Geometry Formulas

Area of rectangle \(A = lw \)
Area of circle \(A = \pi r^2 \)
Area of triangle \(A = \frac{1}{2}bh \)
Surface Area of sphere \(A = 4\pi r^2 \)
Lateral Surface Area of cylinder \(A = 2\pi rh \)
Volume of box \(V = lwh \)
Volume of sphere \(V = \frac{4}{3}\pi r^3 \)
Volume of cylinder \(V = \pi r^2h \)
Volume of cone \(V = \frac{1}{3} \text{(area of base) \times (height)} \)

Trigonometric Identities

Pythagorean
\[
\cos^2\theta + \sin^2\theta = 1, \quad 1 + \tan^2\theta = \sec^2\theta, \quad \cot^2\theta + 1 = \csc^2\theta
\]

Parity
\[
\sin(-\theta) = -\sin\theta, \quad \cos(-\theta) = \cos\theta, \quad \tan(-\theta) = -\tan\theta
\]
\[
\csc(-\theta) = -\csc\theta, \quad \sec(-\theta) = \sec\theta, \quad \cot(-\theta) = -\cot\theta
\]

Co-relations
\[
\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right), \quad \csc\theta = \sec\left(\frac{\pi}{2} - \theta\right), \quad \cot\theta = \tan\left(\frac{\pi}{2} - \theta\right)
\]

Addition formulas
\[
\sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi
\]
\[
\sin(\theta - \phi) = \sin\theta \cos\phi - \cos\theta \sin\phi
\]
\[
\cos(\theta + \phi) = \cos\theta \cos\phi - \sin\theta \sin\phi
\]
\[
\cos(\theta - \phi) = \cos\theta \cos\phi + \sin\theta \sin\phi
\]
\[
\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}
\]
\[
\tan(\theta - \phi) = \frac{\tan\theta - \tan\phi}{1 + \tan\theta \tan\phi}
\]

Double-angle formulas
\[
\sin 2\theta = 2 \sin \theta \cos \theta
\]
\[
\cos 2\theta = \cos^2\theta - \sin^2\theta = 2 \cos^2\theta - 1 = 1 - 2 \sin^2\theta
\]
\[
\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2\theta}
\]

Half-angle formulas
\[
\sin^2\frac{\theta}{2} = \frac{1 - \cos \theta}{2}
\]
\[
\cos^2\frac{\theta}{2} = \frac{1 + \cos \theta}{2}
\]
\[
\tan^2\frac{\theta}{2} = \frac{1 - \cos \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}
\]
\[
\tan \theta = \frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}
\]
\[
\tan \theta = \frac{1}{\cos \theta}
\]

Product formulas
\[
\sin \theta \sin \phi = \frac{1}{2} \left[\cos(\theta - \phi) - \cos(\theta + \phi) \right]
\]
\[
\cos \theta \cos \phi = \frac{1}{2} \left[\cos(\theta + \phi) + \cos(\theta - \phi) \right]
\]
\[
\sin \theta \cos \phi = \frac{1}{2} \left[\sin(\theta + \phi) + \sin(\theta - \phi) \right]
\]
Derivatives

1. \(\frac{d(au)}{dx} = a \frac{du}{dx} \)
2. \(\frac{d(u + v - w)}{dx} = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx} \)
3. \(\frac{d(uv)}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \)
4. \(\frac{d(u/v)}{dx} = \frac{v (du/dx) - u (dv/dx)}{v^2} \)
5. \(\frac{d(u^n)}{dx} = nu^{n-1} \frac{du}{dx} \)
6. \(\frac{d(e^u)}{dx} = eu \frac{du}{dx} \)
7. \(\frac{d(e^{au})}{dx} = ae^{au} \frac{du}{dx} \)
8. \(\frac{d(u^n)}{dx} = a^n \frac{du}{dx} \)
9. \(\frac{d(ln u)}{dx} = \frac{1}{u} \frac{du}{dx} \)
10. \(\frac{d(log a u)}{dx} = \frac{1}{u \ln a} \frac{du}{dx} \)
11. \(\frac{d(sin u)}{dx} = \cos u \frac{du}{dx} \)
12. \(\frac{d(cos u)}{dx} = -\sin u \frac{du}{dx} \)
13. \(\frac{d(tan u)}{dx} = \sec^2 u \frac{du}{dx} \)
14. \(\frac{d(cot u)}{dx} = -\csc^2 u \frac{du}{dx} \)
15. \(\frac{d(sec u)}{dx} = \tan u \sec u \frac{du}{dx} \)
16. \(\frac{d(csc u)}{dx} = -(\cot u)(\csc u) \frac{du}{dx} \)
17. \(\frac{d(sin^{-1} u)}{dx} = \frac{1}{\sqrt{1 - u^2}} \frac{du}{dx} \)
18. \(\frac{d(cos^{-1} u)}{dx} = \frac{-1}{\sqrt{1 - u^2}} \frac{du}{dx} \)
19. \(\frac{d(tan^{-1} u)}{dx} = \frac{1}{1 + u^2} \frac{du}{dx} \)
20. \(\frac{d(cot^{-1} u)}{dx} = \frac{-1}{1 + u^2} \frac{du}{dx} \)
21. \(\frac{d(sec^{-1} u)}{dx} = \frac{1}{|u| \sqrt{1 - u^2}} \frac{du}{dx} \)
22. \(\frac{d(csc^{-1} u)}{dx} = \frac{-1}{|u| \sqrt{1 - u^2}} \frac{du}{dx} \)
23. \(\frac{d(sinh u)}{dx} = \cosh u \frac{du}{dx} \)
24. \(\frac{d(cosh u)}{dx} = \sinh u \frac{du}{dx} \)
25. \(\frac{d(tanh u)}{dx} = \frac{1}{(cosec^2 u) \frac{du}{dx}} \)
26. \(\frac{d(coth u)}{dx} = -\frac{1}{(cosec^2 u) \frac{du}{dx}} \)
27. \(\frac{d(sech u)}{dx} = \frac{1}{(cosec^2 u) \frac{du}{dx}} \)
28. \(\frac{d(cech u)}{dx} = -\frac{1}{(cosec^2 u) \frac{du}{dx}} \)
29. \(\frac{d(ith u)}{dx} = -\frac{1}{(cosec^2 u) \frac{du}{dx}} \)
30. \(\frac{d(sin^{-1} u)}{dx} = \frac{1}{\sqrt{1 + u^2}} \frac{du}{dx} \)
31. \(\frac{d(cos^{-1} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx} \)
32. \(\frac{d(tan^{-1} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx} \)
33. \(\frac{d(cot^{-1} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx} \)
34. \(\frac{d(sec^{-1} u)}{dx} = \frac{-1}{u \sqrt{1 - u^2}} \frac{du}{dx} \)
35. \(\frac{d(csc^{-1} u)}{dx} = \frac{-1}{u \sqrt{1 - u^2}} \frac{du}{dx} \)

Continued on overleaf.
Undergraduate Texts in Mathematics

Anglin: Mathematics: A Concise History and Philosophy.
Readings in Mathematics.
Anglin/Lambek: The Heritage of Thales.
Readings in Mathematics.
Armstrong: Basic Topology.
Armstrong: Groups and Symmetry.
Beardon: Limits: A New Approach to Real Analysis.
Berberian: A First Course in Real Analysis.
Brémaud: An Introduction to Probabilistic Modeling.
Bressoud: Factorization and Primality Testing.
Bressoud: Second Year Calculus.
Readings in Mathematics.
Brickman: Mathematical Introduction to Linear Programming and Game Theory.
Browder: Mathematical Analysis: An Introduction.
Buskes/Van Rooij: Topological Spaces: From Distance to Neighborhood.
Cederberg: A Course in Modern Geometries.
Croom: Basic Concepts of Algebraic Topology.
Dixmier: General Topology.
Driver: Why Math?
Elaydi: Introduction to Difference Equations.
Exner: An Accompaniment to Higher Mathematics.
Fischer: Intermediate Real Analysis.
Foulds: Combinatorial Optimization for Undergraduates.
Foulds: Optimization Techniques: An Introduction.
Franklin: Methods of Mathematical Economics.
Gordon: Discrete Probability.
Hairer/Wanner: Analysis by Its History.
Readings in Mathematics.
Halmos: Naive Set Theory.
Hämerlin/Hoffmann: Numerical Mathematics.
Readings in Mathematics.
Hijab: Introduction to Calculus and Classical Analysis.
Hilton/Holton/Pedersen: Mathematical Reflections: In a Room with Many Mirrors.
Isaac: The Pleasures of Probability.
Readings in Mathematics.
To Nancy and Margo
The goal of this text is to help students learn to use calculus intelligently for solving a wide variety of mathematical and physical problems.

This book is an outgrowth of our teaching of calculus at Berkeley, and the present edition incorporates many improvements based on our use of the first edition. We list below some of the key features of the book.

Examples and Exercises

The exercise sets have been carefully constructed to be of maximum use to the students. With few exceptions we adhere to the following policies.

- The section *exercises are graded* into three consecutive groups:

 (a) The first exercises are routine, modelled almost exactly on the examples; these are intended to give students confidence.

 (b) Next come exercises that are still based directly on the examples and text but which may have variations of wording or which combine different ideas; these are intended to train students to think for themselves.

 (c) The last exercises in each set are difficult. These are marked with a star (※) and some will challenge even the best students. Difficult does not necessarily mean theoretical; often a starred problem is an interesting application that requires insight into what calculus is really about.

- The *exercises come in groups* of two and often four similar ones.

- *Answers* to odd-numbered exercises are available in the back of the book, and every other odd exercise (that is, Exercise 1, 5, 9, 13, ...) has a complete solution in the student guide. Answers to even-numbered exercises are not available to the student.

Placement of Topics

Teachers of calculus have their own pet arrangement of topics and teaching devices. After trying various permutations, we have arrived at the present arrangement. Some highlights are the following.

- *Integration* occurs early in Chapter 4; *antidifferentiation* and the f notation with motivation already appear in Chapter 2.
Trigonometric functions appear in the first semester in Chapter 5.

The chain rule occurs early in Chapter 2. We have chosen to use rate-of-change problems, square roots, and algebraic functions in conjunction with the chain rule. Some instructors prefer to introduce \(\sin x \) and \(\cos x \) early to use with the chain rule, but this has the penalty of fragmenting the study of the trigonometric functions. We find the present arrangement to be smoother and easier for the students.

Limits are presented in Chapter 1 along with the derivative. However, while we do not try to hide the difficulties, technicalities involving epsilonics are deferred until Chapter 11. (Better or curious students can read this concurrently with Chapter 2.) Our view is that it is very important to teach students to differentiate, integrate, and solve calculus problems as quickly as possible, without getting delayed by the intricacies of limits. After some calculus is learned, the details about limits are best appreciated in the context of l'Hôpital's rule and infinite series.

Differential equations are presented in Chapter 8 and again in Sections 12.7, 12.8, and 18.3. Blending differential equations with calculus allows for more interesting applications early and meets the needs of physics and engineering.

Prerequisites and Preliminaries

A historical introduction to calculus is designed to orient students before the technical material begins.

Prerequisite material from algebra, trigonometry, and analytic geometry appears in Chapters R, 5, and 14. These topics are treated completely: in fact, analytic geometry and trigonometry are treated in enough detail to serve as a first introduction to the subjects. However, high school algebra is only lightly reviewed, and knowledge of some plane geometry, such as the study of similar triangles, is assumed.

Several orientation quizzes with answers and a review section (Chapter R) contribute to bridging the gap between previous training and this book. Students are advised to assess themselves and to take a pre-calculus course if they lack the necessary background.

Chapter and Section Structure

The book is intended for a three-semester sequence with six chapters covered per semester. (Four semesters are required if pre-calculus material is included.)

The length of chapter sections is guided by the following typical course plan: If six chapters are covered per semester (this typically means four or five student contact hours per week) then approximately two sections must be covered each week. Of course this schedule must be adjusted to students' background and individual course requirements, but it gives an idea of the pace of the text.

Proofs and Rigor

Proofs are given for the most important theorems, with the customary omission of proofs of the intermediate value theorem and other consequences of the completeness axiom. Our treatment of integration enables us to give particularly simple proofs of some of the main results in that area, such as the fundamental theorem of calculus. We de-emphasize the theory of limits, leaving a detailed study to Chapter 11, after students have mastered the...
fundamentals of calculus—differentiation and integration. Our book *Calculus Unlimited* (Benjamin/Cummings) contains all the proofs omitted in this text and additional ideas suitable for supplementary topics for good students. Other references for the theory are Spivak’s *Calculus* (Benjamin/Cummings & Publish or Perish), Ross’ *Elementary Analysis: The Theory of Calculus* (Springer) and Marsden’s *Elementary Classical Analysis* (Freeman).

Calculators

Calculator applications are used for motivation (such as for functions and composition on pages 40 and 112) and to illustrate the numerical content of calculus (see, for instance, p. 142). Special calculator discussions tell how to use a calculator and recognize its advantages and shortcomings.

Applications

Calculus students should not be treated as if they are already the engineers, physicists, biologists, mathematicians, physicians, or business executives they may be preparing to become. Nevertheless calculus is a subject intimately tied to the physical world, and we feel that it is misleading to teach it any other way. Simple examples related to distance and velocity are used throughout the text. Somewhat more special applications occur in examples and exercises, some of which may be skipped at the instructor’s discretion. Additional connections between calculus and applications occur in various section supplements throughout the text. For example, the use of calculus in the determination of the length of a day occurs at the end of Chapters 5, 9, and 14.

Visualization

The ability to visualize basic graphs and to interpret them mentally is very important in calculus and in subsequent mathematics courses. We have tried to help students gain facility in forming and using visual images by including plenty of carefully chosen artwork. This facility should also be encouraged in the solving of exercises.

Computer-Generated Graphics

Computer-generated graphics are becoming increasingly important as a tool for the study of calculus. High-resolution plotters were used to plot the graphs of curves and surfaces which arose in the study of Taylor polynomial approximation, maxima and minima for several variables, and three-dimensional surface geometry. Many of the computer drawn figures were kindly supplied by Jerry Kazdan.

Supplements

Student Guide

Contains

- Goals and guides for the student
- Solutions to every other odd-numbered exercise
- Sample exams

Instructor’s Guide

Contains

- Suggestions for the instructor, section by section
- Sample exams
- Supplementary answers
Misprints

Misprints are a plague to authors (and readers) of mathematical textbooks. We have made a special effort to weed them out, and we will be grateful to the readers who help us eliminate any that remain.

Acknowledgments

We thank our students, readers, numerous reviewers and assistants for their help with the first and current edition. For this edition we are especially grateful to Ray Sachs for his aid in matching the text to student needs, to Fred Soon and Fred Daniels for their unfailing support, and to Connie Calica for her accurate typing. Several people who helped us with the first edition deserve our continued thanks. These include Roger Apodaca, Grant Gustafson, Mike Hoffman, Dana Kwong, Teresa Ling, Tudor Ratiu, and Tony Tromba.

Berkeley, California

Jerry Marsden

Alan Weinstein
How to Use this Book: A Note to the Student

Begin by orienting yourself. Get a rough feel for what we are trying to accomplish in calculus by rapidly reading the Introduction and the Preface and by looking at some of the chapter headings.

Next, make a preliminary assessment of your own preparation for calculus by taking the quizzes on pages 13 and 14. If you need to, study Chapter R in detail and begin reviewing trigonometry (Section 5.1) as soon as possible.

You can learn a little bit about calculus by reading this book, but you can learn to use calculus only by practicing it yourself. You should do many more exercises than are assigned to you as homework. The answers at the back of the book and solutions in the student guide will help you monitor your own progress. There are a lot of examples with complete solutions to help you with the exercises. The end of each example is marked with the symbol ▲.

Remember that even an experienced mathematician often cannot “see” the entire solution to a problem at once; in many cases it helps to begin systematically, and then the solution will fall into place.

Instructors vary in their expectations of students as far as the degree to which answers should be simplified and the extent to which the theory should be mastered. In the book we have arranged the theory so that only the proofs of the most important theorems are given in the text; the ends of proofs are marked with the symbol □. Often, technical points are treated in the starred exercises.

In order to prepare for examinations, try reworking the examples in the text and the sample examinations in the Student Guide without looking at the solutions. Be sure that you can do all of the assigned homework problems.

When writing solutions to homework or exam problems, you should use the English language liberally and correctly. A page of disconnected formulas with no explanatory words is incomprehensible.

We have written the book with your needs in mind. Please inform us of shortcomings you have found so we can correct them for future students. We wish you luck in the course and hope that you find the study of calculus stimulating, enjoyable, and useful.

Jerry Marsden
Alan Weinstein
Contents

Preface vii
How to Use this Book: A Note to the Student xi
Introduction 1
Orientation Quizzes 13

Chapter R
Review of Fundamentals
R.1 Basic Algebra: Real Numbers and Inequalities 15
R.2 Intervals and Absolute Values 21
R.3 Laws of Exponents 25
R.4 Straight Lines 29
R.5 Circles and Parabolas 34
R.6 Functions and Graphs 39

Chapter 1
Derivatives and Limits
1.1 Introduction to the Derivative 49
1.2 Limits 57
1.3 The Derivative as a Limit and the Leibniz Notation 69
1.4 Differentiating Polynomials 75
1.5 Products and Quotients 82
1.6 The Linear Approximation and Tangent Lines 90

Chapter 2
Rates of Change and the Chain Rule
2.1 Rates of Change and the Second Derivative 99
2.2 The Chain Rule 110
2.3 Fractional Powers and Implicit Differentiation 118
2.4 Related Rates and Parametric Curves 123
2.5 Antiderivatives 128
Chapter 3
Graphing and Maximum–Minimum Problems

3.1 Continuity and the Intermediate Value
 Theorem 139
3.2 Increasing and Decreasing Functions 145
3.3 The Second Derivative and Concavity 157
3.4 Drawing Graphs 163
3.5 Maximum–Minimum Problems 177
3.6 The Mean Value Theorem 191

Chapter 4
The Integral

4.1 Summation 201
4.2 Sums and Areas 207
4.3 The Definition of the Integral 215
4.4 The Fundamental Theorem of Calculus 225
4.5 Definite and Indefinite Integrals 232
4.6 Applications of the Integral 240

Chapter 5
Trigonometric Functions

5.1 Polar Coordinates and Trigonometry 251
5.2 Differentiation of the Trigonometric Functions 264
5.3 Inverse Functions 272
5.4 The Inverse Trigonometric Functions 281
5.5 Graphing and Word Problems 289
5.6 Graphing in Polar Coordinates 296

Chapter 6
Exponentials and Logarithms

6.1 Exponential Functions 307
6.2 Logarithms 313
6.3 Differentiation of the Exponential and
 Logarithmic Functions 318
6.4 Graphing and Word Problems 326

Answers A.1

Index I.1
Contents of Volume II

Chapter 7
Basic Methods of Integration

Chapter 8
Differential Equations

Chapter 9
Applications of Integration

Chapter 10
Further Techniques and Applications of Integration

Chapter 11
Limits, L'Hôpital's Rule, and Numerical Methods

Chapter 12
Infinite Series

Contents of Volume III

Chapter 13
Vectors

Chapter 14
Curves and Surfaces

Chapter 15
Partial Derivatives

Chapter 16
Gradients, Maxima and Minima

Chapter 17
Multiple Integration

Chapter 18
Vector Analysis