= ev2(x>.  Taking the differential of this relation at x,, 
a d ( Q ~ ~ ) ( a x , ) = d ( ~ ~ ~ ) ( x ~ ) ,  that is, x , € o ( ~ ~ ~ )  if and only if ax,€ 
4!2V2). s 

'Ifhe action of S'  and the action of the mu1tiplicative group R\{O) 
commute, so S' x(W \{O]) acts on C,. The orbit space of this action ez = 
C,,/S ' x (R  \ { ( I ) )  is the set of equivalence classes of central codigurations. 
Two central codigurations are equivalent if and only if they are in the same 
S ' x ( R  \{@))-orbit, that is, if and only if one is obtained from the other by a 
rotation and a homothety. VVe shall come back to the set 6, later when 
discussing Moulton's theorem. 

We turn now to the d e t e ~ n a d o n  of the sets a(V,) and EL,,. Let 
S$ -3 = { X  € M ( Q ( x )  = 1 ), a (2n - 3)-dimensional manifold and defke the 
map 9 by 

which establishes a diffeomorphism M W S $ - ~  X ( O ,  m). Let Vs: s$-~+R 
be the rest,-iction of the pokntia? V to s$ -~  c Me v+e have 

since Q ( 2 )  = 1. 

Y 
2 10.4.6 Theorem. (i) o(V,,) = {x = + - ' ( r ,  t )  E M lr E o (Vs )  and 
4 

t=-(p2/Vs(z ) )} ;  8 
OT 
0 

(ii) C;iF = Vp(a(Vp))= { -(V;(z)/2p2)1z Eo(VS)); 
25 (iii) ZL ,, = U {(h, P )  E ~ ~ 1 2 h ~ ~ =  - V;(Z)). 
2 z E o ( V s )  



Pro@$ (1) x~a(~~)ifandodyifdk;(x)=~ifand~dyifd(~/,~~-~)(~,~) 
= 0 [where x = 9- '((r, t)] if and only if 

if and only if d$/,(z) -0 and t = - ( p 2 /  $/s(z)). 
(ii) 

Zkp = Vp (4 vpll 

= { - ( ~ S " ( Z ) / ~ P ~ )  l ~ E O ( & ) )  

(iii) From Sect. 4.5, 

~ k x , = { ( h ~ ~ ~ ~ 2 1 h ~ ~ ; p  ) 
= ( ( h , P ) ~ R Z / 2 h y 2 =  - 

10.4.7 CoroBlay. The set oj central con j~ra t iom Cn coincides evith 
9  - '(04 V,) X (03 m)), where 9: M ~ s $ - ~  X (0, m) is the d#eomoybzism Hx) 
= (./ ). Rephrased x = +(z, 1) is a central conjguration ij and 
only $ z E o(V,). 

ProoJ By 10.4.4, x E M is a central cod=iguration if and only if x E a(Vp) for 

p= k , so that by 10.4.6(1), if ( z ,  t) = qb (x), x E Cnif and ody if 
s E o(V,/;.) and t = V(x)Q (x)/ V,(z). But 

so that x E C, if and only if z E a (  V,) and 2 > 0 is arbitraw. gg 

Thus the set a(F/,) of critical points of V,: s $ - ~ ~ R  d e t e ~ n e s  the 
relative equilibria, central cornfigurations, and the critical part ELx, of the Y 
bifurcation set ZHX,. We shall now investigate the map V, further. Since $ 
Q a,, = Q for any & E SO (2), the action leaves s$-~ inva~ant. NOW r+-3 a s 
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where 

A,=(x=(x ,,..., X . ) E ( R ~ ) " I X ~ = ? )  

Clearly A,, and hence A, is invariant under the action of S' on (R2)" by 
rotations. Thus, we can conclude that SFp3 is diffeomovhic to the 
(2n - 3)-dimensional sphere s ~ " - ~  (it is actually an ellipsoid E ~ " - ~ )  in the 
(2n - 2)-dimensional subspace {x E (R 2)" ( Cl, ,?xi = 0) of (R 2)" with all the 
points of A removed, that is, 

Vs is invariant as well, that is, I/, @, = VS, so that it defines a map 

If we let nn : S ~ - ~ + S ~ - ' / S  ' denote the canonical projection 8 = %(E2"-' 
nA), and recalling that E ~ " - ~ / s ' w S ~ " - ~ / S ' W C P " - ~ ,  complex (n-2)- 
dimensional projective spac? [see 4,3.4(iv)], we are led to the investigation of 
the set of criticdpoins o i " ~ , )  of v,: CP"-~\A+R. Since n, is a surjective 
submersion and V;. o n, = Vs, 

and thus a(Vs/,) is completely deternnined by o(Ps). Thus by 10.4.6(iii) 

By 19,4.7, @(CJ = o(Vs) x (0, oo). Using the diffeomvhism 

the action of S' x(R \(O)) by rotation and homothety on M becomes: 
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that is, 5' ' acts on a( V,) x (0, oo) by 

(&, ( 2 ,  t>> t. (@(R,, z ) ,  t )  

and R \ (0) acts on a(  V,) x (0, oo) by 

(a,  ( z ,  1)) .-. (z3 at> 

and clearly these two actions c o m u t e .  +: C,,+o(Vs)X(O, oo) becomes in 
this way an equivariant diffeomorphism. Thus, letting en = C,,/ S ' x (R \ {0)), 
the set of equivalence classes of central codigurations, 

since (8, oo)/(R \{0)) = {one point). We have proved the following result of 
Smale. 

10.4.8 Corallay. (i) For any n > 2 and any choice of h e  m s e s  in the 
planar 8 - b o a  problan, the set o j  equiualence classes o j  central configurntiom is 
@fieomophic to the set of critical points of the m p  f, : CP"~\&+% thal is, 
C,,=a( V,). 

( i i )  Z& ,, = U ((h, E R 212hp2 = - $i(y)). 
~ € 6 "  

The set C?,, of equivalence classes of central conEigurations thus determines 
ZL ., as well as the set a(H x J )  of relative equilibria. 

Central configurations can be collinear and noncollinear. Collinearity 
means that the points x,, . . . , xn giving the positions of the n-bodies of masses 
m,, . . . , m,, lie on the same line in the plane R ', that is, x; = ax! + b, i = 1,. . . , n, 
with a, b E R. But 2;- ,mix, = 0, so ehat b =8, that is, the line on which the 
collinear central configurations lie passes throub the origin. Since we will be 
ultimately interested in classes of central configurations, rotations of the 
plane do not matter and thus by making a rotation in R 2  we can assume that 
the collinear central configurations x,, . . . ,xn € R x (0). We thus get an 
( n  - I)-dimensional submanifold 

of M. Let 5";;: = ~ 2 - ~  n KO, and notice that 5'6;: is the part of the ellipsoid 
Er=, mix: = I [of dimension ( M  - 211 lying in the (n - I)-dimensional subspace 
2;= ,mixi =O of R n  out of which we excluded all points (x,, . . . ,xn) ER" for 2 
which x, = x, for i#j. S1 acts on S g - 3  by rotations and the only rotation 52 

Q leaving 3;;: invariant is R,, the rotation through an angle .ir, and thus the m 

group with two elements Z / 2 2  acts on 8;;:. The orbit space is therefore 23 
2 $6;O: = RP"', real (n - 2)-dimensional projective space. Regard RP"-' c 

Cpn-' and write V,,= VslS,!jz and PC,,= C , l ~ ~ " - ~ \ ( h n  RP'-~) .  k? 
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10.4.9 Proposition. ( 2  E e,,lx collinear central configuration) = a(?s) n 
(RP"-'\&) = CJ(~~,,~). 

Proo$ The first diffeomorphism is an immediate consequence of 10.4.8(i) 
and our previous ccnsiderations. 

Now let P E a($/s)n (RP"-*\A), that is, 2 E RP"-~\& and (dps)(l) =O. If 
i: RB"*\&+cP"-~\& denotes the canonical embedding, then fco,= fs ~i 
and hence (dtcol)(~) = (dps)(l) 0 T'i = 0 and so 

m a t  fernains to be shown is that a critical point of ?co,js also a criticd 
point of "vI,. Since the canonical projecrions S$-~+CP"-?\~,S;~;;+RP~-~~ 
(A n &?pn-') are surjective submersions it suffices to show that if x E s&,? is 
a critical point of KO,, then it is a entical point for &/,, too. If we denote by dk 
the differential on the kth factor 6g2 in (R *)", we have for o = (v,, . . . , q) E 

(a ')"> 

But 

so that 
X 

d where (,) denotes the dot product in R*. The same fornula will be true for Vs 
and v E T X ~ $ - 3 .  



714 4 CELESTIAL  MECHANICS 

Let 

x = ( ~ , , . . . , x ~ ) € S ~ ; ~  

that is, 

and all the points with xi = 9 for iZ j  are excluded. Let 

c n - 2 1  w = (wl,. . . , %) E T, (oQco, 1 

that is, 27= ,miwix) = 0. Let 

be a tangent vector to &"gP3 at the same point x E s&;; put q = jz;,', 0;) and 
consider the vector 

e'==(0;9.eo,U,i)j 2 ) €  q(s2-3) 

vbrhich must satisfy 

that is, o' E TX(Sc;$). We have proved hence that 3 

then 

If x is a critical point of V,,, then necessarily x E s;;:, and hence by the 
ae expression for dVs(x) we see that dF/,(x).o= dVs(x).ol. Hence, if d~~/,(x).o\ 

=Ofor a11 a1€~(~~ ;2 ) , t he rndVs (x ) -v -0  for all ~ET's$-' and a €  $ 
4 V . ) .  B m 

8 * 
d 

The number of equivalence classes of colliraear central codigurations is a; 
@ven by the following. $ 
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10.4.10 Theorem (F. R. Uouiton). For any choice of the m s e s  in theplamr 
n-body problem there are exactly n! /2 equiualence clmses of colhear central 
conjgurations. 

PCpg: (Smale). By 10.4.9 the numb,er of equivalence classes of co-bear 
central configmations is given by a(Vc,,). To count the points of a(&/,,) in 
H P L P " - ~ \ ( A ~  RP"-~) we proceed in thee steps: 

Step I: if y E s(fc,,), then y is necessarily a nondegenerate m 
Sfep 11: A partitions S&,; into n? diametrically opposed, connected eonnpo- 

nents, so that RP"-;\(~ n RP"-~) has n? /2 connected compn5nts; 
Step IIP: Since l imy ,~  Y , [ ( y )  = - CQ for E RP"-'\(& n w n p 2 ) ,  Vcol must 

have a mawmum in each connected component. By Step I this is a 
nondegenerate rn and hence is u ~ q u e .  Thus a(fc,,) has as many 
critical points as connected components ~ ~ " - ~ \ ( h n  RP"-~) has, that is, 
n! /2. 

P w  of Step I. The f o l l o ~ g  computation is due to 7%. Nangan (see D. 
Benr&elea, 7%. Hangan, H. Moscsvici, and A. Verona [1973]). Let 
u ' ,u  ' ,..., un-I be local coordinates on the elhpsoid S&G and let xO= 
(xp, . . . , x 3  E R n  be a critical point of V,,,. The equation of the ellipsoid is 

so that 

relations that will be useful later. As we saw in 10.4.9 

The second partial derivatives are 
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At xO, which is, by assumption, a cfitical point of Vco,, that is, a collinean. 
central corafiguratisn, we have 

Since Vco, is a homogeneous function of degree - 1, 

a%, n 
2 

- Vco, (xO) = x;---- = X 2 m;(x;CiO) = X > 0 
i = l  ax; (5) 

Thus, the second term of 8 2 ~ / a u a  aua evaluated at xO becomes 

denote two tangent vectors to the ellipsoid S G ~  at xO, then 

ax; axi 
0. = -or  W .  = - wf 

aua aua a 
(sumation convention) 

and hence 

- 
so that rn lC, 

8 
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which is clearly negative-defidte (in particular nondegenerate). Thus x0 is a 
nondegenerate m a ~ u m  for T/,,,.The canonical projection n: SG;;+RP"-~\ 
(a n RP"-~) being a su jective submersion, n(x9 will be a nondegenerate 
maximum for Vco,. 

P o  of Step 1 Associate to x = (x,, . . . , x,,) E SG: the system of numbers 
(i ,,..., in), $ € { I  ,..., n )  for all ' i < j < n  such that b<ik if andodyif x4<xik. 
'Thus each comeeled component of 35;; conesponds to a certain ordePing 
(i,, . . .,in) of {I , .  . . , n ) ,  and conversely. We conclude that 5'62 has n? comps- 
nents. Each component has a diametrically opposed one gven by the oppo- 
site ordering (on S&;, take { - xlx E component) to obtain the opposite 
one). 

- - 
unfortunately, there is no theorem like Moulton's f2r noneollinear central 

configurations. However, regarding the finiteness of C,, the following result 
of Smale holds. 

10.4.1 1 Theorem. If for a given choice of the masses m,, . . . , rnn in the planar 
n-boal, problem f, : CP" - 2\a+ R has all irs crilical points nondegenerate, then 
2n is 3nile. 

PPOOJ (Shub [1971]). If we show that V, has no critical points in an (open) 
n:i&~orhood N of A, then Vs will not have $riticai points in a neie~orhood 
N (the projection of N) of A. Now epnp2\IV is_closed and so is compact in 
CP"-~. Moreover, by hypothesis, p s ~ ~ ~ n - 2 \ ~  has all its critical points 
nondegenerate and hence isolated, so their number is fiIllte. 

Recall that the derivative of V is given by 

where we make the convention 

A 
that is, we regroup the equal  components of x in consecutive groups. We 

9 
may assume, by definition of A, that k ,  > 2 and x:#x,!, where xi =(x,',xi2) for z 
all i = 1,. . . , n. Angr point in a nei&borhood of x can be written as x +ti, 

z where a= (a,,. . . ,a,) E(R2)". We shall prove that there is a vector o(@= 
(o,(&), . . . ,on(&)) defined in this neighborhood so that: 
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(a) 1 1  a)(d)ll is bounded; 
mimj 

(b) 2 (xi + 6, - ( 3  + a,), ui (8) - uj (8))- + ao as 6, 
1 <i<j<n II~i+ai-(xi+&~)II~ 
-6,+OforiJ<k, andiZ6;  and 

(c) u(6) is in the tangent space to the ellipsoid 

xE(R2)nI  m,llq//'=l and mixi=O 
i = l  i =  1 

These conditions clearly h p l y  that for each x € A n  E ~ ~ - ~  there exists 8 
such that dVs(x)#O [since we can find a u(6) on which dVs(x).u is big]. 
Since A n  is compact, the usual finite cover argument yields the desired 
neighborhood N of A in 

We shall prove (a), (b), and (c) by solving the following system of linear 
equations for u continuously in a, for 6 bounded. 

If this is done, continuity of u(8) in 8 yields that Ilu(&)ll is bounded, that is, 
(a). Equations (I) and (2) prove (c). Regarding (b) we have: 

mi mj 
= 2 (6, - 6,. q - 9 )  [by (4) and ( 5 )  ] 

l < i < j < k ,  I18i-6,113 

m; m, 
= x (8; - $ ai - 8,) [by (3)] 

l< i< j<  k, 116;-4113 

This expression tends to + ao as -$-O and so (b) follows. 
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We shall solve now the system (1)-(5) for the u ~ o m s  ui. Gnsider the 
family of linear mappings 

o,-q:R2+R2 for 2 < i < k l  

rest~cted to the h e a r  subspace of' (R 2)" given by q, + , = . = %-, = O a d  
v,, = . = q. This defines then a h e a r  map from a %(k,  + 1)-dhensional 
vector space to a (2k ,  + 1)-dimensional vector space. The dependence on 6 is 
smooth. We shall prove that at 6 = O this map is sudective. It is thus sudective 
in a whole nei&borhood of O in the &-space and we can solve the system 
continuously in 8. To prove the desired sudecti~ty at 8=0, res t~ct  this map 
to the subspace defined by t1:=0. This linear map has detefinant (the 

1 udnowns are now vI, .  . . , ukl, on): 

where E=E;=,,naj, 1 is the 2 x 2  identity mat f i  and the last column is an 
ordinaq co lum of 2 k ,  d- 1 numbers; in wfiting this detenrrmnant we used also 
the relations x, = . a = sr,!, . . . ,x k,--"" - = xn. Letting m = 2 ; ~  lmi and operat- 
ing on the colums and sows of this detehwant, we see that it equals 

= m%Qxi -xi) +O 

because by hwothesis x: # xi ~ , 1  
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,. 
Summarizing, if, for a given choice of m,, . . . ,m,, Vs has all its critical 

points nondegenerate, is finite and 

E L x J =  U {(b P ) E R ' ( ~ ~ P ' =  - -:(Y)} 
Y E & "  

is a finite collection of cubics in R2.  
A system ( q , .  . . ,inn) of masses is called critical if Ps has at Beast one 

degenerate critical point. Call Z,  ~ ( 0 ,  co) x - x (0, m) ( n  times) the set of all 
such critical masses in the planar n-body problem. Smale I19761 asks, "N%at 
is the structure of Z,?? We shall see below that Z 3 = 8 .  Palmore [1976bj 
proves that Z, #(ZI for all n > 4 and amounees the result that the Lebesgue 
measure of Z,  is 2ero.t A central codiguration that gives a degenerate relative 
equilibria class is obtained in the follov~inag way: place ( n  - 1) u ~ i t  masses at 
the vertices of a regular polygon with n - l sides centered at the origin, and 
put an arbitrary mass m, > 0 at the onan. Comb&g 10.4.11 with Palmore's 
result, we have: 

10.4.1 2 Theorem. The set of Qm,, . . . , m,> E ((0, co>y jor which the set e,, of 
relative equilibria clc~sses in the planar n-body problem is not )nit@ has &besee 
measure zero. 

We turn now to the proof that Z3=Qi. In fact, we shall d e t e ~ n e  c3 
completely. A first result in this respect is the following. 

10.4.13 Theorem (Lagrange). For any choice of the msses m, ,  m,, m3 in rhe 
planar three-body problm, x E C3 is a noncollinear central co@iguvation i f  and 
OM& if 

where m = m, + m, + m,. Thus the three bodies move in circles forming a &ed 
equilateml triangle. 

Pro@$ By 10.4.4(i), x E &; is equivalent to x E s(Qv2), that is, 

V ( x ) d Q ( x ) + 2 Q ( x ) d V ( x ) = O  

We h o w  that 

and since 

'Smale showed us his proof after the book was completed 
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we have 
3 

dQ ( ~ 1 . 0  = 2 2- (x,, q) 
I =  l 

Since u E T I M  iff 2:- ,m,ul = 0, a simple calculation shows that 

2 dQ ( ~ 1 . 0  = - m1m,(xl - x,, 0, - oJ) 
W? 1 < 1 < ~ < 3  

n u s  

for ali u E  TxM.  Bur since x1,x2,x3 are not coilinear, this relation is satisfied 
iff 

'This is obtained making suitable choices for the vector o and using C~=,nz,oI 
= 0. 

For the last statement, recall that x is a central configuration iff u,(x> is a 
relative equilibrium. But this means that @zIc(a , (x ) )  is the integhal cuwe of 
X, throu& aa,(x). Hence the base integral curve will be @,,Ig(x) which is just 
rotation in circles. Since V ,  Q are invariant under Q, the number 
( -  m(Q <x) /  v ( x ) ) ) ' / ~  is constant along the orbit. Thus the three bodies move 
in circles maintaining a distance ( -  mQ(sr)/ v ( x ) ) ' / ~  between any two of 
them. (See Fig. 10.4- 1 .) m 
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If ?r,: S;-+CP'\~ denotes the canonical projection, then the $9 of 
equival$nce classes of noncohear central codigurati_ons is the set o(V ) 

"1 (Cpl\(Au RP')), that is, the set of critical points of Vs that are not in RP 
(see 10.4.9). Thus 

{ y E c3 1 y noncollinear central conjmration ) 

by the above theorem. 
We want now to compute Vs: CP'\A+R. Recall that CP'= S2 and 

clearly (0,0,1) E & using this identification. Denote by p : s '\ ((0,0,1)) + C 
the stereographic projection. If 

p is given by 

p ( s t ) = z / ( I - t )  

Let B=p(h) and define &;.: c \ ~ + R  by &/', ~p = fs .  Since p is a diffeomor- 
phism a(&)=o(ps). In what follows we shall compute vs: c \ ~ + R  ex- 
plicitly and deternnine the set a(Ts). (The following computations are taken 
from Iacob 119731.) 

The standard Nopf fibration h : s S2 will be useful. If 

and 

h is given by 

@ere G is the complex conjugate of w). h : S ,-+s2 is a fiber bundle, the fiber 
over (z, t) E S2 being given by 
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where 

In Jacobi coordinates, 

and the quadratic form Q becomes 

Define then the diffeomorphism 9: c2+C2 by 

and notice that ( Q  i#-')(w,, w,) = 1 w, l 2  + 1 w212 and hence 9: s:+s3\9(A) is 
a diffeomorphism. We also have from (2): 
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and hence using (I), we get 

where 

Similarly, 

X 
'2 
C7 where 
(9 

8 
2 
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Thus x= ({,,5,) since in {-coordinates x, = x, iff 5 = and x2= x, iff 5 = P2; 
x, f x, always holds in {-coordinates as we saw above. 

Remark. CP'\L = sZ\i$ = S2\(three points) since = {(0,0, I), - I({,), 

P - 1(3.2)). 

The changes of coordinates that we defined are summarized in the 
following comutative diagram. 

We have 

the last equality being the Jacobi change of coordinates. Thus 

We want to determine a(Fs's). - 
The critical points of o(Vs) will correspond to equivalence classes of 

collinear and noncollimear central codigurations. We shall consider them 
separately. 

NO~cOllillear Central Confgurations Classes. These are given (see com- 
ment following 10.4.13) in {-coordinates by Y 

E 

Z 
and hence having in view the above fomulas that give Jx, - x2J, Jx, - x,J, and 
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Ix2- x3( as functions of 5, we must have for these points 

that is, 

I{ - { , \= \ { -52 \=3  (ml  c m*) 
V mm,m, 

In other words, the only noncollinear central configurations lie at the inter- 
section of two circles of equal radii centered at 1, and Y2, respctively. Denote 
these two critical points by A, and A,. It is clear that A,=A, by the above 
geometric interpretation and 

We also have 

m3 (m, -t- m,) 

Hence the two critical points form two equilateral t~angles .(,X,[2 and {,A212 
in C and they are in the same level set of Fs. These two crit~cal points are 
called, as in the case of the restricted three-body problem, Lsligrange critical 
points. 

2: E e  shall prove now that these critical points are nondegenemte ma%ima 
 for^^. 
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Letting 5 =t+ iq, a direct computation shows that 
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and 

Using the fact that 

and the computed expressions for Ih, - { , I ,  /A ,  - ( , I ,  and $/',(A,) as well as the 
formulas : 
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which can be checked by direct computation, we get 

which is 2 nonsingular matrix. Its eigesvalues are both negative and hence Ai  
is a nondegenerate m a r i ~ u r n  (i.e., A, has index 2). 

CoElipzear Central Conjigurntion Classes. By Moulton's theorem, the num- 
ber of these is 3! /2 = 3. We shall call them Eukr criticcelpoints. We also @ x v  
that they lie in RP'\& and that they are nondegenerate mxirna for KO,= 
fs ~ ( R P  ' \A). Recall that RP ' was imbedded in CP ' by putting Im x: = Bm x2 
= Im x, = 8. Using (2) this implies Im u, = Im u2 = 0, and by the definition of 
the diffeomorphism +, dm w, = dm w2 = 0. Since { = w,%/l w,12, we have Im { = 

0. Thus, the three Euler critical points of Fv lie on the line Im{ = 68. Ass,  
from the general theory in the proof of ~Gulton's theorem, we know that 
each critical point will be in exactly one component of RP1\A, that is, in one 
component of { { EC I Jm { = 0 )  \ {Ij, St 1. Denote the Euler critical points by 
E , , E ~ , E ~ ,  where the ordering is chosen m such a way that 

Since ~ , , E ~ , E ~  are nondegenerate mawma for v s ~ I m [  -0, we muse have 
a 2vs(9) /a[2  < 0, i =I, 2,3. A direct inspection of the formulas from above, 
using the fact that V s ( { )  9 0 for any S. E: C and the fact that C2<0, >0, 
shows that 

Hence the Euler critical points are nondegenerate; one eigenvaiue of the 
Hessian is negative, the other one i~positive. Thus the Euler critical points 
are nondegenerate saddle points of Vs (their index is 1). 

We thus proved the following (compare with 10.2.5 and 10.2.6). Y g 
Q 

10.4.14 Theorem. For any choice oj  the masses m,,  m2,  m3 > O  in the planar 
three-body problem, $.;. has exactly five critical points which are all nondegener- 2 
ate. Two o j  them are maxima (the kgrange criticalpoints) and khree are saddle z 
points (the Euler critical points). !! 
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Let di= FS(azi), i =  1,2,3 and d,= FS(h,)= T/,(A,). Thus, by 10.4.8(ii), we 
can write 

It is clear now that the critical points in the full thee-bo&j problem have 
the same structure as the critical points in the rest~cted thee-body problem 
(m,,m, move in circles around the origin and m, -01, discussed in Sect. 10.2. 
It should be noted here that any central configuration in the full three-body 
problem is a central configuration in a certain restricted thee-body problem. 
To see this, it is enou& to recall that if the three bodies with coordinates 
x:,x,,x, are in a central codiguration in the full planar thxee-body problem, 
they necessady move in circles around the ori*, their center of mass. 
Neglecting the mass of the ""lightest9' among them amounts to the situation 
where the three bodies still move in circles, in a fixed configuration of 
equilateral triangle position, but are sli&tly displaced from their oiginal 
positions when the mass of the liight body was taken into account, too. But 
the situation just described represents a central configration in the restricted 
three-body problem. It is tempting to try to prove stability results about the 
full three-body problem by regarding it as a perturbation of the restricted 
problem in the context just explaiared. However, this is probably dzficult. 

In what follows, we shall cany out points (i) and (ii) of the topological 
program discussed in Sect. 4.5 for the planar n-body problem. We shall then 
specialize to the planar thee-body problem and write down explicitly all the 
invariant and reduced invariant manjlfolds. 

Recall first some notation from Sect. 4.5. If (M,K,  V, G) is a mechanical 
system with symet ry  with A = (25 (A is the set where J, fails to be sudective) 
for (h,p)€R X g', M,,, = {xEMI V,(x) < h}, E,,, = (a E PM(J(or)=p,  
H(a)  < h), aaR,,, = V,-'(h), = d,,,, h being a regular value for V, and J: 
T*M--+Q* denot~ng the associated momentum mapping. If J-'(O)~M,,, de- 
notes the restriction of the vector subbundle J-'(O)+M of P M  to the 
manifold with bounda~y M,,,, then the Invariant Manifold neorem of Srnale 
(4.5.9) states that 

2 Here a and /3 denote respectively the reduced unit disk and sphere bundle of 
the vector bundle J-'(O)IM,,,. Under the hypothesis that J 1 ( 0 ) I ~ , , , =  M,,, 
x Rs is a trivial vector bundle, the Reduced Invariant Manifold Ikheorem of 
Smale assures that 
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It is clear that & is a diffeornorp&sm so that for h <O we can write 

M ~ , ~ z s ~ - ~ x [ o ,  ~ o ) G z ( s ~ " - ~ \ A ) x [ ~  GO) 

Gh, o % ( ~ ~ n - 2 \ a )  x Lo, 00) 

Thus we have 

since it is clear that P2, -,(lo, 00)) = R 2n-3. Similarly 

' k  O= ~ 2 "  -3(2h, 0) 

= P ~ ~ - ~ ( ( c P ~ - ~ \ ~ )  x 10, 00)) 

= ( c P " - ~ \ ~ ) x  P2n-3([0, G O ) ) = ( C P ~ - ~ \ ~ ) X R ~ " - ~  rn 

10.4.1 6 Coroilay. In the planar three-bo4 problem, the invariant and re- 
duced invariant mni fo lh  jor zero momentum are given by: 

(i) h>O 

(ii) h < 0  

A 
2 PPOO$ We established in the course of the discussion of e3 that A= 
4 {p,,p2,p3}. Now look at the fiber bundle ?i,lS:: s:+cP'\~ with fiber S'  s 
2 over each point. But the restf-iction of the fiber bundle m,: S~+CP' = S 2  to 

~ ' ( S 2 ( ( 0 , 0 ,  1))) is trivial since the base space S2\{(0,0, I)) = C is eontract- 
ible. Thus S: = S~\A=S' ~ ( ~ ~ \ { p , , p ~ , p ~ ) ) .  The rest follows from 10.4.15.m 
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18.4.1 7 Theorem (Smele). In the planar n-bodj, problem for p # 0, h > 0, 

where to is the unique positive solution of the quadratic equation -2t2h+ 
2 V,(z)f + p2 = 0. Now as in 10.4.15 there is a diffeomorp&sm A,, : 
s E - ~  x [ ,  m )  given by f,,,(z, t )  = ( z 9  t - 2,). Thus ~ ~ , ~ m ( s ~ ~ - ~ \ 8 )  x [O, a) 
and the rest is exactly as in 10.4.15. iili 

18.4.4 8 Coroliay. In the planar three-body problem, for p f 0, h 2 0, 

Finally we are left with the situation p#O and h < 0, which is the m s t  
difficult one. As usual, the first task is to find Mh,,. 

Fix e € S g p 3  and look at the map tw(l / t )Vsl ' , (z)+p2/2r2 whose graph is 
given in Fig. 10.4-2. Define the map 

r;, 
a smooth function for all pf0.  In the definition of &Ih,,, the condition a 



10 THE TNREE-BODY PROBLEM 935 

can hold for some t > 0 if and only if 1,(~)= - F';(t)/2p2 < h, that is, if and 
only if z E D,,, = I,-'((- m ,  h]). Hence 

10.4.19 Lemma (lacob). I '  (h> p)€R2\Z*,,, h<O, pZO, tkten MIS,= 
al(Dh, where D,, = I,-'((- m ,  h ] ) ,  and I,(r) = - ~ , 2 ( 2 ) / 2 ~ ~ .  

Pro@$ We shall use meorem 4.5.13, which charactekes the manifolds a in 
terms of a function h satisfying certain properties. The proof will be done by 
exhibiting explicitly such a function. 

Define the map 

f: s$-~ x (0, m ) - + ~ g - ~  x R 

It is easy to see that f is a diffeomo~plhism with lnverse 

X Define the map h, = V, 0 f -' : s $ - ~  x R+R9 where we regard s Z - ~  X R as a 
trivial bundle Vbrith one-dimensional fiber over the metriic on the fiber 
R being given by the product. We have 

5 
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Clearly h, is smooth; for each z E S g P 3 ,  h,(z, .): R+R is proper and has a 
unique critical point at t -0, which is a fiGmum; and inh,,h,$a, t )  = h,(z,O) 
= lp(e),  which is smooth. 

Since ( k ,  p) is a regular value for H X J ,  h is a regular value for V, [recall 
the formula o(W x 9) = LJ ,,,~b,(a( V,)]. But then, by  10.4.6(G), h is a regular 
value for - V i ( ~ ) / 2 ~ * =  i,(z). By Theorem 4.5.13, k will be a regular value 
for hIL9 too, and 

Finally7 the fact that 

is a diffeomovlaism, concludes the proof. 

We car% thus assert: 

10.4.20 Theorem (Smale, lacob). In ?he planar n-bo& probkm jar (h9 p) E 
B~\ZL,,, k <O> pZ0, 

& 

In the case n -3 more can be said about the madolds Dh,, an$ Dh,,. In 
general, if we denote by [: CP"~\&+R the map defined by E, ~.rr, = l,, 
wh~re  n,: s$-~+cP-~\A is the canoraicd projection, that is, ( (y ) -  
- - V & , ~ ) / 2 p ~ ~  then it is easy to see that ih,,, - c - I ( ( -  m,RD. Now, if n -3, 
CP'\& = S2\& c C9 and hence the bun,, over S2\((0,0, 1)) is trivial and so 

~ h , , =  S' "h , ,  

and 

1 

where p : s2\((0, 0 , l ) )+C is the stereogaphic projection. 3 
Q 
9 

18.4.2'6 Theorem (Smaie, lacob), In the planar three-bo4 pmblem for (h* p) 3 
E R 2 \ ~ ' ,  ,,,, &I < 0, p # 0, and the additional hypothesis d ,  < 4 < d3 < 6, ( < 0). 2 - 
w h e r e ~ = $ / s ( q ) , i = l i , 2 , 3 , c k , = k / , ( ~ , ) = ~ ~ ( ~ ~ ) , ~ ~ ~ i = l , 2 , 3 b e i n g a g h e E u i v  m z 
critical points and $, j = B,2 the hgrange critical points? the following hold 2 
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(note that all uniom are digoint unions and the points subtracted are aN interior 
to the mn$ol& i.e. they are not on the boundaries): 

a<2hp2< b 4, 
a = - m ,  2 h = - d ,  ( D  2\{0)) u ( D  '\(o)) u ( D  2\{0)) 
a= - d:> b=-d," (D 2 \ { ~ ~  points)) u (D 2 \ ( ~ ) )  
a= -& b=-d: D 2\ {three points) 

a=-d2 
3 3 b=-d," ( S  ' x I)\ {three points) 

a<2hp2<b ' J Z . ~ ; ~ ~ , ,  

S' xX( (~~ \s~ )u (s~ \s~ )u (s~ \s~ ) )  
a= -GO, b=-d:  

( S 5 \ S 3 ) u  ( s 5 \ s 3 ) u ( s 5 \ s 3 )  

a= - dt, b= 4," 
(sS\(s3u S 3 ) )  u (S5\S3) 

a = - d 2  2 9 b=-d," s ' x ( s ~ \ ( s ~ u s ~ u s ~ ) )  
s5\(s3u s3u $ 3 )  

s " X((S1 x S4)\(S3 u S 3  u $ 3 ) )  
a=  -d,", b=-d: 

( S ' x x S 4 ) \ ( s 3 u  S 3 u S 3 )  

a= -d2 
~ ' x ( ~ ~ \ { t l z r e e p o i n t s ) ) ~ ~ ~  

47 b=O (s2\ { three points)) x S 3  

Figure 10.4-3 is helpful in mderstandhg the first table. (Think of Fs: 
S 2 \ A - a ~  as a ""bight function".) 

P o  The first table is obtained from Theorem 3.2.18; it is the standard 
Morse theory argument of attaching handles when passing a nondegenerate 
critical value of a given index (see Sect. 3.3). 

5 For the second table, it is enough to notice that 
13 
4 
rn a , ( { p o i n t ) ) = ~ " ; , ( 0 ~ ) = 0 ~  
0" 
2 + o r , ( ~ ' x x ) = a , ( ~ ' x ~ ' ) = S ~ x x , ( ~ ' ) = ~ ' x ~ ~  
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so that 

~ , ( a l ( ( ~ o h t ) ) )  = B ~ ( D  ' ) - :S3  

8 3 ( ~ n ~ ~ 2 ) ) A b ~ 3 1 > - s "  

p 3 ( ~ l ( ~ L ~ ~ ) ) = p 3 g % ~ ~ ~ 2 ) - ~ % ~ 3 g a 2 ) = s s  x x4 

B, (a,($ 2\ (three points))) = j3,((s2\ (three points)) x D ') 

= s2\ (three ~oints)  x &(D l) 

= Q ~ ~ \ { t h e e p o i n t s ) ) ~ ~ ~  B 

A dance at 10.4.15, 10.4.14, and 10.4.20 shows the f o l l o ~ g .  

10.4.22 Corsllav. f ie  bqurcation see Z,,, contaim the coordinate aces of 
R 2. 

Remark. The topology of the two-body problem discussed in Sect. 9 3  can 
be recovered completely from 10.4.15, 10.4.B7, and 10.4.20. 

Y 
10.4.23 Theorem (Smale). (i) H x JI(N x J )  ' (((h l r) eR21h > O9 p#-01) is g 
a triuial jiber bundle: 9 

m 

( H  x ~ ) - ' ( { ( h , i r ) € ~ ~ l l h > ~ , p + ; O ) )  23 z 
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(ii) Let (h,, h) E R 2\2& ,,, h, < 0, po#O Then there exists a neighbor- 
hood U of (h,, p,) in R~ and a diffeomorphism c p k ,  : Ik ,-+lh,,,, smooth in 
(h, p) , that is, ((h, p) X )  ep,, ( x )  is smooth. 

ProoJ (i) In the proof of 10.4.17, we defined a diffeomorphism 

which is smooth in (h,p). This induces a diffeomorphism [smooth in (h,p)j 

and the map 

- is the desired isomovhism of fiber bundles over the basis {(h,  p) E R 2 l  h > 0, p 
# O } .  

(ii) For ( h o 9 h )  ER~\z&,, find an open nei&borhood U such that 
U n Z&,, = a. Then for h close to h,, and p close to p,, l,((- m,h])m 
Go((- m ,  h,]), that is, using the f a ~ l y  of diffeomorphism jl Mh,p9 Mh,,m 
Mh0,,,. Now take P2,-, o a, of this diffeomorphism to get the desked smooth 
f a m l l ~  cph,,. w 

10.4.24 CorolBaw. In the planar n-body problem the bifurcation set is given 
by 

It should be mentioned that the methods by which we determined I,,, and 
I^,,,, are not the only ones. R. Easton [1971] dete es these maGfolds using 
different techrmiques. We preferred Smale's method since it integrates natur- 

2 ally into the more general framework of the topological progam discussed in 4 
* Sect. 4.5. B 
2 It is legitimate to ask whether our discussion of the planar three-body 

problem is complete in view of the restrictions d ,  < d2 < d, < d,. The following 
conjecture of Smale would settle this doubt. 
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48.4.25 Conjecture (Smale ["B794b]). For almost all choices of m, ,  m,, rn, in 
the planar three-bo& problem, the numbers di, i = 1,2,3,4 are distinct. 

We leave the diswsion of I,,,, I^,,,, D,,,, and s,,, f w  other possible 
positions of d, among d,, d,, d, as well as cases in which some of them are 
equal as an exercise for the reader. 

As we saw before, the manifolds l,,, are not compact and hence some 
solutions actually will "run off" the invariant manifolds in finite time. For the 
three-body problem, the reason for such bad behavior is due to collisions. For 
p#@, triple collisions cannot occur.* There arises the natural question of how 
the integral manifolds Ih,,, p#O compactify and extend the flow to the 
compactification; that is, how do we regulaPize I,,,? We refer the reader to 
the papers of lvloser [1970j, Easton [1972], and Lacomba [I9751 for a discus- 
sion of the regiliarked siib~naGfolds in the two, three, and rzstiickd thee- 
body problem, respectively. For y =@, the results of McGehee (see the 
footnote at the beginning of this section) show that regularization is not 
possible, due to triple collisions. 

Finally, it should be mentioned that an analysis of I,,, in the spatial 
three-body problem has been sketched by C. Sim6 [1975]. As was mentioned 
above, Palmore [1976b] has exhibited degenerate central configurations for 
the four-body problem. Relative equilibrium solutions in the four and re- 
stricted four-body problem are also discussed in C. S i ~ b  119771. 

*This result is due to Sundman and is proved in, for example, Pollard [1976, p. 661. 



APPENDIX* 

The General Theoy of 
Dynamical Systems and 
Classical Mechanics 
A. N. Kolmogsrsv 

INTRODUCTION 

It came as a suvrise to me that 1 would need to make an address at the 
final session of the Congress in this large hall, which up to now I had been 
familiar with more as a place for the performance of great musical 
masterpieces of the w ~ r l d  under Pvlengelberg's conduction. The address that I 
have prepared, without taking into consideration the perspectives of such an 
esteemed position in the program of the present Congress, will be devoted to 
a rather specialized group of questions. My problem is to make clear the 
different paths that one may use to apply the basic ideas and results of 
present-day general measure theory and spectral theory of dynamical systems 
to the study of the conservative dynamical systems of classical mechanics. 
However, it seems to me that the theme that I have chosen can be of broader 
interest, since it is one of the exaqles  of the birth of new, unexpected, and 
profound relationships between the different branches of classical and con- 
temporary mathematics. 

3 In his remarkable address at the Congress in 1980, Hilbert said that the 
unity of mathematics, the impossibility of dividing it into mutually indepen- 

m 
8 dent branches, is a consequence of the very nature of our science. The most 
2 
z +This appendix is an En&sh translation of an address to the 1954 International Congress of 

Ma~ematicians by A N .  Kolmogorov [1957a], in which the first version of the stability theorem 
(8.3.6) was stated. 
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convincing confirmation of the validity of his view is the fact that, at every 
stage in the development of mathematics, there appear new joining points 
where, in the solution of quite specific problems, the concepts and methods of 
quite different mathematical disciplines become necessary and enter into a 
new interrelationship with each other. For the mathematics of the nineteenth 
century, one of these joining points was the complex question of integrating 
the systems of differential equations of classical mechanics, where the prob- 
lems of mechanics and differential-equation theory were organically inter- 
woven with the problems of the calculus of variations, many-dimensional 
differential geometry, the theory of analytic functions, and the theory of 
continuous groups. 

After the appearance of PoincarC's works, the fundamental role of topol- 
ogy for this class of questions became clear. On the other hand, the 
PoincarC-CarathCodory recurrence theorem served as the starting point in the 
measure theory of dynamical systems, in the sense of the investigation of the 
properties of motions that take place at "almost all" initial states of a system. 
The "ergodic theory," which developed from this, has acquired various 
generalizations and has become an independent center of attraction and a 
junction in the web of methods and problems of various new divisions of 
mathematics (abstract measure theory, the theory of groups of linear opera- 
tors in Hilbert and other infinite-dimensional spaces, the theory of random 
processes, etc.). At the preceding International Congress in 1950, the long 
address by Kakutani 1231 was devoted to general questions in ergodic theory. 

As we know, topological methods acquired significant applications in the 
theory of oscillations, in particular, in the solution of quite specific problems 
that arise in the study of automatic control systems, electrotechnology, etc. 
However, these real physical and technical applications deal pfimarily with 
nonconservative systems. Here, the problem usually reduces to finding indi- 
vidual asymptotically stable motions (in particular, stable rest points and 
stable limiting cycles) and to the study of pencils of integral curves that are 
attracted to these asymptotically stable motions. 

In conservative systems, asynnptotically stable motions are impossible. 
Therefore, the search for individual periodic motions, for example, has, for all 
its mathematical interest, only a restricted real physical interest in the case of 
conservative systems. Of special significance in the case of conservative 
systems is the measure-theoretic point of view, which enables us to study the 
properties of the basic set of motions. To this end, present-day general 
ergodic theory has produced a number of concepts that are extremely 
significant from a physical standpoint. However, our successes in an analyti- 
cal sense from these contemporary points of view in handling the specific 2 
problems of classical mechanics have up to the present been more than $ 
restricted. m 

2 
The question deal$, in the first instance, with the following problem. Let 2 

us suppose that motion along an s-dimensional analytic manifold Vs  is 2 
defined by a aanvnical system of differential equations with an analytic 8 
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Bamiltonian function H ( q  ,,..., gs,p,, ...,pS). Suppose also that there are k 
single-valued analytic first integrals I,, 12, . . . , I, and that the conditions 

define an analytic manifold M'"-" in the phase space 0'". As we h o w ,  for 
almost all values of C,, . . . , Ck',, there arises in a natural way an analytic 
invariant density on M ~ " - ~ ,  which makes it possible to apply to the motions 
on M ~ ~ - ~  the general principles of the measure theory of dynamncal systems. 
It is natural to turn to more modern tools in cases in which, besides I,, . . . ,Ik, 
there are no single-valued analytic first integrals independent of them, or in 
which the problem of finding them is too difficult and other classical analytic 
methods of carrying out the integration of the system are also inapplicable. In 
such cases, one must, by use of quantitative considerations, solve the question 
as to whether motion on M ~ ~ - " S  transitive or not (that is, whether almost all 
the m a ~ f o l d  M'"-~ consists of a single unique ergodic set) and, in the case in 
which it is transitive, to d e t e r ~ n e  the nature of the spectrum or, when it is 
not, study with accuracy up to a set of measure zero (or at least up to a set of 
small measure) the nature of the decomposition of M ~ ~ - ~  into ergodic sets 
and the nature of the spectrum on these ergodic sets. 

I know only two specific problems in classical mechanics in which this 
program has been completed to a greater or lesser degree: 

I. For inertial motion along a closed surface V' with eve~r~wi~ere-negative 
curvature,* Hopf established in 1939 that motion on three-dimensional mani- 
folds L; defined by the requirement that the energy H =  h be constant is 
transitive and that the spectrum is continuous (cf. [$I). 

2. As will be shown later, in the case of inertial motion along an analytic 
surface that is suffidently close to an ellipsoid in Euclidean three-space, the 
motion on L: is nontransitive and, up to a set of small measure, it can be 
decomposed into two-dimensional tori T~ on each of which the motion is 
transitive and the spectrum discrete (cf. end of Sect. 2). 

It seems to me, however, that the time has come when it should be 
possible to advance much more rapidly. 

1 ANALmIC DYNAMICAB SYSTEMS AND THEIR 
8TABIL1m PROPERTIES 

The dvnafical systems of classical mecha~cs  constitute a specid case of 
analytic i y n a i c a l  iystems with an integral inva~ant. The do&ah of such a 
dynaHlncal system is an analytic n-dimensional maa?nfold a" (the phase space 

52 
'5' 
(9 

3 'Perhaps it might be worthwhile to note that, in ordinary Euclidean space, one can define a 
closed surface v2 o f  genus 1 and to place close to it a finite number o f  centers o f  attraction or 
repulsion that create on v2 a potential o f  forces in such a way that the motion o f  a point mass on  
V 2  under the influence o f  these external forces will be mathematically equivalent to inertial 2 motion in a metric possessing everywhere a negative curvature. 
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of the system). Accordingly, admissible transfornations of the coordinates 
x,, . . . , xn of a point x E $2'' will always be analytic. 

The right-hand sides of the differential equations determining the motion 

dxa - =Fa (x,, ..., x,) 
dt 

and the invariant plane generating the invariant measure 

will be assumed analytic functions of the coordinates.* 
In line with what was said in the introduction, we shall concern ourselves 

primarily with canonical systems, systems in which ii =2s, with a partition of 
the coordinates of the point (q,p) e a 2 "  into two sets ql,q2,. . . ,qs andp,, . . . ,ps, 
with contact transformations as admissible transformations of coordinates, 
with equations of canonical form 

and with invariant density 
, 

M(P,  q)= 1 

Particular attention will be given to the question as to what properties of 
dynarnical systems, with "arbitrary" F, and M (or an "arbitrary" function 
E%(q,p) in the case of canonical systems), are "typical" and which properties 
may occur only "e~ceptionally.~' However, this is quite a delicate question. 
An approach from the standpoinMf the category of the comesponding sets in 
functional spaces of systems of functions {F, ,M)  (or functions H )  is, despite 
the known successes obtained in this direction in the general theory of 
abstract dynamical systems, interesting more as a means for proving existence 
than as a direct answer to arbitrapily stylized and idealized real inquiries by 
investigators in physics or mechanics. The approach from the standpoint of 
measure, on the other hand, is quite a sound and natural approach from the 
physical point of view (as was argued in detail, for example, by von Neurnam 
[I]), but it runs into the problem of absence of a natural measure in 
functional spaces. 

We shall follow two paths. In the first place, to obtain positive results 
stating that this or that type of dynamical system must be accepted as one of 
the essential, not "exceptional," systems, that cannot be "neglected" from any 
sensible point of view (similar to the way in which we nedect sets of measure 

*Whenever we speak simply of "measure" without any other qualification, we mean the measure 
z 

m. !!? 



zero), we shall use the concept of stability in the sense of consewation of a 
given type of behavior of a dynamical system when there is a slight variation 
in the functions 4r, and M or the function H. An arbitrary type of behavior of 
a dynamical system, for which there exists at least one exarnple of its stable 
realization, must from this point of view be considered essential and may not 
be neglected. In accordance with the approach taken from the standpoint of 
analytic functions, ""smallness" in the variation of the function fO(x) will be 
understood in the sense of change from a functionf,(x) to a function of the 
form 

with a small value of the parameter 8, where the function q~ is analytic with 
respect to the variables x,,x,, . . .,x,,8. Such an approach may be open to 
criticism, but by means of it one can obtain certain interesting results. W e n  
we may confine ourselves to closeness of the functions& and f in the sense of 
closeness of their derivatives or arbitrary order, this will be pohted out. 

To obtain negative results of the nonessential exceptional nature of a 
certain phenomenon, we shall apply only one somewhat artificial device: if 
on the class K of functions f(x) it is possible to define a finite number of 
functlonals 

that in some sense or other may naturally be considered as a s s u ~ n g  
""gnerally speaking arbitrary" values 

in some region in the r-dimensional space of points C = (C!, . . . , C,.), we shall 
consider an arbitrary phenomenon that takes place o d y  when C is in a set of 
r-dimensional Lebesgue measure zero as exceptional and "nedigible." 1 begin 
a survey of specific results with the application of this idea to the investiga- 
tion of dynanmmacal systems, the phase space of which is a two-dimensional 
torus. 

2 DYNAMICAL SYSTEMS ON A Wo-DlMENSlOMAL TORUS 
AND CERTAIN CANONICAL SYSTEMS WITH W O  DEGREES 
OF FREEDOM 

In all that follows, by points on a torus T' we shall mean given circular 
coordinates x,,x2 (the point x does not change in the shift from x, to 
xu - + 2 ~ ) .  The functions 4=, in the nght-hand members of the equations 
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and the invariant density M(x,,x,) will, in accordance with what was said 
above, be assumed analytic. We shall also assume that 

For simplicity, we assume that the normalization condition r n ( ~ , ) =  1 is 
satisfied. We introduce the mean frequencies of rotation 

A slight strengthening of the results of Poincare, Denjoy, and Mneser lead 
in the present case to the conclusion that, by means of an analytic coordinate 
transformation, the equations of motion can be reduced to the form 

It is well known that in the case of an irrational ratio 

all the trajectories are everywhere dense and the measure rn is transitive. In 
addition, one can easily show, folio-xing Markov [2], that for irrational y, a 
dynamical system is strongly ergodic; that is, it contains exactly one ergodic 
set E the points of which have with the appropriate measme, measure 

where c is a constant. The natural assertion that motions on a two-dimen- 
sional toms under conditions (2-1) possess "generally speaking" all the 
properties thatwe have just emmerated is already seen to apply to the 
principle, mentioned above, of neglecting cases in which some finite system of 
functionals (in the present case A, and A,) assumes values in some set of 
measure O [in the present case, the set of points @,,A,) with rational ratio y ] .  

In the article 131, I succeeded in proceeding somewhat further. Specifi- 
cally, I showed that, under the assumption that there exist positive numbers c 
and h such that, for all integral r and s, 

the equations of motion can be reduced by an analytic transformation of 
coordinates to the form Y 

'2 

0 

As we know from the theory of Diophantine approximations, condition 6 
(2-2) is satisfied (for suitable c and h )  for almost all irrational numbers y. 2 
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Thus, except for cases in which y can be approximated "abnormally well" by 
fractions r/s, an analytic dynarnical system with integral invariant on the 
torus T ,  under conditions (2-1) necessarily admits only almost-periodic and 
even more restrictively "conditionally periodic9' motions with two indepen- 
dent frequencies A, and A,. 

As we know, many problems in classical mechanics with two degrees of 
freedom (s = 2, n =4) in which the four-dimensional maifold is decom- 
posed, with the exception of certain exceptional manifolds of no more than 
three dimensions, into the two-dimensional manifolds 

because of the presence of two first integrals I, and I ,  that are single-valued 
on the entire manifold Q4. Since the four equations 

are satisfied at rest points, the set of these points in the case of an analytic 
function N is no more than countable. Therefore, they may fall into the 
manifold .L2 only as exceptions. From this we conclude that almost all 
compact manifolds .L2 are tori (since they are orientable, compact, two- 
dimensional marifolds a d ~ ~ i n g  a vectcir fiejd wiihoiii zero vectors). 

Problems of classical mechanics of the type that we have been considering 
are, as we know, always integrable. A qualitative investigation of the special 
problems of this type (motion under the idluence of gravity along a surface 
of rotation, inertial motion along the surface of an ellipsoid in three-space, 
etc., the motion of a point along a plane under t%e ifluence of the Newtonian 
attraction of two imovable centers, etc.) also leads us to a large number of 
examples of the decomposition of the space Q4 basically into tok T ,  -with 
windings that fill them everywhere densely from the trajectories of condition- 
ally periodic motions with two independent frequencies A, and A,. Among 
these tori there is, generally spealung, an everywhere dense set of tori that are, 
by virtue of the commensurability of the frequencies, decomposed into closed 
trajectories and a discrete set of singular manifolds of dimension < 3 on 
which, in particular, rest points are placed and so-called asymptotic motions 
are set up. Consideration of these integrable problems yields a number of 
interesting exaqles  of rather complicated partitions of the phase space Q 
into ergodic sets with a remainder consisting of "nomegular points" that lie 

g on the trajectories of asymptotic motions.* 
r 4  
S In my article [3] referred to above, it is shown that, for exceptional 
4 irrational values of y [that is, not satisfying condition (2-2)], there are indeed 
m m 
0 z 

*In connection with this, I mention that the extremely instructive qualitative analysis of the 
problem on the attraction by two immovable centers that was made in Charlier's well-known 
treatise has proven to be incomplete and partially erroneous. It has twice been corrected [QS]. 
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a number of new possibilities, some of them rather unexpected for analytic 
systems (of this we shall speak later). However, in the problems of classical 
mechanics mendoned above, these exceptional cases fail to appear for an 
extremely simple reason: the transition to circular coordinates on the 
tori r2 and to the paramters C, and C, of these tori in these problems is 
made by means of contact transformadons. nerefore, the equations keep 
their canonical form 

and since invariance of the tori r2 is obtained only in the case 

then H depends only on C, and 62, which leads, on each toms r2 ,  to 
equations (2-3) with constants A, and A, with no exceptions. 

Therefore, the real significance for classical mchanics of the analysis that 
I have made of dyma~ca l  systems on T' depends on whether there are 
sufficiently important examples of cano~ca l  systems with two degrees of 
freedom that cannot be integrated by classical methods and in which in- 
variant (with respect to the transformations Sf) two-ciimensionai tori piay a 
significant role. 

To show that such examples exist, we shall, following the study made by 
Birkhoff [6] of a neighborhood of an elliptic periodic motion, exadne the 
system with circular coordinates q,,q2 and with momentap,,p2 for which 

The equations of motion take the form 

Obviously, the tori &2 defined by the conditions 

are invariant and on each of them a periodic motion 

Z 
arises, with two frequencies that are independent of C .  Let us suppose that 
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the Jacobiav of the frequencies .Aa with respect to the momntap, is nomero: 

It turns out that in this case, the p a r t i t i o ~ g  of the region in question of the 
four-dimensional space Qqn to  two-dimensional tori r2 is basicauy stable 
with respect to small changes in H of the form 

To obtain a precise fornulation, let us consider a regon G cQ"ete 
by the condition p E B, where B is a bounded regon in the plane of points p. 
Assm~ng that the functions W and S are analytic and that condition (2-4) is 
satisf ed, we can prove that, for arbitraw e > 8, there exist a 6 > 0 such that, 
for 1 i9 1 < 8, in the d y n a ~ c a l  system 

the entire region G except for a set of measme less than E consists of hvafiant 
t~vo-dimensional tori, T~ on each of which, in suitable (that is, dependhg 
analytically on (q;p)) circular coordinates [,, t2, the motion is de t e r~ned  by 
the equations 

where A, and X2 are constant on each T ~ ,  that is; they are conditionally 
periodic .with two periods. 

The proof consists in following the fate of the ori@nal tori with 
frequencies Aa(c) satisfgnng condition (2-2) with vawing 8 and in showing that 
each such torus is not deshoyed when 8 is sufficiently small but is merely 
displaced in &2 keeping on itself the trajectories of conditionally pefiodic 
motions with constant frequencies Aa. 

Very 1PB&ely, many of my fisteners have already guessed that it is basically 
a matter of w o r h g  out an idea already widely discussed in the fiterature on 
celestial mecharancs, namely, the possibaity of avoiding "abnomaUy small 
denonainators" h calculathg the perturbations of orbits. In contrast with the 

% usual theory of perturbations, however, I obtain predse results instead of a 
52 
9 conclusion as to the convergence of series of this or that approbation of 

finite order (with respect to 8). This is due to the fact that, instead of 
calculating the disturbed motion under fixed initial conditions, I modify the 

a: initial conditions themselves in such a way as to have motions with noma1 
(in the sense of condition (2-2)) frequencies X, at all times when 8 varies. 
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I wish to make the following three remarks in connection with what has 
been said: 

1. The theorem on the reducibility of motions on r2 to the form (2-3) can 
be proven even under conditions of sufficiently hi& order of finite differen- 
tiability of the functions Fa and M (naturally with a corresponding weake~llng 
of the conclusion). The theorem on the consemation of tori in Q ~ ~  on the 
other hand, obviously has to require either that the functions W(p) and 
S(q,p,B) be analytic or that these functions have infinitely many derivatives 
satisfying certain restrictions on the order of their growth. 

2. m e  exceptional set of measure less than e foreseen in the second 
theorem may actually prove to be everyvvhere dense and, very likely, of 
positive measure for arbitrarily small 0. This is analogous to the "zones of 
instability" discovered by Birfioff in his study of nei&borhoods of elliptic 
periodic trajectories [6].  

3. As of "ce cases to ..I-.;-I-. " +I-."".-* w'ilnbn~ all u n a L  has ";en said above 
applies, we may mention inertial motion along an analytic surface that is 
close to an ellipsoid in 3-space. 

3 ARE DYNAMBCAL SYSTEMS ON COMPACT MANBIFOLDS 
""GECaslEMLhY SPEAKING" TMNSITIVE, AND SHOULD WE 
CONSIDER A CONTINUOUS SPECTRUM AS THE 
""OENEML" CASE AND A DISCRETE SPECTRUM AS THE 
"EXCEBT#OWAL" CASE3 

The hypothesis of the predominant occurrence of the transitive case and 
the case of a continuous spectrum (mlxnng) have been asserted more than 
once in connection with the "ergodic" hypotheses in physics. As applied to 
canonical systems, it is natural to consider both these hypotheses o d y  for 
(2s- 1)-dimensional invariant manifolds &,2"-" which are defined by the 
requirement that the energy be constant: 

and to apply them o d y  to the case of compact manifolds ~ , 2 " - '  since, on 
noncompact manifolds ~ , 2 " - ' ,  in even the simplest problems there are "&par- 
ting" trajectories (and they usually dominate from a standpoint of measure), 
of which we shall speak in Sect. 4. If the first hypothesis is relaxed, it is 
natural to apply the second not to the entire manifold an (or to h,,2"-' in the 
case of canonical systems) but to those ergodic sets into which an is decom- 
posed (neglecting, of course, ergodic sets the union of whch is of measure 
zero). 

In the application to analytic canonical systems, the answer to both 
questions is negative since the theorem on stability of the decomposition into 
tori that we asserted for systems with two degrees of freedom remains valid 
for an arbitray number of degrees of freedom. If the equation 
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holds in a 2s-dkensional toroidal layer G of the phase space Q2< then for 
8-0 this byer can be decomposed in an obvious mamer into hvafiant 
s-dimensional tori on each of which the motion is conditionally periodic 
with s periods. Mso, if 

on almost all tori T, the periods are independent in the sense that 

(n, A) = naAa +O 
0. 

- 
for arbitray ~ntegers n,. ilherefore, the trajectories wind around the toms 
evewhere densely, the s-dimensional Lebesgue measure on Ts  is transitive, 
and the entire torus constitutes a single ergodic set. fieorems 1 and 2 in my 
article [22] assert that, under the hypotheses desc~bed, this entire picture 
changes for small values of B ody  in that certain tori conespondbg to 
systems of frequencies for which the expressions (n,A) decrease too rapidly 
with increasing 

may disappear. However, the majority of the tori consewe the natwe sf 
the motions that arise on them and are only displaced in Q2" csntinuinag, for 
small values of 8, to fill G up to a set of small measure. Thus, for small 
changes in H, a dynannacal system remains nontransitive and the region G 
remains, up to a remainder of small measure, partitionable into egodic sets 
with discrete spectrum (with special nature mentioned). 

In connection with this, it is interesting to note that certain physicists (see, 
for example, 1'71) have made the hypothesis that the ""general case" of a 
canonical d y n a ~ c a l  system without departing trajectories is just the decom- 
position of Q2" into s-dimensional tori Ts on which there are conditionaHy 
periodic motions with s pefiods. Apparently, this idea is based o d y  on the 
p r e d o ~ n a n t  attention that has been given to linear systems and to a 
restricted set of integrable cllassical problems. In any case, it should be noted 
that the methods of proving the theorem referred to above are comected in a 
very real way with just the problem of stratifying 92S into tori Ts and are not 
applicable to stratifying it into tori of any other dimension r > s or p. < s. 

The hypothesis stated above can hardly stand up in its general f o m  shce 
it is extremely likely that, for arbitrary s, there are examples of c a n o ~ c a l  . . 
systems with s degrees of freedom and with stable transitiveness and 
on the maIlnEolds ~,2 " - ' .  I have in mind motion along geodesics on compact 
maifolds V s  sf constant negative curnature, that is, dynaranical systems such 
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that 

where the qa are coordinates on a compact manifold Vs of constant negative 
curvature and the gap are the components of a metric tensor on Vs. 

The stability of negative curvature under small variations in the functions 
gap(q) requires no clarification. The difficulties consist only in the fact that 
variation of the functions gap(q) is not the only possible form of variation of 
the function N(q,p), and the transitivity and mixing for s > 2 remains proven 
only for the case of constant curvature whereas, with varying gap, the 
curvature ceases to be constant. The second difficulty disappears in the case 
s=2, for which transitivity is proven even when the curvature is variable. 
However, the first of these is not significant if we codine ourseives to 
functions H(q,p) of the form 

(with which classical mechanics is primarily concerned) since systems of the 
form (3-2) reduce to systems of the form (3-1) by a shift to a new metric. 

If we remember what was said earlier regarding inertial motion along 
surfaces close to an ellipsoid in three-space, we conclude that, in even the 
simplest problems of classical mechanics, we need to consider as stable and 
hence worthy of equal and fundamental attention, at least the two cases that 
we have considered, one of which is connected with the transitivity on 
manifolds of constant energy and with continuous spectrum, the other with 
the absence of transitivity and with a primarily discrete spectrum. 

H do not know of any analogous results regarding the stability of one 
general type of behavior or another of noncanonical dynarnical systems with 
integral invariant and compact an. 

4 SOYE REMARKS ON THE NONCOMPACT CASE 

The distinctive feature of the noncompact-case is the possibility of the 
existence of trajectories that depart, as t++ oo or as t-+- oo, from every 
compact subset of a. Here, I shall expound certain general facts from ergodic 
theory that are applicable for arbitrary continuous flows S t  in locally com- 
pact spaces a. Since a one-sided approach to infinity is possible only for 
trajectories constituting a set of measure zero, we first define a departing 2 
point x by the requirement that, for an arbitraly compact set K, there exists a $ 
T such that all points S:, where It1 > T, lie outside K. We denote by a" the set 2 
of all departing points. For purposes of detailed analysis of specific classical 2 
dynarnical systems, it is expedient to construct "an individual ergodic the- z 
ory," not in the purely metric variant expounded in the book of Hopf [9], but 2 
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by following the earlier works by Hopf and Stepanov [10, I l j  and in certain 
places following directly the eliposition In the memoir by Gylov and 
Bogolyubov 1121, although ths  memoir deals also with the compact case. 

In such an exposition, just as in the compact case, the concept of a regular 
point remains basic. A point x is said to be regular if there exists an invariant 
measure p. possessing the following properties: 

I .  p(Q - I,") = 0, where I," is the closure of the trajectov passing through x. 
2. p(V,) > 0 for an arbitrary neighborhood 5 of the pointy E I,. 
3. For arbitrary continuous functions f(x) and g(x) that are nonzero only 

on compact sets, 

provided 

4. The measure p is transitive. 
Since there is no requirement of normalization, the measure p is defined 

by a point only up to a constant factor. Nonetheless, we shall denote it by px 
and shall call it the "individual measure" of the point x. Therefore, we make 
the following minor modification in the definition of ergodic sets: two points 
x and x' are said to belong to a single ergodic set if their individual measures 
coincide in the sense of coincidence up to a constant factor. Thus, the set a' 
of regular points can be represented as the sum of ergodic sets: 

Of course, the measures p& are defined by an ergodic set only up to a 
constant factor. 

The individual ergodic theorem asserts that 

with respect to an arbitrary invariant measure A. Basically, however, the only 
thing that is essential for us is that m ( N )  always be zero. 

An arbitrary transitive invariant measme p  either is a measure iu, of some 
ergodic set e or is of the form 

ir; 
0 

2 P ( A ) = ~ ~ ( ~  nr) 
fii 
y where r, is the "time" measure on the departing trajectory H. In contrast with 



the second trivial case, it is natural to call measures of the first type ergodic 
since corresponding to them is a set E,, where 

Those considerations that, in the case of a compact space !2, can be used 
to support the view t h a h  compact dynamical system "of general type" is 
transitive, lead, when applied to noncompact d y n a ~ c a l  systems, to the 
hypothesis that "in general" one or the other of two situations exists: Either 
the system is dissipative (that is, almost all its points depart), or the measure 
sn is ergodic (obviously, in the second case, the departing points constitute 
only a set of measure zero). 

Sometimes this hypothesis is also applied to individual classical problems 
in the following form. If a given problem has a certain number of first 
integrals and if there is no basis for expecting the discovery of new ones, then 
it seems likely that there is transitivity on the manifolds defined by giving the 
values of the h o w n  first integrals. In support of such a practice, it might be 
remarked that, from the investigations of Hedlund and Wopf, this alternative 
always holds for geodesic motions on spaces of constant negative curnature. 

If it is known that a set of positive measure consisting of departing points 
exists, then, in accordance with what has been said, the hypothesis arises that 
the system is dissipative. Evidently, Birfioff's assumption as to the dissipative 
nature of the three-body problem is based on considerations of this nature. 

It seems probable, however, that it will prove possible to construct, by the 
methods indicated in Sect. 3 for canonical systems, exarmnples of the stable 
simultaneous existence in G2" of a dissipative subset of positive measure and a 
positive region G filled basically by s-dimensional invariant tori. 

I mention the fact that, for the more elementary questions, specialists in 
the qualitative theory of differential equations have not occupied themselves 
to a great extent with specific problems dealing with departing trajectories of 
the different special types. A notable example of this is the fact that the 
refutation of Chazy9s assertions regarding the iqossibility of ""e&hage9' and 
"capture" in the three-body problem [IT, 181 was first done by the difficult 
(and logically unconvincing, without precise bounds for the errors!) method 
of numerical integration (cf. Becker [I91 and Slarnadt [20]) and only recently 
has an example of "capture" been constructed by Sitnikov quite simply and 
almost without numerical calculations [2l]. 

5 TRANSITIVE MEASURES, SPECTRA, AND 
ElGEMFUNCTlONS OF ANALVIG SYSTEMS 3 

P 
? We shall say that a measure p in L?" is analytic if it can be written in the 

form 23 
4 
8 
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where each vk is an analytic m a ~ f o l d ,  locally closed in an ,  the dimension of 
which is k < n, and wheref is an analytic function of the coordinates 5, on 'Vk 
(which depend analytically on the coordinates x, in an). 

The manifold vk is uniquely d e t e ~ n e d  by the measure p (if it is not 
identically zero). Therefore, we may call "re n u d e r  k the dimension of the 
measure p also. 

We shall be especially interested in transitive measures. In this case, the 
manifold vk must be invariant. Two invariant manifolds of the same dimen- 
sion do not intersect, but two invariant manifolds of differing dimension can 
only be contained one in the other (specifically, the one of lower dimension in 
the one of higher dimension). Every invariant manifold carries on itself no 
more than one transitive measure. By virtue of what has been said, a system 
of analytic transitive measures has a relatively transparent structure. 

Until a comparatively short time ago, only analytic transitive measures 
were known in analytic systems. Only recently, Crabar' [13], by constructing 
an analytic analog of an example of Markov (an analytic irreducible but not 
strictly ergodic d y n a ~ c a l  system) gave an example of a nonanalytic transi- 
tive measure in an analytic system. However, it may prove that the union of 
all nonanalytic ergodic sets is always negligible in the sense of the basic 
measure rn. 

Ergodic sets are unambiguously defined by their measures pE which) by 
their very definition, are transitive. 

With regard to ergodic sets corresponding to analytical transitive 
measures (that do not reduce to the measure iu, of any trajectory), we h o w  
only that, in the case in which the measure iu, is analytic, an ergodic set is 
contained in the support V r  of eke measure lu, since it is e v e p h e r e  dense in 
it; however, even in certain simple classical examples, the difference V r -  E 

may also be everywhere dense in Vr.  
The spectral properties of transitive measures on analytic systems have 

been only slightly studied. 
Discrete spectra have as yet been obtained only with a finite basis of 

independent frequencies 

Also, for analytic measures, the number of independent frequencies coincides 
in all h o w n  cases with the dimension. 

A continuous spectrum has been completely deterrnlned only recently by 
@e19fand and Fonain [14,15] for certain cases of geodesic motions on surfaces 
of constant negative curnature. In these cases, it proved to be a Lebesgue 
spectrum of countable multiplicity. 

The possibility is not excluded that only these cases (a discrete spectrum 
with a finite number of independent frequendes and a Lebesgue spectrum of 
countable multiplicity) are possible for analytic transitive measures or that 
they alone are the general typical cases in some sense or other. 
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For nonanalytic transitive measures, it is more likely that their structure is 
completely arbitrary. This would be the case without doubt if someone were 
to establish an analytic analog of Kakutass theorem [16] on isometmc 
embedding of an arbitrary flow in the flow of a continuous dynadcal system. 

With regard to the eigenfunctions, we pause only for an example of an 
analytic dynara_ncal system on a two-dimensiona1 torus T' with discrete 
spectrum and evergrc~here-continuous eigedunctions, Of course, this example, 
associated with a ratio y =A,/)i, of average frequencies that can be ap- 
proximated abnormally well by rational fractions v/s, indicates by its very 
origin that we are dealing not with a typical but with an exceptional 
phenomenon. 

To clarify the question in greater detail, let us again look at the equations 
sf motion on a two-dimensional torus, introducing into these equations a 
parameter 8 that varies in some interval [60,,8,]: 

We shall assume that the functions Fa(x,,x,, 8 )  are analytic. Obviously, the 
ratio of mean frequencies y (B )  is also an analytic function of 8. If y ( B )  is not 
constant, then the set R of all 8 for which it is possible to reduce the system 
analytically to the form 

will occupy almost all the internal [@,,@,]. The eigenfunctions 

when we return to the original coordinates x, and x, vdl, for B E R ,  be 
analy?ic functions of x, and x,. Generally speaking, however, even on I? they 
will be everwhere discontinuous with respect to 8 on that set. Also, this 
discontinuity cannot be removed by deleting from R a set of measwe zero. 
These facts are considerably more sipificant than the fact that po,,(x,,x,,@) 
can be defined even at certain points of the remainder set, [8,:BT]\R d 
measure zero, by virtue of the ad~ssibil i ty of their nonanalytrc~ty and 
discontinuity with respect to x, and x,. 

It is possible that the dependence of qm,(x,,x2, 8) on the parameter B on 
the set R is related to the class of functions of the type of monogeic Borel 
functions [24J and, despite its evewhere-discontinuous nature, will admit 
investigation by appropriate analytical tools. 

X 
A 
2 

CONCLUSiOM 6 ~4 

8 
I shall consider my purpose attained if I have succeeded in convincing my 2 

listeners that, despite the great difficulties and the restricted nature of the z 
results obtained up to now, the problem posed of using general concepts of 3 
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present-day ergodic theory for a qualitative analysis of motion in analytic 
and, in particular, canoIllcal dynannical systems deserves considerable atten- 
tion on the part of investigators who are capable of graspkg the many-sided 
relationships with the most varied divisions of mathematics that are &sclosed 
here. In conclusion, I wish to thank the o r g a e n g  co ttee of the Congress 
for the opportunity presented to me of reading this pager and for the lund 
help in reproducing the abstract witla fomulas and bibliograpkc references, 
and all those present for the atrention that they have shown me on this last 
day of our meetings, when ewryone is already satiated with the e n o m u s  
volume of addresses given on the preceding days. 
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