Chemical Principles

Third Edition
Sponsoring editor: Mary Forkner
Production editor: Betsey Rhame
Cover designer: Stephen Osborn
Book designer: Marjorie Spiegelman

Library of Congress Cataloging in Publication Data
Dickerson, Richard Earl.
Chemical principles.
 Includes bibliographies and index.
 1. Chemistry. I. Gray, Harry B., joint author. II. Haight, Gilbert Pierce, joint author. III. Title.
QD312.D52 1979 540 77-87336
ISBN 0-8053-2398-8

Copyright © 1979 by The Benjamin/Cummings Publishing Company, Inc.
Philippine's copyright 1979 by The Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.
Published simultaneously in Canada.
Library of Congress Catalog Card No. 77-87336

ISBN 0-8053-2398-8
ABCDEFGHIJ-DO-782109

The Benjamin/Cummings Publishing Company, Inc.
2727 Sand Hill Road
Menlo Park, California 94025
This edition of Chemical Principles, like its predecessors, is designed to be used in a general university chemistry course which must provide both an overview of chemistry for nonspecialists and a sound foundation for later study for science or chemistry majors. Hence there are several survey chapters introducing different areas of chemistry, including inorganic, nuclear, organic, and biochemistry, and an attempt is made throughout the book to place chemistry in its historical and cultural setting. At the same time, the quantitative aspects of chemistry are presented in a manner consistent with their importance, in a way that will make it easy to build upon them in later courses.

This is the first complete revision of Chemical Principles since the first edition was published in 1969. The authors have rethought and replanned the entire book, especially the first thirteen chapters, trying to make it a better pedagogical tool without losing the special viewpoints and flavor that made the earlier editions so successful. The history and the anecdotal asides that help to make the subject palatable have been retained, but they have been better segregated from the factual material for which a student will be held responsible.
THIRD EDITION REORGANIZATION AND LEVEL

The basic material of the first six chapters has been rearranged into a more logical and more easily absorbed order. These chapters, although not formally set off from the rest of the book, actually make up one study unit on quantitative chemistry: atoms and moles, stoichiometry, heats of reaction, gas laws and the kinetic theory, chemical equilibrium and acid-base equilibrium. They have been rethought and rewritten as a block by one of the authors, with more in-text examples and new end-of-chapter problems. The mole concept, balancing of equations, and stoichiometry in general now appear in the first two chapters where they will be most useful as preparation for the laboratory. At the same time, stoichiometry, which can be one of the dullest topics in chemistry, is presented along with heats of reaction as two illustrations of a fundamental physical principle: the conservation of mass and energy. A long but essential chapter on equilibrium has been broken down into two more accessible chapters: one on principles of equilibrium, and the second on acid-base equilibria in aqueous solutions. It is hoped that these five chapters will give the student a solid foundation in vocabulary and problem-solving skills without which further progress in chemistry is impossible. After a solid dose of "basic training," Chapter 6 provides a little historical relief, with the story of how we arrived at the knowledge contained in the first five chapters.

Chapters 7 through 14 make up a second study unit on atomic structure, chemical periodicity, and chemical structure and bonding. This too has been carefully reconsidered and revised as a whole by a single author, thus the Third Edition revision helps unify the text. In response to user requests, the material on chemical periodicity and inorganic oxidation-reduction chemistry has been unified in Chapters 9 and 10.

The treatment of molecular orbitals and chemical bonding in the Second Edition had been liked by most users, but had been considered a little too high-level and difficult to get into. Now we have divided this material into two chapters, Chapter 12 on principles of the molecular orbital theory and applications to simple diatomic molecules, and Chapter 13 on polyatomic molecules and molecular spectroscopy. We have also provided a new Chapter 11 as an introduction to bonding theories, as far as one can go with electron pairing and electron pair repulsion short of quantum mechanics. The Valence Shell Electron Pair Repulsion (VSEPR) theory, which has been surprisingly neglected in this country, provides an intuitively simple and nonmathematical way of explaining the shapes of molecules. These three chapters plus the subsequent one on bonding in solids and liquids will give the student a secure grounding in the principles of bonding, molecular structure, and spectroscopy.

Chapters 15–19 make up a third study unit on thermodynamics and equilibrium. The material on the first and second laws is essentially the
same as in previous editions, but has been divided into two more digestible chapters. The statistical description of entropy has been simplified. A new chapter has been added on phase equilibria, Chapter 18. Since this is quantitative material and frequently is difficult for the beginning student, we have significantly increased the number of worked examples in the text, revised the chapter-end problems, and added new ones.

The last four chapters cover special topics that may not be included in all introductory courses: coordination chemistry, organic and biochemistry, chemical kinetics, and nuclear chemistry. After much agonized debate about principles and pedagogy, we finally decided to place these chapters at the end, where they can be used or not as the individual instructor chooses. (We hope that they will all be used.) They have all been revised and rewritten where necessary, especially the chapter on organic and biochemistry.

PEDAGOGY

Each chapter begins with a list of key concepts. This provides students with a brief overview of the chapter material, both before they start the chapter and after they finish, as a quick check on their retention of key ideas. Throughout the text of each chapter, we have concentrated on expanding the solutions to problems worked in the chapter. Problem examples relevant to each concept are presented, and solutions proceed step by step. Chapters conclude with a summary in which key terms, introduced in the chapter, are called out in boldface type. Each summary is followed by 20 to 40 self-study questions and a series of problems arranged by subject.

The Third Edition contains over 100 more end-of-chapter problems than its predecessor. Moreover, new problems have been written to parallel the development of each chapter, and all problems have been titled and grouped by subject matter. Following the more quantitative chapters, the problems have been paired, with first an odd-numbered problem and then an even-numbered problem testing the same skills. Answers to the odd-numbered problems are given in Appendix 6. Hence the even-numbered problems can be assigned as homework, and if the students cannot work a problem, they can try the preceding odd-numbered problem first as practice, checking their solution against the Appendix.

SI UNITS

After considerable debate, the authors have decided to "bite the bullet" with regard to SI units. There is a traditional attachment to the calorie as the unit of heat, and it will be a long time before the calorie is eliminated
from the scientific literature. Nevertheless, the sheer logic of SI units, their ease of use, and the way that they make obvious the connection between heat, work, and energy, all argue for a changeover now to what will be the standard units of the next generation of scientists. SI units and the logic behind them are explained in Appendix 1. The calorie is mentioned in this book because every scientist will still have to know what a calorie is, but all calculations are carried out in joules. Thermodynamic tables in Appendix 3 and elsewhere in the book have all been converted to joules. At the same time, we have refused to become overly doctrinaire and throw the baby out with the bathwater. The standard atmosphere (101,325 pascals) has been considered to be as reasonable a derived unit in gas law calculations as is the electronic charge (0.16022 attocoulomb) for expressing the charge on an ion. The careful reader will even discover angstrom units lurking here and there, and we offer no apologies. Our goal has been to train intelligent scientists and laypeople who can read, understand, and use the literature.

SUPPLEMENTS

All of the supplemental aides to the Third Edition have been revised by their authors on the basis of the new manuscript: Programmed Reviews by Lassila, Barrow, Kenney, Little, and Thompson; Relevant Problems by Butler and Grosser; a new Study Guide covering the entire text by Tom Taylor; and an Instructors’ Manual by Ben Chastain. Some or all of these may be useful adjuncts to the main textbook in your course.

ACKNOWLEDGMENTS

We are grateful to the many reviewers who read the Third Edition revision with care: Marcetta Darenbourg, Leo E. Kallan, Curtis B. Anderson, Paul M. Treichel, Jean Lassila, George Miller, Caroline Eastman, Lawrence E. Wilkins, Paul Hunter, and Peter Linde. We would like to thank Ben Chastain and Mildred Johnson for yeoman service in reading every line of the new edition, and offering detailed suggestions based on their experience with the Second Edition. Gloria Joyce deserves our thanks for reducing some of our more convoluted prose to comprehensibility. Mary Forkner, as sponsoring editor, provided us with feedback from reviewers and users that led to the present book. Betsey Rhame carried out the remarkable task of producing a book that is not only complete and attractive, but right on schedule. Lastly, we offer belated thanks and recognition to James Hall, without whose steady hand there would not even have been a First Edition, let alone a Third.
As before, our goals in writing *Chemical Principles* have been to make the material (a) correct, (b) clear, and (c) interesting, in that order. Your response to the first two editions tells us that they were reasonably satisfactory in this respect, and we hope that the Third Edition will prove to be even better.

Richard E. Dickerson

Harry B. Gray

Gilbert P. Haight, Jr.

October 1978
Table of Contents

Chapter 1
Atoms, Molecules, and Ions

1.1 The Structure of Atoms
2
1.2 Isotopes
4
1.3 Molecules
9
1.4 Forces Between Molecules
12
1.5 Molecules and Moles
15
1.6 Ions
17
 Melting Points and Boiling Points of Salts
24
1.7 Ions in Solution
25
1.8 Gaseous Ions
33

Chapter 2
Conservation of Mass and Energy

2.1 Atomic Weights, Molecular Weights, and Moles
49
2.2 Chemical Analyses:
 Percent Composition and Empirical Formulas
49
2.3 Chemical Equations
55
2.4 Calculations of Reaction Yields
58
2.5 Solutions as Chemical Reagents
60
 Acid–Base Neutralization
64
 Acid–Base Titration
68
2-6 Heats of Reaction: Conservation of Energy 71
Heats of Formation 76
2-7 Conservation Principles 78

Chapter 3
Gas Laws and the Kinetic Theory 93
3-1 Avogadro's Law 95
3-2 The Pressure of a Gas 95
3-3 Boyle's Law Relating Pressure and Volume 97
3-4 Charles' Law Relating Volume and Temperature 102
3-5 The Combined Gas Law 105

Standard Temperature and Pressure 108
Ideality and Nonideality 109
3-6 The Kinetic Molecular Theory of Gases 110

The Phenomenon of Pressure and Boyle's Law 112
3-7 Predictions of the Kinetic Molecular Theory 115

Molecular Size 116
Molecular Speeds 118

Dalton's Law of Partial Pressures 119

Other Predictions of the Kinetic Molecular Theory 123
3-8 Real Gases and Deviations from the Ideal Gas Law 125

Postscript to Gas Laws and Atomic Theory 136

Chapter 4
Will It React? An Introduction to Chemical Equilibrium 139
4-1 Spontaneous Reactions 140
4-2 Equilibrium and the Equilibrium Constant 141
4-3 General Form of the Equilibrium Constant 144
4-4 Natural Atomic Weights 147
4-5 Units and Equilibrium Constants 153
4-6 Equilibria Involving Gases with Liquids or Solids 155
4-7 Factors Affecting Equilibrium: Le Chatelier's Principle 159

Temperature 160
Pressure 161
Catalysis 163

Chapter 5
Solution Equilibria: Acids and Bases 172
5-1 Equilibria in Aqueous Solutions 173
5-2 Ionization of Water and the pH Scale 176
5-3 Strong and Weak Acids 180
5-4 Strong and Weak Bases 185
5-5 Solutions of Strong Acids and Bases:
Neutralization and Titration 187
Titrations and Titrations Curves 189
Chapter 6

Are Atoms Real? From Democritus to Dulong and Petit 225
6-1 The Concept of An Element 228
6-2 Compounds, Combustion, and the Conservation of Mass 229
 Phlogiston 231
 Conservation of Mass 232
6-3 Does a Compound Have a Fixed Composition? 233
 Equivalent Proportions 234
 Combining Weights 234
6-4 John Dalton and the Theory of Atoms 236
 The Greek Atomic Theory 238
 Fixed Ratios 238
 Law of Multiple Proportion 240
6-5 Equal Numbers in Equal Volumes: Gay-Lussac and Avogadro 241
 Gay-Lussac 242
 Avogadro 242
6-6 Cannizzaro and a Rational Method of
 Calculating Atomic Weights 244
6-7 Atomic Weights for the Heavy Elements: Dulong and Petit 247
6-8 Combing Capacities, “Valence,” and Oxidation Number 250
 Postscript: Joseph Priestley and Benjamin Franklin 255

Chapter 7

The Periodic Table 257
7-1 Early Classification Schemes 258
 Döbereiner's Triads 259
 Newlands' Law of Octaves 259
7-2 The Basis for Periodic Classification 261
 The Periodic Law 264
7-3 The Modern Periodic Table 266
7-4 Periodicity of Chemical Properties as Illustrated by Binary
 Hydrides and Oxides 270
Chapter 8 Quantum Theory and Atomic Structure 279
8-1 Rutherford and the Nuclear Atom 281
8-2 The Quantization of Energy 284
 The Ultraviolet Catastrophe 287
 The Photoelectric Effect 289
 The Spectrum of the Hydrogen Atom 290
8-3 Bohr’s Theory of the Hydrogen Atom 293
 Energy Levels of a General One-Electron Atom 299
 The Need for a Better Theory 300
8-4 Particles of Light and Waves of Matter 300
8-5 The Uncertainty Principle 306
8-6 Wave Equations 309
 Vibrating String 310
 Schrödinger Equation 310
8-7 The Hydrogen Atom 312
8-8 Many-Electron Atoms 321

Chapter 9 Electronic Structure and Atomic Properties 331
9-1 Buildup of Many-Electron Atoms 332
 Relative Energies of Atomic Orbitals 333
 Orbital Configurations and First Ionization Energies 335
 Electron Affinities 344
9-2 Types of Bonding 346
 Atomic Radii 347
9-3 Electronegativity 349

Chapter 10 Oxidation-Reduction and Chemical Properties 358
10-1 Oxidation Numbers 358
 Calculating Oxidation Numbers 360
10-2 Oxidation-Reduction Reactions 362
10-3 Balancing Oxidation-Reduction Equations 365
 Oxidation-Number Method 365
 Ion-Electron (Half-Reaction) Method 366
10-4 Redox Titrations 369
10-5 Oxidation and Reduction Potentials 372
10-6 Chemical Properties: The s-Orbital Metals 373
 Group IA. Alkali Metals: Li, Na, K, Rb, and Cs 373
 Group IIA. Alkaline Earth Metals: Be, Mg, Ca, Sr, and Ba 375
Contents

10-7 The Filling of the d Orbitals: Transition Metals 377
 The Structure of Transition-Metal Ions 378
 Oxidation Potentials 378
 Chemical Properties of Individual Groups: Sc and Ti Groups 379
 The Vanadium Group and the Colors of Ions and Complex Compounds 380
 The Chromium Group and the Chromate Ion 381
 The Manganese Group and the Permanganate Ion 382
 The Iron Triad and the Platinum Metals 383
 The Coinage Metals 384
 The Chemistry of Photography 385
 The Low-Melting Transition Metals 385
 Trends in the Transition Metals 387

10-8 The Filling of f Orbitals: Lanthanides and Actinides 387

10-9 The p-Orbital or Representative Elements 388

Chapter 11 Lewis Structures and the VSEPR Method 399
11-1 Lewis Structures 400
 Multiple Bonds 402
 Formal Charges 403
 Some Polyatomic Molecules 405
 The Ammonium Chloride Molecule 406
 Lewis Acids and Bases 407
 Bonding to Heavier Atoms 408
 Resonance Structures 410
 The Meaning of Oxidation Numbers 415

11-2 Acidity of Oxyacids 418

11-3 The VSEPR Method and Molecular Geometry 422
 Steric Numbers Greater Than Six 428
 Exceptions to the VSEPR Rules 429

Chapter 12 Diatomic Molecules 438
12-1 Molecular Orbitals 439
 Bonding in the H₂ Molecule 440
 The Pauli Buildup Process in Molecules 445

12-2 Diatomic Molecules with One Type of Atom 448
 Paramagnetism and Unpaired Electrons 452
 Buildup of Diatomic Molecules 453

12-3 Diatomic Molecules with Different Atoms 458
 Hydrogen Fluoride and Potassium Chloride 458
 Dipole Moments 462
 A General AB Type Diatomic Molecule 463
Chapter 13 Polyatomic Molecules
13-1 Localized Molecular Orbitals for BeH₂, BH₃, and CH₄ 476
13-2 Hydrogen in Bridge Bonds 481
13-3 Localized-Molecular-Orbital Theory for Molecules with Lone Electron Pairs 483
13-4 Single and Multiple Bonds in Carbon Compounds 488
13-5 Benzene and Delocalized Orbitals 494
13-6 Polar and Nonpolar Polyatomic Molecules 500
13-7 Molecular Spectroscopy 503

Chapter 14 Bonding in Solids and Liquids
14-1 Elemental Molecular Solids 522
14-2 Ionic Solids 528
14-3 Molecular Solids and Liquids 530
 Van der Waals Forces 530
 Polar Molecules and Hydrogen Bonds 535
 Polar Molecules as Solvents 540
14-4 Metals 541
 Electronic Bands in Metals 542
14-5 Nonmetallic Network Solids 546
 Semiconductors 547
14-6 The Framework of the Planet: Silicate Minerals 549
 Chain Structures 550
 Sheet Structures 552
 Three-Dimensional Networks 553

Chapter 15 Energy and Enthalpy in Chemical Systems
15-1 Work, Heat, and Caloric 562
 The Cannons of Bavaria 562
 Blood, Sweat, and Gears 563
15-2 The First Law of Thermodynamics 566
 A Different View of the First Law 570
 State Functions 570
15-3 Energy, Enthalpy, and Heat Capacity 573
15-4 The First Law and Chemical Reactions 576
15-5 Bond Energies 580
 Bond Energy of a C—C Single Bond 580
 Tabulation of Bond Energies 582
 Applications of Bond-Energy Calculations 584
 The Heat of Formation of Benzene 585
 Postscript: Count Rumford versus the World 594
Chapter 16
Entropy, Free Energy, and Chemical Reactions
- 16-1 Spontaneity, Reversibility, and Equilibrium 601
- 16-2 Heat, Energy, and Molecular Motion 603
- 16-3 Entropy and Disorder 605
 - *Life in a Nine-Point Universe* 607
- 16-4 Third-Law Entropies and Chemical Intuition 610
- 16-5 Free Energy and Spontaneity in Chemical Reactions 613
 - *Free Energy Changes When External Work Is Done* 618
 - *Calculations with Standard Free Energies* 619
- 16-6 Free Energy and Concentration 622
 - *General Expressions* 627

Chapter 17
Free Energy and Equilibrium
- 17-1 The Properties of Equilibrium 637
 - *Stoichiometry and the Equilibrium Constant* 640
- 17-2 Reactions Involving Gases 643
 - *Experimental Measurement of Equilibrium Constants* 643
 - *Calculation of Equilibrium Constants* 644
 - *The Partial Pressure of One Component* 645
 - *Alteration of Stoichiometry* 646
 - *Extent of Reaction* 646
- 17-3 Le Chatelier’s Principle 651
 - *The Effect of Temperature* 651
- 17-4 The Anatomy of a Reaction 652

Chapter 18
Equilibria Involving Liquids and Solids
- 18-1 Melting, Evaporation, and Sublimation 663
- 18-2 Free Energy of Vaporization and Vapor Pressure 666
- 18-3 The Critical Point 669
- 18-4 Phase Diagrams 672
- 18-5 Solutions and Raoults’s Law 675
- 18-6 Colligative Properties 677
 - *Vapor Pressure Lowering* 678
 - *Boiling Point Elevation* 679
 - *Freezing Point Lowering* 681
 - *Molecular Weight Determinations* 682
 - *Osmotic Pressure* 684

Chapter 19
Oxidation–Reduction Equilibria and Electrochemistry
- 19-1 Harnessing Spontaneous Reactions 695
 - *Concentration Cells* 698
- 19-2 Electrochemical Cells 700
Chapter 20

Coordination Chemistry

20-1 Properties of Transition-Metal Complexes 736
 Color 736
 Isomers and Geometry 738
 Magnetic Properties 740
 Lability and Inertness 741
 Oxidation Number and Structure 743
 Influence of the Number of d Electrons 743

20-2 Nomenclature for Coordination Compounds 745
 Isomerism 748

20-3 Theories of Bonding in Coordination Complexes 749
 Electrostatic Theory 751
 Valence Bond Theory 751
 Crystal Field Theory 755
 Ligand Field (or Delocalized Molecular-Orbital) Theory 759

20-4 Tetrahedral and Square Planar Coordination 764

20-5 Equilibria Involving Complex Ions 767

Postscript: Coordination Complexes and Living Systems 777

Chapter 21

The Special Role of Carbon

21-1 The Special Talents of Carbon 788

21-2 The Chemistry of the Neighbors of Carbon 793
 Boron 794
 Nitrogen 796
 Silicon 799
 Comparison of Boron, Nitrogen, and Silicon 802

21-3 Saturated Hydrocarbons or Alkanes 803
 Reactions of Alkanes 806
21-4 Unsaturated Hydrocarbons 808
21-5 Derivatives of Hydrocarbons: Functional Groups 810
21-6 Aromatic Compounds 819
21-7 Aromatic Compounds and the Absorption of Light 823
21-8 Carbohydrates 826
 Polysaccharides 829
21-9 Proteins and Enzymes 831
21-10 The Mechanism of Action of an Enzyme 836
21-11 Energy and Metabolism in Living Systems 842
 The Combustion of Glucose 842
 The Three-Step Process in Metabolic Oxidation 843
 Step 1: Glycolysis 843
 Step 2: Citric Acid Cycle 846
 Step 3: Terminal Oxidation or Respiratory Chain 848
 Winding the Mainspring of Life: Photosynthesis 851

Chapter 22 Rates and Mechanisms of Chemical Reactions 864
22-1 What Happens When Molecules React? 866
22-2 Measurement of Reaction Rates 870
 Following the Course of a Reaction 872
 A First-Order Rate Equation and the Decay of 14C 873
 Decomposition of N_2O_5 874
 Stoichiometry and Rate Expressions 874
 The Goals of Chemical Kinetics 876
22-3 Calculating Rate Constants from Molecular Information 877
 Arrhenius' Activation Energy 877
 Collision Theory of Bimolecular Gas Reactions 879
 Activated Complexes 880
 Potential Energy Surfaces 881
 Absolute Rate Theory 889
 Comparison of Theories 890
22-4 Complex Reactions 891
 The Hydrogen-Iodine Reaction 891
 Rates and Mechanisms of Substitution Reactions 893
 Chain Reactions 895
22-5 Catalysis 898
 Homogeneous Acid Catalysis 899

Chapter 23 Nuclear Chemistry 911
23-1 The Nucleus 913
 Size and Shape 913
 Binding Energy 914
23-2 Nuclear Decay 917
 β^- or Electron Emission 918
Orbital Electron Capture, EC 919
β+ or Positron Emission 919
α− Particle Emission 919
γ Emission During α Decay 920
Stability and Half-Life 920
23-3 Stability Series 923
Natural Radioactive Series 925
23-4 Nuclear Reactions 925
Artificial Elements 927
Fission 929
Fusion 930
23-5 Applications of Nuclear Chemistry and Isotopes 931
Chemical Markers 931
Radiometric Analysis 932
Isotope-Dilution Methods 932
Radiocarbon Dating 934
The Age of the Earth 936

Appendix 1 The Système Internationale (SI) of Units A-1

Appendix 2 Physical Constants and Conversion Factors A-5

Appendix 4 Significant Figures and Exponential (Scientific) Notation A-14
Significant Figures 958
Addition and Subtraction 959
Multiplication and Division 962
Exponential Numbers or "Scientific Notation" 965

Appendix 5 A More Exact Treatment of Acid—Base Equilibria A-25
Strong and Weak Acids: The Contribution from Dissociation of Water 969
Weak Acids and Water Dissociation 971
Weak Acids and Their Salts: Exact Treatment 973
Titration of a Weak Acid by a Strong Base 976

Appendix 6 Answers to Odd-Numbered Problems A-35

Index I-1