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PREFACE

The goal of these notes is to give a reasonahly com­

plete, although not exhaustive, discussion of what is commonly

referred to as the Hopf bifurcation with applications to spe­

cific problems, including stability calculations. Historical­

ly, the subject had its origins in the works of Poincare [1]

around 1892 and was extensively discussed by Andronov and Witt

[1] and their co-workers starting around 1930. Hopf's basic

paper [1] appeared in 1942. Although the term "Poincare­

Andronov-Hopf bifurcation" is more accurate (sometimes

Friedrichs is also included), the name "Hopf Bifurcation" seems

more common, so we have used it. Hopf's crucial contribution

was the extension from two dimensions to higher dimensions.

The principal technique employed in the body of the

text is that of invariant manifolds. The method of Ruelle­

Takens [1] is followed, with details, examples and proofs added.

Several parts of the exposition in the main text corne from

papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler

to whom we are grateful.

The general method of invariant manifolds is common in

dynamical systems and in ordinary differential equations; see

for example, Hale [1,2] and Hartman [1]. Of course, other

methods are also available. In an attempt to keep the picture

balanced, we have included samples of alternative approaches.

Specifically, we have included a translation (by L. Howard and

N. Kope11) of Hopf's original (and generally unavailable) paper.

These original methods, using power series and scaling are used

in fluid mechanics by, amongst many others, Joseph and Sattinger

[1]; two sections on these ideas from papers of Iooss [1-6] and
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Kirchgassner and Kielhoffer [1] (contributed by G. Childs and

o. Ruiz) are given.

The contributions of S. Smale, J. Guckenheimer and G.

Oster indicate applications to the biological sciences and

that of D. Schmidt to Hamiltonian systems. For other applica­

tions and related topics, we refer to the monographs of

Andronov and Chaiken [1], Minorsky [1] and Thom [1].

The Hopf bifurcation refers to the development of

periodic orbits ("self-oscillations") from a stable fixed

point, as a parameter crosses a critical value. In Hopf's

original approach, the determination of the stability of the

resulting periodic orbits is, in concrete problems, an un­

pleasant calculation. We have given explicit algorithms for

this calculation which are easy to apply in examples. (See

Section 4, and Section SA for comparison with Hopf's formulae).

The method of averaging, exposed here by S. Chow and J. Mallet­

Paret in Section 4C gives another method of determining this

stability, and seems to be especially useful for the next bi­

furcation to invariant tori where the only recourse may be to

numerical methods, since the periodic orbit is not normally

known explicitly.

In applications to partial differential equations, the

key assumption is that the semi-flow defined by the equations

be smooth in all variables for t > O. This enables the in­

variant manifold machinery, and hence the bifurcation theorems

to go through (Marsden [2]). To aid in determining smoothness

in examples we have presented parts of the results of Dorroh­

Marsden. [1]. Similar ideas for utilizing smoothness have been

introduced independently by other authors, such as D. Henry

[1].



PREFACE ix

Some further directions of research and generalization

are given in papers of Jost and Zehnder [1], Takens [1, 2],

Crandall-Rabinowitz [1, 2], Arnold [2], and Kopell-Howard [1-6]

to mention just a few that are noted but are not discussed in

any detail here. We have selected results of Chafee [1] and

Ruelle [3] (the latter is exposed here by S. Schecter) to

indicate some generalizations that are possible.

The subject is by no means closed. Applications to

instabilities in biology (see, e.g. Zeeman [2], Gurel [1-12]

and Section 10, 11); engineering (for example, spontaneous

"flutter" or oscillations in structural, electrical, nuclear

or other engineering systems; cf. Aronson [1], Ziegler [1]

and Knops and Wilkes [1]), and oscillations in the atmosphere

and the earth's magnetic field (cf. Durand [1]) a~e appearing

at a rapid rate. Also, the qualitative theory proposed by

Ruelle-Takens [1] to describe turbulence is not yet well under­

stood (see Section 9). In this direction, the papers of

Newhouse and Peixoto [1] and Alexander and Yorke [1] seem to

be important. Stable oscillations in nonlinear waves may be

another fruitful area for application; cf.Whitham [1]. We hope

these notes provide some guidance to the field and will be

useful to those who wish to study or apply these fascinating

methods.

After we completed our stability calculations we were

happy to learn that others had found similar difficultv in

applying Hopf's result as it had existed in the literature to

concrete examples in dimension ~ 3. They have developed similar

formulae to deal with the problem; cf. Hsu and Kazarinoff [1, 2]

and Poore [1].
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The other main new result here is our proof of the

validity of the Hopf bifurcation theory for nonlinear partial

differential equations of parabolic type. The new proof,

relying on invariant manifold theory, is considerably simpler

than existing proofs and should be useful in a variety of

situations involving bifurcation theory for evolution equations.

These notes originated in a seminar given at Berkeley

in 1973-4. We wish to thank those who contributed to this

volume and wish to apologize in advance for the many important

contributions to the field which are not discussed here; those

we are aware of are listed in the bibliography which is, ad­

mittedly, not exhaustive. Many other references are contained

in the lengthy bibliography in Cesari [1]. We also thank those

who have taken an interest in the notes and have contributed

valuable comments. These include R. Abraham, D. Aronson,

A. Chorin, M. Crandall., R. Cushman, C. Desoer, A. Fischer,

L. Glass, J. M. Greenberg, O. Gurel, J. Hale, B. Hassard,

S. Hastings, M. Hirsch, E. Hopf, N~ D. Kazarinoff, J. P. LaSalle,

A. Mees, C. Pugh, D. Ruelle, F. Takens, Y. Wan and A. Weinstein.

Special thanks go to J. A. Yorke for informing us of the

material in Section 3C and to both he and D. Ruelle for pointing

out the example of the Lorentz equations (See Example 4B.8).

Finally, we thank Barbara Komatsu and Jody Anderson for the

beautiful job they did in typing the manuscript.

Jerrold Marsden

Marjorie McCracken
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THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 1

INTRODUCTION TO STABILITY AND BIFURCATION IN

DYNAMICAL SYSTEMS AND FLUID MECHANICS

1

Suppose we are studying a physical system whose state x

dx
is governed by an evolution equation dt = X(x) which has

unique integral curves. Let X
o

be a fixed point of the flow

of X; i.e., X(XO) = O. Imagine that we perform an experiment

upon the system at time t = 0 and conclude that it is then

in state xo. Are we justified in predicting that the system

will remain at Xo for all future time? The mathematical

answer to this qu~stion is obviously yes, but unfortunately

it is probably not the question we really wished to ask.

Experiments in real life seldom yield exact answers to our

idealized models, so in most cases we will have to ask whether

the system will remain near Xo if it started near xo. The

answer to the revised question is not always yes, but even so,

by examining the evolution equation at hand more minutely, one

can sometimes make predictions about the future behavior of

a system starting near xo. A trivial example will illustrate

some of the problems involved. Consider the following two
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di~~erential equations on the real line:

X' (t) = -x (t)

and

X I (t) = x (t) •

The solutions are respectively:

and

(1.1)

(1. 2)

(1.1')

(1.2')

Note that 0 is a ~ixed point o~ both ~lows. In the first

case, for all Xo E R, lim x(xo,t) = O. The whole real line
t+oo

moves toward the origin, and the prediction that if Xo is

near 0, then x(xo,t) is near 0 is obviously justified.

On the other hand, suppose we are observing a system whose

state x is governed by (1.2). An experiment telling us that

at time t = 0, x'( 0) is approximately zero will certainly not

permit us to conclude that x(t) stays near the origin for

all time, since all points except 0 move rapidly away from O.

Furthermore, our experiment is unlikely to allow us to make

an accurate prediction about x(t) because if x(O) < 0, x(t)

moves rapidly away from the origin toward but if

x(O) > 0, x(t) moves toward +00. Thus, an observer watching

such a system would expect sometimes to observe x(t) t~

and sometimes x(t) ~ +00. The solution x(t)
t+oo

o for

all t would probably never be observed to occur because a

slight perturbation of the system would destroy this solution.

This sort of behavior is frequently observed in nature. It

is not due to any nonuniqueness in the solution to the dif~er-

ential equation involved, but to the instability of that

solution under small perturbations in initial data.
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Indeed, it is only stable mathematical models, or

features of models that can be relevant in "describing" nature.+

Consider the following example.* A rigid hoop hangs

from the ceiling and a small ball rests in the bottom of the

hoop. The hoop rotates with frequency w about a vertical

axis through its center (Figure l.la).

Figure l.la Figure l.lb

For small values of w, the ball stays at the bottom of the

hoop and that position is stable. However, when w reaches

some critical value wo' the ball rolls up the side of the

hoop to a new position x(w), which is stable. The ball may

roll to the left or to the right, depending to which side of

the vertical axis it was initially leaning (Figure l.lb).

The position at the bottom of the hoop is still a fixed point,

but it has become unstable, and, in practice, is never ob-

served to occur. The solutions to the differential equations

governing the ball's motion are unique for all values of w,

+For further discussion, see the conclusion of Abraham­
Marsden [1].

*This example was first pointed out to us by E. Calabi.
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but for w > wo' this uniqueness is irrelevant to us, for we

cannot predict which way the ball will roll. Mathematically,

we say that the original stable fixed point has become un-

stable and has split into two stable fixed points. See

Figure 1.2 and Exercise 1.16 below.

w

fixed
points

(0 ) Figure 1.2 ( b )

Since questions of stability are of overwhelming prac-

tical importance, we will want to define the concept of

stability precisely and develop criteria for determining it.

(1.1) Definition. Let Ft be a cO flow (or

semiflow)* on a topological space M and let A be an in-

variant set; i. e. , Ft (A) C A for all t. We say A is

stable (resp. asymptotically stable or an attractor) if for any

neighborhood U of A there is a neighborhood V of A such

*i.e., Ft : M ; M, FO = identity, and. Ft + s = FsoFt for all

t, s ER. C means Ft(x) is continuous in (t,x). A

semiflow is one defined only for t ~ O. Consult, e.g.,

Lang [1], Hartman [1], or Abraham-Marsden [1] for a discussion

of flows of vector fields. See section BA, or Chernoff­

Marsden [lJ for the infinite dimensional case.
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that the flow lines (integral curves) x(xo,t) - Ft(xO) be-

5

long to U if Xo E V (resp. n Ft (V) = A).
t>O

Thus A is stable (resp. attracting) when an initial

condition slightly perturbed from A remains near A

(resp. tends towards A). (See Figure 1.3).

If A is not stable it is called unstable.

stable
fixed

point

as ymptot ieo Ily
sto bl e

fixed point

Figure 1.3

stable
closed

or bit

W > Wo there are attract­

2cos e = g/w R, where e is

(1.2) Exercise. Show that in the ball in the hoop

example, the bottom of the hoop is an attracting fixed point

for w < Wo = Ig/R and that for

ing fixed points determined by

the angle with the negative vertical axis, R is the radius

of the hoop and g is the acceleration due to gravity.

The simplest case for which we can determine the

stability of a fixed point Xo is the finite dimensional,

linear case. Let X: Rn
+ Rn be a linear map. The flow of
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x is

point.
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tX
X(Xo,t) = e (xO). Clearly, the origin is a fixed

{e
Ajt

}Let {A j } be the eigenvalues of X. Then

are the eigenvalues of tX Suppose Re A. < 0 for all j •e

I/jtl
Re A.t J

Then = e J ->- 0 as t ->- 00. One can check, using

the Jordan canonical form, that in this case 0 is asymp-

totica11y stable and that if there is a A.
J

with pos~tive

real part, 0 is unstable. More generally, we have:

(1.3) Theorem. Let X: E ->- E be a continuous, linear

map on a Banach space E. The origin is a stable attracting

fixed point of the flow of X if the spectrum o(X) of X

is in the open left-half plane. The origin is unstable if

there exists z E o(X) such that Re(z) > O.

This will be proved in Section 2A, along with a review

of some relevant spectral theory.

Consider now the nonlinear case. Let P be a Banach

manifo1d* and let X be a c1 vector field on P. Let

Then dX(PO): T (P) ->- T (P)
PO Po

is a continuous

linear map on a Banach space. Also in Section 2A we shall

demonstrate the following basic theorem of Liapunov [1].

(1.4) Theorem. Let X be a c1 vector field on a

Banach manifold P and let Po be a fixed point of X, i. e. ,

X(PO) be the flow of i. e. , a= O. Let Ft X at Ft(X)

X(Ft (x», FO(X) = x. (Note that Ft(PO) = Po for all t. )

If the spectrum of dX(PO) lies in the left-half plane; i.e.,

O(dX(Po» C {z EQ::IRe z < O}, then Po is asymptotically

*We shall use only the most elementary facts about manifold
theory, mostly because of the convenient geometrical
language. See Lang [1] or Marsden [4] for the basic ideas.
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If there exists an isolated z Eo(dX(Pa)) such that

Re z > a, Pa is unstable. If O(dX(Pa)) c {zlRe z S a} and

there is a z E o(dX(Pa)) such that Re z = a, then stability

cannot be determined from the linearized equation.

(1.5) Exercise. Consider the following vector field on

2 2
~ : X(x,y) = (y,~(l-x )y-x). Decide whether the origin is un-

stable, stable, or attracting for ~ < a, ~ = a, and ~ > a.

Many interesting physical problems are governed by dif-

ferential equations depending on a parameter such as the

angular velocity w in the ball in the hoop example. Let

X : P + TP be a (smooth) vector field on a Banach manifold P.
~

Assume that there is a continuous curve p(~) in P such

that X (p(~)) = a, i.e., p(~) is a fixed point of the flow
~

of X~. Suppose that p(~) is attracting for ~ < ~a and

unstable for ~ > ~a. The point (p(~a)'~a) is then called

a bifurcation point of the flow of X~. For ~ < ~a the flow

of X can be described (at least in a neighborhood of p(~))
~

by saying that points tend toward p(~). However, this is not

true for ~ > ~a' and so the character of the flow may change

abruptly at ~a. Since the fixed point is unstable for

~ > ~a' we will be interested in finding stable behavior for

~ > ~a. That is, we are interested in finding bifurcation

above criticality to stable behavior.

For example, several curves of fixed points may corne to-

gether at a bifurcation point. (A curve of fixed points is a

curve a: I + P such that X (a(~)) = a for all ~. One
~

such curve is obviously ~ ~ p(~).) There may be curves of

stable fixed points for ~ > ~a. In the case of the ball in



8 THE HOPF BIFURCATION AND ITS APPLICATIONS

the hoop, there are two curves of stable fixed points for

W > wO' one moving up the left side of the hoop and one moving

up the right side (Figure 1.2).

Another type of behavior that may occur is bifurcation

to periodic orbits. This means that there are curves of the

form a: I .... P such that a(]10) = p(]10) and a(]1) is on a

closed orbit Y]1 of the flow of

Hopf bifurcation is of this type.

mechanics will be given shortly.

X]1. (See Figure 1.4). The

Physical examples in fluid

x

-----t=====-f--unstable fixed point

- sta b Ie closed orbit

y

-stable fixed point

unstable fixed
point ---

stable fixed point

x

(a) Supercritica I Bifurcation

(Stable Closed Orbits)

(b) Subcritical Bifurcation

(Unstable Closed Orbits)

Figure 1.4

The General Nature of the Hopf Bifurcation
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The appearance of the stable closed orbits (= periodic

solutions) is interpreted as a "shift of stability" from the

original stationary solution to the periodic one, i.e., a

point near the original fixed point now is attracted to and

becomes indistinguishable from the closed orbit. {See

Figures 1.4 and 1.5).

9

stable point appearance of

a closed orbit

further
bifurco-

~

tions

the closed orbit

grows in amplitude

Figure 1.5

The Hopf Bifurcation

Other kinds of bifurcation can occur; for example, as

we shall see later, the stable closed orbit in Figure 1.4 may

bifurcate to a stable 2-torus. In the presence of symmetries,

the situation is also more complicated. This will be treated

in some detail in Section 7, but for now we illustrate what

can happen via an example.

(1.6) Example: The Ball in the Sphere. A rigid,

hollow sphere with a small ball inside it hangs from the
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ceiling and rotates with frequency w about a vertical axis

through its center (Figure 1.6).

Figure 1. 6

w<wo

For small w, the bottom of the sphere is a stable point,

but for w > Wo the ball moves up the side of the sphere to

a new fixed point. For each w > wo' there is a stable, in­

variant circle of fixed points (Figure 1.7). We get a circle

of fixed points rather than isolated ones because of the

symmetries present in the problem.

stable circle

Figure 1. 7

Before we discuss methods of determining what kind of

bifurcation will take place and associated stability questions,
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we shall briefly describe the general basin bifurcation

picture of R. Abraham [1,2].

In this picture one imagines a rolling landscape on

which water is flowing. We picture an attractor as a basin

into which water flows. Precisely, if F
t

is a flow on M

and A is an attractor, the basin of A is the set of all

11

x E M which tend to A as t + +00. (The less picturesque

phrase "stable manifold" is more commonly used.)

As parameters are tuned, the landscape, undulates and

the flow changes. Basins may merge, new ones may form, old

ones may disappear, complicated attractors may develop, etc.

The Hopf bifurcation may be pictured as follows. We

begin with a simple basin of parabolic shape; Le., a point

attractor. As our parameter is tuned, a small hillock forms

and grows at the center of the basin. The new attractor is,

therefore, circular (viz the periodic orbit in the Hopf

theorem) and its basin is the original one minus the top point

of the hillock.

Notice that complicated attractors can spontaneously

appear or dissappear as mesas are lowered to basins or basins

are raised into mesas.

Many examples of bifurcations occur in nature, as a

glance at the rest of the text and the bibliography shows.

The Hopf bifurcation is behind oscillations in chemical and

Ibiological systems (see e.g. Kopell-Howard [1-6], Abraham [1,2]

and Sections 10, 11), including such 'things as "heart flutter". *

One of the most studied examples comes from fluid mechanics,

so we now pause briefly to consider the basic ideas of

*That "heart flutter" is a Hopf bifurcation is a conjecture
told to us by A. Fischer; cf. Zeeman [2].
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the subject.

The Navier-Stokes Equations

Let D C R
3

be an open, bounded set with smooth boundary.

We will consider D to be filled with an incompressible ,

homogeneous (constant density) fluid. Let u and p be the

velocity and pressure of the fluid, respectively. If the

fluid is viscous and if changes in temperature can be

neglected, the equations governing its motion are:

au + (u.V)u - v~u = -grad p (+ external forces)at

div u = 0

(L3)

(1. 4)

The boundary condition is ul aD o (or ul aD prescribed,

if the boundary of D is moving) and the initial condition is

that u(x,O) is some given uO(x). The problem is to find

u(x,t) and p(x,t) for t > O. The first equation (1.3) is

analogous to Newton's Second Law F rna; the second (1.4) is

equivalent to the incompressibility of the fluid.*

Think of the evolution equation (1.3) as a vector field

and so defines a flow, on the space I of all divergence free

vector fields on D. (There are major technical difficulties

here, but we ignore them for now - see Section 8. )

The Reynolds number of the flow is defined by R = UL ,
v

where U and L are a typical speed and a length associated

with the flow, and v is the fluid's viscosity. For example,

if we are considering the flow near a sphere

toward which fluid is projected with constant velocity
....

U i
00

*see any fluid mechanics text for a discussion of these
points. For example, see Serrin [1], Shinbrot [1] or Hughes­
Marsden [3].
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(Figure 1.8), then L may be taken to be the radius of the

sphere and U U
oo

•

13

--
Figure 1.8

If the fluid is not viscous (v 0), then R 00, and

the fluid satisfies Euler's equations:

auat + (u·V)u

divu

-grad p

o.

(1.5)

(1.6)

The boundary condition becomes: ul aD is parallel to aD, or

ul laD for short. This sudden change of boundary condition

from u = 0 on aD to ul laD is of fundamental significance

and is responsible for many of the difficulties in fluid

mechanics for R very large (see footnote below).

The Reynolds number of the flow has the property that,

if we rescale as follows:

* U*
u U- u

* L*
x L x

t* T*
tT

* ru*) 2pP lU
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then if T = L/U, T* = L*/U* and provided R* = U*L*/V* =

R = UL/v, u* satisfies the same equations with respect to x*

and t* that u satisfies with respect to x and t; i.e.,

*~ + (u*·V*)u*
dt*

div u* a

-grad p* (1. 7)

(1. 8)

of similarity.)

with the same boundary condition u*1 = a
dD

is easy to check and is called Reynolds' law

as before. (This

Thus, the nature of these two solutions of the Navier-Stokes

equations is the same. The fact that this rescaling can be

done is essential in practical problems. For example, it

allows engineers to testa scale model of an airplane at low

speeds to determine whether the real airplane will be able to

fly at high speeds.

(1.7) Example. Consider the flow in Figure 1.8. If

the fluid is not viscous, the boundary condition is that the

velocity at the surface of the sphere is parallel to the

sphere, and the fluid slips smoothly past the sphere

(Figure 1.9).

Figure 1. 9

Now consider the same situation, but in the viscous case.

Assume that R starts off small and is gradual~y increased.

(In the laboratory this is usually accomplished by increasing
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-+
the velocity Uooi, but we may wish to think of it as v -+ 0,

i.e., molasses changing to water.) Because of the no-slip

condition at the surface of the sphere, as Uoo gets larger,

the velocity gradient increases there. This causes the flow

to become more and more complicated (Figure 1.10).*

For small values of the Reynolds number, the velocity

field behind the sphere is observed to be stationary, or

approximately so, but when a critical value of the Reynolds

number is reached, it becomes periodic. For even higher

values of the Reynolds number, the periodic solution loses

stability and further bifurcations take place. The further

bifurcation illustrated in Figure 1.10 is believed to repre-

sent a bifurcation from an attracting periodic orbit to a

periodic orbit on an attracting 2-torus in I. These further

bifurcations may eventually lead to turbulence. See Remark

1.15 and Section 9 below.

--. 0::
R =50 (a periodic solution) I I

further bifurcation as R increases

~ t

~-ct~~~
~~ "-....Y "---./

R =75 (a slightly altered periodic solution)

Figure 1.10

*These large velocity gradients mean that in numerical
studies, finite difference techniques become useless for
interesting flows. Recently A. Chorin [1] has introduced
a brilliant technique for overcoming these difficulties
and is able to simulate numerically for the first time,
the "Karmen vortex sheet", illustrated in Figure 1.10.
See also Marsden [5] and Marsden-McCracken [2].

15
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(1.8) Example. Couette Flow. A viscous, * incompressi­

ble, homogeneous fluid fills the space between two long,

coaxial cylinders which are rotating. For example, they may

rotate in opposite directions with frequency w (Figure 1.11).

For small values of w, the flow is horizontal, laminar and

stationary. fluid

I
I I

wfH- W

I

Figure 1.11

If the frequency is increased beyond some value wo' the

fluid breaks up into what are called Taylor cells (Figure 1.12).

top view

Figure 1.12

*couette flow is studied extensively in the literature (see
Serrin [1], Coles [1]) and is a stationary flow of the Euler
equations as well as of the Navier-Stokes equations (see the
following exercise).
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Taylor cells are also a stationary solution of the Navier-

Stokes equations. For larger values of w, bifurcations to

periodic, doubly periodic and more complicated solutions may

take place (Figure 1.13).

17

he Iicc I stru cture doubly periodic structure

}o'igure 1.13

For still larger values of w, the structure of the Taylor

cells becomes more complex and eventually breaks down

completely and the flow becomes turbulent. For more informa-

tion, see Coles [1] and Section 7.

(1. 9) Exercise. Find a stationary solution
..,.
u to the

Navier-Stokes equations in cylindrical coordinates such that

U depends only on r, u r = Uz = 0, the external force

f 0 and the angular velocity w satisfies

and wlr=A = + P2 (i.e., find Couette flow).
2

U is also a solution to Euler equations.

Wlr=A = -PI'
1

Show that

(Answer: where and s =

Another important place in fluid mechanics where an

instability of this sort occurs is in flow in a pipe. The
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flow is steady and laminar (Poiseuille flow) up to Reynolds

numbers around 4,000, at which point it becomes unstable and

transition to chaotic or turbulent flow occurs. Actually if

the experiment is done carefully, turbulence can be delayed

until rather large R. It is analogous to balancing a ball

on the tip of a rod whose diameter is shrinking.

Statement of the Principal Bifurcation Theorems

Let X: P + T{P) be a ck vector field on a manifold
lJ

P depending smoothly on a real parameter lJ. Let F~ be the

flow of Let be a fixed point for all lJ, an

attracting fixed point for lJ < lJO' and an unstable fixed

point for lJ > lJO' Recall (Theorem 1.4) that the condition

for stability of PO is that 0{dX
lJ

{PO)) C {zlRe z < O}. At

lJ = lJO' some part of the spectrum of dXlJ{po) crosses the

imaginary axis. The nature of the bifurcation that takes

place at the point (PO,lJ
O

) depends on how that crossing

occurs (it depends, for example, on the dimension of the

generalized eigenspace* of dX (PO) belonging to the part of
lJO

the spectrum that crosses the axis). If P is a finite

dimensional space, there are bifurcation theorems giving

necessary conditions for certain kinds of bifurcation to occur.

If P is not finite dimensional, we may be able, nevertheless,

to reduce the problem to a finite dimensional one via the

center manifold theorem by means of the following simple but

crucial suspension trick. Let ~ be the time 1 map of the

As we shall show in Section 2A,

That is,

P x IR.onflow
_ lJ

Ft - (Ft,lJ)

o (dX{PO,lJo) )
0{d~{Po,lJn)) = e

*The definition and basic properties are reviewed in Section 2A.
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The following theorem is now applicable to ~ (see

Sections 2-4 for details).

(1.10) Center Manifold Theorem (Kelley [1], Hirsch­

Pugh-Shub [1], Hartman [1], Takens [2], etc.). Let ~ be

a mapping from a neighborhood of a O in a Banach manifold P

to P. We assume that ~ has k continuous derivatives and

19

We further assume that

spectral radius 1 and that the spectrum of

has

splits in-

to a part on the unit circle and the remainder, which is at

a non-zero distance from the unit circle. Let Y denote the

generalized eigenspace of d~(aO) belonging to the part of

the spectrum on the unit circle; assume that Y has dimension

d < Then there exists a neighborhood V of a O in P

and a ck- l submanifold M, called a center manifold for ~,

of V of dimension d, passing through a O and tangent to

Y at aO' such that:

(a) (Local Invariance): If x EM and ~(x) E V, then

~(x) E M.

(b) (Local Attractivity): If ~n(x) E V for all

n 0,1,2, ••• , then as n ~ 00, ~n(x) ~ M.

(1.11) Remark. It will be a corolla~y to the proof of

the Center Manifold Theorem that if ~ is the time 1 map of

Ft defined above then the center manifold M can be chosen

so that properties (a) and (b) apply to Ft for all t > O.

(1.12) Remark. The Center Manifold Theorem is not

always for
00

intrue C ~ the following sense: since

~ E~ for all k, we get a sequence of center manifolds ~,

but their intersection may be empty. See Remarks 2.6



20 THE HOPF BIFURCATION AND ITS APPLICATIONS

regarding the differentiability of M.

We will be particularly interested in the case in which

bifurcation to stable closed orbits occurs. With X as
~

before, assume that for ~ = ~O (resp. ~ > ~o), 0(dX~(pO»

has two isolated nonzero, simple complex conjugate eigenvalues

A(~) and A(~) such that Re A(~) = 0 (resp. > 0) and such

that d(RedA(~» I > O. Assume further that the rest of
~ ~=~o

0(dX~(po» remains in the left-half plane at a nonzero

distance from the imaginary axis. Using the Center Manifold

Theorem, we obtain a 3-manifold M C P, tangent to the eigen-

space of A(~O),A(~O) and to the ~-axis at ~ = ~O' locally

invariant under the flow of X, and containing all the local

recurrence. The problem is now reduced to one of a vector

field in two dimensions X: R2
+ R2 • The Hopf Bifurcation

~

Theorem in two dimensions then applies (see Section 3 for

details and Figures 1.4, 1.5):

(1.13) Hopf Bifurcation Theorem for Vector Fields

(Poincar~ [1], Andronov and Witt [1], Hopf [1], Ruelle­

Takens [1], Chafee [1], etc.). Let X be a ck (k ~ 4)
~

vector field on R2 such that X (0) = 0 for all ~ and
~

X = (X~,O) is also Ck • Let dX~(O,O) have two distinct,

simple* complex conjugate eigenvalues A(~) and A(~) such

that for ~ < 0, Re A(~)

for ~ > 0, Re A(~) > O.

< 0, for ~ = 0, Re A(~) 0, and

Also assume d R~ A(~) I > O.
~ ~=O

Then there is a ck- 2 function ~: (-8,8) + R such that

*Simple means that the generalized eigenspace (see Section 2A)
of the eigenvalue is one dimens~onal.
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2rr
(xl,O,~(xl» is on a closed orbit of period ~ and

1),,(0) I
radius growing like ~,of the flow of X for xl I 0 and

such that ~(O) = O. There is a neighborhood U of (0,0,0)

in ~3 such that any closed orbit in U is one of the above.

Furthermore, (c) if 0 is a "vague attractor"* for XO' then

~(xl) > 0 for all xl I 0 and the orbits are attracting

(see Figures 1.4, 1.5).

If, instead of a pair of conjugate eigenvalues crossing

the imaginary axis, a real eigenvalue crosses the imaginary

axis, two stable fixed points will branch off instead of a

closed orbit, as in the ball in the hoop example. See

Exercise 1.16.

After a bifurcation to stable closed orbits has occurred,

one might ask what the next bifurcation will look like. One

can visualize an invariant 2-torus blossoming out of the

closed orbit (Figure 1.14). In fact, this phenomenon can occur.

In order to see how, we assume we have a stable closed orbit

transverseNlet

for F~. Associated with this orbit is a Poincar~ map. To

define the Poincar~ map, let Xo be a point on the orbit,

be a codimension one manifold through

to the orbit. The Poincar~ map P
~

takes each point x E U,

a small neighborhood of Xo in N, to the next point at which

F~(X) intersects N (Figure 1.15). The poincar~ map is a

diffeomorphism from U to V - P~(U) eN, with P~(xo) = Xo

*This condition is spelled out below, and is reduced to a
specific hypothesis on X in Section 4A. See also Section 4C.
The case in which d Re )"(~)/d~ = 0 is discussed in
Section 3A. In Section 3B it is shown that "vague attractor"
can be replaced by "asymptotically stable". For a discussion
of what to expect generically, see Ruelle-Takens [1],
Sotomayer [1], Newhouse and Palis [1] and Section 7.
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Figure 1.14

x
----+-+........- N

Figure 1.15

(see Section 2B for a summary of properties of the Poincar~

map). The orbit is attracting if 0 (dP1I (xo» c {z I Iz I < I}

and is not attracting if there is some z E o(dP1I (xo» such

that Iz I > 1.

We assume, as above, that

field on a Banach manifold P

X : P + TP is a
1I

with XlI (PO) = 0

Ck vector

for all 1I.

We assume that is stable for 1I < lIO' and that be-

comes unstable at lIO' at which point bifurcation to a stable,

closed orbit Y(lI)

map associated with

takes place.

Y(lI) and let

Let P be the Poincar~
1I

X o(1I) E Y (1I). We further

assume that at 1I = 1I1' two isolated, simple, complex con­

jugate eigenvalues A(ll) and A(ll) of dPlI(xO(ll» cross

the unit circle such that dIA(ll)j I > 0 and such that the
dll 1I=1l

1
rest of o(dPll(xO(lI») remains inside the unit circle, at a

nonzero distance from it. We then apply the Center Manifold

Theorem to the map P = (Pll,ll) to obtain, as before, a

locally invariant 3-manifold for P. The Hopf Bifurcation
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Theorem for diffeomorphisms (in (1.14) below) then applies to

yield a one parameter family of invariant, stable circles for

P~ for ~ > ~l. Under the flow of x~, these circles be-

23

come stable invariant 2-tori for F~
t (Figure 1.16).

(d)

-
/

I
/
I N

\
\ /

~.

....... ---
Figure 1.16

(1.14) Hopf Bifurcatio; Theorem for Diffeomorphisms

(Sacker [1], Naimark [2], Ruelle-Takens [1]). Let P~: R2
+ R2

be a one-parameter family of ck (k > 5) diffeomorphisms

satisfying:

(a) P (0) = a for all ~
~

(b) For ~ < 0, a(dP (O»C {zl Iz' < I}
~

(c) For ~ a (Il > 0), a(dP (0» has two isolated,
~

simple, complex conjugate eigenvalues ;\(~) and A(~) such

that IA(~) I = 1 (I A(~) I > 1) and the remaining part of

a(dP (0» is inside the unit circle, at a nonzero distance
~

from it.

dIA(~)11 >0
d •
~ ~=O

Then (under two more "vague attractor" hypotheses which will

be explained during the proof of the theorem), there is a
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continuous one parameter family of invariant attracting

circles of P, one for each ].l E (0, E:) for small E: > O.
].l

(1.15) Remark. In Sections 8 and 9 we will discuss how

these bifurcation theorems yielding closed orbits and in-

variant tori can actually be applied to the Navier-Stokes

equations. One of the principal difficulties is the smooth­

ness of the flow, which we overcome by using general smooth-

ness results (Section 8A). Judovich [1-11], Iooss [1-6], and

Joseph and Sattinger have used Hopf's original method for

these results. Ruelle and Takens [1] have speculated that

further bifurcations produce higher dimensional stable, in-

variant tori, and that the flow becomes turbulent when, as an

integral curve in the space of all vector fields, it becomes

trapped by a "strange attractor" (stran';Je attractors are

shown to be abundant on k-tori for k ~ 4); see Section 9.

They can also arise spontaneously (see 4B.8 and Section 12).

The question of how one can explicitly follow a fixed point

through to a strange attractor is complicated and requires

more research. Important papers in this direction are

Takens [1,2], Ne'i"house [1] and Newhouse and Peixoto [1].

(1.16) Exercise o (a) Prove the following:

and <1>: H -r H
].l

that the map

Theorem. Let H be a Hilbert space (or manifold)

a map defined for each ].l E R such

(].l,x) ~ ,(x) is a ck
map, k > 1,

].l

from R x H to H, and for all ].l E IR, '].l(0) O.

Define L].l D'].l(O) and suppose the spectrum of L].l

lies inside the unit circle for ].l < O. Assume further

there is a real, simple, isolated eigenvalue A(].l)

of such that A (0) =0 1, (dA/d].l) (0) > 0, and
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has the eigenvalue 1 (Figure 1.17); then there is a

25

Ck - l curve 1 of fixed points of <1>: (x,l.1) r>- (<I>l.1 (x),l.1)

near (0,0) E IH x iR. The curve is tangent to IH at

(0,0) in iH x iR (Figure L 18). These points and the

points of (0,1.1) are the only fixed points of <I> in

a neighborhood of (0,0).

(b) Show that the hypotheses apply to the ball

in the hoop example (see Exercise 1.2).

Hint: Pick an eigenvector (z,O) for (LO'O) in

iH x iR with eigenvalue 1. Use the center manifold theorem

Figure 1.17

fL
unstable,

H
Figure 1.18

to obtain an invariant 2-manifold C tangent to (z,O) and

the 1.1 axis for <I> (x,l.1) = (<I>l.1(x),l.1). Choose coordinates

(a,l.1) on C where a is the projection to the normalized

eigenvector for Set in
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these coordinates. Let g (O:,I.l) == f (O:,I.l) _ 1
0:

and we use the

implicit function theorem to get a curve of zeros of g in

C. (See Ruelle-Takens [1, p. 190]).

(1.17) Remark. The closed orbits which appear in the

Hopf theorem need not be globally attracting, nor need they

persist for large values of the parameter I.l. See remarks

(3A. 3) •

(1.18) Remark. The reduction to finite dimensions

using the center manifold theorem is analogous to the reduction

to finite dimensions for stationary bifurcation theory of

elliptic type equations which goes under the name "Lyapunov-

Schmidt" theory. See Nirenberg [1] and Vainberg-Trenogin [1,2].

(1.19) Remark. Bifurcation to closed orhits can occur

by other mechanisms than the Hopf bifurcation. In Figure 1.19

is shown an example of S. Wan.

Fi xed points
move off axis
of symme~ry
and a closed
orbit forms

Au 0 0
~ Fixed pOints_O

come together

Figure 1.19



THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 2

THE CENTER MANIFOLD THEOREM

27

In this section we will start to carry out the program

outlined in Section 1 by proving the center manifold theorem.

The general invariant manifold theorem is given in Hirsch­

Pugh-Shub [1]. Most of the essential ideas are also in

Kelley [1] and a treatment with additional references is con­

tained in Hartman [1]. However, we shall follow a proof

given by Lanford [1] which is adapted to the case at hand,

and is direct and complete. We thank Professor Lanford for

allowing us to reproduce his proof.

The key job of the center manifold theorem is to

enable one to reduce to a finite dimensional problem. In the

case of the Hopf theorem, it enables a reduction to two dimen­

sions without losing any information concerning stability.

The outline of how this is done was presented in Section 1

and the details are given in Sections 3 and 4.

In order to begin, the reader should recall some

results about basic spectral theory of bounded linear opera­

tors by consulting Section 2A. The proofs of Theorems 1.3
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and 1.4 are also found there.

Statement and Proof of the Center Manifold Theorem

We are now ready for a proof of the center manifold

theorem. It will be given in terms of an invariant manifold

for a map ~, not necessarily a local diffeomorphism. Later

we shall use it to get an invariant manifold theorem for flows.

Remarks on generalizations are given at the end of the proof.

(2.1) Theorem. Center Manifold Theorem. Let ~ be

a mapping of a neighborhood of zero in a Banach space Z into

Z. We assume that ~ is ck +l , k > 1 and that ~(O)= O. We

further assume that D~(O) has spectral radius 1 and that

the spectrum of D~(O) splits into a part on the unit circle

and the remainder which is at a non-zero distance from the

unit circle.* Let Y denote the generalized eigenspace of

D~(O) belonging to the part of the spectrum on the unit circle;

assume that Y has dimension d < 00.

Then there exists a neighborhood V of 0 in Z and

submanifold M of V of dimension d, passing through

o and tangent to Y. at 0, such that

a) (Local Invariance): If x EM and~(x) E V,

then ~. (x) E M

b) (Local Attractivity): If ~n(x) E V for all

n = 0, 1, 2, ••• , then, as n ~ 00, the distance

from ~n(x) to M goes to zero.

We begin by reformulating (in a slightly more general

way) the theorem we want to prove. We have a mapping ~ of a

neighborhood of zero in a Banach space Z into Z, with

*This holds automatically if Z is finite dimensional or,
more generally, if D~(O) is compact.
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~(o) = O. We assume that the spectrum of D~(O) splits into

a part on the unit circle and the remainder, which is con­

tained in a circle of radius strictly less than one, about the

origin. The basic spectral theory discussed in Section 2A

guarantees the existence of a spectral projection P of Z

belonging to the part of the spectrum on the unit circle with

the following properties:

i) P commutes with D~(O), so the subspaces PZ

and (I-P)Z are mapped into themselves by D~(O).

ii) The spectrum of the restriction of D~(O) to

PZ lies on the unit circle, and

iii) The spectral radius of the restriction of D~(O)

to (I-P)Z is strictly less than one.

We let X denote (I-P)Z, Y denote PZ, A denote the res­

striction of D~(O) to X and B denote the restriction of

D (0) to Y. Then Z = X e Y and

where

~(x,y) (Ax+X*(x,y), By + Y*(x,y»,

A is bounded linear operator on X with spectral

radius strictly less than one.

B is a bounded operator on Y with spectrum on

the unit circle. (All we actually need is that

the spectral radius of B-1 is no larger than one.)

X* is a ck+l mapping of a neighborhood of the

origin in X e Y into X with a second-order

zero at the origin, i.e. X(O,O) = 0 and

DX(O,O) = 0, and

Y is a Ck+l mapping of a neighborhood of the origin

in X e Y into Y with a second-order zero at the
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origin.

We want to find an invariant manifold for ~ which is tangent

to Y at the origin. Such a manifold will be the graph of a

mapping u which maps a neighborhood of the origin in Y

into X, with u(O) = 0 and Du(O) = o.

In the version of the theorem we stated in 2.1, we

assumed that Y was finite-dimensional. We can weaken this

assumption, but not eliminate it entirely.

(2.2) Assumption. There exists a c k+l real-valued

function ¢ on Y which is 1 on a neighborhood of the

origin and zero for I Iyl I > 1. Perhaps surprisingly, this

assumption is actually rather restrictive. It holds trivially

if Y is finite-dimensional or if Y is a Hilbert space; for

a more detailed discussion of when it holds, see Bonic and

Frampton [1].

We can now state the precise theorem we are going to

prove.

(2.3) Theorem. Let the notation and assumptions be as

above. Then there exist e: > 0 and a ck-mapping u* from

{y E Y: Ilyll < d into X, with a second-order zero at zero,

such that

a) The manifold r
u*

= ((x,y) I x = u*(y) and

IIYII <d c X Ell Y, i.e. the graph of u* is invariant for

~ in the sense that, if Ilyll < e: and if ~ (u* (y) ,y)

(xl'Yl) with II ylll < e: then Xl = u* (Yl) .

b) The manifold r u * is locally attracting for ~

in the sense that, if Ilxll < e: Ilyll < e: , and if

(~'Yn) ~n(x,y) are such that II xnll < e: IIYnl1 < e:

for all n > 0, then
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lim I IXn - u*(Yn) I I = o.
n+oo

31

Proceeding with the proof, it will be convenient to

assume that IIA II < 1 and that IIB-lil is not much greater

than 1. This is not necessarily true but we can always make

it true by replacing the norms on X, Y by equivalent norms.

(See Lemma 2A.4). We shall assume that we have made this

change of norm. It is unfortunately a little awkward to ex­

plicitly set down exactly how close to one I IB- l , I should

be taken. We therefore carry out the proof as if 1 IB-li I

were an adjustable parameter; in the course of the argument,

we shall find a finite number of conditions on I IB- l , I. In

principle, one should collect all these conditions and impose

them at the outset.

The theorem guarantees the existence of a function u*

defined on what is perhaps a very small neighborhood of zero.

Rather than work with very small values of x,y, we shall

scale the system by introducing new variables xis, y/s (and

calling the new variables again x and y). This scaling

does not change A,B, but, by taking s very small, we can

make X*, Y*, together with their derivatives of order

< k + 1, as small as we like on the unit ball. Then by mul-

tiplying X*(x,y), Y*(x,y) by the function ¢(y) whose

existence is asserted in the assumption preceding the state-

ment of the theorem, we can also assume that x*(x,y), Y*(x,y)

are zero when I Iyl I > 1. Thus, if we introduce

sup
II x 11::1

y unrestricted

sup
jl,j2

jl+j2::k+l
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we can make A as small as we like by choosing E very small.

The only use we make of our technical assumption on Y is to

arrange things so that the supremum in the definition of A

may be taken over all y and not just over a bounded set.

Once we have done the scaling and cutting off by ¢,

we can prove a global center manifold theorem. That is, we

shall prove the following.

(2.4) Lemma. Keep the notation and assumptions of the

center manifold theorem. If A is SUfficiently small (and if

liB-II I is close enough to one), there exists a function u*,

defined and k times continuously differentiable on all of Y,

with a second-order zero at the origin, such that

a) The manifold r u * = {(x,y) Ix

invariant for 0/ in the strict sense.

u*(y),y E Y} is

b) If "xii

lim I Ix - u * (y ) I I = 0
n+oo n n

< 1, and y is arbitrary then

n
(where (xn'Yn) = 0/ (x,y)).

As with I IB-li I, we shall treat A as an adjustable

parameter and impose the necessary restrictions on its size as

they appear. It may be worth noting that A depends on the

choice of norm; hence, one must first choose the norm to make

I /B- l , I close to one, then do the scaling and cutting off to

make A small. To simplify the task of the reader who wants.

to check that all the required conditions on I IB- l "

can be satisfied simultaneously, we shall note these conditions

with a * as with (2.3)* on p. 34.

The strategy of proof is very simple. We start with a

manifold M of the form {x = u(y)} (this stands for the graph

of u); we let M denote the image of M under 0/. With

some mild restrictions on u, we first show that the manifold
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~M again has the form

{x = u(y)}
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for a new function

linear) mapping

A

u. If we write ffu

u 1+'9'"u

for u we get a (non-

from functions to functions. The manifold M is invariant if

and only if u = ffu, so we must find a fixed point of ~ We

do this by proving that ff is a contraction on a suitable

function space (assuming that A is small enough).

More explicitly, the proof will be divided into the

following steps:

I) Derive heuristi~ally a "formula" for Jv.

II) Show that the formula obtained in I) yields a

well-defined mapping of an appropriate function space U into

itself.

III)t Prove that ff is a contraction on U and hence

has a unique fixed point u*.

IV) Prove that b) of Lemma (2.4) holds for u*.

We begin by considering Step I).

I) To construct u(y), we should proceed as follows

i) Solve the equation

y = By + Y*(u(y) ,y) (2.1)

for y. This means that y is the Y-component of ~(u(y),y).

ii) Let

~(u(y),y), Le.,

u(y) be the X-component of

u(y) = Au(y) +X*(u(y),y). (2.2)

II) We shall somewhat arbitrarily choose the space

of functions u we want to consider to be

tone could use the implicit function theorem at this step.
For this approach, see Irwin [1].



34 THE HOPF BIFURCATION AND ITS APPLICATIONS

U . { I k+lu: Y .... X D u continuous; for

j 0,1, ••• ,k+l, all y; U{O) = Du{O) = o}.

We must carry out two steps:

i) Prove that, for any given u E U, equation (1) has

a unique solution y for each y E Y. And

ii) Prove that~, defined by (2.2) is in U.

To accomplish (i), we rewrite (2.1) as a fixed-point

problem:

It suffices, therefore, to prove that the mapping

_ -1 -1 * ( (-) -)Y 1+ B Y - B Y u Y ,y

is a contraction on Y. We do this by estimating its deriva-

tive:

I IDy[B-1Y-B-ly*(U(Y),y)] I I ::11B-lll IID1Y*(u(y),y)Du(y)

+ D2Y*(U(y) ,y) II :: 2AIIB- l ll

by the definitions of A and U. If we require

2AIIB-
l

ll < 1, (2.3) *

equation (2.1) has a unique solution y for each y. Note

that Y is a function of y, depending also on the function

u. By the inverse function theorem, y is a Ck+l function

of y.

Next we establish (ii). By what we have just proved,

5'u E ck+l • Thus to show ~ E U, what we must check is that

and

I IDjiVu(y) II < 1 for all y, j = 0,1,2, ..• ,k+l

-%.(0) = 0, D.%.(O) = O.

First take j = 0:

(2. 4)

(2.5)

IliVu(y)11 ~ IIAII·llu(Y)11 + Ilx*(u(Y),Y)11 < IIAII + A,

so if we require

IIAII + A < 1,

then I Wu{y) II < 1 for all y.

(2.6) *
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To estimate D9U we must first estimate Dy(y). By

differentiating (2.1), we get
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where y U
: Y + Y is defined by

yU(y) = Y*(u(y) ,y).

By a computation we have already done,

(2.7)

Now B + DYu

I IDYu(y)!! ~ 2A for all y.

B[I+B-1DYu ) and since 2AI IB-11! < 1 (by

(2.3)*), B + DYu is invertible and

The quantity on the right-hand side of this inequality will

play an important role in our estimates, so we give it a name:

(2.8)

Note that, by first making 1IB- l , I very close to one and then

by making A small, we can make y as close to one as we like.

We have just shown that

II Dy (y) II < y for all y.

Differentiating the expression (2.2) for YU(y) yields

(2.9)

and

Thus

D5U(y) = [A DU(y) + DXu(y») Dy(y); }

(xu (y) = X*(u(y) ,y».

11D9U(y) II < (IIAII + 2A) .y,

(2.10)

(2.11)
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so if we require

we get

(IIAII + 2A) Y < 1,

11D%(y) II < 1 for all y.

(2.12) *

We shall carry the estimates just one step further.

Differentiating (2.7) yields

By a straightforward computation,

so

Now, by differentiating the formula (2.10) for D~,

we get

2
D :§ilu(y)

so

If we require

we have

IID2~(y)11 <1 for all y.

(2.13) *

At this point it should be plausible by imposing a sequence of

stronger and stronger conditions on Y,A, that we can arrange

I IDjy(y) II < 1 for all y, j = 3,4, •.. ,k+1.
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The verification that this is in fact possible is left to the

reader.
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u = 0, Du

To check (2.5), i.e. ~u

0) we note that

0, D% o (assuming

AU(O) + X(u(O) ,0) = 0 and

[A Du(O) + D1X(0,0)Du(0) + D2X(0,0)] ·Dy(O)

[A· 0 + 0 + 0]· Dy (0) = O.

yeo)

~u(O)

IL%. (0)

o since 0 is a solution of 0 By + Y(u(y) ,y)

This completes step II). Now we turn to III)

III) We show that ~ is a contraction and apply the

contraction mapping principle. What we actually do is slightly

more complicated.

i) We show that ~ is a contraction in the supremum

norm. Since U is not complete in the supremum norm, the con-

traction mapping principle does not imply that ~ has a fixed

point in U, but it does imply that ~ has a fixed point in

the completion of U with respect to the supremum norm.

ii) We show that the completion of U with respect

to the supremum norm is contained in the set of functions u

from y to X with Lipschitz-continuous k
th derivatives

and with a second-order zero at the origin. Thus, the fixed

point u* of ~ has the differentiability asserted in the

theorem.

We proceed by proving i).

i) Consider u l ' u 2 E U, and let

I Iu l -u2 I 10 = supl lul (y)-u2 (y) I I· Let Yl(y), Y2(y) denote
y

the solution of

y 1,2.
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We shall estimate successively 11:i\-Y211 0' and II9"u1~211 O.

Subtracting the defining equations for Yl'Y2' we get

so that

Since I I Du1 110 2 1, we can write

Inserting (2.15) in (2.14) and rearranging, yields

(l-n·IIB-
1 11) IIY1-Y211 2. >.·IIB-lll·llu2-ulII0' I

i. e. I 1Y1 -Y2 1I 0 ~ >.. yo I I u2 - u1 1I • J
Now insert estimates (2.15) and (2.16) in

to get

If we now require

(2.14)

(2.15)

(2.16)

a = II All (l+y>.) + >. (l+2y>.) < 1,

3t will be a contraction in the supremum norm.

(2.17)*
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ii) The assertions we want all follow directly from

the following general result.

(2.5) Lemma. Let (un) be a sequence of functions on

a Banach space Y with values on a Banach space X. Assume

that, for all nand y E Y,

j O,1,2, ..• ,k,

and that each is Lipschitz continuous with Lipschitz

constant one. Assume also that for each y, the sequence

(un(y)) converges weakly (i.e., in the weak topology on X)

to a unit vector u(y). Then

a) u has a Lipschitz continuous k th derivative

with Lipschitz constant one.

b) ojun(y) converges weakly to oju(y)* for all

y and j = 1, 2 , ••• , k •

If X, Yare finite dimensional, all the Banach space

technicalities in the statement of the proposition disappear,

and the proposition becomes a straightforward consequence of

the Arzela-Ascoli Theorem. We postpone the proof for a moment,

and instead turn to step IV).

IV) We shall prove the following: Let x E X with

Ilxll < 1 and let y E Y be arbitrary. Let (xl'Yl) 'I'(x,y) .

*This statement may require some interpretation. For each

n,y,ojun(y) is a bounded symmetric j-linear map from y
j

to X. What we are asserting is that, for each Y'Yl' ..• 'Yj'

the sequence (ojun(y) (Yl' •.• 'Yj)) of elements of X con­

verges in the weak topology on X to oju(y) (Yl' ... 'Yj).
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Then

and
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II xIII ~ 1

Ilxl-u*(Yl) II ~ CY.·llx-u*(y) II, (2.18)

where CY. is as defined in (2.17). By induction,

[ Ix -u* (Y ) II < cy'nll x-u* (Y) II -+ 0 as n -+ 00,n n

as asserted.

To prove I Ixll I < 1, we first write

Xl = Ax + X(x,y), so that

/lxlll ~ IIAlj·llxll + It ~ "All + It < 1 by (2.6)

To prove (2.18), we essentially have to repeat the es­

timates made in proving that j7 is a contraction. Let Yl be

the solution of

On the other hand, by the definition of Yl we have

Yl = By + Y(x,y).

Subtracting these equations and proceeding exactly as in the

derivation of (2.16), we get

Next, we write

xl = Ax + X(x,y).

Subtracting and making the same estimates as before, we get
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as desired. This completes step IV).
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Let us finish the argument by supplying the details for

Lemma (2.5).

Proof of Lemma (2.5)

We shall give the argument only for k = 1; the general-

ization to arbitrary k is a straightforward induction argu-

ment.

We start by choosing Yl'Y2 E Y and ¢ E X* and con­

sider the sequence of real-valued functions of a real variable

From the assumptions we have made about the sequence (un)'

it follows that

lim ~n(t) = ¢(u(Yl+tY2)) = ~(t)
n->-QO

for all t, that ~n(t) is differentiable, that

I~~ (t)1 < II ¢ 1/ •II y 1// for all n, t

and that

for all n, t l , t 2 . By this last inequality and the Arzela-

Ascoli Theorem, there exists a subsequence

verges uniformly on every bounded interval.

~' (t) which con­n j
We shall tempora-

rily denote the limit of this subsequence by X(t). We have

hence, passing to the limit j ->- 00, we get
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1jJ(t) =1jJ(O) + f: X(T) dT,

which implies that 1jJ (t) is continuously differentiable and

that

To see that

1jJ I (t) X(t) •

lim1jJ~(t) = 1jJ'(t)
nTOO

(i.e., that it is not necessary to pass to a subsequence), we

note that the argument we have just given shows that any sub-

sequence of (1jJ' (t» has a subsequence converging to 1jJ I (t) ;
n

this implies that the original sequence must converge to this

limit.

Since

we conclude that the sequence

**converges in the weak topology on X to a limit, which we

shall denote by DU(Yl) (Y2); this notation is at this point

only suggestive. By passage to a limit from the correspond-

**is a bounded linear mapping of norm < 1 from yto X

for each We denote this linear operator by

we have
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i.e., the mapping y ~ Du(y) is Lipschitz continuous from Y

**to L(Y,X ).

The next step is to prove that

this equation together with the norm-continuity of y~ Du(y)

will imply that u is (Frechet)-differentiable. The integral

in (2.19) may be understood as a vector-valued Riemann integral.

By the first part of our argument,

**for all ¢ E X and taking Riemann integrals commutes with

continuous linear mappings, so that

*for all ¢ EX. Therefore (2.19) is proved.

The situation is now as follows: We have shown that,

**if we regard u as a mapping into X which contains X,

then it is Frechet differentiable with derivative Du. On the

other hand, we know that u actually takes values in X and

want to conclude that it is differentiable as a mapping into

x. This is equivalent to proving that DU(Yl) (Y2) belongs to

X for all But

u(Yl+tY2)-u(Yl)
~~l~ t

t+O

the difference quotients on the right all belong to X, and

**X is norm closed in X

the proof is complete. CJ
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(2.6) Remarks on the Center Manifold Theorem

1. It may be noted that we seem to have lost some

differentiability in passing from ~ to

that ~ is ck+ l and only concluded that

u* ,

u*

since we assumed

is ck . In

fact, however, the u* we obtain has a Lipschitz continuous

kth derivative, and our argument works just as well if we

only assume that ~ has a Lipschitz continuous kth deriva-

tive, so in this class of maps, no loss of differentiability

occurs. Moreover, if we make the weaker assumption that the

k th derivative of ~ is uniformly continuous on some neigh-

borhood of zero, we can show that the same is true of u*.

(Of course, if X and Yare finite dimensional, continuity

on a neighborhood of zero implies uniform continuity on a

neighborhood of zero, but this is no longer true if X or Y

is infinite dimensional).

2. As C. Pugh has pointed out, if ~ is infinite-

ly differentiable, the center manifold cannot, in general, be

taken to be infinitely differentiable. It is also not true

that, if ~ is analytic there is an analytic center manifold.

We shall give a counterexample in the context of equilibrium

points of differential equations rather than fixed points of

maps; cf. Theorem 2.7 below. This example, due to Lanford,

also shows that the center manifold is not unique;

cf. Exercise 2.8.

Consider the system of equations:

~

= - 0, (2.20 )

.where h is analytic near zero and has a second-order zero at

zero. We claim that, if h is not analytic in the whole com-
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p1ex plane, there is no function u(Y1'Y2)' analytic in a

neighborhood of (0,0) and vanishing to second order at (0,0),

such that the manifold

is locally invariant under the flow induced by the differential

equation near (0,0). To see this, we assume that we have an

invariant manifold with

are uniquely determined by the requirement of

Straightforward computation shows that the expansion coeffi-

cients c, ,
J 1 ,J2

invariance and that

(j1+ j 2) :
(j1): h j1+ j2 ,

where

h(Y1) = L h
J
'Y1

j

j.:.2

If the series for h has a finite radius of convergence, the

series for u(o'Y2) diverges for all non-zero Y2'

The system of differential equations has nevertheless

many infinitely differentiable center manifolds. To construct

one, let h(Y1) be a bounded infinitely differentiable function

agreeing with h on a neighborhood of zero. Then the manifold

defined by

(2.21)

is easily verified to be globally invariant for the system
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0, dx
dt (2.22)

and hence locally invariant at zero for the original system.

(To make the expression for u less mysterious, we

sketch its derivation. The equations for Yl'Y2 do not in­

volve x and are trivial to solve explicitly. A function u

defining an invariant manifold for the modified system (2.22)

must satisfy

for all t, Yl' Y2. The formula (2.21) for u is obtained

by solving this ordinary differential equation with a suitable

boundary condition at t = _00.)

3. Often one wishes to replace the fixed point 0 of

~ by an invariant manifold V and make spectral hypotheses

on a normal bundle of V. We shall need to do this in section

9. This general case follows the same procedure; details are

found in Hirsch-Pugh-Shub [lJ.

The Center Manifold Theorem for Flows

The center manifold theorem for maps can be used to

prove a center manifold theorem for flows. We work with the

time t maps of the flow rather than with the vector fields

themselves because, in preparation for the Navier Stokes equa-

tions, we want to allow the vector field generating the flow

to be only densely defined, but since we can often prove that

the time
00

t-maps are C this is a reasonable hypothesis for

many partial differential equations (see Section 8A for de-

tails) •
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(2.7) Theorem. Center Manifold Theorem for Flows.
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Let z be a Banach space admitting a
00

C *norm away from 0

and let Ft be a cO semiflow defined in a neighborhood of

zero for

Ft(X) is

o < t < T. Assume

ck+l jointly in

Ft(O) = 0,

t and x.

and that for t > O.

Assume that the

spectrum of the linear semigroup DF t (0): Z -+ Z is of the

form e t (01U0 2 ) where
tal

lies the unit circle (Le.e on

°1 lies the imaginary axis) and
ta 2 lies inside theon e

unit circle a nonzero distance from it, for t> 0; i.e. 02

is in the left half plane. Let Y be the generalized eigen-

space corresponding to the part of the spectrum on the unit

circle. Assume dim Y d < 00.

a

Then there exists a neighborhood V of 0 in Z and

submanifold M CV of dimension d passing through

o and tangent to Y at 0 such that

(a) If x EM, t > 0 and Ft(x) E V, then

Ft(X) EM

(b) If t > 0 and F~(X) remains defined and in

V for all n 0,1,2, .•• , then F~(X) -+ M as n -+

This way of formulating the result is the most conven-

ient for it applies to ordinary as well as to partial differen-

tial equations, the reason is that we do not need to worry

about "unboundedness" of the generator of the flow. Instead

we have used a smoothness assumption on the flow.

The center manifold theorem for maps, Theorem 2.1,

applies to e~ch Ft , t > O. However, we are claiming that

V and M can be chosen independent of t. The basic reason
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for this is that the maps~t} commute: F 0 F - F -s t - t+s-

Ft 0 Fs ' where defined. However, this is somewhat over-

simplified. In the proof of the center manifold theorem we

would require the Ft to remain globally commuting after they

have been cut off by the function $. That is, we need to

ensure that in the course of proving lemma 2.4, A can be

chosen small (independent of t) and the Ft'S are globally

defined and commute.

The way to ensure this is to first cut off the Ft in

Z outside a ball B in such a way that the Ft
are not dis-

turbed in a small ball about 0, 0 < t < T, and are the iden--
tity outside of B. This may be achieved by joint continuity

of and of
00

function f which is a neigh-Ft use a C one on

borhood of 0 and is 0 outside B. Then defining

where T = It f(F (x))ds,
o s

(2.23)

it is easy to see that Gt extends to a global semiflowt on

Z which coincides with Ft , 0 ~ t ~ T on a neighborhood of

zero, and which is the identity outside B. Moreover, Gt

remains a Ck+l semiflow. (For this to be true we required

the smoothness of the norm on Z and that for t > 0 F t has

*smoothness in t and x jointly ) .
Now we can rescale and chop off simultaneously the Gt

outside B as in the above proof. Since this does not affect

Ft on a small neighborhood of zero, we get our result.

*In linear semigroup theory this corresponds to analyticity
of the semigroup; it holds for the heat equation for instance.
For the Navier Stokes eqations, see Sections 8,9.

t see Renz [1] for further details.



THE HOPF BIFURCATION AND ITS APPLICATIONS 49

(2.8) Exercise. (nonuniqueness of the center manifold

for flows). Let 2X (x,y) = (-x,y ). Solve the equation

d(x,y) = X(x,y) and draw the integral curves.
dt

Show that the flow of X satisfies the conditions of

Theorem 2.7 with y the y-axis. Show that the y-axis is a

center manifold for the flow. Show that each integral curve

in the lower half plane goes toward the origin as t ~ and

that the curve becomes parallel to the y-axis as t ->- -00. Show

that the curve which is the union of the positive y-axis with

any integral curve in the lower half plane is a center manifold

for the flow of X. (see Kelley [1], p. 149).

(2.9) Exercise.

group theory).

(Assumes a knowledge of linear semi-

Consider a Hilbert space H (or a "smooth" Banach

space) and let A be the generator of an analytic semigroup.

Let K: H ->- H be a Ck +l mapping and consider the evolution

equations

dx
dt Ax + K(x), x(O) = Xo (2.24)

(a) Show that these define a local semiflow Ft(x)

on H which is ck +l in (t,x) for t >

Duhamel integral equation x(t) = eAtxo

O. (Hint: Solve the

f
t-

t-s A+ 0 e ( ) K(x(s))ds

by iteration or the implicit function theorem on a suitable

space of maps (references: Segal [1], Marsden [1], Robbin [1]).

(b) Assume K(O) = 0, DK(O) = O. Show the existence

of i~variant manifolds for (2.24) under suitable spectral

hypotheses on A by using Theorem 2.7.
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SECTION 2A

SOME SPECTRAL THEORY

In this section we recall quickly some relevant results

in spectral theory. For details, see Rudin [1] or Dunford-

Schwartz [1,2]. Then we go on and use these to prove Theorems

1. 3 and 1.4.

Let T: E + E be a bounded linear operator on a Banach

space E and let a(T) denote its spectrum, a(T) =

{A E ~[T - AI is not invertible on the complexification of El

Then a(T) is non-empty, is compact, and for A E a(T),IAI <

I ITI I· Let r(T) denote its spectral radius defined by

r(T) = SUp{IAI

radius formula:

IA E a(T)}. r(t) is also given by the spectral

lin
r(T) limit I ITnl I •

n+oo

(The proof is analogous to the formula for the radius of con-

vergence of a power series and can be supplied without difficul-

ty; cf. Rudin [1, p.355].)

The following two lemmas are also not difficult and are
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proven in the references given:

51

(2A.l) Lemma. Let f(z)

tion and define f(T) = L a Tn
On'

L a n
zn be an entire func­

o
then 0 (f (T» = f (0 (T» •

(2A.2) Lemma. Suppose otT) = 0 1 U 02 where

d(01,02) > 0,

El and E2

o (T i ) o .•
1.

then there are unique T-invariant subspaces

such that E = El e E2 and if Ti = TIE.' then
1.

Ei is called the generalized eigenspace of 0i'

Lemma 2A.2 is done as follows: Let be a closed

curve with

then

in its interior and O2 in its exterior,

Note that the eigenspace of an eigenvalue A is not al-

ways the same as the generalized eigenspace of A. In the

finite dimensional case, the generalized eigenspace of A is

the subspace corresponding to all the Jordan blocks containing

A in the Jordan canonical form.

(2A. 3) Lemma. Let T, 0 1 , and O2 be as in Lemma

2A.2 and assume that d(e
°1 °2 O. Then for, e ) > the operator

tT the generalized eigenspace of
tTi is Ei •e e

Proof. Write, according to Lemma 2A.2, E

Thus,

From this the result follows easily. []

(2A.4) Lemma. Let T: E + E be a bounded, linear
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operator on a Banach space E. Let r be any number greater

than r(T), the spectral radius of T. Then there is a norm

I I on E equivalent to the original norm such that ITI < r.

Proof. We know that r(t) is given by r(T) = lim I l'7nl I}/n.

Therefore, sup II Tnll
< "'. If we define Ixl = sup II Tn(x) II

n~a
n

n~a
n

r r

we see that I I is a norm and that Ilxll.2lxl.2

(~~~ I ITn") I I x I I . Hence IT(x) I = sUb
II Tn+l(x) II

r n n~
nr

r sup II Tn+l(X) II :s rl xl . 0n+l
n~a r

(2A.5) Lemma. Let A: E + E be a bounded operator

on E and let r > cr(A) (i.e. if A E cr(A) , Re A< r). Then

there is an equivalent norm I I on E such that for t > a,

I
tAl < rte e.

Proof. Note that (see Lemma 2A.l) e rt is > spectral radius

of etA; i.e. e rt > lim I I entAl I lin. Set
n+'"

II entA(x) II
rnte

Ixl = sup
n;::a
t~a

and proceed as in Lemma 2A.4. CJ

There is an analogous lemma if r < cr (A) , giving rte

With this machinery we now turn to Theorems 1.3 and 1.4 of

Section 1:

(1.3) Theorem. Let T: E + E be a bounded linear

operator. Let cr(T) C {zlRe z < a} (resp. cr(T) ~ {zlRe z > a}),

then the origin is an attracting (resp. repelling) fixed point

for the flow ¢ = e tT
oft T.
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Proof. This is immediate from Lemma 2A.5 for if 0(T)~

{Z IRe z < O}, there is an r < 0 with 0 (T) < r, as 0 (T)

is compact. Thus le tA I.:5 e rt .... 0 as t .... +00. D

Next we prove the first part of Theorem 1.4 from Section 1.

(1.4) Theorem. Let X be a cl vector field on a

Banach manifold P and be such that X(PO) = O. If
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o (dX (p0)) C {z E <c IRe z < O},

stable.

then is asymptotically

Proof. We can assume that P is a Banach space E and that

Po = O. As above, renorm E and find € > 0 such that

I letA I I < e - d , where A = dX (0) •

From the local existence theory of ordinary differen­

. *tial equat10ns , there is a r-ball about 0 for which the

time of existence is uniform if the initial condition Xo

lies in this ball. Let

R(x) = X(x) - DX(O) ·x.

Find such that Ilx II 2 r 2 implies IIR(x)11 <a.llxll

where a. = €/2.

Let B be the open r 2/2 ball about O. We shall

show that if X
o

E B, then the integral curve starting at Xo

remains in Band .... 0 exponentially as t .... +00. This will

prove the result.

Let x(t) be an integral curve of X starting at x o •

Suppose x (t) remains in B for 0 < t < T. Then noting

that

*See for instance, Hale [1], Hartman [1], Lang [1], etc.
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x(t) x o + I: x (x (s)) ds

= x o + I: A(x(s)) + R(x(s)) ds

gives (the Duhamel formula; Exercise 2.9),

tA It (t-s)Ax(t) = e x o + 0 e R(x(s)) ds

and so

Ilx(t)11 ~e-tExo + Ct I: e-(t-s)Ellx(s)llds.

Thus, letting f (t) = e tE Ijx(t) II,

f(t) ~xO + Ct I: f(s) ds

and so

(This elementary inequality is usually called Gronwall's in-

equality cf. Hartman [1].)

Thus

Hence x(t) E B, 0 < t < T so x(t) may be indefinitely

extended in t and the above estimate holds. It shows

x(t) + 0 as t + +00. ~

The instability part of Theorem 1.4 requires use of

the invariant manifold theorems, splitting the spectrum into

two parts in the left and right half planes. The above analysis

shows that on the space corresponding to the spectrum in the

right half plane, PO is repelling, so is unstable.

(2A.6) Remarks. Theorem 1.3 is also true by the same
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proof if T is an unbounded operator, provided we know

o (e tT ) etO(T) which usually holds for decent T, (e.g.:
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if the spectrum is discrete) but nee,d not always be true (See

Hille-Phillips [1]). This remark is important for applications

to partial differential equations. Theorem 1.4's proof would

require R(x) = 0(1 Ixl I) which is unrealistic for partial

differential equations. However, the following holds:

Assume O(DFt(O» = etO(DX(O» and we have a cO flow

Ft and each Ft is c l with derivative strongly continuous

in t (See Section 8A), then the conclusion of 1.4 is true.

This can be proved as follows: in the notation above,

we have, by Taylor's theorem:

where R(t,x) is the remainder. Now we will have

as long as x remains in a small neighborhood of 0; this is

because -2Et
< e and hence -Et

< e for

some E > 0 and x in some neighborhood of 0 '" remember

R(t,x) = J: {DFt(sx),x - DFt(O) ·x} ds. Therefore, arguing as

in Theorem 1.4, we can conclude that x remains close to 0

and Ft(x) + 0 exponentially as t + 00 ~

(2A.7) Exercise. Let E be a Banach space and

F: E + E a c l map with F(O) = 0 and the spectrum of DF(O)

inside the unit circle. Show that there is a neighborhood

U of 0 such that if x EU, F(n) (x) + 0 as n + 00; Le. 0

is a stable point of F.



56 THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 2B

THE POINCAR~ MAP

We begin by recalling the definition of the Poincare

map. In doing this, one has to prove that the mapping exists

and is differentiable. In fact, one can do this in the context

of cO flows Ft(X) such that for each t, Ft is ck , as

was the case for the center manifold theorem for flows, but

here with the additional assumption that Ft(X) is smooth in

t as well for t > 0. Again, this is the appropriate hypo­

thesis needed so that the results will be applicable to partial

differential equations. However, let us stick with the ordinary

differential equation case where Ft is the flow of a ck

vector field X at first.

First of all we recall that a closed orbit y of a

flow on a manifold M is a non-constant integral curve

Yet) X such that y(t+L) Yet) for all t ER and some

L > O. The least such L is the period of y. The image of

y is clearly diffeomorphic to a circle.

(2B.l) Definition. Let y be a closed orbit, let
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m E Y, say m = Y(O) and let S be a local transversal sec-

tion; i.e. a submanifold of codimension one transverse to
,

Y(Le. Y (0) is not tangent to S). Let '21 eM x IR be the

domain (assumed open) on which the flow is defined.

A Poincare map of Y is a mapping P: Wo ->- Wl where:

(PM 1) WO'Wl e S are open neighborhoods of m E S,

and P is a Ck diffeomorphism;

(PM 2) there is a function 0: Wo ->- IR such that

for all x E WO' (X,T-O(X)) E'21 and

p(x) = F(X,T-O(X)); and finally,

(PM 3) if t E (O,T-O(X)), then F(x,t) ~ Wo
(see Figure 2B.l).

(2B.2) Theorem (Existence and uniqueness of Poincare

maps).

(i) If X is a ck vector field on M, and Y

is a closed orbit of X, then there exists a Poincare map of

Y.
(ii) If P: Wo ->- Wl is a Poincare map of Y (in

a local transversal section S at m E y) and pI also (in

S' at m' E Y), then P and pI are locally conjugate.
,

That is, there are open neighborhoods W2 of m E S, W2 of

Ck ,
m' E S I, and a diffeomorphism H: W2 ->- W2 ' such that

, I
W2 e Wo n Wl ' W2 e Wo and the diagram

0-
1

(W,) ~ I: 0 .W

j
;n 0W,

W2----1.8....'--»,

commutes.
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P(x)= F(x,t - 8{x»

Figure 2B.l

Here is the idea of the proof of existence of P (for

further details see Abraham-Marsden [1). Choose S arbi-

trarily. By continuity, FT is a homeomorphism of a neigh-

to another neighborhood U2 of m. By

is t-differentiable at t = 0 and is

borhood Uo of m

assumption, FT+t(X)

transverse to S at x = m and hence also in a neighborhood

of m. Therefore, there is a unique number o(x) near zero

such that FT-O(x) (x) E S. This is P(x), and by construc­

tion P will be as differentiable as F is. The derivative

of P at m is seen to be just the projection of the deriva-

tive of FT on T S
m (this is done below). Hence if FT is

a diffeomorphism, P will be as well. CJ

For partial differential equations, Ft is often just

a semi-flow i.e. defined for t > 0 (See Section 8A). In

particular, this means Ft is not generally a diffeomorphism.
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(For instance if Ft is the flow of the heat equation on L2 ,

Ft is not surjective). For the Poincare mapping this means

that we will have a P (if Ft(X) is differentiable in t, x

for t > 0), but P is just a map, not necessarily a diffeo­

morphism. This is one of the technical reasons why it is im-

portant to have the center manifold theorem for maps and not

just diffeomorphisms.

As we outlined in Section 1, there is a Hopf theorem

for diffeomorphisms and this is to be eventually applied to

the Poincare map P to deduce the existence of an invariant

circle for P and hence an invariant torus for Ft.

For partial differential equations, this seems like a

dilemma since P need not be a diffeomorphism. However, this

can be overcome by a trick: first apply the center manifold

theorem to reduce everything to finite dimensions--this does

not require diffeomorphisms; then, as proved in Section BA,

(see BA.9) in finite dimensions Ft and hence P will auto­

matically become (local) diffeomorphisms. Thus the dilemma is

only apparent.

Let us now prove the fundamental results concerning the

derivative of P so we can relate the spectrum of P to that

of Ft. It suffices to do the computation in a Banach space

E, and we can let m = 0, the origin of E.

We begin by calculating dP(O) in terms of Ft.

(2B.3) Lemma. Let Ft : E + E be a Cl flow on a

Banach space. Let 0 be on a closed orbit y with period

d F t
T f O. Let ~ (0) It=o = V. Let V be the subspace gener-

ated by V and let F be a complementary subspace, so that

E = F e V and Ft{x,y) 1 2(Ft(X,y), Ft(X,y)). Let P: F + F
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be the Poincare map associated with y at the point O. Then

2
dP (0) = d1F 'I (0) .

Proof. Let 'I(X) be the time at P(x)

the above notation). Then by definition of P,

('I-O (x) in

P(x) 1
F 'I (x) (x, 0)

so

dP(x)

1
aF (x)

at
1

(X,O)d'I(X) + d1F'I(x) (X,O).

Letting (x,O) = 0, we get

a F 1
1dP (0) = at (O)d'I(O) + d1F 'I (0) .

a F 'I (a F
1

a F
2

)
However dt (0) = -IT- (0), at'I (0) (O,V) by construc-

a F1
1tion,so

'I
Thus, dP (0)at (0) = o. d1F'I(0). 0

(2B.4) Lemma. d 2F 'I (0,0)V = V.

dF'I +S I dF t I
Proof. ~ (0,0) s=O = dt (0,0) t='I v

dF I~ (0,0)
ds s=O

dF of
'I s
ds (O,O)ls=o

= dF'I (0,0) (O,V)

So, d 2F'I (0,0)V

(d1F'I(0,0)'0 + d 2F'I (0,0)V)

V. 0

( 2B• 5 ) Lemma. CJ (dF'I (0 , 0) )

true of the point spectrum, too).

CJ (P (0» U {l}. (This is

Proof. The matrix of dF'I (0,0) is

where * indicates some unspecified matrix entry.

Let A E~. Then A E CJ(dF'I(O,O» iff dF'I(O,O) - AI is not
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I-lor is not onto. But

(dFT (0, 0) - AI) (~) = (dP (°)0:, * (0:) + 6) + (- A0: , - A6 )

(dP (0) 0: - Ao:, * (0:) + 6 (1 - A». (2B. 1)
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Clearly, 1 Ea(dFT(O,O». Assume A '11 and A Ea(dFT(O,O».

Then either, there exists (0:,6) such that the expression

(2B.l) is zero or the map is not onto. The former implies

A E a(dP(O». Assume the latter. Since A 'I 1, for any 0:,

we can choose 6 so that the second component is onto. There-

fore, A Eo(dP(O)}. On the other hand, let 1'1 A Ea(dP(O}}.

If, dP(O) - AI is not onto, then clearly neither is

dFT(O,O} - AI. Suppose there exists 0: such that dP(O}o: - Ao:

*(o:)= 0. Then choosing 6 = '-1' we see that A E o:(dF (0,0».
A T 0

Consult Abraham-Marsden [1] Abraham-Robbin [1] or Hartman

[1, Section IV. 6, IX.IO] for additional details on this and

and the associated Floquet theory.

One of the most basic uses of the Poincare map is in

the proof of the following.

(2B.6) Theorem. Let y be a closed orbit for Ft

with period T. Let m E y and suppose dFT(m) has spectrum

inside the unit circle except for one point 1 on the unit

circle. Then y is an attracting (stable) closed orbit.

Proof. By Demma 2B.5, the condition on the spectrum

means that the spectrum of the derivative of the Poincare map

P at m is inside the unit circle. Hence from 2A.7 m is

an attracting fixed pojnt for P. It fo110ws from the con-

struction of P that y is attracting for Ft. o
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proof.
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(2B.7) Exercise.

(a) Give the details in the last step of the above

(b) If, in 2B.6, P has an attracting invariant

circle, give the details of the proof that this yields an

attracting invariant 2 torus for the flow.
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SECTION 3

THE HOPF BIFURCATION THEOREM IN R2 AND IN Rn

The center manifold theorem is used to reduce bifurca-

tion problems to finite dimensional ones as follows.

Consider a one parameter family of maps ~~: Z + Z on

a Banach space Z, where ~ E R or an interval in R con-

taining O. Assume (~,x) 1+ 'I'~(x) is ck+l and 'I'~(O) = 0

for all ~. Assume that for ~ < 0 the spectrum of D'I'~ (0)

is strictly inside the unit circle, for ~ = 0 the spectrum

splits in two pieces as in the center manifold theorem and

for ~ > 0 the spectrum has two pieces, one inside and one

outside the unit circle. See Figure 3.1.
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f-L<O f-L=O
Figure 3.1



64 THE HOPF BIFURCATION AND ITS APPLICATIONS

Consider'!': R x Z ..,. R x Z, (fJ,x) /+ (fJ,'I'fJ(x». The

derivative at zero is

D'l'(O,O) (v,h) =

[
a'I' fJ Iv, -a- (x}v

fJ fJ= 0
x=O

maps on

generating

= (v,D 'l'fJ (O) 'h)
x

(since 'l'fJ(O) = 0 for all fJ}. Thus, the spectrum of D'I'(O,O)

consists of the spectrum of Dx'l'fJ(O) plus the point one.

Therefore, we can apply the center manifold theorem to 'I' to

produce an invariant manifold in R x Z.

The fJ = constant slices of this invariant manifold

produces a one parameter family of invariant manifolds for

'I'fJ. These manifolds have the same dimensionality as the

eigenspace of the piece of the spectrum crossing the unit

circle, and this is often finite dimensional.

There is an entirely analogous reduction possible for

flows using the center manifold theorem for flows.

It should be cautioned that the center manifold, while

containing all the local recurrence, is not globally invariant

nor need it be attracting in the strict sense. However, if

care is exercised, and if a pair of eigenvalues crosses the

unit circle or the imaginary axis if we are thinking in terms

of the vector field, then we are in the two dimensional case.

(We remark--see Section SA that a semiflow of Ck+l

a finite dimensional space automatically has a Ck

vector field, so that after the reduction is made we may

usually assume that the generator of the flow is smooth.)

Hence we shall next examine, in detail, the finite

dimensional case. (Details of the above reduction process are

given in Section 4.)
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First, we consider the two dimensional case. (The

n-dimensional case is treated in Theorem 3.15 below.)

The Hopf Theorem in R2

The following theorem is essentially due to Andronov

(1930) and Hopf (1942) and was suggested in the work of

.. +
Poincare (1892)

(3.1) Theorem. Let X be a ck (k > 4) vector
fl

field on R2 such that X (0) = 0 for all fl and X = (X ,0)
fl fl

is also ck • Let dX (0,0) have two distinct, complex
fl

conjugate eigenvalues A(fl) and A(fl) such that for fl > 0

Re A(fl) > O. Also, let d (Re A(fl) ) I > O. Then
dfl fl=O

(A) there is a
k-2*

function (-8,8) RC fl : ->-

such that (xl,O,fl(Xl » is on a closed orbit of period ~

271/IA(0) 1 and radius growing like ~ of X for xl f 0

and such that fl(O) = o.

(B) There is a neighborhood U of (0,0,0) in

R3 such that any closed orbit in U is one of those above.

Furthermore, if 0 is a "vague attractor" for XO' then

(C) f1(x l ) > 0 for all xl f 0 and the orbits

are attracting.

The meaning of "vague attractor" will be spelled out as

we go along and the detailed calculations involved in this

condition are worked out in Section 4 (see also Section SA).

In Section 3A it is shown that "vague attractor" can be

+The present version of Theorem 3.1 is due to Ruelle and
Takens [1]. The n dimensional case is due to Hopf. See
Section SA for comparisons.

*If X is analytic, then f1 will also be analytic (Hopf [1];
see Section 5).
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weakened to "attractor" in the usual Liapunov sense. In any

case, this condition is usually not obvious in examples and

will be discussed extensively below.

Our proof follows Ruelle-Takens [1], with the details

included. At the end of the section we shall discuss what

happens if d(Re_A(~»/d~ = 0 (see Section 3A).

Proof. The essence of the proof is an application of

the implicit function theorem. We show that for small ~,

there is a Ck- l £unction which takes the point (xl'O,~)

to the first intersection (P(xl'~) ,O,~) of the orbit of

(xl'O,~) under the flow of X with the xl-axis such that xl

and P(xl'~) have the same sign (Figure 3.2). Let V(xl'~)

= P(xl'~) - xl· V is a displacement function.

We use the implicit function theorem to get

11- = 11-0

Figure 3.2

a curve (xl,O,~(xl» of zeros of V, i.e., a curve of closed

orbits of the flow of X. The map (xl,O) ~ (P(xl,~(xl»'O)
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is the Poincar~ map associated with the closed orbit through

(xl,~(xl». We use standard results about Poincar~ maps to

find conditions under which the orbits are attracting. The

uniqueness of the orbits is essentially the uniqueness of the

implicitly defined function in the implicit function theorem.

(Proving uniqueness of the closed orbits is more complicated

in higher dimensions, see Section S and Section SA, page 198.
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Step 1: By a ~-dependent change of basis on R2 , we may assume

[

Re A (~) Im A (~) )
that dX (0,0) =

~ -Im A(~) Re A(~)
where A(~) is chosen

so that Im A(~) > O. In the new coordinates, X
~

continuous derivatives up to order k except that

will have

akx~/aj1k

may not exist. Furthermore, for each ~, the xl-axis is in-

variant under the change of basis. (That is, the new xl-axis

is the same as the old one, and we are only changing the

x 2-axis). Let us now note a few simple lemmas:

function from U C R + R4 • Let the matrix have two distinct

eigenvalues for all ~ E [a,b] C U. Then the eigenvalues are

ck functions from (a,b) C R + ~.

Proof. By the quadratic formula, the eigenvalues are

all + a 22 ± l(all+a22 )2 - 4al2a 21 2
-=-=---..;;::.::..---=-:::2-=e::----....::.::-=- By assumption (all+a22 )

- 4al2 a 21 is bounded away from zero on (a,b), so the eigen-

values are ck functions of on this interval. 0

(3.3) Lemma. Let T: ~2 + ~2 be a linear transforma-

tion that is real on real vectors and has no real eigenvalues.
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Let vI + iV2 be an eigenvector with eigenvalue A. There

is an eigenvector (~) + i(~) which has the same eigenvalue.

Proof. Any complex multiple of vI + iV2 is an eigen­

vector of T with eigenvalue A. Thus, it is sufficient to

show that there is a z = x + iy such that

[:) + i[:). This is equivalent to

solving the pair of equations:

I

o

i.e.,

The columns of this matrix are independent over R since if

v 2 = cvl ' then vI + iV2 = (l+iclvl· Therefore, vI

(l+ivl-l(vl+iv2) is a real eigenvector, which cannot be.

Thus, the equation can be solved. []

(3.4) Lemma. Let T be as in the previous lemma.

Proof. TVI = Re T(vl+iv2l because T is real.

TVI = Re[A(vl+iv2l] Re AVI - 1m AV 2 • TV2 = Im[A(vl+iv2l]

1m AVI + Re AV 2 • CJ

Using .the preceding lemmas, we see that if [~) + i(~~~l)

is an eigenvector of dX~(O,Ol with eigenvalue A(~l, then

g) and [
a (~l )
B(~)

are independent vectors such that the matrix
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is[
a (~»)
s (~)

~. Let

We now show that the vector

function of

of dX~(O,O) with respect to [~) and

[
Re A (~) 1m A (~) ] •

-1m A(~) Re A(~)

a

We solve the equation

[
l+ia(~»)

= A(~) •
is(~)

all (~) = Re A(~)

From this we obtain the equations

Therefore,

Re A(~) - all (~)

a(~) = 1m A(~)

Because the change of coordinates is. linear for each ~ and

because a and S are functions of ~, in the new

coordinates X will have continuous k
th

partials except that

are. I ax axIn partlcu ar, -a-- and a
xl x 2

From now on, we will assume

akx
a-k may not exist.
~

functions in the new coordinates.

that the coordinate change has been made, i.e., that

[

Re A (~) 1m A (~) )
dX (0,0) =

~ - 1m A (~ ) Re A (~) •

Step 2: There is a unique ck - l vector field x~ on R2

such that Iji*X X
~'

where Iji: R2 -;. R2 is the polar coordinate

map Iji (r, e) = (r cos e, r sin e) , and Iji* is the differential

of Iji.

Let X

*Note that Xe
component of X

direction which

is the "angular velocity" of X, and not the

along a unit vector ee in the a/ae

is what Xe often stands for.
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Then
-r sin

r cos :) [~:) .
x implies

\l

sin e] [X\ll]
cos ex'

r \l2

r t- o.

can be extended to be

cos e X\ll +

Consider

X\lr

(r, e) •for all

-Thus, if the vector field X
\l

on all of R2 , it is clearly unique.

sin e X\l2' which is

-sin e -
~~r~ x\ll(r cos e, r sin e)

+ co~ e X\l2(r cos e, r sin e), r t- o.

Then

x\ll(r cos e, r sin e) - X\ll (0,0)
lim X\le(r,e) -sin e lim

r ....O r
r .... O

x\l2(r cos e, r sin e) - X\l2 (.0, 0)
+ cos e lim

r ....O r

because X (0,0)
\l

O. Thus

(-sin e)dX\ll (0,0) (cos e, sin e)

+ (cos e)dX\l2 (0,0) (cos e, sin e)

(-sin e) (Re A(\l)COS e + 1m A(\l)sin e)

+ (cos e) (-1m A(\l) cos e + Re A(\l) sin e)

-1m A(\l).

We therefore define
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(cos e xjll(r cos e, r sin e)

+ sin e xjl2(r cos e, r sin e»~r
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+ co~ e xjl2(r cos e, r sin e»~e ' r to

a
- Im A(jl)ae- r = 0

Xjle(r,e)

-sin e X (r cos e, r sin e) +
r jll

+ c~s e xjl2(r cos e, r sin e), r t 0

- Im A(jl), r = 0

To see that Xjle(r,e) is ck
-

l , we show that the functions

1- X l(r cos e, r sin e) andr jl

ck - l when extended as above.

! X (r cos e, r sin e)
r jl2

are

(3.5) Lemma. Let A: R2 .... R be Then

1

A(x,y) - A(O,O) = I aA(tx,ty) x + A(tx,ty) Y dt. Let
ax ay

1
0 1

Al (x,y) I
aA(tx,ty) dt and A

2
(X,y) = I

aA(tx,ty) dt., ax 3y
0 0

Ai (0,0) =
dA(O,O) and A2 (0,0) =

aA (0,0)
dX ay

Proof. The first statement is true by Taylor's theorem

and the second statement is easy to prove by induction. By the

J
l ax , (rt cos e, rt sin e)

lemma, ! X . (r cos e, rt sin e) = cos e ....JU. dt
r jlJ 0 ax

I
l ax . (rt cose, rt sin e)

+ sin e ....JU. dt
o ay

for j 1,2. Since all k
th
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partials of X are continuous except

under the integral sign are Ck- l and

ck- l , too. D

dXk--r ' the functions
dfl
so the integrals are

Step 3: The Poincare Map (see Section 2B for a discussion of

Poincare maps). -Let the flows of X and X be ~t and ~t

Consider the vector field X. Since X(O,e)

respectively. It is elementary to see that

we have ~flt(O,e) = (O,e-Im A(fl)t,fl).

= (O,O-IA(O) 121T/[A(O) 1,0) = (O,-21T,0)

8

~021T/[A(O) I (0,0)

(Figure 3.3).

r

- - - - - 8=-27T

Trajectory of (0,0,0) under ~Ot

Figure 3.3

Because X is periodic with period 21T, it is a Ck- l vector

field on a thick cylinder and the orbit of the origin is closed.

We can associate a Poincare map P with this orbit (Figure 3.4).
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Poincare map on cylinder
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/

/
/

<0,0,0)

~

range of P

Poincare Map in R3

Figure 3.4

domain of P

8=-27T



~ E (-8,8) }

T(r,~) , which is the time t when

k-l Note that under theC • 1JJ,

Therefore, the displacement map

is defined and ck - l on the
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That is, there is a neighborhood U = {(r,O,~) IrE (-8,8)

and ~ E (-8,E)} such that the map P(r,O,j.J) = (P(r,~) ,-211,~),

where p(r,~) is the r coordinate of the first intersection

of the orbit of (r,O,~) with the line e = -211, is defined.

This map is ck- l • The map

~t(r,O,~) = P(r,O,~) is also

r-axis becomes the xl-axis.

(xl'O,~) 1+ (xl+V(xl'~) ,O,~)

neighborhood e = {(xl'O,~) I xl E (-8,8) and

(xl+V(xl'll)'O,~) is the first intersection of the orbit of

(xl'O,~) with the xl-axis such that the sign of xl and the

sign of P(xl,j.J) = xl + V(xl,j.J) are the same.

(3.6) Remark. Using uniform continuity and the fact

that <P t is e-periodic, it is easy to see that there is a

neighborhood N = { (r, 8 ,j.J) I 2
+ ~

2 o} such that no pointr <

of N is a fixed point of <Pt' Thus, the only fixed points

of ¢t in N = {(xl ,X2 ,ll)I
2 + 2

+ ~
2 o} are the pointsxl x 2 <

(0,0, ll) •

(3 • 7 ) Lemma.
dP (xl ,ll) I

dX
l

xl=O

ll=~

Proof. Let <!>~t(xl,x2) = (allt (x l ,x2 ), b~t(xl,x2»'

flow satisfies the following equation:

The

T(Xl,ll)

f Xlll(a~t(xl'O), b~t(xl,O»dt.
o

We differentiate this equation with respect to xl to get the

desired result; the differentiation proceeds along standard
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lines as follows

V(xI+6xI'~) - V(XI'~)

6xI

75

I
6x

I

From this we see that

aT(xI'~)

+ a Xl (a T ( ) (xl,O), b T ( ) (xl' 0) ) .
x 2 ~ ~ xl'~ ~ xl'~

In case Xl = 0, we can evaluate this expression. Since

a~t(O,O) = b~t(O,O) = 0 and since XI~(O,O) = 0, the second

term on the right-hand side vanishes. Recall that T(O,~) =
aX

I2TI/Im A(~). By the chain rule, ~ (a t(O,O), b t(O,O) =
xl ~ ~

aXl aa~t axly aXI~ abytaa- (0,0) ax-- (0,0) + ax (0,0) +~ ax (0,0). Since
I I I

aXl~
aa (0,0) = Re A(~) and and because

(0,0) is a fixed point of ~~t' we can evaluate the derivatives
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of the flow here.

expt[ Re A(fl) rm ,(., II
d<l>flt (0,0) = exp[tdX (0,0)]

fl -Im A ()l) Re A(fl)

[-::
Re A(fl)cos Im A(fl)t

t Re A(fl)sin rm't.,t]e

Re A(fl)sin Im A(fl)t t Re A(fl)cos Im A(fl)te

aa
Therefore, ~ (0 0) = e tJRe A(fl)cos Im A(fl)t andaXl '

So we have

avaX
l

(O,fl)

J
2

0

'IT/lm A (fl) t Re '( )
e 1\ )l (Re A(fl) cos ImA(fl)t-Im A(fl)sin Im A(fl)t)dt

e 2 'IT (Re A(fl) ) / Im A(fl ) _ 1. 0

Step 4. Use of the Implicit Function Theorem to Find

Closed Orbits

The most obvious way to try to find closed orbits of <l>t

is to try to find zeros of V. Since V(O,O) = 0, if either

av (0,0)
aXl

or avail (0,0) were not equal to 0, the conditions

for the implicit function theorem would be satisfies and we

could have a curve of the form (xl()l) ,fl) or (Xl,fl(Xl ))

such that V = 0 along the curve. Unfortunately, ~~ (0,0) 0

2.Y.... (0,0). Instead of V we use the functionaXl

av (O,fl)
aX

l
o



THE HOPF BIFURCATION AND ITS APPLICATIONS 77

(3.8) Lemma. v is k-2
C .

II ~~l (tx l ,)1)x l dt because V(O,)1)

o
1

I av (tx )1)dt x t 0 The functionaX
l

l' , 1 .
o

k-lC .Proof. Recall that v is V(X l ,)1)

V(x
l

,)1)
0, ---,;-,,-=-­

aX l

is

easily seen to be Ck - 2 by induction. [J

(3.9) Lemma. V(O,O) = O. av (0,0) t O. Therefore,3iJ
there are neighborhoods Nl

and N2 of 0 and a unique

function )1: N
l

->- N
2 such that )1 (0) = 0 and such that

Proof. V(O,O) av (0,0) = e 2n (Re A(O))/Im A(O) _ 1
aX l

o

since Re A(0) o. av (0 0) lim V(O ,11) - \7(0,0)
a)1 ,

)1->-0 )1

lim 1 [av (0,)1) av
(0,0) )

a 2v (0,0) =
)1->-0 )1 aX l

- aX
l a)1aX1

~[e2n(Re A()1))/Im A()1) 1) I = I ~70) d(Re/()1)) ItO.
d ll - m )1 )1=0

>" )1=0

(Note that this is where the hypothesis that the eigenvalues

cross the imaginary axis with nonzero speed is used.) The

rest of the lemma follows from the implicit function theorem. ~

Step 5. Conditions for Stability

Now let us assemble results on the derivatives of 11

and V at zero.

(3 • 1 0 ) Lemma. )1 I (0) = O.

Proof. By the way that the domain of V was'chosen, we

know that if V(xl ,ll(xl )) = 0, then the orbit through



78 THE HOPF BIFURCATION AND ITS APPLICATIONS

that and have opposite sign. (In polar coordinates,

this corresponds to the fact that the orbit of (xl,O,~(xl»

crosses the line e = -TI). Choose a sequence of points

Xn f O. Then for each xn ' there is a Yn such that Yn < 0

and ~(xn) = ~(Yn)· By continuity of ~, Yn ~ O. (To show

this, one uses the fact that T(xl'~) is bounded in a

neighborhood of (0,0) and the fact that ~ is uniformly

continuous on bounded sets.) Therefore, since ~(O) = 0 and

, we havehas opposite sign to

( 3 • 11) Lemma. V ( 0 , 0 )

~(Yn)

Yn

3V (0,0)
3xl

~'(O) = o. 0

O.

know thatProof.

To see that

We already

2
3 ~ (0,0) =
3x

l

V(O,O) = av (0,0) = O.
3x

l

0, we differentiate the equation

then o

+ 3V I ~"(x ) = O.
3~ ) ) 1

(xl,~(xl

and we get the equation 3
2
VI

3 2
xl (0,0)

If

O. 0

0,

if

(3.12) Definition.

3
3

V (0,0)<0.*
3x3

1

(0,0) is a vague attractor for

*This condition is computable; see Section 4.
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(3.13) Lemma. If (0,0) is a vagueattractorfor

Xo' then the orbits through (xl,~(xl» are attracting and

~(xl) > 0 for small xl ~ 0.*

Proof. To show that ~(xl) > 0 for small xl ~ 0, we

show that ~"(o} > o. Since ~(O) = ~'(O) = 0, this shows
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that ~ has a local minimum at xl = O. Again we differentiate

the equation V(xl,~(xl» = O. Having done this three times

and evaluated the result at xl = 0, we get

~"(O) = _a3~ (0,0) ~
aX

l
/-

21T dReA(~)1
Im A (0) d~ ~=O

a2v
-~--~-- (0,0). Recall that
oj.loX l

> O. Therefore,~"(O) > O. To show

that the orbit through (xl,O,~(xl}) is attracting, we must

show that the eigenvalues of the derivative of the Poincare

map associated with this orbit are less than 1 in absolute

value (see Section 2B). Clearly, the Poincare map associated

with the orbit through . (xl,O,~(xl}) is P~(xl} (xi) =

P(Xi,~(xl». The derivative of P~(xl} at the point Xl is

~I Because ~I = 1, there is a neighbor-ax
l

. . ax
(xl,l-L(xl » 1 (O,O)

hood of (O,O) in which ap > -1.. Th d 1 h--- us, we nee on y s owaX
l

that for for

av I < 0 We show that the function f(x l )aX
l

.

(xl'~ (Xl))

av I experiences a local maximum at Xl O.aX l
(Xl'~ (Xl))

*This is not the most general possible statement of the
theorem; see Section 3B below for a generalization.

We
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already know thatf(O} = ~~ I = O.

1 (O,O)

Thus, fl (O) = O.

Therefore, fll (O)

d
2

V (O,O) [,3~ (0,00
d

2
V

(0,0) ]
2 d

3V (0,0 ) < O.dj.Jdx l dxldj.J =30dX l Xl

Thus, f (xl) experiences a local maximum at xl 0 and the

orbits are attracting. 0

Step 6. The Uniqueness of the Closed Orbits

(3.14) Lemma. There is a neighborhood N of (0,0,0)

such that any closed orbit in N of the flow of X passes

through one of the points (xl'O').!(x l }).

Proof. There is a neighborhood N
E

of (O,O,O) such

that if (xl ,x2 ').!) ENE' then the orbit of ¢t through

(x l ,x2 ').!) crosses the xl-axis at a point (xl,O,).!) such that

I~ll < E. This is true by the same argument that was used to

and T(X
l

,).!} > E > 0 andE Domain (P) and

show the existence of P (xl ,).!). We choose N = {(xl'x2 ,).!) I (xl').!)

dP I > 0dX l
(xl').!)

).! is small enough so that V(x l ,).!} = 0 for ).! E N iff

).! j.J(Xl }. Assume that the (xl,O,).!) E y, is a closed orbit

0, then ).!

nothing to prove. Suppose V(x l ,).!} f O. Then P(xl ,).!} > xl'



n ? O.

THE HOPF BIFURCATION AND ITS APPLICATIONS

n-l(P (x
l

,)1)

has the same sign

81

n-l n-2 induction nas P (xl,jl) - P (Xl,jl). By P (Xl,jl) >

n-l n n-l
for allP (xl ,jl) , (P (xl,jl) < P (xl,jl») n. Because

there is a nonzero lower bound on T(Xl,jl) for (xl,O,jl) E N,

this shows that (x l ,O,)1) is not on a closed orbit of ~t. CJ

The Hopf Theorem in Rn

Now let us consider the n-dimensional case. Reference

is made to Theorem 3.1, p.

(3.15) Theorem. Let X be a ck+l , k ~ 4, vector
)1

field on Rn , with all the assumptions of Theorem 3.1 holding

except that we assume that the rest of the spectrum is distinct

from the two assumed simple eigenvalues A()1) ,A()1). Then

conclusion (A) is true. Conclusion (B) is true if the rest of

the spectrum remains in the left half plane as )1 crosses

zero. Conclusion (C) is true if, relative to A()1),A()1), 0

is a "vague attractor" in the same sense as in Theorem 3.1 and

if when coordinates are chosen so that

o

-I A (0) I
o

IA (0) I
o

o

d
3

Xl (0)

d
3

X2 (0)

d 3X3 (0)

(3.16) Remarks. (1) The condition A(O) ~ O(d 3X3 (O»

is independent of the way Rn is split into a space corre-

sponding to the A(O),XTOf space and a complementary one

since choosing a different complementing subspace will only
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replace d 3X3 (Ol

easily seen.

by a conjugate operator:

(2 l The condition is automatic if

n = 3 since the matrix dXO(O) is real.

(3) Further details concerning this theorem are given

in Section 4.

The proof of Theorem 3.15 is obtained by combining the

center manifold theorem with Theorem 3.1; i.e., we find a

center manifold tangent to the eigenspace of A(~l and A(~)

and apply Theorem 3.1 to this. One important point is that

in (B) of Theorem 3.1 we concluded stability of the orbit

within the center manifold. Here we are, in (B), claiming it

in a whole R
n neighborhood of the orbit. The reason for

this is that we will be able to reduCe our problem to one in

which the center manifold is the x l ,x2-plane and that plane

is invariant under the flow. If (x,~) is on a closed orbit

with period T,

I
all a l2 d 3¢T(x)

d¢ (xl
2

T,~
a 21 a 22 d 3¢T(x)

0 0 d3¢~(x)

The two-dimensional theorem will imply that the spectrum of

the upper block transverse to the closed orbit is in

{z! Izi < I} and our assumptions plus continuity will imply

the same for Since the spectrum of the Poincare

map is the spectrum of d¢ (x)
T,~

restricted to a subspace

transverse to the closed orbit, this shows a (dP (x» C {zI Iz' < I}

and the orbit is attracting. ~
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(3.17) Exercise. Show that the vector field

2
X

V
(x

l
,X

2
) = (x

2
,V(l-xl )x2-xl ) satisfies the conditions of

Theorem 3.1.
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(3.18) Exercise. All equations are given in polar co-

ordinates. Match each set of equations to the appropriate

picture and state which hypotheses of the Hopf bifurcation

theorem are violated. (If you get stuck, come back to this

problem after reading Section 3A.)

1-
. 2

2.
. 222

r -r (r+v) r r (fJ-r ) (211-r )

e 1 e 1

r r(r+ll) (r-ll) 4. r 2
3. vr(r+v)

e 1 e 1

5. r 222
-v r (r+l1) (r-l1)

e 1

(A)

y

x

-----*'""------"':~y

(B)
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y

x

x

-----*----"7-"y

(0) ( E)
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SECTION 3A

OTHER BIFURCATION THEOREMS

85

Several authors have published generalizations of the

Hopf Bifurcation. In particular, Chafee [1] has eliminated

the condition that the eigenvalue A(~) cross the imaginary

axis with nonzero speed. In this case, bifurcation to periodic

orbits occurs, but it is not possible to predict from eigen­

value conditions exactly how many families of periodic orbits

will bifurcate from the fixed point. Chafee's result gives a

good description of the behavior of the flow of the vector

field near the bifurcation point. See also Bautin [1] and

Section 3C.

Chafee's Theorem

We consider an autonomous differential equation of the

form

x (3A.l)

where x and X vary in real Euclidean space Rn (n > 2),

~ > 0 is a small parameter (called ~ in previous sections),

and P is a real n x n matrix. We assume the following
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hypotheses.

(HI) There exist numbers r O > 0 and EO > 0 such

that P is continuous on the closed interval [0, EOl and X

is continuous on the domain Bn(r
O

) x [0, EOl •

(HZ) For each E in [O,EOl we have X(O, E) = 0 so

that the origin x = 0 is an equilibrium point of (3A.l).

(H 3 ) For each r in [O,rOl there exists a k(r) > 0

such that on the domain Bn(r) x [O,E O] the function X is

uniformly Lipschitzian in x with Lipschitz constant k(r);

moreover, k(r) + 0 as r + O.

(H4 ) For each E in [O,EOl the matrix P(E) has a

complex-conjugate pair of eigenvalues a(E) ± ib(E) whose

real and imaginary parts satisfy the conditions

b (E) > 0

a(O) = 0, a(E) > 0

The other eigenvalues Al (E), Az (E), •.. , An _
Z

(E) of P (E)

have their real parts negative for all E in [O,E O]'

(HS ) For E = 0 the equilibrium point of (3A.l) at

the origin is asymptotically stable in the sense of Liapunov

(Lefschetz [11, p. 89, and Section 1 above).

Hypotheses (HI) and (H3 ) are sufficient to guarantee

the usual properties of existence, uniqueness, and continuity

in initial conditions for solutions of (3A.I). In that which

follows the solution of (3A.l) assuming a given initial value

at t o will be denoted by x(t,xO,E). In connection

with this notation we should mention the well-known autonomous

property of (3A.I): the solution of (3A.I) assuming a given

initial value xo at a specified value of t, say to' is
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given by x(t - to' x O'£)' The hypothesis (HS) replaces the

"vague attractor" hypothesis considered earlier.

(3A.l) Theorem. Let (3A.l) satisfy the hypotheses

87

there exist numbers r l ,r2 ,

£0 be as in

such that

(Hl ). Then,

o < r 2 ~ r l

~ r O' 0 < £1 ~ £0' and such that the following assertions

are true.

(i) For each £ E (0'£1] there exist for Equation

(3A.l) two closed orbits Yl (£) and Y2 (£) (not necessarily

distinct) which lie inside a neighborhood of the form Bn(r(£»,

where 0 < r (£) ~ r 2 and r (£) ->- 0 as £ ->- 0 +. Moreover,

Yl (£) and Y2 (£) lie on a local integral manifold M2 (£)

homeomorphic to an open disk in R2 and containing the origin

x = O. Regarded as closed Jordan curves in M2 (£), Yl(E) and

Y2 (E) are concentric about the origin with, say, Yl (E) inside

Y2 (E) when these curves are distinct.

(ii) For each E E (0, El ] that part of M2 (E) which

lies inside Yl(E) is filled by solutions of (3A.l) which

approach the origin as t ->- _00 and which, except for the

equilibrium point ar x 0, approach Yl(E) as t ->- +00. No

other solutions of (3A.l) remain in Bn(rl ) for all t < O.

(iii) For each E E (O,E l ] that part of M2 (E) lying

outside Y2 (E) but contained in Bn (r2 ) is filled by solutions

of (3A.l) which remain in M2 (E) n Bn(r l ) for all t > 0 and

which approach Y2 (E) as t ->- +00.

(iv) For each E E (O,E l ] there exist solutions of

(3A.l) which approach the origin x = 0 as t ->- +00 and these

solutions fill a local integral manifold (= invariant manifold)

Mn- 2 (E) homeomorphic to an open ball in Rn- 2 and containing
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the origin x = O.

(v) If for a given E E (O,E O]' x(t,XO,E) is a solu­

tion of (3A.l) for which Xo E Bn (r2), then x(t,xO,E) re­

mains in Bn(rl ) for all t > O. Moreover, if x(t,XO,E)~O

~ t + +00 (§gg (iv)) then as t + +00, x(t,XO,E) approaches

the closed invariant set n(E) consisting of those points in

M2 (E) which lie on Yl(E) or Y2 (E) or between them. The

solutions which approach n(E) contain in their positive­

limiting sets one or more closed orbits (which mayor may not

coincide with Yl(E) or Y2(E)). See Figure 3A.l.

___ stable manifold of x=O

invariant set

Figure 3A.l

Chafee [2] has also proved a theorem parallel to 3A.l

for the case in which the vector field at time t depends on

the flow at time t - a for some a > 0; i.e., x = F(t,xt )

where xt = x(t-a).
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The following example (see Chafee [1]) shows that one
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cannot predict the number of distinct families of closed orbits

to which the flow bifurcates. In cylindrical coordinates, let

dr
dt

de
dt

dz
dt

2 n l 2 n 2 2 n 3 2 nmr (E-r) (2E-r) (3E-r) .•• (mE-r )

1

- z

= rf(r"ll
J (JA.2l

where nl+···+nm is odd.

This equation is COO in rectangular coordinates. Fur-

thermore, it has m distinct families of closed orbits which

bifurcate from the origin at E = 0 (i.e., at r 2 = jE, Z = 0).

In rectangular coordinates, the derivative of the vector field

at the origin is

En.
. J n·

where a = (E J ) TI(j J). The eigenvalues are - 1 and
J

a ± i. By varying m and the n. 's one can vary the number
J

of distinct closed orbits independently of the order to which

a vanishes at O. For example,

dr 2 2 2 dr 2 3
dt r(E-r) (2E-r ) (3E-r) or dt = r(E-r) or

dr 2 ? ?
dt r(E-r) (2c-r-)-.

Chafee has shown us another example proving that dif-

ferentiability with respect to the parameter is necessary to

insure uniqueness of the closed orbits. In polar coordinates,

let
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elr
at

dB
dt 1

d RedA (E) I(3A.2) Exercise: Show that although
E=O

occurs.

2 > 0, bifurcation the two distinct periodic orbits (at

El / 3 , 2E l / 3 )r =

(3A.3) Remarks. In the paper of Jost and Zehnder [1],

the situation where X depends on more than one parameter is

considered. See also Takens [1].

Some interesting recent results of Joseph give another

proof of Chafee's result that one does not need V" I (0) ~ 0,

but only that the fixed point at ~ = 0 is stable. (See also

Section 3B). Joseph also is able to deal with the case in which

a finite amplitude periodic orbit arises. See Joseph-Nield [1]

for details, and Joseph [2]. For the case of more than one

parameter, Takens [1] also obtains finite amplitude bifurcations.

Alexander and Yorke [1] prove, roughly speaking, that

if a vector field X
~

increases either (i) y~

has a closed orbit y~, then as ~

.\

remains a closed orbit; (ii) the

period of y~ becomes infinite or (iii) y~ shrinks to a fixed

point. This is done without regard to stability of y~. For

another proof, see Ize [1]. (We thank L. Nirenberg for bringing

this to our attention.)
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SECTION 3B

MORE GENERAL CONDITIONS FOR STABILITY
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Here we shall prove that the least n for which

aIV (0,0) f 0 is odd, and that if this coefficient is negative,
naX l

the periodic orbits obtained in Theorem 3.1 by use of the im-

plicit function theorem are attracting and occur for ~ > 0

(we assume we have enough differentiability so that V is Cn ).

We also show that if the origin is attracting in the

sense of Liapunov for the flow of XO' then the periodic

orbits obtained in Theorem 3.15 (conclusions (A) and (B» are

attracting and occur for ~ > O.

(3B.l) Lemma. Let the vector field X be c2k for

k > 2. Then the function ~(~l) is c2 (k-l). Assume that

there is a j ~ 2(k-l) such that ~(j) (0) f O. Then the

least j for which this is true is even.

Proof. Let n be the least integer j such that

~ (j) (0) f O. Assume ~ (n) (0) > 0 and choose E: > 0 such

that for all xl with Ixll < E:, ~ (n) (x ) > O. Then by the
1
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mean value theorem we have ~(xl) = ~(n) (a )x a "'a wherenIl n-l

o < a j < xl (or xl < a j < 0) for all j. Suppose n is

odd, then sign(xl ) = sign(xlal···an _ l ). Therefore, for all

xl with Ixll < E, if xl > 0, then ~(xl) > 0 and if

xl < 0, then ~(xl) < O. However, we know that this cannot

occur. For let as n ->- 00 then for each there is a

must be even. There-

y~ < 0 such that ~(x~) = Il(Y~) and Y~ ->- a

argument shows that if ~(n) (xl) < 0, n

as n ->- 00 The same

fore, n is even. This also shows that bifurcation occurs

above or below criticality. []

(3B.2) Lemma. Let X be c2k for k > 2. Assume

= °
andj < n

that there is a j ~ 2(k-l) such that l.l{j) (0) f 0, and let

In this case ajy (O,O)
ax J

2 1
- 3~ (0 O)ll(n) (0).

a xla II '

n be as in the preceding lemma.

for all

Proof. Upon differentiating the equation V(Xl,Il(Xl » = °
j times and evaluating at xl = 0, we get aj~ (0,0) + (*) = 0.

ax J

(*) is a sum of terms of the form A~ll{~) CO) Ifor ~ < j and

This coefficient is easily seen to be

(0,0) = 0.

Therefore,

(0,0) + (*l

(0,0) +

we must find

V{O,Il) = ° for all ll.

an+lvTo find --n+I (0,0),
a xl

~ en) (0)

becauseo

O.

the coefficient of

2
3 a ~ (0, 0) II ' (0). Therefore,
a~

_ 3 a 2v (°,°)~ (n) (0) •
d Xld II

(0, 0)
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the function ~(xl)

integer j < 2(k-l)

(3B.3) Theorem. Let X be c2k for k > 2. Then

is c 2 (k-l). Assume that there is an

such that ~(j) (0) I O. Let n be the

least such integer.

for all xl I 0 and

an+lvIf --- (0,0) < 0,
~ n+l
o xl

sufficiently small. Furthermore, the

periodic orbits obtained from the implicit function theorem

are attracting.

Proof. We have already seen that ~(xl) > 0 for all

small xl such that xl I O. To show that the periodic orbits

are s.table, we must show that the function

(Seeohas a local maximum ataVIf (xl) = axl

(xl'~ (xl»

Step 5 above). f(j) (0) = 0 for all j < n because f(j) (0)

is a sum of terms of the form

isnRecall that

(0,0) +

(*)where(*)

n+l
Q. < j. fen) (0) =~

ax n+l

n+l 1
(O,O)~(n) (0) = ~ a n+~ (0,0) < O.

a xl

aj+lv
~ (0,0) +
a x J

1

A ~ (n (0) for
Q.

a 2v
a xla ~

even. Therefore, the mean value theorem shows that f(xl )

has a local maximum at xl = O. CJ

(3B.4) Theorem. Let the conditions of Theorem 3.15

be satisfied so that conclusions (A) and (B) hold. Further-

more, let the origin be Liapunov attracting for the flow of

XO• Then the periodic orbits obtained from Theorem 3.15 are

attracting and occur for ~ > O.

Proof. Under these conditions, Chafee's Theorem (page

85) holds. Therefore, the periodic orbits occur for ~ > O.
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Since conclusion (B) of Theorem 3.15 holds, the orbits are

unique, that is Yl = YZ• Under these circumstances, Chafee's

theorem implies that the orbits are attracting. ~
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SECTION 3C

HOPF'S BIFURCATION THEOREM AND THE CENTER THEOREM OF LIAPUNOV

by

Dieter S. Schmidt

Introduction

In recent years numerous papers have dealt with the

bifurcation of periodic orbits from an equilibrium point. The

starting point for most investigations is the Liapunov Center

Theorem [1] or the Hopf Bifurcation Theorem [1]. Local results

concerning these theorems were published by Chafee [1], Henrard

[1] Schmidt and Sweet [1] among many others, noted in previous

sections, whereas Alexander and Yorke [1] discussed the global

problem of the bifurcation of periodic orbits. They showed in

their paper that Liapunov's Center Theorem can be derived as a

consequence of Hopf's bifurcation theorem.

J~ A. Yorke suggested that one should show also on the

local level that Liapunov's theorem can be obtained from the

one of Hopf. For this we provide an analytic proof of Hopf's

theorem based on the alternative method as outlined in Berger's

article in Antman-Keller [1] which is general enough to include
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the center theorem as a corollary. In addition our proof of

Hopf's theorem is simple enough to allow the discussion of

some exceptional cases.

The Hopf Bifurcation Theorem

We consider the n-dimensional autonomous system of

differential equations given by

x (3C.1)

which depends on the real parameter ~. We assume that (3C.1)

possesses an analytic family x = x(~) of equilibrium points;

that is F(x(~) ,~) = o. Without loss of generality we assume

that this family is given by x = 0, that is F(O,~) = O. We

suppose that for a certain value of ~, say ~ = 0, the

matrix Fx(O,~) has two purely imaginary eigenvalues tiS

and no other-eigenvalue of Fx(O,O) is an integral multiple

of is. If a(~) + is(~) is the continuation of the eigen­

value is then we assume that a' (0) f o.

(3C.1) Theorem (Hopf). Under the above conditions

there exist continuous functions ~ = ~(E)

depending on a parameter E with ~(O) = a

and T = T(E)

-1T(O) = 2nS

such that there arenonconstant periodic solutions X(t,E)

of (3C.1) with period T(E) which collapse into the origin

as E + O.

(3C.2) Remark. Our assumptions for the Hopf theorem

are slightly less restrictive than they are usually stated as

we do not require the other eigenvalues to be non imaginary.

Furthermore F(x,~) does not have to be analytic for the

proof to hold but a certain degree of differentiability is
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required.

Proof, Through a linear change of coordinates of the

form Y = S(~)x and by a change of the independent variable

T = S(~)t we can bring equation (3C.I) into the following

form
.

(u(~) + i)YI <PI (Yl' y, ~)YI + Y2 ,

Y2 (u(~) - i)Y2 + <P 2 (YI' Y2' y, ~) (3C.2)

"
Y B(~)y + ~(YI' Y2 , y, ~)
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and are the first two complex components of the vector

y. Real solutions are only given if YI = Y2. The remaining

n - 2 components of the vector yare real and denoted by

y. B(~) is a real n - 2 square matrix not necessarily in

normal form and the functions <PI' ~2' and <P are at least

quadratic in the components of the vector y.

We introduce now the following polar coordinates

is
YI = r e

-isr e rTl

and arrive at the following system

.
u(~)r

{ -is
¢l}r + Re e

S I + I Im {e-is <PI} (3C.3)r
.

B(~)Tl- u(~)Tl + .! (¢ { -is <PI}Tl) •Tl - Re er

Into this system we introduce the scale factor 8 by r = 8p

~ = 8~1·

Because of S = I + 0(8) we can use S as a new indepen-

dent variable to overcome the autonomous character of the given

system. The resulting differential equations have the follow­

ing form
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dp
ere e: R(8,p,I1,El

(3C.4)

B (0) + V(8,P,I1,e:)

and we are searching for 2TI - periodic solutions of this sys-

tern. By our assumptions on the eigenvalues of B(O) we find

that for e: = 0 the only 2TI - periodic solution is P = Po

= const, 11 = O. This solution persists for e: "I- 0 if the

following bifurcation equation holds (see Berger [1])

f
2TI
o R(8,p,I1,e:)d8 = O.

In this expression P and 11 represent the 2TI periodic

solution of the given system (3C.l), but the terms of order

e:0 are already known and we can evaluate the term of the same

order in the bifurcation equation. This leads to the equation

)11 u' (O)P O + O(e:) 0

which can be solved uniquely to yield )11 = )1l(e:) = O(e:) by

the implicit function theorem, since u' (0)"1- 0 by assumption

and Po "I- 0 because we are looking for nontrivial solutions.

Therefore the function )1

found. The period of the solution in the original x-coordi-

nate system as found from the expression for d8
dt is

T T(e:) 2TI 2STOf (1 + O(e: ». D

The Liapunov Center Theorem

(3C.3) Theorem (Liapunov). Consider the system

x = Ax + f(x) (3C.5 )

where f is a smooth function which vanishes along with its
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first partial derivatives at x = O. Assume that the system

admits a first integral of the form I(x) = ~ xT S x + .••

where S = ST and det S t O. Let A have eigenvalues
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±is, A3 , .•• ,An S t O. Then if Aj/iS t integer for j = 3,

"',n the above system has a one parameter family of periodic

solutions emanating from the origin starting with period 2w/S.

For the usual proof, see Kelley [1].

Proof. As announced in the introduction we will show

that this theorem is a consequence of the Hopf bifurcation

theorem. To this end we consider the modified system

x = Ax + f(x) + ~ grad I(x) (3C.6)

and we will show that all conditions of Hopf's theorem are met

and that the nonstationary periodic orbits can only occur for

~ = O.

The second part is easily done by evaluating dI/dt

along solutions of (3C.6), which gives

dIdt = < grad I(x), Ax + f(x) + ~ grad I(x) >

~Igrad I(x)1 2 •

The second equality holds because I(x) is an integral

for Dc.s). Therefore I dI
]l dt is monotonically increasing unless

grad I(x(t» = 0, which gives x(t) = x(O) that is a station-

ary point.

In order to apply the theorem of the previous section

we only have to verify the condition concerning the real part

of the eigenvalue near is. Again through a linear change we

will bring the linear part of system (3C.S) into a normal form.

We assume that this has been done already and the matrix A
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has thus the following real form

-where A is a real n-2 square matrix. It follows from

ATS + SA = a that the matrix S in the integral has the form

with a f a since det S f O.

From the matrix

C
S 0

+ "S)
A + ).IS = -S ).I a 0

0 0 A

it follows at once that the eigenvalue near is has real part

~().I) = a).l and therefore a' (0) = a f O. CJ

An Exceptional Case for the Hopf Bifurcation Theorem

Our proof of Hopf's theorem is easy enough to al~ow us

to discuss the case where the real part of the eigenvalue does

not satisfy the condition a' (0) f 0, but instead the second

derivative is nonzero a"(O) f O. The term with ).11 in the

bifurcation equation is zero and we will have to evaluate some

higher order terms.

We use the same normal form as given earlier in equation

(3C.2) and for simplicity we assume that ~l and ~2 are

analytic functions in their variables. We assume that in a

preliminary nonlinear transformation mixed quadratic terms

involving Yl or and a component of have been elim-

inated. This can be achieved with a method similar to the one
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used in the Birkhoff normalization of Hamiltonian systems,

that is by a transformation of the form (cf. Section GA).

->- + Ty + ST-
Yl Yl Yl Ct Y2 Y

-T _ -T_
Y2 ->- Y2 + Yl S Y + Y2 Ct Y

Y ->- y.

The n-2 dimensional complex valued vectors Ct and Scan

be determined uniquely to eliminate the terms under question,
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because the matrix B(~) in system (3C.2) does neither have 0

nor 2i as eigenvalue for small ~.

In the function <PI we need to know the quadratic and

cubic terms made up of Yl and Y2 • They are

<PI
2 + bY I Y2

2 3 2 2 3
= aYl + cY2

+•• ~+ CtYl + SYI Y2 + AY1Y2 + oY2
+•.• .

The terms not written down either only involve the y variables

or are of higher order. The coefficients depend of course on

the parameter ~ and we write a = a(~) = a O + al~ + O(~2) and

similarly for the other coefficients.

The differential equation of interest in the 8, r, n

variables is the one for r which reads

dr
d8

This time we scale by

u(~)r +

1 + r- l

and obtain

s ~l

dn 2d8 B(O)n + O(s )
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with

2 i6 -i6 -3i6P Re{aOe +bOe +cOe + ..• }

3 {2i6 -2i6 -4i6P (Re aOe +SO+Yoe +oOe +... }

{ i6 -i6 -3i6 } { i6 i6Re aOe +bOe +cOe +•.. Im aOe +bOe

-3i6+cOe + ••• })

R
2

p 2 Re{alei6+ble-i6+cle-3i6+.•• }

R3 i u"(O)p.

The dots in the functions RO' Rl and R2 stand for terms in­

volving the n variables. Because n = O(g2) for 2n

periodic solutions those terms will be insignificant in eval-

uating the bifurcation equation, which has the same form as

earlier and is given by

In evaluating this integral it is seen at once that there is

no constant term. Nevertheless care has to be exercised in

integrating RO because it will contribute to the g2 term

due to the form of the solution of p which is

2 2 i6 -i6 cOi (e-3i6_1)} 3
p = Po + g Po Re{aOi(l-e ) + bOi(e -1) + --3- + O(g )

Due to our preliminary transformation the n variables appear

quadratic on RO and therefore they will only contribute to

higher order terms in g and The integration leads to

the following bifurcation equation

The implicit function theorem allows us to state the following

result: If u"(O) Re{SO+i aObO} < 0 there are two distinct



THE HOPF BIFURCATION AND ITS APPLICATIONS

solutions of the above bifurcation equation of the form
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~l = 0(8). The solutions correspond to two families of periodic

orbits emanating from the equilibrium. In case

u"(O) Re{So+i aObO} > 0 there are no such solutions. Finally,

if the discriminant is equal to zero higher order terms are

needed to decide what is happening. In the case u(O)

= u(n-l) = 0 u(n) (0) ~ 0 we scale by r = 8n p ~

u' (0)

8 ~l

and after identical computations we arrive at the bifurcation

equation

Call D = u(n) (0) Re{SO+i aObO} • If n is odd and D ~ 0

there is always a solution of the form ~ = ~l (8) 0(8) for1

8 small to the above bifurcation equation. If n is even

then there are two such solutions if D < 0 and none if D > O.

(3C.4) Theorem. Consider the differential system of

equations (3C.2) put into a normal form as outlined above.

Assume u(O) = u' (0) = ••• = u(n-l) (0) = 0 u(n) (0) ~ 0

n = 1,2,··· let D = u(n) (0) Re{So+i aObo }. Then if n is

odd and D ~ 0 there exists at least locally a one parameter

family of periodic orbits which collapse into the origin as the

parameter tends to zero and the period tends to 2n. If n is

even then there are two such families in case D < 0 and none

in case D > O.

The result is very close to that of Chafee [1), dis­

cussed in Section 3A. See also Takens [1].
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SECTION 4

COMPUTATION OF THE STABILITY CONDITION

Seeing if the Hopf theorem applies in any given situation

is a matter of analysis of the spectrum of the linearized

equations; i.e. an eigenvalue problem. This procedure is

normally straightforward.

consult Section 8.)

(For partial differential equations,

It is less obvious how to determine the stability of the

resulting periodic orbits. We would now like to develop a

method which is applicable to concrete examples. In fact we

give a specific computational algorithm which is summarized in

Section 4A below. (Compare with similar formulas based on

Hopf's method discussed in Section SA.) The results here are

derived from McCracken [1].

Reduction to Two Dimensions

We begin by examining the reduction to two dimensions

in detail.

Suppose X: N + T(N) is a ck vector field, depending

smoothly on ~, on a Banach manifold N such that X (a(~» = 0
~
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for all ~, where a(~) is a smooth one-parameter family of

zeros of x~. Suppose that for ~ < ~O' the spectrum

O(dX~(a(~») C {z! Re z < Ol, so that a(~) is an attracting

fixed point of the flow of X~. To decide whether the Hopf

Bifurcation Theorem applies, we compute dX~(a(~». If two

simple, complex conjugate nonzero eigenvalues A(~) and A(~)

cross the imaginary axis with nonzero speed at ~ = ~O and

if the rest of o(dX~(a(~») remains in the left-half plane

bounded away from the imaginary axis, then bifurcation to

periodic orbits occurs.

However, since unstable periodic orbits are observed in

nature only under special conditions (see Section 7), we will

be interested in knowing how to decide whether or not the

resultant periodic orbits are stable. In order to apply

Theorem 3.1, we must reduce the problem to a two dimensional

one. We assume that we are working in a chart, i.e., that

N= E, a Banach space. For notational convenience we also

assume that ~O 0 and a (~) = 0 for all ~. Let X
~

(Xl x 2 X3 ) where xl and x 2 are coordinates in theeigen-
~' ~' ~ ~ ~

space of dXO(O) corresponding to the eigenvalues A (0) and

A (0) , and x 3 is a coordinate in a subspace F complementary
~

to this eigenspace. We assume that coordinates in the eigen-

space have been chosen so that

dXO(O,O,O)

o

-I A(O) I
o

IA (0) I
o

o

o

o (4.1)

This can always be arranged by splitting E into the

subspaces corresponding to the splitting of the spectrum of
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dXO(O) into {zl Re z < O} C {A(O) ,A(O)}, as in 2A.2. By

the center manifold theorem there is a center manifold for the

flow of X (X ,0) tangent to the eigenspace of A(O) and
II

XTOf and to the ll-axis at the point (0,0,0,0). The center

manifold may be represented locally as the graph of a function,

that is, as {(xl ,x2 ,f(xl ,X2 ,ll),ll) for (xl ,X2 ,ll) in some

neighborhood of (O,O,O)}. Also, f(O,O,O) = df(O,O,O) = 0

and the projection map P(xl ,x2 ,f(xl ,X2 ,ll) ,ll) = (xl ,X2 ,ll) is

a local chart for the center manifold. In a neighborhood of

the origin X is tangent to the center manifold because the

center manifold is locally invariant under the flow of X.

"We will show that X
II

stability

We consider the push forward of X: X(xl ,X2 ,ll)

1
TPoX(xl ,x2 ,f(xl'X2 ,ll),ll) = (Xll(xl,x2,f(xl,x2,ll»,

2
Xll(xl,x2,f(xl,x2,ll»,0) by linearity of P. If we let

"1 2X
U

(xl ,x2 ) = (X (x l ,x2 ,f(xl ,X2 ,ll», Xll(xl,x2,f(xl,x2,ll»)),

"X is a smooth one-parameter family of vector fields on
II

such that x (0,0) = 0 for all ll.
II

satisfies the conditions (except, of course, the

condition) of the Hopf Bifurcation Theorem. If ¢t and ~t

" "are the flows of X and X respectively, then PO¢t = ¢tOP

for points on the center manifold. Therefore, if the re-

"sultant closed orbits of ¢t are not attracting, those of ¢t

will not be either. We will also show that if the origin is

"a vague attractor for ¢t at II = 0, then the closed orbits

of ¢t are attracting.

Since the center manifold has the property that it

contains all the local recurrence of ¢t' the points (O,O,O'll)

are on it for small II and so f(O,O,ll) = 0 for small ll.

"1 2Thus, X (0,0) = (X (O,O,f(O,O'll»' X (O,O,f(O,O'll») =
II II
12"(X (0,0,0), X (0,0,0» = o. poX Xop on the center manifold,
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"so PodX = dXoP for vectors tangent to the center manifold. A

typical tangent vector to the center manifold has the form

(u,v,dlf(xl,x2'~)u + d2f(xl,x2'~)v + d3f(xl,x2'~)w,w), where

(xl,x2,f(xl,x2'~)'~) is the base point of the vector. Because

we wish to calculate a(dX (0,0», we will be interested in
~

the case w = O. Now podX(O,O,O,~) (u,v,dlf(O,O,~)u +

dl(O,O,~)v,O) = dX(O,O,~} (u,v,O). That is, ~(O,O,O) (u,v,dlf(O,O,~)u+
i A

d2f(0,0,~)v) = dX~(O,O) (u,v) for i = 1,2. Let A Ea(dX~(O,O».

Since dX (0,0) is a two-by-two matrix, A is an eigenvalue
~ .

A

and there is a complex vector (u,v) such that dX~ (0,0) (u,v) =

(AU,AV). We will show that A is a eigenvalue of dX~(O,O,O)

and (u,v,dlf(O,O,~)u + d2f(0,0,~)v) is an eigenvector. Be­

cause X is tangent to the center manifold,

Therefore,

1
dldlf(xl,x2'~)oX (xl'x2,f(xl'x2'~) ,~)u

1
+ dlf(xl,x2,~)odlX (xl,x2,f(xl,x2'~)'~}u

1
+ dlf(xl,x2,~)od3X (xl,x2,f(xl,x2,~},~}odlf(xl,x2'~)u

2
+ dld2f(xl,x2'~}X (xl,x2,f(xl,x2'~)'~)u

2
+ d2f(xl'x2'~) odlX (xl'x2,f(xl,x2'~),~)u

. 2+ d2f(xl,x2,~)od3X (xl,x2,f(xl,x2,~),~)odlf(xl,x2'~)u

and
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+ d3X
3

(Xl ,x2 ,f (xl ,x2 ,\l) ,\l) °d2f (xl ,x2 ,\l)v

1d 2d l f(x l ,X2 ,\l)oX (xl ,x2 ,f(xl ,X2 ,\l),\l)v

1+ d l f(x l ,X2 ,\l)od2X (x l ,x2 ,f(xl ,X2 ,\l),\l)v +

+ dlf(Xl,X2,\l)Od3Xl(Xl,X2,f(Xl,X2,\l) ,\l)od2f(x l ,X2 ,\l)v

2+ d 2d 2f(x l ,X2 ,\l)X (xl ,x2 ,f(xl ,X2 ,\l),\l)v

2+ d 2f(x l ,X2 ,\l)od2X (x l ,x2 ,f(xl ,X2 ,\l),\l)v

2+ d 2f (xl ,X2 ,\l) od 3X (xl ,x2 ' f (xl ,X2 ,\l) ,\l) od2f (xl ,X2 ,\l) v.

At the point 1 2
(O,O,O,\l), X = X ° and so we get

3dX (O,O,O,\l) (u,v,dlf(O,O,\l)u + d 2f(O,0,\l)v)

33· 3
dlX (O,O,O,\l)u + d 2X (O,O,O,\l)v + d 3X (O,O,O,\l)odlf(O,O,\l)u

3+ d 3X (O,0,0,\l)od2f(O,0,\l)v

1 1dlf(O,O,\l)o(dlX (O,O,O,\l)u + d 2X (O,O,O,\l)v

1 1+ d 3X (O,O,O,\l)odlf(O,O,\l)u + d 3X (O,0,0,\l)od 2f(O,0,V)v)

2 2+ d 2f(O,0,\l)o(d l X (O,O,O,\l)u + d 2X (O,O,O,\l)v

2 2+ d 3X (O,O,O,\l)Odlf(O,O,\l)u + d 3X (O,0,0,\l)Od2f(O,0,\l)v)

by the assumption that

with eigenvalue \.

(U,V) is an eigenvector of dX (0,0)
\l

When \l = 0, df ° and we have that
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The eigenvalues of
"-

dX (0,0)
\1

are continuous in \1 because

they are roots of a quadratic polynomial. Let these roots be

a l (\1) and a 2 (\1)

Because a
l

(\1) and

and a 2 (\1) t \ (\1) ,

so that a l (0) = \ (0) and a 2 (0) = XTOf.

a 2 (\1) E o(dX\1(O,O,O», if a l (\1) t \(\1)

then Re a i (\1) would be bounded away from

zero for small \1. Since this is not true, a l (\1) = \(\1) and

a 2 (\1) = \(\1). Furthermore, since \(\1) and \(\1) are simple

eigenvalues of O(dX\1(O,O,O», we must have that the center

manifold is tangent to the eigenspace of {\(\1),\(\1)} at the

point (0,0,0,\1).
"-

We show now that if V'" (0) < 0 for X, then the closed

orbits of ~t are attracting. The map Q(x1 ,x2 ,x3.\1) =

(x
l

,x2 ,x3-f(xl'x2 ,\1),\1) is a diffeomorphism from a neighbor­

hood ~ of (0,0,0,0) onto a neighborhood V of (0,0,0,0)

where we have chosen ~ small enough so that X is tangent

to the center manifold M for (x l ,x
2
,f(x

l
,X

2
,\1) ,\1) E ~.

Clearly QI M = xl{x=o}
"-

¢tl
"-

P, = X, and = ~t· Therefore,
3 {x =O}

3

we are immediately reduced to the case of

on R
2

Ell F where is invariant under

Y
\1

Y
\1

a vector field

and Y\1 satis-

fies the conditions for Hopf Bifurcation with R2 being the

eigenspace of \(\1) and ~ at (0,0,0,\1). The center

Assume that V'" (0) < 0

(x l ,O,O,\1(Xl » be on a

Because R2
is invariant,Y.of~t

is {(x
1

,x2 ,0,\1)}.

and let the point

y

Yfor

manifold for

Y {x
3

=0}

closed orbit of the flow

au a 12 a
13

d~T(X ) (x l ,O,\1(xl » a 2l a 22 a 23
1 3

0 0 d3~T(X ) (xl'0,0,\1(x1»1
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3
By assumption, (d3 4>T(0) (0,0,0,0»

3a{T(0)d3X (0,0,0»
e is inside the unit circle. By continuity,

so is Since V'" (0) < 0, the

eigenvalues of the Poincare map in R2 have absolute value

less than 1, so all the eigenvalues of the Poincar~ map are

inside the unit circle and so the orbit is attracting

(see Section 2B).

Summarizing: We have shown that the stability problem for

the closed orbits of the flow of X~ is the same as that for

the closed orbits of the flow of x~, where X~(Xl'X2) =
1 2

(X~{xl,x2,f(Xl'X2'~»' X~(xl,x2,f(xl,x2'~»)' Coordinates are

chosen so that x l ,x2 are coordinates in the eigenspace of

dXO(O,O,O) and the third component is in a complementary

subspace F. The set {(xl,x2,f(xl,x2'~)'~) for (xl,x2'~)

in a neighborhood of (O,O,O)} is the center manifold.

Outline of the Stability Calculation

From the proof of Theorem 4.5, we know that the closed

orbits of X will be attracting if V'" (0) < 0 (or more
~

generally, see Section 3B, if the first. nonzero derivative of

V at the origin is negative). The derivatives of V at (O,O)

can be computed from those of Xo at (0,0,0). We do this in

two steps. First we compute V'" (0) from the derivatives of

"XO' the vector field pushed to the center manifold, at (0,0)

using the equation:

T(Xl )

V(x1 ) = fa xl(at(xl,O),bt(Xl,O»dt (4.2)

(Note that in the
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two-dimensional case, X x.) Then we compute the derivatives

of Xo at (0,0) from those of Xo at (0,0,0). Since

A 1 2
X

ll
(x l ,x2 ) = (X (xl ,x2 ,f(xl ,X2 ,1l», X (x l ,x2 ,f(xl ,X2 ,1l»), what

II II .

we need to know is the derivatives of f at the point

(0,0,0). We can find these using the local invariance of the

center manifold under the flow of X. We use the equation

(see page 107):

A

Calculation of V" I (0) in Terms of X

We now calculate V'" (0) from the derivatives of Xo
at (0,0) using (4.2). We assume that coordinates have been

chosen so that

(4.3)

axl axl
0 (0,0,0) 0 (0,0,0) 0 IA(0) I

dXO(O,O)
aX l aX2 • (4.4)
ax2 ax2

0 (0,0,0) 0 (0,0,0) -I A(0) I 0aX l aX 2

This change of variables is not necessary, but it simplifies

the computations considerably and, although our method for

finding V'" (0) will work if the change of variable has not

been made, our formula will not be correct in that case.

From (4.2) we see that
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d "1
+ T' (xl) dX

l
[X (aT (Xl) (xl,O) ,bT(X

l
) (xl,O»]

+ Til (Xl)X
l

(aT (Xl) (xl'0) ,bT(X
l

) (xl,O»

d "1
+ T' (xl) dX

l
[X (aT (Xl) (xl,O) ,bT(X

l
) (xl,O»].

Using the chain rule, we get:

T (xl) 2

J ~ [xl(at(Xl,o),bt(xl,O»]dt° dX l

Differentiating once more,
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[

db
t

dt

d2Xl
dbt [dbt I dbt ]

+ db 2 -rr- -rr- T (xl) + dX
I

+ :~" [:> T' (Xl) + :::it~
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In the case xl = 0, we can considerably simplify this

equation. We know the following about the point (0,0):

at(O,O) = bt(O,O) = 0 for all t (4.5)

aa
t (0,0)

abt (0,0) = 0 (4.6)at at

A "

[-1':0)1
I'~o) I]dX(at(O,O), b t (0,0» dX(O,O) (4.7)

d~t(O,O)
tdX (0,0) [ cos IA(0) It sinIA(O) It]

e (4.8)
-sinIA(O) It COSIA(O) It

and

T(O) 21T/IA(0) I (4.9)

T' (0) = O. (4.10)

Proof of (4.10) • Let S (Xl) = T(xl ,)1(x l »· Then

S' (0) = 0 because given small x > 0, there is a small y < 0

such that S(x) S (y) • Thus, S(x) - S(O) and S(y) - S(O)= x y

have opposite signs. Choosing x n + 0, we get the result.

S' (0) = ~T (0,0) + )1' (0) ~T (0,0). But )1' (0) = 0, as was
oX l )1

shown in the Proof of Theorem 3.1 (see p. 65).

at (0,0) ,bt (0,0)

We now evaluate

Therefore, V'" (0)

d 3X1
--3-
dX

l

f
21T/ IA (0) Ia 3x

3

" 1
(at (xl,O) ,bt (xl,O) )dt.

o dXl

and get:
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v' " (0)
21T/IA(0) I ~3""
I a x

o aa3
3 a3x 3

(O,O)eos IA(O) It - ab 3 (O,O)sin IA(O) It

a3xl 2
- 3 (O,O)eos IA(O) It sinIA(O) It

aa2 ab

a3xl
2

+ 3 aaab2 (O,O)eosIA(O) It sin IA(O) It

+ IA (0) I

2
a2xl a at
---- (0,0) ---2- (O,O)eosIA(O) It
~a2o aX

l

2 ]a at
- -2- sinIA(O) It

aX
l

In order to get a formula for V'" (0) depending only on the
....

derivatives of X at the origin, we must evaluate the

derivatives of the flow (e.g. , (0,0) ) from those of
....
X
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at (0,0). This can be done because the origin is a fixed

"point of the flow of X. Because this idea is important, we

state it in a more general case.

(4.1) Theorem. Let X be a ck vector field on Rn

such that X(O) = 0 (~ X(p) = 0). Let ~t be the time t

map of the flow of X. The first three (or, the first j)

derivatives of ~t at 0 can be calculated from the first

three (or, the first j) derivatives of X at O.

Proof. Consider

Hi

Furthermore, ax~ (0) = 0ij because
J

x. So d~t(O) satisfies the differential

dX(O). d~t(O) and d~O(O) = I.

for all

~t(O) = O.because

aequation at (d~t(O)) =

Thus, d~t(O) = etdX(O).

a2~i
t
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Furthermore,

The solution is:

We get the differential equation:

Finally consider

J:e-
sdX

(0)d
2
X(0) [::; (0), :~ (0) )dS.

Cl 3 <jli
."....-~_t""""'"""_ (0):
ClxjClXkClXh

Cl 2Xi [ ,',P ,,' Cl<jlP ,',' ]+ 0 <jl t ~+ t
ClXkCl~hClxpClxR, t ClXjClXh ClXk ClX j

Cl 2Xi Cl<I>P Cl 2 <jlR,
ClXi a'o'J+ o <jlt t t

o <jlt t (0)
ClXh ClxjClxk

+ --
ClxpClXR, ClxR, ClxjClxkClXh
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d3Xi dcj>q dcj>P H t

(0) t (0) t (0) t (0)
dX dXtdX dXh dX. dXkP q J

a2xi [ ,2.p H t H P d2cj>t
+ (0) dXjd~h (0) t (0) + t (0) t (0)

dXpdX t dXk dX j dXkdXh

d2cj>t H P (0)] + dXi d3cj>t
+

t (0) t (0) t (0) •
dXjdXk dXh dX t dXjdXkdXh

o. We get the differential

equation:

and

The solution is:

d3cj>
t (0)

dXjdXkdXh
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In the case we are considering, dX(O,O)
[

0 /A. (0) I}
-I A (0) / 0

First note that e-sdX(O)

and

We wish to
sin/A(O) It].

cosIA(O) It

A ( cos/A(O) It
and so d¢t(O,O) =

-sinl A(0) It

d
2
¢ [d 2

a tcalculate ~ (0,0) = ---2- (0,0),
dX l dX l

_ [COSIA(O) /s
- sin IA(0) Is

-SinIA(O)ls].
cosIA(O) Is

Also,

2
A

[d¢S d~S ] [d
2X1 2d X(O) dX

l
(0), dX

l
(0) = dxi (O,O)cos IA(O) Is

d
2
X

2
2 ]+ ---2-- (O,O)sin IA(O) Is •

dX2

Consequently,
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and thus

+ [-
d2;{2 d2X1

3
2X2

]. 3
-2- + 2 dX 1 dx 2

+ -2- cos [\(0) It,
dX 2 dX 1

[2
d2X1 d2X2

3
2
X

l
]-2- - 2 dX 1 dx 2

+ -2-
dX 2 dX 1
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(where all derivatives are evaluated at the origin) .

Putting this all together,

] [
2 2]d at d bt(0) ds = -y- (0), -2- (0)

dXl dXl

1
31 A (0) I

+ [-
d2xl d2X2 ,'Xl] sin

3
lA(O) It-2- + 2 dXl dx 2

+ -2- coslA(O) It
dX l dX 2

+ [
d2xl d2X2 ,'Xl] 3--2- + 2 dX l dX 2

- -2- sinlA(O) It cos 11..(0) It
dX 2 dX l
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+ [-
32X2 32Xl "']-2- + 2 3x

1
3x2

+ 3; cos
4

IA(0) It
3x

2
3x

l

+ [-
3

2X2 3
2Xl "X'] ,--2- - 2 3x1 3x2

+ --2- sin IA(O) It,
3xl 3x2

[, 32}(l 3
2X2 2-1]-2- - 2 3x
1

3x
2

+ 3; COSIA(O) It
3x2 3Xl

+ [,
32X2 d

2xl "']--2- + 2 3x
1

3x 2
+ 3; sinIA(O) It

3x2 3xl

+ [3 3
2X2

"X'] cos IA (0) It--2- - 3 -2- sinIA(O) It
3xl 3x 2

3
2Xl

sin
2

IA(0) It - 3
32Xl 2

- 3 -2- -2-cOS IA(O)lt
3xl 3x2

3
cos IA(O) It

Before computing

+ [32~.1 _
3x l

33b
t--3- (0), which is a lengthy calcula-

3x
l

tion, we will use the information above to simplify our

expression for V'II (0). To do this, we must compute
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t1T/IA(O) I
2a at

(O,O)COSIA(O) It dt,:-z
0 aX

1

I: 1T/ IA (0) I
2a at

(O,O)sinIA(O) It dt,:-zaX1

I: 1T/ IA (0) I a2b
t (O,O)COSIA(O) It dt,--2-

aX
l

and

f:1T/1A(O) I a2
b

t (O,O)sinIA(O) It dt.-2-
aX

l

The results are:

2

I
21T/IA(O) I a at 1T

-2- (O,O)eosIA(O) It dt = 2
o aXl 3/A(O) I

2

I
21T/IA(O) I d at

-2-- (O,O)sinIA(O) It dt = 1T 2
o aXl 3IA(O) /

I
21T/\A(O) I a2

bt . 1T
. '_.-2- (O,O)eos/A(O) It dt = 2
o aX1 3/A(O) /

1
21T/'A(O) I a2

bt---2-- (O,O)SinIA(O) Itdt = IT 2
o aX1 31A(Oli

Therefore,

V'" (0) (O,O)dt

2a at
-2- (O,O)cosIA(O) It
dXl
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Le.

(where all derivatives are taken at the origin).

()3b
To compute ~ (0,0), we use the equation:

()x
l
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The calculation involved is quite long,* but is straight-

125

forward, so we will merely indicate how it is done and then

state the results. The lengthy computation alluded to is:

I: 'IT/I A(0) 1e tdX ( 0 ) It [" a2
<j>

(0, 0) ] d,e-sdX (0)d2X(0) ~ (0,0) , s dto aX l
-2-
aXl

[,orne thing , 2 'IT
a2x a2x 5 'IT

a2x a2x__1 __2 + 1 1

IA(0) 13 2 2 41 A(0) /3
-2- axl ax2aX

l
aX 2 aXl

a2x a2x
5 'IT

a2x a2x7 'IT __1 __2 + 1 1+ ax l ax2
-2-

41 A(0) 1
3 2 2 41 A(0) 1aX

l
aX

l aX 2

3 'IT
a2x a25{

5 'IT
a2x a25{2 2 + 1 2+

41 A(0) 1
3 axl ax2 -=-r 41 A(0) 1

3 -=-r -=-raX
l aX 2 aX2

a25{ a2x
3 'IT ,'i a'i J

+ 'IT __1 __2 + 2 2 (at (0,0) )
1ft. (0) 13 2 2 41 A(0) 1

3 ax l ax2 ax~ ;aX 2 aX
l

and one easily sees that

(0,0), ::~ (0,0), ::~ (0,0) ]dS dt

The final result of the computations is, therefore,

*We are not joking! One has to be prepared to shack up with
the previous calculations for several days. Details will be
sent only on serious request.
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[ 2X1
2,,2 2xI 2~

+ 1f 2 _a_ (0,0) a x (0,0) + a (0,0) a (0,0)
IA(0)1

3 aa2 alT ;Z aT
2"1 a2xl 2"2 a2}{2

+ ~ a; (0,0) aaab (0,0) +~~ (0,0) aaab (0,0)
aa 4 ab2

2}{1 2"2 2"2 2}{1
+f~ (0,0) a; (0,0) +~~ (0,0) _a_ (0,0)

aa aa 4 ab2 ab2

5 a2xl 2"1 3 a2x2 a2~ }a x (0,0)+ '4 aaab (0,0) ;z + '4 aaab (0,0) -2- (0,0) •
aa

Thus we get our formula:

(4.2) Formula

37T [ 3,,1 a3xl
V'" (0) =

41 A(0) I a ~ (0,0) +
aaab2 (0,0)

aa

a3x2
(0,0) a3x2

(0,0) }+-- +--
aa2 ab ab3

+ 31f (- a 2xl
(0,0) a2xl

(0,0)
4IA(0) 1

2 aa2 aaab

a2x2
(0,0) a2x2

(0,0)+-- aaabab
2

a2x2
(0,0) a2x2

(0,0) a2xl
(0,0) a2xl

(0,0)+ -2- aaab - .ab2 aaabaa

a2xl
(0,0)

a2~2
(0,0) a2x1

(0,0) a2x2
(0,0) ] •+--

aa2 -
ab 2 ab 2aa 2
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"In two dimensions, where X = X, this can be used

directly to test stability if dXO(O,O) is in the form on

p. 108.

Expressing the Stability Condition in Terms of X.

We now use the equation

~(Xl,X2,f(Xl,X2'~)) = dlf(xl,x2'~) 0 Xl(Xl,X2,f(Xl'X2'~»)

+ d2f(xl,x2'~) 0 ~(Xl'X2,f(Xl,X2'~))

near (0,0,0,0)
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"to compute the derivatives of Xo at (0,0) in terms of

those of Xo at (0,0,0). Since no differentiation with

respect to ~ occurs, we drop all reference to ~. Upon

differentiating this with respect to xl and to x 2 ' we get:

and
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We now differentiate the first equation with respect to xl

and and the second with respect to only. We get

three expressions. These expressions are easy to write down

and to evaluate at the point xl = x 2 = 0, where

f df o and dX

o
-I \ (0) I

o

1\ (0) I
o

o

o
o

d x3
3

This procedure yields

3
dldlX (0,0,0)

3d
l

d 2X (0,0,0)

3+ d 3X (0,0,0)

3+ d
3

X (0,0,0)

i.e.

3
21\(0) I 0 dldlf(O,O)d 3X (0,0,0)

-1\(0) I 3
1\(0) I dldl(O,O)d

3
X (0,0,0)

0 -21\(0) I d3~ (0,0,0) d2d2f(O,O)
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3
-dldlX (0,0,0)

3-dl d2X (0,0,0)

-d2d2~(0,0,0)

129

{zlRe z < O}
3 2d 3X (0,0,0)

See formula (4A.6) on p. 134 for the expression for didjf ob­

tained by inverting the 3 x 3 matrix on the left. Note

3 3 2that since the determinant is d
3

X (0,0,0) (d
3

X (0,0,0) +

411.(0) ,2), and since a(d 3X3 (0,0,0» c a(dX(O,O,O» C

U {A(O),A(O)} implies both d 3X3 (0,0,0) and

+ 411.(0) 1
2

= (d3 X
3

(0,0,0) + 211.(0) Ii) (d
3

X3 (0,0,0)

-211.(0) Ii) are invertible, the matrix is invertible.

Finally we must compute the first three derivatives of Xo
at (0,0) in terms of those of Xo at (0,0,0). Remember

that

1,2.

Therefore,

i
djX (xl ,x2 ,f(xl ,x2 )

i+ d
3

X (x l ,x2 ,f(xl ,x2 » 0 d j f(x l ,x2 )

for i,j = 1,2.

So

[

0 11.

0

(0)1]

-I A (0) I

Differentiating again, we get:
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~djxi(Xl,X2) = ~dj~(Xl,X2,f(Xl,X2))

+ d3dj~(Xl'X2,f(Xl,X2)) 0 ~f(Xl,X2)

i+ ~d3X (Xl ,x2 ,f(Xl ,X2)) 0 dj f(Xl ,X2))

+ d3d3~(Xl,X2,f(Xl,X2)) 0 ~f(Xl,X2) 0 d j f(Xl ,X2)

i+ d3X (Xl ,x2,f(Xl ,X2)) 0 ~djf(Xl,X2)' i,j,k = 1,2.

Evaluating at t = 0, we get:

i, j,k 1,2.

We differentiate once more at evaluate at 0:

d~~djXi(o,o) = d~~dj~(O,O,O) + d3dj~(0,0,0) 0 d~~f(O,O)

+ ~d3~(0,0,0) 0 d~djf(O,O)

This can be inserted into the previous results to give an

explicit expression for V'" (0) on p.

Below in Section 4A, we shall summarize the results

algorithmically so that this proof need not be traced through,

and in Section 4B examples and exercises illustrating the

method are given.

(4.3) Exercise. In Exercise 1.16 make a stability

analysis for the pair of bifurcated fixed points. In that

proof, write f(a,O) = a + Aa 3 + ••• and show that we have

stability if A < 0 and supercritical bifurcation and in-

stability with subcritical bifurcation if A > O. Develop an

explicit formula for A and apply it to the ball in the hoop

example. (Reference: Ruelle-Takens [1], p. 189-191.)
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SECTION 4A

HOW TO USE THE STABILITY FORMULA; AN ALGORITHM

The above calculations are admittedly a little long,

131

but they are not difficult. Here we shall summarize the re-

suIts of the calculation in the form of a specific algorithm

that can be followed for any given vector field. In the two

dimensional case the algorithm ends rather quickly. In gener-

aI, it is much longer~ Examples will be given in Section 4B

following.

Stability is determined by the sign of V" I (0), so our

object is to calculate this number. We assume there is no

difficulty in calculating the spectrum of the linearized pro-

blem.

Before stating the procedure for calculation of

V'" (0), let us recall the set up and the overall operation.

Let X: E + E be a ck (k > 5) vector field on a
~ -

Banach space .E (if X~ is a vector field on a manifold, one

must work in a chart to compute the stability condition).

Assume x~(a(~» = 0 for all ~ and let the spectrum of
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dX~(a(~)) satisfy:

For ~ <~o' cr(dX~(a(~)) C {zlRe z <oL dX~(a(~)) has two

complex conjugate, simple eigenvalues A(~) and ~. At

~ = ~o' A(~) and A(~) cross the imaginary axis with non­

zero speed and A(~O) f O. The rest of cr(dX~(a(~)) remains

in the left half plane bounded away from the imaginary axis.

I. Under these circumstances

(A) Bifurcation to periodic orbits takes place, as

described in Theorem 3.1.

Choose coordinates so that x
~O

where

and are coordinates in the eigenspace to

is the coordinate in some complementary

subspace. Choose the coordinates so that*

0 IA(~O) I 0

dX (a (~O) ) -I A(~O) I 0 0 (4.1)
~O

3
0 0 d_,X (a(~O))

~ ~O

(B) If the coefficient V'" (0) computed in (II)

below is negative, the periodic orbits occur for and

are attracting. If V'" (0) > 0, the orhits occur for

~ < ~O' are repelling on the center manifold, and so are un­

stable in general.

(C) If V' I , (0) 0, the test yields no information

*See Examples 4B.2 and 4B.8. Computer programs are available
for this step. See for instance, "A Program to Compute the
Real Schur Form of a Real Square Matrix" by B.N. Parlett and
R. Feldman; ERL Memorandum M 526 (1975), univ. of Calif.,
Berkeley.
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and the procedures outlined in Section 4 must be used to com~

pute v(5) (0). Good luck.

II. Write out the expression

v· •• (0)

d 2xl d 2X2
11 0 (a l (11 0 ) ,a2 (11 0 »

11 0 (a l (11 0 ) ,a2 (11 0 »+ --2- --2-
d xl d xl

d 2x l d 2x2

'a1"0> ,a, "0> »
11 0 (a l (11 0 ) ,a2 (11 0 »

11 0 (4A.2)--2- --2- .
d x 2 d x2



134 THE HOPF BIFURCATION AND ITS APPLICATIONS

(A) If your space is two dimensional, let ~l = xl, ~2

x
2

• Take off the hats; you are done with the computation of

V' , I (0) and the results may be read off from I.

Otherwise, go to Step B.

(B) In expression (4A.2) fill in

for i, j = 1,2.
(4A.3)

for i,j,k = 1,2.

(4A.4)

and

(C) In this expression you now have, fill in didjf

given by:

dldlf(al(VO),a2(vO»

dl d2f(al (va) ,a2 (vO»

d 2d2f(a
l

(v
O
),a2 (vO»

2
211. (vo) 1

-!A(VO) Id3x~ (a(vo»
o

2 3 2
2/ A (vO) I + (d

3
Xv (a (v O) ) )

o

(4A.6)
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where /';

(Note: if x3 is linear, all derivatives of f are zero.)

(D) If you have done it correctly your expression for

v'·· (0) is now entirely in terms of known quantities and in

an explicit example, is a known real number and you may go to

Step I to read off the results.

Remarks. S. Wan has recently obtained a proof of the

stability formula using complex notation, which is somewhat

simpler. It also yields information on the period (it is

closely related to the expression So + iaOb O from Section 3C;

stability being the real part, the period being the imaginary

part). The formulas have been programmed and interesting

numerical work is being done by B. Hassard (SUNY at Buffalo) •
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SECTION 4B

EXAMPLES

We now consider a few examples to illustrate how the

above procedure works. The first few examples are all simple,

designed to illustrate basic points. We finish in Example 4B.8

with a fairly intricate example from fluid mechanics (the

Lorenz equations).

(4B.l) Example (see Hirsch-Smale [1], Chapter 10 and

+ (ddXt) 3 dx- a dt + x

Zeeman [2] for motivation).

d 2
xtion --

dt2

Consider the differential equa-

0, a special case of Lienard's

equation. Before applying the Hopf Bifurcation theorem we

make this into a first order differential equation on R2 • Let

dxy = dt. Then we get the system

dx ~
dt = y, dt

3-y + ay - x.

Let Xa(x,y)
3(y,-y +ay-x). Now Xa(O,O) o for all a and

dXa(O,O)
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The eigenvalues a ± /a2_4
Consider such thatare

2 a

lal < 2. In this 1m A(a) "I 0, where A(a) a + ,!a2_4case =
2

~+ i ll-a2
Furthermore, for -2 < 0, Re A(a) a and2 -2- < a <

for a = 0, Re A(a) = a and for 2 > a > 0, Re A(a) > a and

d(Re A(a» I - 1 Therefore, the Hopf Bifurcation theorem
da a=O - 2" •

applies and we conclude that there is a one parameter family

of closed orbits of X = (Xa'O) in a neighborhood of (0,0,0).

To find out if these orbits are stable and if they occur for

0, look at XO(x,y)
3

dXO(O,O) (-~ ~Ja > we = (y,-y -x). =

and A(0) = i. Recall that to use the stability formula

developed in the above section we must choose coordinates so

that

dXO(O,O)
[

aIm AO(O)]

-1m A(O)

a for all n > 1

Thus, the original coordinates are appropriate to the calcula-

tion; an example where this is not true will be given below.

We calculate the partials of Xo at (0,0) up to order three:

anx
~ (0,0)

axjayn-j

since Xl (x,y) = y.

a2x a2X:2 a2x2 (0,0) = 0, (0,0) = 0, 2 (0,0) 0,-2- axl ax2
-2-

aX
l

aX2

a3x a3x a3x a3x2 (0,0) 0, 2 (0,0) = 0, 2 (0,0) = 0, 2 (0,0) = -6.-3- -2- --2 -3-
aXl axl ax2 axl ax2 aX

2

Thus, V"'(O) =~ (-6) < 0, so the periodic orbits are attract­

ing and bifurcation takes place above criticality.
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(4B.2) Example. On consider the vector field

and

XIl(x,y)
3 2

(x+y,-x -x Y+(1l-2)x+(1l-1)y).

x (0,0) = 0
11

dXIl(O,O) = (1 1 )
11-2 11-1

The eigenvalues are 11 ±~
2 Let -1 < 11 < 1,

then the conditions for Hopf Bifurcation to occur at 11 = 0

are fulfilled with A(O) = 1. Consider XO(x,y) =

(x+y,-x
3

_x
2
y_2x_y). dXO(O,O) = (_~ -i), which is not in the

required form. We must make a change of coordinates so th~t

dXO(O,O) becomes
A

That is, we must find vectors e l

and e 2 so that dXo(O,O)e l = -e2 and dXo (0,0)e2 = €l. The
A A

vectors e l = (1,-1) and e 2 = (0,1) will do. (A procedure

for finding and is to find and a the complex

eigenvectors; we may then take e l = a + a and e 2 = i(a-a).

See Section 4, Step 1 for details.) XO(xe l +ye 2 ) = XO(x,y-x)

3 2 2" 2 A(y,-x -x (y-x)-2x-(y-x» = (y,-x y-x-y) = yel + (-x y-x)e 2 •

2Therefore in the new coordinate system, Xo(x,y) = (y,-x y-x).

o for all n > 1.

a2x a2x a2x
2 (0,0) 0, 2 (0,0) = 0, 2 (0,0) 0,

al
axay al

a3x a3x a3x a3x2 (0,0) 0, 2 (0,0) = -2, 2 (0,0) = 0, 2 (0,0) O.
ax3 -2- --2

ay3ax ay axay
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37f
Therefore, V" I (0) = 41 A(0) I (-2) < 0. The orbits are stable and

bifurcation takes place above criticality.
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(4B.3) Example. The van der Pol Equation
2 2 dxThe der Pol equation d x +

°van
dt2 )leX -l)crr + x =

is important in the theory of the vacuum tube. (See Minorsky

[1], LaSalle-Lefschetz [1] for details.) As is well known,

for all )l > 0, there is a stable oscillation for the solution

of this equation. It is easy to check that the eigenvalue

conditions for the Hopf Bifurcation theorem are met so that

bifurcation occurs at the right for )l = 0. However, if

)l = ° the equation is a linear rotation, so v(n) (0) ° for

all n. For )l = 0, all circles centered at the origin are

closed orbits of the flow. By uniqueness, these are the

closed orbits given by the Hopf Theorem. Thus, we cannot use

the Hopf Theorem on the problem as stated here to get the

existence of stable oscillations for )l > 0. In fact, the

closed orbits bifurcate off the circle of radius two (see

LaSalle-Lefschetz [1], p. 190 for a picture). In order to

obtain them from the Hopf Theorem one needs to make a change

of coordinates bringing the circle of radius 2 into the origin.

In fact the general van der Pol equation u" + f(u)u ' + g(u) = °
can be transformed into the general Lienard equation

x' = y - F(x), y' = -g(x) by means of x = u, y = u ' + F(u).

This change of coordinates reduces the present example to

4B.l. See Brauer~Nohel [1, p. 219 ff.] for general information

on these matters.)

(4B.4) Example. On R3 , let X)l(x,y,z) =

2 2 2()lx+y+6x ,-x+)lY+Yz, ()l -l)y-x-z+x). Then X)l(O,O.O) ° and
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l.l 1 0

dXl.l(O,O,O) -1 l.l 0 which has eigenvalues -1 and

-1 2-1 -1l.l

l.l ± i. For l.l 0, the eigenspace of +" for dXO(O,O,O)-~

is spanned by {(1,0,-1), (0,1,0)}. The complementa~y subspace

= -1.

this basis X (x,y,z)
II

We now compute the stability

is spanned by (0,0,1). With respect to

2 2 2(llX+y+6x ,-X+lly+yz,llx+ll Y-z+x ).

condition. \A(O) I = 1 and d3X~(0,0,0)

dldlf(O,O) 3 2 2 2

d l d 2f(0,0) -1 -1 1 1 05
d 2d 2f(0,0) 2 -2 3 0

6/5

-2/5

4/5

Al
0d~djdkXO(O,O)

A2
0dldldlXO(O,O)

A2
1· (6/5) 6/5d l d l d 2XO(O,0)

A2
3'1·4/5 12/5.d l d 2d 2XO(O,0)

Therefore, V'" (0) 31T
~ (6/5 + 12/5) > 0, so the orbits are un-

stable.

The next two exercises discuss some easy two dimensional

examples.

(4B.5) Exercise. Let X(x,y) = A (x) + B(x,y)
II y

where

222 2B(X,y) = (ax +cy ,dx +fy ) and A 1)II • Show that

llO = 0 is a bifurcation point and that a stable periodic

orbit develops for l.l > 0 provided that cf > ad. (This

example is a two dimensional prototype of the Navier-Stokes

equations; note that X is linear plus quadratic.)
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(4B.7)

3-z,-w+y ).

(4B.6) Exercise (see Arnold [2]). Let z = z(iw+~+czz)

in R2 using complex notation. Show that bifurcation to

periodic orbits takes place at z = ~ = O. Show that these

orbits are stable if c < O.

For some additional easy two dimensional examples, see

Minorsky [1], p. 173-177. These include an oscillator in-

stability of an amplifier in electric circuit theory and

oscillations of ships. The reader can also study the example

x + sin x + ex = M for a pendulum with small friction and

being acted on by a torque M. See Arnold [1], p. 94 and

Andronov-Chailkin [1].

The following is a fairly simple three-dimensional

exercise to warm the reader up for the following example.

Exercise. Let X (x,y,z,w) = (~x+y+z-w,-x+~y,
~

Show that bifurcation to attracting closed orbits'

takes place at (x,y,z,w) = (0,0,0,0) and ~ = O.

(Answer: V'" (0) = -91T/4).

The following example, the most intricate one we shall

discuss, has many interesting features. For example, change

in the physical parameters can alter the bifurcation from sub

to supercritical; in the first case, complicated "Lorenz

attractors" (see Section 12) appear in plcace of closed orbits.

(4B.8) Example (suggested by J.A. Yorke and D. Ruelle).

The Lorenz Equations (see Lorenz [1]).

The Lorenz equations are an idealization of the

equations of motion of the fluid in a layer of uniform depth

when the temperature difference between the top and the bottom

is maintained at a constant value. The equations are
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dxat -ax + ay

~tdE -xz + rx - y

dz
dt xy - bz.

Lorenz (1] says that" x is proportional to the intensity

of the convective motion, while y is proportional to the

temperature difference between the ascending and descending

currents, similar signs of x and y denoting that warm fluid

is rising and cold fluid is descending. The variable z is

proportional to the distortion of the vertical temperature

profile from linearity, a positive value indicating that the

strongest gradients occur near the boundaries". a = K-IV is

the Prandtl number, where K is the coefficient of thermal

expansion and v is the viscosity; r, the Rayleigh number, is

the bifurcation parameter.

For r > 1, the system has a pair of fixed points at

x = y = ±/b(r-l), z = r - 1. The linearization of the vector

field at the fixed point x = y = +/b(r-l), z = r - 1 is

a

-1

Ib (r-l)

-/b(:-lll·
-b

dX (/b(r-l) ,/b(r-l) ,r-l).
r

The characteristic polynomial of this matrix is

x 3 + (a+b+l)x2 + (r+a)bx + 2ab(r-l) 0,

which has one negative and two complex conjugate roots. For

a > b + 1, a Hopf bifurcation occurs at r - er(a+b+3) We- (er-b-l) •

shall now prove this and determine the stability.
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Let the characteristic polynomial be written

143

(X-A) (x-X) (x-a) = 0, where A

Le.

Clearly, this has two pure imaginary roots iff the product of

the coefficients of 2
x and x equals the constant term.

That is, iff or r =o
o(o+b+3)

(a-b-l)

Thus, we have the bifurcation value. We now wish to calculate

Ai(ro). Equating coefficients of like powers of x, we get

(o+b+l)

(r+a}b

and

Thus, a = -(a+b+l+2A
l

) and (r+a}ba

that -(a+b+l+2A l ) (r+a)b = -2ab(r-l)

2A l a 2 - 2Ab(r-l), so

+ 2A l (O+b+l+2A
l

)2

Differentiating with respect to r, setting r= r O' and re­

calling that Al(r O) = 0, we obtain

b(a-b-l} > 0 for a > b + 1.
2[b(r

O
+o} + (a+b+l)2]

Thus, the eigenvalues cross the imaginary axis with non-

zero speed, so a Hopf bifurcation occurs at _ a(a+b+3)
r O - a-b-l

We will compute V"'(O) for arbitrary a,b and will evaluate

it at the physically significant values a = 10, b = 8/3. At

at

is minus the coefficient of

is the coefficient of

2x , so

x, so

a = -(a+b+l)i and

IAI2 = 2ab(a+l) •
a-b-l

Following I(A) of Section 4A, must compute a basis

for R3 in which
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becomes

M

-0

1 -1

o

-~o

-b

o

_/2crb (0'+1)
cr-b-l

o

/
2crb (cr+l)
cr-b-l

o

o

o

- (cr+b+l)

The eigenspace of M corresponding

The basis vectors will be u,v,w where Mu = -IAlv, Mv

Mw = aw. An eigenvector of M with eigenvalue a is

[
-0' b+l !.(cr+b+1) (O-b-l)b}

" 0+1 •

-IAlu,

to the eigenvalues A,I is the orthogonal complement of the

eigenvector of Mt corresponding to the eigenvalue a. This

eigenvector is fo+b-l,- (o-b-l) ,_jb (cr+b+;~io-b-l)J. We will

- 2 [-IAI
2

]choose u = (-(a-b-l),-(a+b-l),O). Because M = 0 _1:1 2

on the eigenspace of A,I, we may choose v = - rfr Mu

(/
2crb(a-b-l) _!2b(0-b-l) (cr_l)!2(0+b+.l»). We now have

0+1 ' 0(0+1)' 0

our new basis and, as in Example 4B.4, after writing the

differential equations in this basis to get

ready to compute V" '(D). This is a very lengthy computation

so we give only the results.* Following (II) of Section 4A,

*Details will be sent on request.
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the second derivative terms of V'" (0) are

311 [- d
2 Xl

d
2 Xl d2X2 d2X2 d2X

2
d2X2

~
-2- dX

l
dX 2

+ -2- dX l dx 2
+ -2- dX l dX 2dX

l
dX 2 dX

l

d
2 Xl

d
2 Xl + ,2X1 ,'Xl ,2X'] •

- -2- dXl dx 2
2 2 2

dX1 dX
l

dX 2 dX 2
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2
311 (o-b-l) /2b (o-b-l) { 2 2 2

40b (0+1) 3w2 0 (p+l) [20 b (o+b..,.l) - 20b (o-b-l)

+ 20b(0-1) (o-b-l) (o+b+l) + 20(0-1)2(0+1) (o+b+l)] [b(o+1) (o+b-l) (o-b-l)

- 2b2 (0-b-l) + 2b(0-1) (o-b-l) (o+b+l) + 2(0-1)2(0+1) (o+b+l)]

2 2 2
+ [b(o+l) (a-b-l) + (0 -1) (a-b-1) (a+b+1) - a(a -1) (a+b-1) (0+b+1)

2 2 2
- ab(o+l) (a+b-l) (a-b-l) - (0 -1) (o+b+l) (o-b-l) ] [(a -1) (a+b-l) (o+b+l)

+ b(o+l) (a+b-l) (o-b-l) - 2b(a-l) (o+b+l) - 2B2 (a-b-l)

+ 2B(0-1) (o-b-l) (a+b+l)] + 2OO(a-l) (o+l) 2 (a-b-l) (a+b+l) (cr+b-l) 2

2 2 2 2 2
+ 2b a(o+l) (a-b-l) (o+b-l) - [8b a (a-I) (a-b-l) (a+b+l)

2 3+ 8ba(a-l) (0+1) (o+b+l) - 8b a (o-b-l)] [(a-I) (a-b-l) (o+b+l)

- b(a-b-l) - (a-I) (a+b+l)]j =: ~~.

The third derivative terms are

311(0-1) (o-b-l)
2

!2b(a-b-l) 1

20b(o+1)3w2 a(a+l) [(a+b+l)2(a-b-l) + 8ab(o+1)]
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{_4cr2b 2 (cr2_1) (cr-b+1) + crb(0+b-1) (0-b-1) (0+b+1)
2

+ 2crb (cr+1) (0-b-1) (cr+b+1) (02+b-1)

- 202b2 (cr+1) (cr+b-1) (cr+b+1)] [30b(cr+1) (cr+b-1) - b(cr+1) (2b+1) (cr-b-1)

- 2b(0-b-1) 2 (cr-iliH) _4(02_1) (cr-b-1) (cr+b+1) + (i-I) (b+2) (cr+b+1)]

+ [4ib2 (cr+1)2(0+b-1) - 2crb(cr+1) (cr+b+1) (cr-b-1) (cr
2
+b-1)

+ 2cr~2 (cr+1) (cr-tb+1) (cr+b-1) - 8cr
2
b

2
(cr+1) (cr

2
+b-l)

- 2crb2 (cr+b+1) 2 (0-b-1) (cr2+b-1)] [2b(cr+b+1) (cr-b-1)
2

- 4(0
2
-1) (cr-b-1)0+b+1) + crb(cr+1) (cr+b-1)

+ b(a+1) (2b+5) (cr-b-1) + 3 (b+2) (cr2_1) {cr+b+1)]

- [2ab
2

(cr+1) (cr+b-1) (cr+b+1) + 4crb(cr+b+1) (i+b-1)

2 2 2
- (cr+b+l) (cr-b-1) (cr +b-1) + crb(cr+b+1) (cr+b-1)]

[2crb2 (cr+1) (b+2) (cr-b-1) + 2crb2 (o-b-1) 2 (cr+b+1)

- cr(cr-l) (cr+1) 2 (cr+b+1) (cr-b-l) + crb(cr+1) 2 (cr-b-l) (cr+b-l)

- (cr-1) (cr+1) 2 (b+1) (cr-b-1) (cr+b+1) - b(b+1) (cr+1) 2 (cr-b-1/

- b(a+1) (cr+b+1) (cr-b-1)3] } ::: ~E,

where

_ (cr-1) 12 (cr+b+1)
w - (cr+1) / - cr [(b+1) (cr+1) (cr-b-1) + a(cr+1) (cr+b-1) + b(cr+b+1) (cr-b-1)]

and

2
E, = 37T(cr-b-1) 2b(cr-b-1)

2crb(cr+l)3w2 cr(cr+1)

Since V'" (0) = (A
1

+A
2

)E, and E, > 0, the periodic

orbits resulting from the Hopf bifurcation are stable if

A
1

+ A
2

< 0, and unstable if A
1

+ A
2

> O. For cr = 10, b 8/3,

9 9 - 9
A

l
1.63 x 10 , A

2
= 0.361 x 10 , A

l
+ A

2
= 1.99 x 10 ;
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therefcre, the orbits are unstable, i.e. the bifurcation is

subcritical.

Our calculations thus prove the conjecture of Lorenz [1],

who believed the orbits to be unstable because of numerical

work he had done. For different a or b however, the sign

may change, so one cannot conclude that the closed orbits are

always unstable. A simple computer program determines the

regions of stability and instability in the b-a plane.

See Figure 4B.l

50(0,0)

Lorenz' value u= 10, b= 8/3

/ 25 100 b

V"'IOJ =0

~~
STABLE

PERIODIC

ORBITS ---
(SUPERCRITICAL

HOPF BIFURCATION)

---- V"'(O)<O

LORENZ
ATTRACTOR

(SUB-CRITICAL

HOPF BIFURCATION)

V,I/(O»O

STABLE
PERIODIC ORBITS

100

200

Figure 4B.l

We also investigate the behavior of the system for

fixed b > 0 as a + 00. This has also been done by Martin

and McLaughlin [lJ. Our result agrees with theirs. We
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proceed as follows:

{(0+b+l)2(0-b-l) + 80b(0+1) }Al + A2 = p(b,o)

is a polynomial of degree 11 in o. For b fixed, the

highest order term is (8b2+12b) all. If b > 0 this co-

efficient is positive, so for large positive a (with b

fixed), V'" (0) > 0 and the bifurcation is subcritical.

This example may be important for understanding

eventual theorems of turbulence (see discussion in Section 9).

The idea is shown in Figure 4B.2. For further information on

the behavior of solutions above criticality, see Lorenz [1]

and Section 12. (L. Howard has built a device to simulate

the dynamics of these equations.)

(4B.9) Exercise. Analyze the behavior of V" I (0)

as b + ro for fixed a and as b + ro for a = Sb, for

various B > o.

-stable
cycles

stable

r

supercritical

unstable fixed
pOint

r=bifurcation
parameter

~--t......,,""'- _unstable
cycles

~__...l-__---,

Lore z
ott octorturbulent?

-+-
!

stable
I

equ iii brium
I

unstable
I

periodic soLutions

f
Figure 4B.2
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(4B.IO) Exercise. By a change of variable, analyze the

stability of the fixed point x = y = - b(r-l), z r - 1.

Show that Hopf bifurcation occurs at r - o (0+b+3) and thato - 0-6-1

the orbits obtained are attracting iff those obtained from the

analysis above are.

(4B.11) Exercise. Prove that for r > 1, the matrix

[

-0

~
-1 Ib (:_l)j

-1

has one negative and two complex conjugate roots.

(4B.12) Exercise. Let F denote the vector field on

R3 defined by the right hand side of the Lorentz equations.

(a) Note that div F = -0 - 1 - b, a constant.

Use this to estimate the order of magnitude of the contractions

in the principal directions at the fixed points.

(b) If V = (x,y,z), show that the inner product

<F,V> is a quadratic function of x,y,z. By considering

~t <V,V), show that this implies that solutions of the Lorenz

equations are globally defined in t. [Note that most

d
. . • 2qua ratlc equatlons, eq: x = x

solu tions. ]

do not have global t

(4B.13) Exercise. The following equations arise in the

oscillatory Zhabotinskii reaction (cf. Hastings-Murray [1]):
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2
x = s(y-xy+x-qx )

1Y 5 (fz-y-xy)

z w(x-y)

(compare the Lorenz equations!). Let f be the bifurcation

-6parameter and let, eg: s = 7.7 x 10, q = 8.4 x 10 ,

w 1.61 x 10-1 • Show that a Hopf bifurcation occurs at

f f c where

Show that for the above vaJ.ues, the bifurcation is subcritical.

S. Hastings informs us that the bifurcation picture looks like

that in Figure 4B.3 (the existence of stable closed orhits

for supercritical values is proven in Hastings-Murray [1]).

bifurcation parameter

_surface of
closed orbits

....... ....... ,

----~....~--closed orbits switch
stability here

--- ----, ....
stable closed orbits

subcritical Hopf"__.\----r'/'<!
bifurcation

Figure 4B.3
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SECTION 4C

HOPF BIFURCATION AND THE METHOD OF AVERAGING

by

S. Chow and J. Mallet-Paret

151

The method of averaging* provides an algorithm for pre-

paring a bifurcation problem, that is, putting it into a

normal form. Once this is done, one may more readily determine

certain qualitative features of the bifurcation, by means of

the implicit function theorem (or contraction mapping principle)

and the center manifold theorem.

Consider first the Hopf bifurcation problem

z

about the equilibrium z = O.

f(z,cx)

Thus assume

(4C.I)

f takes values in Rn and f(O,cx) = O. For simplicity, an

ordinary differential equation is considered although we could

just as well consider a partial differential equation. In

*The method has been used by a number of authors, such as
Halanay, Hale, Meyer, Diliberto, etc. cf. Kurzweil [1] and
articles in Lefschetz [1].
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this case z and z belong to (generally different) Banach

spaces Xl and X2 and f is smooth from Xl x (-aO,a O) to

X2 • We may write (1) in the form

z = A(a)z + g(z,a)

/g(z,a) I = o{lzI
2
).

(4C.2)

The standard hypotheses (see Sections 1,3) on the spectrum of

A{a) hold, namely that it posses a pair A(a),A(a) of complex

conjugate eigenvalues of the form

A(a) = y(a) + iw(a)

where

y (0) 0, v d~f y' (0) "I 0

and

and that the remainder of the spectrum of A(a) stays uniform

positive distance away from the imaginary axis. Decompose

z ERn as

z = (x,y)

according to the spectrum of A(O), so that P is the eigen­

space corresponding to A(O) ,A(O) and Q is its complement.

With this decomposition we may assume

Ap (a) 0 (a)

A(a)

where

r
y (a)

l w (a)

-w (a)]
y(a)
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and the spectrum of AQ(a) stays uniformly away from the

imaginary axis. We may also represent x in polar coordinates

x (r cos 8, r sin 8).

Consider a periodic solution bifurcating from (x,y,a)

(0,0,0). The differential equation for r is

r
2y(a)r + Orr )

and it follows that when r attains its maximum on the solution,

r = 0, and hence

a = Orr). (4C.3)

Now the periodic solution also lies on the center manifold ~,

described by

~: y = ¢(r,8,a). (4C.4)

The fixed point (r,y) = (0,0) lies on ~ for all a; more-

over, ~ is tangent to px(-aO,aO) at (r,a) = (0,0) which

implies (4C.4) has the form

~: y = r~(r,8,a)

~(0,8,0) = 0.

Thus, we have on the periodic solution

y (4C.5)

Choosing £ > ° of the same order as the amplitude of the

solution, we may scale the equation by making the replacements

r ~ £r, a ~ £a, y ~ £y.

The estimates (4C.3), (4C.5) imply then
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r

y

0(1) }

0(1)

0(£)

in scaled coordinates. (4C.6)

The precise relation between £ and a will be determined

later when a will be chosen as a particular function of £.

We will in fact show then that

a = 0 in scaled coordinates.

Expand the differential equation (4C.2) in a Taylor

series, in scaled coordinates. It is not difficult to show

the estimates (4C.6) imply the equation takes the form

y 2 2
AQY + £Jx + O(£a) + 0(£ )

(4C.7)

where

B,
J

homogeneous polynomial of

2 k' 1x E R , ta 1ng va ues in

->- R2 bilinear

degree j in

R2

A
Q

A
Q

(0)

J R2 x R2
->- R2 symmetric, bilinear.

In polar coordinates (4C.7) becomes

.
y

2 2 3
r = £avr + £r C

3
(6) + £ r c 4 (e) + £rG2 (6)y

+ 0(£2a ) + 0(£3)

0(£2)

6)2 + O(£a) +

where
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c, (6) (cos I sin 6) (sin 2
sin 6)6) B, I (cos 6, + 6) B, I (cos 6,

J J- J-
,

2 IDj (6) (cos 6) B, I (cos 6, sin 6 ) - (sin 6) B, I (cos 6, sin 6 )
J- J-

homogeneous trigonometric polynomials of degree j

G
2

(6) homogeneous trigonometric polynomial of degree 2

taking values in Q* the dual of Q.

The goal of the method of averaging is to "average out"
.

the dependence of r on 6 and y, that is, to find a new

radial coordinate -r in which the equation for is

If this were done, then all periodic solutions would simply be

circles r = r(e) satisfying F(r(e) ,c) = O. Actually it is

not necessary to entirely eliminate dependence on e and y;

generally all that is required is the absence of e and y

from a finite number of terms in the Taylor series expression

in e and y. For example, in (4C.8), generically it is

enough to average the e,ey and e 2 terms.

More precisely, consider any differential equation

r· I' ~ j k
l l e R'k(r,6,a)y

j=l k=O J

e w + O(e)

.
The series for r may be a finite Taylor series with remainder.

In order to average a given term, say Rpq ' define a new co­

ordinate r by

In the new coordinates, the coefficient of ePyq becomes Rpq
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Two cases are considered.

Case I, q O. In this case we choose u to be

u(r,8,o:) - ! f8 R O(r,~,o:)d~ + 8
wOp 2'ITW f

2'IT
oRpO (r,~,o:)ds.

Observe that u is 2'IT-periodic in 8 and RpO is independent

of 8 and, in fact, is the mean value

Therefore, we have averaged the coefficient of £PyO

Case II, q > O. Here we wish to choose u so that ~ ispq

identically zero thus eliminating the £Pyq term. Therefore,

we seek a 2'IT-periodic function u(r,8,o:) satisfying

(4C.9)

By considering R as a forcing term in (4C.9), it followspq

that such a unique u always exists if and only if the homo-

geneous equation

o

has no nontrivial solution 2'IT-periodic solution. It can be

shown that this is the case provided that

n-2
I n./... 'I- integer

j=l J J
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for all integers n. > 0,
J -

n-2
In.

j=l J
q

In particular this can always be done if either q

is stable.

We return to the bifurcation problem (4C.8) and now

average the E,Ey and 2
E in the above fashion by means of

the transformation

2
r = r + Eu(r,8,a) + Ew(r,8,a)y + E v(r,8,a).

In fact, the transformation has the form

2 2 3
r = r + Er u(8) + Erw(8)y + E r v(8),

and this yields the equation for r

-r
- -2 -2davr + r C3 (8) + r u ' (8)w]

+ Er[G
2

(8) + w(8)A
Q

+ w' (8)w]y

2-3+ E r [C
4

(8) + u ' (8)D
3

(8) + w(8)J(cos 8,

- 2u(8)u ' (8)w + v' (8)w]

sin 8)2 (4C.10)

Since C
3

has mean value zero, we choose

u(8) =

so that the coefficient of E in (10) is avr. Set w(8)

equal to the unique solution of

G2 (8) + w (8 ) A
Q

+ W I (8) w 0

w(8) of period 2n.
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so the Ey term vanishes. Finally, we may choose v(6) to

make the coefficient of 2-3
E r the constant

K mean[C4 (6) + u' (6)D3 (6) + w(6)J(cos 6, sin 6)

-2u(6)u' (6)w]

1 J2'IT 1 22TI 0 C4 (6) - W~3(6)D3(6) + w(6)J(cos 6, sin 6) •

Thus in the new coordinates (r,6,y), (4C.8) becomes

- 2-3 + O(E 2Ci.) + O(E 3 )

1r ECi.Vr + E r K

e w + O(E) (4C.ll)

Jy AQY + O(E).

The equation for y may be neglected now as we restrict to

the center manifold y r~(Er,6,ECi.). Moreover, it is not

difficult to show that the unique branch of periodic solutions

bifurcating from the origin has the form

r = IRI
I

/

2

+ O(E)}
in scaled, averaged coordinates

Ci.= -E sgn(vK)

that is,

r =

y in original coordinates. (4C.12)

2Ci. = -E sgn (vK)

The amplitude of the bifurcating solution is therefore

(_ Ci.KV) 1/2approximately and one sees the period is near 2 'IT

W

In case K 0, one simply averages higher order terms
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in E and y in the same manner. The possible normal forms

one arrives at in this case are

r

w + O(E)

for integers p ~ 2 and K' i O. The bifurcating solution in

this case has the form

r =

y

a =

1~l
l/2P 2

+ O(E )K' E

J
in original coordinates

so has amplituded near [_ aKv,) 1/2p and period near 271
W

Observe that in all these cases bifurcation takes place only

on one side of a = O. For cases in which all bifurcating

solutions occur at a = 0 (for example in the proof of the

Lyapunov center theorem - see Section 3C), the method of

averaging gives no information.

For more details of the above method, as ~ell as

several applications, see Chow and- Mallet-Paret [1]. We

mention here two examples treated in this paper using averaging.

(1) Delay Differential Equations (Wright's Equation).

The equation

z(t) -az (t-l) [Hz (t) 1

arises in such diverse areas as population models and number

theory, and is one of the most deeply studied delay equations.
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1Ta > 2 ' topological fixed point techniques prove the

existence of a periodic solution. Using averaging techniques,

one can analyze the behavior of this solution near

In particular, for ; < a < ; + E the solution bifurcates

from z = 0, is stable, and has the asymptotic form

z(t) K(a - ;)1/2cOS(; t) + O(a - ;)

K
40 1/2

(31T-2) ~ 2.3210701.

(2) Diffusion Equations. Linear equations with non-

linear boundary conditions, such as

u = ut xx t ~ 0 o < x < 1

ag(u(O,t), u(l,t»

occur in various problems in biology and chemical reactions.

(See, for example, Aronson [2].) Here we take

g(u,v) 2 2au + Bv + O(u +v ),

so the linearized equation around u = 0 has the boundary

conditions

ux(O,t) o a[au(O,t) + Su(l,t)].

For appropriate parameter values (a,S) a pair of eigenvalues

of this problem crosses the imaginary axis with non-zero

speed as a passes the critical value a O• The stability of
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the resulting Hopf bifurcation can be determined by averaging.

The power of the averaging method is that it can handle

a rather wide variety of bifurcation problems. We mention

two here.

(3) Almost Periodic Equations. Consider

Z(t) A(a)z + g(z,t,a) (4C.13)

where A(a) is as before, g is almost periodic in t uni-

2formly for (z,a) in compact sets and g = O( Iz I ). Suppose

in addition that the periods 271 for N = 1,2,3,4Nw are

bounded away from the fundamental periods for g. Then an

averaging procedure similar to that described above yields a

normal form in scaled coordinates given by (4C.ll). Here

however the higher order terms (but not the constant K)" are

almost periodic in t. Thus this manifold can be thought of

as a cylinder in the (x,t) E pn x Rl space, where each

section t = const. is a circle near x = O. The cylinder

is almost periodic in t with the same fundamental periods

as those in g.

(4) A special case of (3) occurs in studying the

bifurcation of an invariant torus from a periodic orbit of an

autonomous equation. In an appropriate local coordinate

system around the orbit, the autonomous equation takes the

form (4C.13) where t represents the (periodic) coordinate

around the orbit and z the normal to the orbit. The con-

dition on the fundamental periods of g reduces to the
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standard condition that the periodic orbit have no character­

istic multipliers which are Nth roots of unity, for

N 1,2,3,4, The invariant cylinder that is obtained if

K ~ 0 is periodic in t and thus is actually a two

dimensional torus around the periodic orbit.
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SECTION 5

A TRANSLATION OF HOPF'S ORIGINAL PAPER

BY L. N. HOWARD AND N. KOPELL

"Abzweigung einer periodischen Lasung von einer stationaren
Lasung eines Differentialsystems" Berichten der Mathematisch­
Physischen Klasse der Sachsischen Akademie der Wissenschaften
zu Leipzig. XCIV. Band Sitzung vom 19. Januar 1942.

Bifurcation of a Periodic Solution from a Stationary

Solution of a System of Differential Equations

by

Eberhard Hopf

Dedicated to Paul Koebe on his 60th birthday

1. Introduction

Let

x. = F.(Xl, ••• ,x ,ll)
~ ~ n

or, in vector notation,

(i 1, ... ,n)

(1.1)
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be a real system of differential equations with real parameter

Il, where F is analytic in x and Il for x in a domain

G and IIl I < c. For IIl I < c let (1.1 ) possess an analytic

family of stationary solutions x i. (Il ) lying in G:

E:.(~(Il) ,Il) = O.

As is well known, the characteristic exponents of the sta-

tionary solution are the eigenvalues of the eigenvalue problem

where L stands for the linear operator, depending only on
-Il

Il, which arises after neglect of the nonlinear terms in the

series expansion of F about x = x. The exponents are

either real or pairwise complex conjugate and depend on Il.

Suppose one assumes simply that there is a stationary

solution x
-0

in G for the special value Il = 0 and that

none of the characteristic exponents is 0; then, as is well

known, it automatically follows that there is a unique sta-

tionary solution ~(Il) in a suitable neighborhood of x = x- -0

for every sufficiently small 11l1, and ~(Il) is analytic at

Il = O.

On passing through Il = 0 let us now assume that none

of the characteristic exponents vanishes, but a conjugate pair

crosses the imaginary axis. This situation commonly occurs

in nonconservative mechanical systems, for example, in hydro-

dynamics. The following theorem asserts, that with this

hypothesis, there is always a periodic solution of equation

(1.1) in the neighborhood of the values x = x- -0 and Jl = O.
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Theorem. For ~ = 0, let exactly two characteristic

exponents be pure imaginary. Their continuous extensions

a(~), a(~) shall satisfy the conditions

a (0) - a(O) -I- 0, Re(a' (0» -I- O. (1.2)

Then, there exists a family of real periodic solutions

~ = ~(t,E), ~ = ~(E) which has the properties ~(O) = 0 and

~(t,O) ~(O), but ~(t,E) -I- ~(~(E», for all sufficiently

small E -I- O. E(~) and ~(t,E) are analytic at the point

E = 0 and correspondingly at each point (t,O). The same

holds for the period T(E) and

T(O) 2 1T/la(0)1.

For arbitrarily large L there are two positive numbers a

and b such that for I~I < b, there exist no periodic solu-

tions besides the stationary solution and the solutions of

the semi-family E > 0 whose period is smaller than Land

*which lie entirely in I~-~(~) I < a.

For sufficiently small ~, the periodic solutions generally

exist only for ~ > 0 or only for ~ < 0; it is also possible

that they exist only for ~ = o.

As is well known, the characteristic exponents of the

periodic solution ~(t,E) are the eigenvalues of the eigen-

value problem

v + ltv L (v)
--t E -,

(1.3)

where ~(t) has the same period T T(E) as the solution.

*The other half-family must represent the same solution curves.
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L is the linear operator obtained by linearizing around the

periodic solution. It depends periodically on t with the

period T and at E = 0 is analytic in t and E. The

characteristic exponents are only determined mod (2rri/T) and

depend continuously on E. One of them, of course, is zero;

for F does not depend explicitly on t, so

0, v

is a solution of the eigenvalue problem. For E ~ 0 the ex-

ponents, mod(2rri/T O)' go continuously into those of the sta­

tionary solution ~(O) of (1.1) with ~ = O. By assumption

then exactly two exponents approach the imaginary axis. One

of them is identically zero. The other B = B(E) must be

real and analytic at E = 0, B(O) = O. It follows directly

from the above theorem that the coefficients ~l and Bl

in the power series expansion

satisfy ~l = Bl = O. In addition to that it will be shown

below that the simple relationship

(1. 4)

holds; I have not run across it before.

In the general case ~ I 0, this relationship gives
2

information about the stability conditions. If, for example,

for ~ < 0 all the characteristic exponents of the stationary

solution x !(~) have a negative real part (stability,
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a small neighborhood of x collapses onto x as t + 00),

167

then there are the following alternatives. Either the periodic

solutions branch off after the destabilization of the station-

ary solution (~> 0); in this case all characteristic expon-

ents of the periodic solution have negative real part (sta-

bility; a thin tube around the periodic solutions collapses

onto these as t + 00). Alternatively, the family exists be­

fore, that is for ~ < 0; then the periodic solutions are

*unstable.

Since in nature only stable solutions can be observed

for a sufficiently long time of observation, the bifurcation

of a periodic solution from a stationary solution is observ-

able only through the latter becoming unstable. Such observa-

tions are well known in hydromechanics. For example, in the

flow around a solid body; the motion is stationary if the

velocity of the oncoming stream is low enough; yet if the

latter is sufficiently large it can become periodic (periodic

vortex shedding). Here we are talking about examples of non­

conservative systems (viscosity of the fluid).+ In conserva­

tive systems, of course, the hypothesis (1.2) is never ful-

filled; if

well.

is a characteristic exponent, -A always is as

In the literature, I have not come across the bifur-

cation problem considered on the basis of the hypothesis

*In n = 2 dimensions, this is immediately clear.

+1 do not know of a hydrodynamical example of the second case.
One could conclude the existence of the unstable solutions
if, with the most careful experimenting, (very slow varia­
tion of the parameters) one always observes a sudden breaking
off of the stationary motion at exactly the same point.



168 THE HOPF BIFURCATION AND ITS APPLICATIONS

(1.2). However, I scarcely think that there is anything es-

sentially new in the above theorem. The methods have been

*developed by Poincar~ perhaps 50 years ago, and belong today

to the classical conceptual structure of the theory of

periodic solutions in the small. Since, however, the theorem

is of interest in non-conservative mechanics it seems to me

that a thorough presentation is not without value. In order

to facilitate the extension to systems with infinitely many

degrees of freedom, for example the fundamental equations of

motion of a viscous fluid, I have given preference to the

more general methods of linear algebra rather than special

techniques (e.g. choice of a special coordinate system).

Of course, it can equally well happen that at ~ 0

a real characteristic exponent a(~) of the stationary solu-

tion ~(~) crosses the imaginary axis, i.e.,

a(O) 0, a' (0) I- 0

*Les methodes nouvelles de la mecanique celeste. The above
periodic solutions represent the simplest limiting case of
Poincare's periodic solutions of the second type ("genre").
Compare Vol. III, chapter 28, 30-31. Poincare, having appli­
cations to celestial mechanics in mind, has only thoroughly
investigated these solutions (with the help of integral in­
variants) in the case of canonical systems of differential
equations, where the situation is more difficult than above.
Poincare uses the auxiliary parameter £ in Chap. 30 in the
calculation of coefficients (the calculation in our §4 is
essentially the same), but not in the proof of existence which
thereby becomes simpler.

In a short note in Vol. I, p. 156, Painleve is touched upon:
Les petits mouvements periodiques des systemes, Comptes
Rendus Paris XXIV (1897), p. 1222. The general theorem
stated there refers to the case ~ = 0 in our system ( • ),
but it cannot be generally correct. For the validity of this
statement F must satisfy special conditions.
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while the others remain away from it. In this case it is not

*periodic but other stationary solutions which branch off.

We content ourselves with the statement of the theorems in

this simpler case. There is an analytic family, ~ = ~*(E),

~ = ~*(E) of stationary solutions, different from ;, with

~(O) = 0, x*(O) = x(O). If ~l I 0 (the general case) then

the solutions exist for ~ > 0 and for ~ < O. For the char-

acteristic exponent SeE) which goes through zero, the ana-

log of (1.4) holds:

If x is stable for ~ < 0 and unstable for ~ > 0 then

just the opposite holds for x*. (If one observes x for

~ < 0, than one will observe x* for ~ > 0.) In the ex-

ceptional case ~l = 0, the situation is different. If

~2 I 0, then the new solutions exist only for ~ > 0 or only

for ~ < O. There are then two solutions for fixed ~ , (one

with E positive, one with E negative) . Here we have

-2~ a.' (0) •
2

From this one can obtain statements about stability analogous

to those above. In this case either both solutions x* are

stable or both are unstable.

2. The Existence of the Periodic Solutions.

Without restriction of generality one can assume that

the stationary solution lies at the origin, i.e.,

*An example from hydrodynamics is the fluid motion between
two concentric cylinders (G. I. Taylor).
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~(O,].I) O.

Let the development of F in powers of the x.
J.

be

L (x) + Q (x,x) + K (x,x,x) + ••. ,
fl- -].1-- -].1---

where the vector functions

K (x,y,z), .••
-].I - - -

are linear functions of each argument and also symmetric in

these vectors.

The substitution

carries (1.1) into

x (2.2)

The right hand side is analytic in 8,].1, ~ at the

point 8 = ].I = 0, y = yO (yO arbitrary). We consider the

case 8 = a in (2.3), that is, the homogeneous linear dif-

ferential equation

z = L (z).- -].1- (2.4)

For the question of existence, this has the deciding signifi-

cance.

The complex conjugate characteristic exponents a (].I) ,

a(].I) , which were referred to in the hypothesis, are simple for

all small 1].11. In the associated solutions

at at_
e ~' e a (2.5)

of (2.4), the complex vector ~ is consequently determined

up to a complex scalar factor; a is the conjugate vector.
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Furthermore, there are no solutions of the form

171

(2.6)

a(~) is analytic at ~ O. One can choose a fixed real vec-

tor ~ ~ 0 so that for all small I~I, ~ . ~ ~ 0 for ~ ~ O.

~ ~(~) is then uniquely determined by the condition

By hypothesis,

1
(~ ~ f 0). (2.7)

a(O) = -a(O) ~ O.

~(~) is analytic at ~ O.

(2.8)

The real solutions of (2.4), which are linear combina-

tions of (2.5), have the form

ceata at­+ ce a (2.9)

with complex scalar c. They form a family depending on two

real parameters; one of these parameters is a proportionality

factor, while the other represents an additive const~nt in t

(the solutions form only a one parameter family of curves).

Because e ~, we have

z·e

z. e

-c a.e + c a.e

c a a.e + c a a·e
} at t O.

For c 1, (2.9) is

(2.10)

because of (2.7), this z satisfies the conditions:

t 0: z·e 0, ~(z.e)
dt - -

1. (2.11)
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This is the unique solution of the form (2.9) satisfying these

conditions; for from

t 0: z·e z·e o

and from (2.9), (2.7) and (2.8) it follows that c = 0; thus

~ o.
By hypothesis, for ~ = 0, a, a are the only ones

among the characteristic exponents which are pure imaginary.

Hence, for ~ = 0, (2.9) gives all the real and periodic solu-

tions of (2.4). Their period is

T =o
21f

Ia (0) I
(2.12)

In particular, for ~ = 0, (2.10) is the only real and periodic

solution with the properties (2.11).

For later use we also notice that, for ~

can have no solutions of the form

t E(t) + 9.(t)

0, (2.4)

where £ and 9. have a common period and 12. is not identi­

cally zero. Otherwise (2.4) would break up into the two equa-

tions

and 12. would be a nontrivial linear combination of the solu-

tions (2.5). The Fourier expansion of g(t) would then lead

to a solutinn of the form (2.6).

By differentiation of (2.4) with respect to ~ at

~ 0 one obtains the non-homogeneous differential equation

0, (2.13)
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for the ~-derivative of (2.10):

z' at - at- (at It(a'e ~ + a'e ~) + e a at- )+ e a ' (~ 0) •

The factor of t is a solution of (2.4). If one expresses

it linearly in terms of the solution (2.10) and ~, it follows

from (2.8) that

with

z'
1m (a I) •

t(Re(a')~ + a ~) + ~(t) ( 2.14)

Now let

~(t) • (2.15)

be the solution of (2.3), which satisfies the initial condi-

tion °y = y for t = o~ According to well known theorems

it depends analytically on all its arguments at each point

°(t,O,O,y). It is periodic with the period T if and only if

the equation

° °y(T,~',E,y ) - y ° (2.16)

is satisfied. °If one denotes by z the fixed initial value

of the fixed solution (2.10) of (2.4), ~ = 0, then (2.16) is

satisfied by the values

°E = 0, Y °z (2.17)

The problem is: for given E, solve equation (2.16) for T,

°~ and y. These are n equations with n + 2 unknowns.

In order to make the solution unique, we add the two equations

oy 0, yO. ~ 1 (2.18)

where ~ is the real vector introduced above and where
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yO = y for t = O. The introduction of these conditions im­

plies no restriction on the totality of solutions in the

small, as will be demonstrated in the next section. For the

initial values ~ = E = 0, yO = ~o, it follows from (2.11)

that these equations are satisfied by the solution (2.10).

Now for all sufficiently small IE/, (2.16) and (2.18)

have exactly one solution

T = T(E), ~ = ~ (E) ,
o

y
o

Y (E)

in a suitable neighborhood of the system of values

~ 0,
o

y
o

z (2· 20)

if the following is the case: the system of linear equations

formed by taking the differential (at the place (2.17» with
o

respect to the variables T,~, E, Y is uniquely solvable

for given dE. Equivalently, there are such functions (2.19)

if these linear equations for dE = 0 have only the zero

solution dT = d~ = dyO = O. This is the case, as will now

be shown.

We have

y = ~~ (y), y

In particular

o
y(t,~,O,y ). (2. 21)

o
y(t,~,O,~ ) = ~(t,~) (2. 22)

is the solution to (2.10). The differential o
dy(t,~,O,y ) is

the sum of the differentials with respect to the separate ar-

guments when the others are all fixed. If we introduce for

the differentials

dt,

as independent constants or vectors the notations:
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p, a,

then, the differential referred to becomes

pz + a:t' + u.

Here y and y' = dl!d~ are taken at T

and ~ is the solution of

o
0, Y..

o
z

with the initial value o
u for t = o. According to (2.22),

y = ~(t,O). If one sets :t'

of

~, then ~(t) is the solution

o. (2.23 )

The linear vector equation arising from (2.16) is then

0, (2.24)

where ~(t) denotes the solution (2.10) of

(2.25)

~(t) is any solution of this homogeneous linear differential

equation with constant ~O' and ~(t) is the solution of

(2.23). We show now that (2.24) is possible only if

p = a o and ~(t)

Now for all t

o.

o. (2. 26)

This is true because ~(t) has period TO' so it

follows from (2.23) that the square bracket is a solution of

(2.25). z is also a solution of (2.25)+, so the whole left

+
In the original, this number is (2.23).
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side of (2.26) is a solution of (2.25). By (2.24) and the

fact that ~(O) = 0, the initial value of this solution is

zero, and thus it is identically zero. Now from (2.13) and

(2.23) it follows that

~(t) ~'(t) + 9:. (t), 9:. = ~O (~O •

Thus, by (2.14) and (2.15), the square bracket in (2.26) has

the value

TO[Re(al)~(!) + Im~al) itt)] + [9:.(t+T
O

) - 9:.(t)].

If one sets ~ + a9:. = wand

aT Re(a')z(t) + [p+aT
O

Im(a')]z(t)o - a -

it follmvs that

!. (t) ,

~(t) + ~(t+TO) - ~(t) = 0,

where ~(t) is a solution and ~(t) a periodic solution of

(2.25). This means that

~(t)
t

~(t) + q(t)
TO

with periodic q. However, as we stated before, such solu-

tions cannot exist unless z = O.

Since ~,! are linearly independent, it follows from

(2.27) and from the hypothesis (1.2) that a = 0 and p = O.

Thus, by (2.24), ~(t)

Finally, since

has period TO.
a a . a

dy = ~ , and d~ ~, at t 0,

it follows from the equations (2.18) that

0, at t O.

A periodic solution of u = ~O(~) with these properties must
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vanish, as we have stated above. With this the proof of

the existence of a periodic family is concluded. t

The solutions (2.19) are analytic at E = 0

177

T

II

TO(l + TIE +
2

lllE + ll2 E +
(2.28)

The periodic solutions y(t,E) of (2.3), and the periodic

family of solutions

~(t,E) (2.29)

of (1.1)+, are analytic at every point (t,O).

One ,obtains exactly the same periodic solutions if one

begins with a multiple mT O of the period instead of TO'

that is if one operates in a neighborhood of the system of

values

o
T = mT O' II = 0, Y

o
z (2.30)

instead of (2.20). Nothing essential is altered in the proof.

3. Completion of the Proof of the Theorem.

For arbitrarily large L > TO there are two positive

numbers a and b with the following property. Every

periodic solution ~(t) f 0 of (1.1)+, whose period is smaller

than L, which belongs to a II with Illi < b and which lies

in I~I < a, belongs to the family (2.29), (2.28), E > 0 if

a suitable choice is made for the origin of t.

If this were not the case, there would be a sequence

t
See editorial comments in §SA below.

+
In the original paper, this number is (1).
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of periodic solutions ~k(t) ~ O++having bounded periods

Tk < L, and of corresponding ~-values, with

Kk = Maxlx (t) I + 0, ~k + 0
t -k

(3.1)

and such that no pair ~k(t), ~k belongs to the above family.

We let

is a solution of (2.3), with

satisfies

Maxl:L (t) I = l.
t k

instead of e:, and

One considers first a sUbsequence for which the initial

have Xk (t) .... ~(t), where

o
values converge, ~

o.... z . Then, uniformly for It I < L, we
o

z = ~O(z) and ~(O) = z. Since

the maximum of I~I = 1, ~ is not identically zero. ~ is
+

of the form (2.9) , c ~ 0, and it has the fundamental period

TO. If one shifts the origin of t in ~(t) to the place

where ~. e = 0, one finds that z ~ ~ 0 there. This

quantity can be taken to be positive; otherwise, since

one could achieve this by shifting from t

Consequently,

o

0,
.0
z ~ > O.

From this it follows that in the neighborhood of zO and for

++
In the original paper, the sequences xk ' Tk , etc. are not
indexed.

+In the original, this number is (2.8).
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small K and I~I, all solutions of the differential equation

(2.3) (K instead of s) cut the hyperplane ~. ~ = 0 once.

In this intersection let t = O. Then, for the sequence

~k(t), Kk , ~k under consideration, with this choice of ori­

gin, we always have Zk O
+ ~O. Also

·0e + z

and K
k

+ 0, ~k + O. If one now sets

p > 0

is a solution of (2.3)+, for the parameter valuesthen y
-k

sk > 0 and For it, we have

v • e
....k - 0, ~. ~ = 1, at t O. (2.18)

The periods in the sequence of solutions must converge to a

multiple of TO' mT
O

• Furthermore sk + O. However, this

implies that from some point on in the sequence one enters

the neighborhood mentioned above of (2.20) or (2.30) in which,

for all sufficiently small s, there is only one solution of

the system of equations under consideration. The solutions

of our sequence must then belong to the above family and in

fact with s > 0, which conflicts with the assumption. Thus

h .. d ttt e assert~on ~s prove .

From the fact we have just proved it now follows that

if

from

+

~(s) 1 0, then the first coefficient which is different
2o in ~ = ~ls + V2s + ••. is of even order; the same

In the original, this number is (3).
tt

See editorial comments in §SA below.



180 THE HOPF BIFURCATION AND ITS APPLICATIONS

holds for the expansion T = TO
2

(1 + T e: + T e: + ••• ) .
1 2

For the solutions of the family corresponding to e: < 0, and

the associated ~ and T-values, must already be present

among those for e: > 0:+ In particular we have

o.

The periodic solutions exist, for sufficiently small I~I

and I~I, only for ~ > 0, or only for ~ < 0, or only for

~ = O.

4. Determination of the Coefficients.

We shall need the following result, which gives a

criterion for the solvability of the inhomogeneous system of

differential equations

(~ (4.1)

where ~(t) has a period TO' Let

(4.2)

be the differential equation which is adjoint to the homogen-

eous one; L* is the adjoint operator to L (transposed

matrix), defined by

v u
+

~* (~).

Then (4.1) has a periodic solution w with the period TO'

if and only if

++
And indeed with a shift of the t-origin of approximately TO/2.

+In the following, the inner product of two complex vectors
a, b is defined by Iaib i .
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f
TO

Sl:~*dt = 0
o

181

(4.3 )

for all solutions of (4.2) which have the period TO.

This result follows from the known criterion for the

solvability of an ordinary system of linear equations. The

necessity follows directly from (4.1) and (4.2). That the

condition is sufficient can be shown in the following way:

The adjoint equation has the same characteristic exponents

and therefore it also has two solutions of the form

at *e a, a (0) -a(O) , (4.4 )

from which all periodic solutions can be formed by linear com-

binations. Furthermore, the development of ~(t) in Fourier

series shows that it suffices to consider the case

-at
~ = e b

and the analogous case with a instead of -a. In (4.1) let

us insert

-at
w e c.

(4.1) then becomes

(aI + ~)£ b.

(4.4) and (4.2) imply

(aI + 1) *~* = 0

while (4.3) says b·a* = O. From this everything follows

with the help of the theorem referred to.

Secondly, we shall need the following fact. For any

solution ~ ~ 0 of z = ~(~) having period TO' there is

always a solution z* of the adjoint equation, with the same
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period, such that

J
TO

~: ~*dt 'I- O.
o

*

.
Otherwise, the equation w = ~(~) + ~ would have a solution

+
~, and w - tz would be a solution of the homogeneous dif-

ferential equation, which contradicts the simplicity of the

characteristic exponent a.

Let z*
-1

and z*
-2

be two linearly independent solu-

(i

tions of (4.2) with the period TO' Let

[~]i = JTO~.z~ dto -~

1,2) •

Then the criterion for solvability of (4.1) under the given

conditions ·is

O. (4.5 )

We also note that zi, z* can be chosen in such a way that
2

1, [z] = [21]
- 2 - 1

o (4.6 )

where ~ is the solution (2.10) of (2.4) with ~ 0

(biorthogonalization).

The problem of the determination of the coefficients

for the power series representation of the periodic family can

now be solved in a general way. If one define~ the new in-

dependent variable s by

t (4.7)

then according to (2.28) the period in the family of solutions

*Also, the integrand is always constant.

+In the original, the statement reads "w+tz", which is incor­
rect.
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y = y(S,E) is constantly equal to TO' y, as a function of

s (or t) and E, is analytic at every point (s,O). One

has

(4. 8)

where all the Yi have the period TO' The derivative with

respect to s will again be denoted by a dot. We write for

simplicity

Then, using (3.2), and inserting (4.7) and (4.8) in (2.3),

one obtains the recursive equations

YO ~(yO) (yo = ~) (4.9)

Yl = ~(Yl) + 9. (yo ,yo) (4.10)

-T 2Y
o

+ •
~(Y2) + )l2~' (yO) + 29. (yo 'Yl)Y2 (4.11)

+ !S.(Y.o'YO'Yo)

.............

from which the ::Li ' )l . , T. are to be determined. In addi-
1. 1.

tion to these, we have the conditions following from (2.18)

.
0, 0 (4.12)J!.k

. e = Yk
.
~ = at s =

for k = 1,2, ••• In the equations, we again write t in-

stead of s. By (4.10) and (4.12), Yl is uniquely determined

as a periodic function with period TO' From (4.11) L'

must first be eliminated with the help of (2.13). Since the

parenthesis in the first summand of (2.14) is a solution of

~ ~(~), (2.13) can be written
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I1n(o:') z' •
Re (0: I ) ~ + 0: + h

Let

v - )12h = v,
"-2 --

(4.13)

(4.14)

which, according to (2.15), has the period TO'

z = YO' it follows that

Thus, by (4.6)

Since

(4.15)

(4.16)

-[2Q(YO'Yl) + K(YO'YO'YO)]2'

T 2 are determined from this.By hypothesis (1.2),)12 and

One then solves (4.15) for v and obtains from (4.14)

and (4.12), k = 2, in a unique way.

In an analogous fashion all the higher coefficients

are obtained from the subsequent recursion formulas. In

general )12 f o. If is positive then the periodic solu-

tions exist only for )1 > 0; the corresponding statement

holds for )1 < 0 ttt2 .

5. The Characteristic Exponents of the Periodic Solution.

In the following we shall sometimes make use of deter-

minants; this, however, can be avoided. In the linearization

about the periodic solutions of (2.3),

L (u)
-t,E: -

ttt see editorial comments in §5A below.

(5.1)
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we have, by (2. 3),

185

(5.2 )

A fundamental system u. (t,S)
-1

formed with fixed initial con-

ditions depends analytically on (t,s). ~he coefficients in

u. (T,e;) = 'a. (e;)u (0) are analytic at s = O. The deter-
-1 L 1 \! -v

minantal equation

I Ia ik (s) - I;: 0ik I I = 0, I;:
AT(e;)

e (5.3 )

determines the characteristic exponents A
k

and the solutions

~, of (1. 3), where

At
~ e v

Since (5.1) is solved by u y, I;: = 1 is a root of

( 5. 3). 'The exponent 13, which was spoken of in the intro-

duction, corresponds to a simple root of the equation obtained

by dividing out I;: - l. 13 (s) is thus real and analytic at

0, 13 S2 s 2
(131 is also equal to for thes = = + ... zero

same reasons as )11 and T1)' Now if 13 is not - 0, then

there is some minor of order n - 1 in the determinant (5.3)

(with the corresponding 1;:) which is not O. From this it

follows that (1.3), A = 13, has a solution v $ 0 which is

analytic at s = O. Even if 13 = 0, there is a minor of

order n - 2 which is not zero. As we know, in this case,

there is a solution of (5.1), analytic at s = 0, of the form

~ tv + ~ with periodic ~,~, where either ~ $ 0, or

v 0 and w is linearly independent of the solution

u y. * That tv + w is a solution implies that

*Cf. e.g. F. R. Moulton, Periodic Orbits, Washington, 1920,
p. 26.
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v = L (v),
- -t,e:-

v + w = L (w).
- -t,e:- (5· 4)

After these preliminary observations we shall calcu-

late 62 , We assume here that ~2 f O. 6 = 0 is then im­

possible as will subsequently be proved. If we use (4.7) to

introduce s as a new t into (1.3) we get

L (v).
-t,e: -

Also, we have (with the new t)

where all the ~i have the same period TO' If we introduce

the power series for ~, 6, ~, y, it follows (dropping the

subscript zero on the operators as before) that

~o

.
~l

(5.5)

(5.6)

These equations have the trivial solution

(5.7)

6.
l

Thus, one has

(i 0,1, .•• ) • (5.8)

~ (i
l

) + 2Q (y , X. ).
- 0 0

(5.9)

( 5.10)
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Since we may assume that ~O f 0

~o (5.11)

where at least one of the coefficients is not O. If we set

.
it follows from (4.10), (5.6) and (5.9) that w

If one forms the combination

(5.7) - P(4.11) - 0(5.10),

in which L' cancels out, and sets

then, using (5.11) and (5.12), one obtains:

(5.12)

.!:(~), thus

(5.13)

S2~ + u ~(~) + 2P(2~(XO'Yl) + ~(Yo'Yo,yO))+~

with

(5.14)

If we now apply the bracket criterion of the previous section

to (4.10) and (5.9), it follows from (5.13) that

If we apply it to (5.14), in which ~ has the period TO' it

follows from (4.6) (with z = yO) that

*The
and

P and 0 in (5.11) are unrelated to the symbols
o as used in Section 2.

P



188 THE HOPF BIFURCATION AND ITS APPLICATIONS

Hence, by (4.16),

Likewise, it follows that

Im(a') )
a62

= -2p(T 2 +]12 a •

From this, either 6
2

is given by (1.4) (and then 6
2

is

not zero since ]12 f 0) or else 6
2

= O. In either case

p:a is completely determined (in the second case p = 0).

To check that the first case really occurs we must

undertake a somewhat longer consideration. One may think of

the process as schematized in the following manner. The

equation for 6 and v (namely the equation which follows

equation (5.4» should be divided by the factor in parenthe-

sis. It is then once again of the form

with

v + 6v

L
-t,E:

~t,E:(~'>

2
~O + E:~l + E: ~2 + ••• ,

The coefficients of

is a constant operator, whilewhere

on t

L
-0

with the period

i > 0, depend

1, E: are

not altered by the division. Introduction of the power

series leads to

~O

v
-1

~O(~),

~O(~l) + ~l (~O),
* ( 5.15)

*One does not really have to assume
criterion this is a consequence of

61 = O.
(5.17) •

From the bracket
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and so forth. The situation is the following. For E = 0

there are two solutions
.

~, z with period Furthermore

and

v
-0 p~ + az (5.16)

for both bracket subscripts. It follows that

~l = p~ + ah + p'~ + a'z

(5.17)

(5.18 )

with fixed periodic ~ and h. For the third equation of

(5.15), the bracket criterion gives

13
2

P AlP + Bla

S2 a A2 P + B a
2

with

A. [~l (~) + L (z) 1 . ,
1 -2 - 1

Bi [~l (~) + ~2 (~)] i'

(5 ·19)

(5 .20 )

while (5.17) implies that P', a' drop out. The situation

now is that the equations (5.19) with the unknowns 13
2

, P, a

*have two distinct real solutions 13 2 • To them belong two

linearly independent pairs (p,a). Each of the two solution

systems leads now to a unique determination of the Si and

v. through the recursion formulas, if one suitably normalizes
-1

*In the gen~ral case, that is if the special condition (5.17)
is not fulfilled, the splitting into two cases occurs al­
ready at the second equation (5.15). The solution of the
problem in this case is found in F. R. Houlton, Periodic Or­
bits. Compare Chapter 1, particularly pages 34 and 40.
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v. To this end choose a constant vector ~ ~ 0 in such a

way that ~o . a = 1 (t = 0) for both pairs (p,a) in

(5.16). One concludes then that

v .
~ 1, t 0,

that is, v. ~ 0 at (t 0) for i > o. Let
-1.

~ ~ C, Z ~ D (t 0) •

Then, for either of the two values of 13 2 , the system of

equations

o (5.21)

Cp + DO = 1

uniquely determines the unknowns p and a. Up to now 13
2

,

p, a, ~o are determined. Using the definition of ~, ~

and (5.18), one obtains from the third equation of (5.15)

~2 = p'~ + a'~ + p"~ + a"i + ••• , (5.22)

where the terms omitted are already known. From the fourth

equation of (5.15) one obtains the equations

by using (5.18), (5. 20), (5. 22) and the bracket criterion.

Since ~1 . a = 0

equation

(t = 0), we add to these equations the

CP' + DO'



THE HOPF BIFURCATION AND ITS APPLICATIONS 191

Through the three equations, the three quantities 6
2

, p', cr'

are now uniquely determined. With the help of (5.21), the

determinant is found to be

It is not equal to zero, since by hypothesis, (5.19) has two

distinct solutions

determined.

From this 6 ' ,3' P , cr and ~l are

It is now easy to see that at the next step 6
4

, p",

cr" are determined by equations with exactly the same left

hand side, and that by the further analogous steps everything

is determined.

We return now to the special problem which interests

us, and assume that by suitable normalization two different

formal power series pairs (6,~) exist which solve the equa-

tion

2(1 - T 2 8 + ••• )v + 6v = L (v).
- - -t,8-

On the other hand it was previously demonstrated that under

the assumption 6 $ 0, two actual solutions exist, of which

one is known, namely (5.8). Under this assumption the second

(normalized) solution can thus be represented by the power

series and the formula (1.4) for 6
2

does in fact hold. To

dispose of this completely we must still show that 6 = 0

cannot occur if ~2 ~ O. We show this also in terms of the

schematic problem. Since (5.19) has the solution 6
2

= p = 0

and the second 6
2
~ 0,

0, (5.23)
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If S were = 0, then (5.4) would have a solution with the

properties given there.

Setting in the power series for X, w gives

~o + w ~O (~O)-0

v + w ~O (~l) + ~l (~o)-1 -1

v + ~2 L (w ) + ~l (~l) + ~2 (~o)·-2 -0 -2
We have

w p~ + crz.
-0

(5.24)

(5.25)

Since is also of this form, according to the bracket

criterion ~o must be equal to zero. By (5.17), it follows

analogously that ~l = O. Similarly, as in (5.18), we find

~l = p~ + cr~ + p'~ + cr'z.

It has been demonstrated above that v L (v) has a solu­
-t,E: -

tion (y) of period TO' unique up to a factor. Thus we

certainly have

v =-2

As above, using (5.20), application of the bracket rule to

(5.24) gives the equations

(in which p', cr' once again fallout). According to (5.23)

0, and from this v = O. Ac­
-2

If one subtracts from the second

and dividesofcry

p = Ait thus follows that

cording to (5.25) w = crz.
-0

equation of (5.4) the solution

by E:, then the whole process can be repeated, and we find
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successively that the ~i = 0, and thus v = O. With this

it is demonstrated that B cannot be equal to zero.

The verification of the formula (1.4) is thus complete

under the assumption ~2 f O. This assumption could be re­

placed by ~ $ O. The considerations would be changed only

in that in the calculation of the coefficients the case of

splitting will occur later.

The difficulties of these considerations could be

avoided in the following manner. One first calculates purely

formally as above the coefficient of the power series for B

and v and then shows the convergence directly by a suit-

able application of the method of majorants. This would cor-

respond to our intention of facilitating the application to

partial differential systems. But one can also carry out

the discussion of the case of splitting and the proof of

(1 4) 1 · 1 . h d . tttt• exc USlve y Wlt etermlnants.

tttt
See editorial comments in Section SA.
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SECTION SA

EDITORIAL COMMENTS

BY L. N. HOWARD AND N. KOPELL

(t) 1. Hopf's argument can be considerably simpli-

fied. After "blowing up" the equation (1.1) to (2.3), one

wishes to show that for each sufficiently small E there is

a ]..I (E) , a period T(E) and initial conditions °y (E)

°0, y

(suitably normalized), so that (2.16) holds; the family of

solutions to (1.1) asserted in the theorem is then ~(t,E)

°Ey(t,]..I(s),E,y). Now (2.16) is satisfied if ]..I = E = 0,

yO = ~o. Hence, the existence of the functions ]..I (E) , T(E),

°~ (E) follows from an implicit function theorem argument,

provided that the n x n matrix

(*. ~, :~1It = TO' " = 0, ,

has maximal rank. (Here lY.- is an n x (n-2) matrix re­
dyO

presenting the derivative of X with respect to (n-2)

initial directions; there are two restrictions on the initial
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conditions from the normalization.) We show helow how the

rank of this matrix may be computed more easily.

Let ~ and ~ be the right and left eigenvectors cor­

responding to a pure imaginary eigenvalue of LO; by rescal-

ing time, we may assume that this eigenvalue is i. (£: and

T are eigenvectors for -i.) We may also assume that

~ = 1. Let L'

We note that hypothesis (1.2) may be rephrased:

(To see this, let ~(~) be the eigenvector

of L~ which corresponds to the eigenvalue a(~) near a

pure imaginary eigenvalue, normalized by ~ e = 1, so

~(O) = r. Differentiating a(~)~ with respect to

at ~ = 0, we get

de
LO + L'r

d~

de
a' (O)~ + a (O)d~ (SA.l)

de
Now ~ . Qjl= 0 and .8:.LO a (0).8:.. Hence, if (SA.l) is multi-

plied by ~ on the left, we get ~·L'r a' (0).)

Let '1. be defined by x: YEo t is replaced by

s = t/(l+T), where T is to be adjusted (for each E) so

that the period in s is 2w. Then (1.1) becomes

For each E,T and ~ we construct the solution with initial

condition '1.(0), normalized by requiring y(O)

where ~. z = r . z = O. (Hence, the initial conditions are

parameterized by points in the n-2 dimensional space
_ ..L

W = (.8:. ~.8:.) Note that by the simplicity of the imaginary

eigenvalues, W is transverse to ~ t!l £:.) This solution we
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denote by ~(S,T,~,~,E).

Let Y(T,]l,~,E) = y(21T,T,~,~,E) - X.(O,T,~,~,E). At

~ T = E = 0, ~ = Q, we have y(s) =yO(s) = Re(£e is ) and

v O. To show that there is a family of 21T-periodic func-

tions with T = T(E), ~ = ~(E), ~ ~(E), it suffices to

show that 3~3 (T,~,~) has rank n at ~ = T = E = 0,

~ = O.

Let
3y

v (s) = ~(s,O,O,O,O).
---r 3T -

Then satisfies the

i ­21T-(r-r)
2 --

variational equation

with initial condition YT(O) = Q. The solution to this
dyO 3V

equation is Y..e = s ds which implies that 3T

-21TIm r.

We next calculate Y (s)
]1

isfies the variational equation

3y
__ (s,O,O,O,O), which sat-
3~ -

with initial condition ~ (0) = Q. Since L'yo Re L ' is£e ,

y~ is the real part of ~, where ~ satisfies

(SA.2)

with initial condition ~(O) O.

A particular solution to (SA.2) is ~ = S(~·L,£)~~is +

Qe
is

, where b is any complex vector which satisfies:

(SA.3)

Now (i-LO) is singular, but (SA.3) may be solved for b

since 2 O. The solutions b all have
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the form £0 + kr for any k. There is a unique such value

of b for which 9,'Re b = I" Re b = O. (Take

k = -9,' (b + ~).) We use this value of b. The solution to
- -0

(SA.2) satisfying 21(0 ) = 0 then has real part

where S!..Ys = Landas 01. 1. (0) -Re b. Hence

We note that

1. (0) = 1.1
satisfies !'Yl = 9,'Y = O. (This- 1

since ~(!'1.) 9,'L Y = i!·1.' Since !.1. (0)- 0-

= 0, !·1.(s) - O. Similarly, !.1. (s) - o. )

follows

-9,'Re b

av
ajl = 27f Re(E:.·L'!:.)!:. + .r(27f) - .r(0).

1.(27f) -

av
Finally, we compute 8Z Let iY be the variation

in ~ due to the variation OZ in initial conditions. Then

iY(s) satisfies
d = LO(OY), ix.(0) = OZ,ds(~) and

aV - 27fLO9,'oz 'I'oz O. This implies that E(~) = (e - I)~.

Now OZ is in the subspace W orthogonal to 9, and T.

Since there are no other pure imaginary eigenvalues for LO

(in particular, no integer multiples of ±i) , the matrix

27fL
O

av
(e - I) is invertible on W. Hence az has rank n-2.

Now Rn ,is the direct sum of W and the span of

Re rand Im r. (This follows from the simplicity of the
27fLO

pure imaginary eigenvalues.) The range of (e - I) is

W, so ava (T til ,~) has rank n if and only if Im rand

Re(!·L'!:.)E are independent. This is true if Re(!·L'!:.) ~ O.

2. The argument in this section does not require

analyticity; it merely sets up the hypotheses of an implicit

function theorem. Hence this argument provides a proof for
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a Cr version of this theorem. More specifically, suppose

that !(~,~) is r times differentiable in x and ~.

Then the right hand side of (2.3) is r times differentiable

in but only
r-l

in The functionx and ~, C E.

Y(T , ~ '!.' E) defined above is cr - l
in E and at least Cr

in the other variables. Hence, the implicit function theorem

says that the functions T (E), ~ (E), !.(E)
r-l

are all C

and

The periodic solu-

tions to (1.1), namely X(t,E) = Y(l+~(E) ,E), are
r

C .

(tt) The uniqueness proved in this argument is

weaker than that of Theorem 3.15 of these notes. That is, it

is not proved in Hopf's paper that the periodic solutions which

are found are the only ones in some neighborhood of the criti-

cal point. For example, Hopf's argument does not rule out a

sequence of periodic functions xk(t) such that maxlxk(t) I +0,

the associated ~k + 0, and the periods Tk + 00. Such behavior

is ruled out by the center manifold theorem, which says that

any point not on the center manifold must eventually leave a

sufficiently small neighborhood (at least for a while) or tend

to the center manifold as t + 00. Thus the center manifold

contains all sufficiently small closed orbits; since the center

manifold is three dimensional (including the parameter dimen-

sion), the uniqueness of the periodic solutions is a conse-

quence of the uniqueness for the two-dimensional theorem.

(ttt) Formulas equivalent to Hopf's but somewhat easier

to apply can be obtained in a simpler manner. The main

point is to use the "eis " form of the solutions more ex-

plicitly and thereby avoid introducing the bracket criterion.
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We again assume that time has been scaled so that

the pure imaginary eigenvalues of LO are ±i, and we use

the notation introduced in (t). Following Hopf we further

rescale time by t = (l+T(E»S, T(O) = 0, and let ~ = EX.

Then (1.1) becomes

+
Y.o

O. )

:L(S,E)2n-periodic solution of (SA.4) be

II O.

the

and K are respectively the quadratic and cubic

is
+... , where, as before, ~O = Re(e £), and the

~i are 2n-periodic with ~'~i (0) = !'~i (0) = 0 for i > 1.

(Since the ~i are real, we may simply require ~'~i(O)

where Q

terms when

Let

2
E~l + E ~2

:L(s,d

lected.

To get recursive equations for the ~i' the series for

is inserted in (SA.4) and like powers of E are col-

the fact that 0,
2

We use T
l III so T E T

2
+...

2
and II = E ll2 +

:Ll = A~l + Q(:LO'~O)'

1 2is'2 Re[e Q(£,£)]. A

~ + Re(~e2is) where

fying

We find that ~l should satisfy

1 -
and Q(~O'~O) = '2 Q(£,£) +

periodic solution to this equation is

~ and ~ are constant vectors satis-

-L a = ! Q(r,r"l
0- 2 - - -

12" 9.(£,£).

(SA.S)

(Since -LO and

do determine ~

2i - Lo
and ~.)

are non-singular, these formulas

Thus

Re(C reisj, where the complex number Cl is to be chosen
1-

so that ~. ~l (0) = 0; using equations (SA.S), one readily

finds that
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Now ~Z is a periodic solution of

Hence

.
~Z LO~Z + ~ZL'~O + ZQ(~'Yl) + ~(~o'Yo,yO) + 'ZLOYO

These equations have a periodic solution if and only if there

is no resonance, which requires that the coefficient of
is

e

in this last formula should be orthogonal to ~ (the bracket

criteria in disguise). Thus

Hence we get the formulas for ~Z and

(SA.6)

where ~ and £ are the solutions of (SA.S). [These formulas

are unchanged if the eigenvalue is iw instead of i, ex-

cept that, instead of the second equation (SA.S), £ is the

solution of (Ziw - LO)£ = ~ Q(£,£). Also the value of Cl

given above should be divided by w.]

The formulas (SA.6) are equivalent to Hopf's (4.16).

The determination of the left eigenvector ~ and the solution
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of the linear equations (SA.S) for ~ and £ takes the place

of finding the adjoint eigenfunctions and evaluating the

integrals implied by the bracket symbols.

(tttt) 1. The translators must admit that .they have

found this section somewhat less transparent than the rest

of the paper. In their article, Joseph and Sattinger [1]

point out an apparent circularity in a part of Hopf's argu-

ment; they also show there that it can be rectified rather

easily.

2. The relationship of S, the Floquet exponent near

zero (of the periodic solution), to the coefficient ~2 can

be found with relatively little calculation, as follows.

The argumented system

x F (x)
~ -

o
(SA.7)

has the origin as a critical point. There are three eigen-

values of this critical point with zero real part; a zero

eigenvalue with the ~-axis as eigenvector, and the conju-

gate pair of imaginary eigenvalues ±i (after suitably re­

scaling the time variable) with eigenvectors £ and r.

All other eigenvalues are off the imaginary axis, so this

critical point has a 3 dimensional center manifold. This

center manifold must contain the ~-axis, the periodic solu-

tions given by Hopf's Theorem, and any trajectories of (SA.7)

which for all time remain close to the origin; it is tangent

to the linear space generated by the ~-axis and the real

and imaginary parts of r. Let us set x
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O. E~ 0 is regarded as a replacement

for ~, given by the function ~(E) of HOpf's Theorem:

~ = ~(E) = ~2E2 + ••• , where we are now assuming that

~2f O. Thus we may think of the real and imaginary parts of

~, and E, as parameters on the center manifold. For any

(~,~) on this manifold
2

~2 = 0 (E ) since it is at least

quadratic in ~'x = E~ and r· x = E~. Thus we may write the

equations of the center manifold as ~

E2~(~,~,E), where ~.~ = !.~ = 0 and

~(E), X =
-2

~ is at least quad-

ratic in ~ and ~. For any trajectory on the center mani-

fold we then have, with the notations of (t) and (ttt),

rt + r ~ + E(~~~ + ~~~) = i~r - i~ £

+ E LO~ + ~2E2L' (~£ + ~ £) + EQ(~£+~ £)

223
+ 2E Q(~£ + ~ ~,~) + E C(~£ + ~ r) + O(E ).

By mUltiplying on the left with i, we obtain

i~ + ~ E2~'L' (~r + ~ r)
2 - -

2 -2 --
+ E~' [~ Qt.!>£) + 2S~Q(£,£) + ~ Q(£,£)]

2 - 3
+ E y(~,~) + O(E )

where y is cubic in ~ and r.
We now introduce the function

(SA.8)

(SA.9)

As we will see below, I(~,~) is approximately invariant

along trajectories lying on the center manifold. For any
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trajectory on the center manifold we have, using (SA.9) and

its complex conjugate,

where ° is quartic in ~ and ~. The terms of order £

in the above are £Re{~3~.Q(£,£) _ ~3T'Q(~,~) + ~~2~.Q(~,~) -
_ 2 ) _2 (_) _ 2_ - }
~~ l'Q(~,~ + 2~~ l·Q ~,~ - 2~~ l'Q(~,~) = O. Thus

is ofThusand

]l2£2Re[~1·LI (~r + ~ :£)1 + £201 (~,~) + 0(£3) (SA.10)

dI
dt° is also quartic in

1
2

£ •

dI
dt

order

where

(1 0 = ~1~12 is also an approximate invariant, but
dIO dI 2

is 0(£) whereas is only 0(£). If we consider
dt dt
a trajectory on the center manifold starting at t = 0 with

~ = c, we see from (SA.9) that it is given to 0(£) by

it
ce ; thus, after a time of approximately 2TI, it must

once again return to 1m ~ = O. This arc is a circle to

0(£), but is more accurately described (to 0(£2» as a

curve of cOnstant I.)

We see from (SA.10) that the change in I in going once
2

around this way is given, to 0(£), by
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where

c = 1

1 f2~ it -it
02 2~ 0 01 (e ,e )dt. However, we know that if

we get the periodic solution, for which ~I = 0; con-

sequently 02 = -~2Re(~·L'£) = -~2Re(a' (0» as noted in (t).

Thus, in general,

2 2 4 3
~I = 2~£ ~2Re(a'(0)(c -c) + 0(£). (511..12)

Since c = 1 gives the periodic solution, the 0(£3) part

is also divisible by (c-U. Thus, for c near 1, (5A.12)

may be written

2
6I = 2TI£ (c-l) [-2~2Re a' (0) + 0 (c-l)]. (5A.l3)

For small £, any trajectory on the center manifold with

~ = 0(1) must keep going around an approximate circle.

However, it cannot be periodic unless it passes through

~ = 1. Hence, it is apparent from (5A.12) that, when

~2Re a' (0) > 0, all trajectories on the center manifold (at

a given £, i.e., ~) which are inside the periodic solution

must spiral out towards it as t ->- +00 (or as t ->- if

~2Re a' (0) < 0) • Since I is approximately ~I ~ 12
,

-
~I = (~(2~)-c)c. Thus (5A.13) implies that these trajectories

asymptotically. approach the periodic solution with exponen­

tial rate S = -2£2~2Re a' (0) + 0(£3), and this must thus be

the numerically smallest non-zero Floquet exponent.

3. Equation (5A.12) actually tells us more; it implies

that we may approximately describe" the trajectories on the

center manifold as slowly expanding (or contracting if

~2Re a' (0) < 0) circles whose radius c varies according to

the formula
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c
2

ttl + tanh(E2P2Re a' (0) (t-tl »)

2c = 1/2.

20S

4. The function I is also of some use in relating

the above to the "vague attractor" hypothesis. If we set

P = 0, the n-dimensional system x = FO(x) has a two­

dimensional center manifold for its critical point at 0,

tangent to the linear space spanned by the real and imaginary

parts of r. As in a previous paragraph, we set

-
x = E(~_r + ~ _r) + x_

2
' where ~,x = y·x = O. On this center- -2 - -2

manifold x = 0(E 2 ) and is at least quadratic in ~ and
-2

"f; E is now an arbitrary scaling parameter. For any tra-

jectory on this center manifold one obtains the same formula

(SA.9) except for the omission of the P L' term - the other
2

terms written down all come from the p-dependent pairs of

F p ' If we then consider the function I for a trajectory

on this center manifold, we obtain (SA.IO) again, with the P2

term omitted, but the. same 01; integrating this around, we

get (SA.ll) without the P2 term but the same 02' Since

02 = -P 2Re a' (0)

manifold at P

or

we have for trajectories in the center
2

0, to order E,

3
L'>(EC) = -21fP2Re a' (0) (EC) •

Since L'>(EC) is V(x
l

) (the Poincare map minus identity),

where EC = xl is the coordinate Re(~'~)' we see that

V"'(O) = -21fp Re(a'(0»'6 = -21fRe(a'(0»·3p"(0). This relates
2

the calculations here to the stability calculations done in §4.
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SECTION 6

THE HOPF BIFURCATION THEOREM FOR DIFFEOMORPHISMS

Let X be a vector field and let y be a closed or-

bit of the flow ¢t of X. Let P be a Poincare map as-

sociated with y. (See §2B). Suppose there is a circle a

that is invariant under P. Then it is clear that U ¢ (a)
t t

is an invariant torus for the flow of X (see Figure 6.1).

--

r

Figure 6.1

If we have a one parameter family of vector fields and closed
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orbits X and Y
Il

, it is quite conceivable that for small
11

11, Yll
might be stable, but for large 11 it might become

unstable and a stable invariant torus take its place. Re-

call that is stable (unstable) if the eigenvalues of

the derivative of the Poincare map P
11

have absolute value

< 1 (> 1). (See §2B). The Hopf Bifurcation Theorem for

diffeomorphisms gives conditions under which we may expect

bifurcation·to stable invariant tori after loss of stability

of The theorem we present is due to Ruelle-Takens [1];

we follow the exposition of Lanford [1] for the proof.

In order to apply these ideas, one needs to know how

to compute the spectrum of the Poincare map P. Fortunately

this can be done because, as we have remarked earlier, the

spectrum of the time T map of the flow is that of P U {I}.

(See §2B).

Reduction to Two Dimensions

We thus turn our attention to bifurcations for diffeo-

morphisms. The first thing to do is to reduce to the two

*dimensional case. This is done by means of the center mani-

fold theorem exactly as we did in the previous case; i.e.,

assume we have'a one parameter family of diffeomorphisms

~Il: Z + Z, ~Il (0) = 0 and assume a single complex conjugate

pair of simple non-real eigenvalues crosses the unit circle

as 11 increases past zero. Then the center manifold theorem

applied to ~: (x,ll) + (~Il(x) ,11) yields a locally invariant

three manifold M; the 11 slices Mil then give a family of

*As remarked before, for partial differential equations, P
may become a diffeomorphism only after the reduction, and be
only a smooth map before.
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manifolds which we can identify by some fixed coordinate

chart. Then on M we have induced a family of diffeomor­
]1

phisms containing all the recurrence.

Thus we are reduced to the following case: (modulo

"global" stability problems as in the

We have a one parameter family

morphisms satisfying:

last section).

~ : ~2 ~ ~2 of diffeo­
]1

a) ~]1 (0,0) = (0,0)

b) d~]1 (0,0) has two non-real eigenvalues A(]1)

A(]1) such that for ]1 < 0 IA(]1) , < I and for ]1 > 0

IA (]1) I > I

c) d IA (]1) 'I > O.
d]1 ]1=0

and

We can reparametrize so that the eigenvalues of

d ~ (0 , 0 ) (I +]1 ) e ±is (]1). B k . th ddt]1 are y rna 1ng a smoo ]1- epen en

change of coordinates, we can arrange that:

The Canonical Form

(

COS 8 (]1)
= (1+]1)

sin 8(]1)

-sin

cos

8 (]1»)

8 (]1)

The next step is to make a further change of coor-

dinates to bring ~]1 approximately into appropriate canoni­

cal form. To he able to do this, we need a technical assump-

*tion:

e im8 (0) 'f 1 m 1,2,3,4,5. (6.1)

(6.1) Lemma. Subject to Assumption (6.1), we can

make a smooth ]1-dependent change of coordinates bringing ~]1

*As D. Ruelle has pointed out, only m = 1,2,3,4 is needed for
the bifurcation theorems as can be seen from the proof in §6A.
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into the form:

<I> (x) = N<I> (x) + O(/xI
S

)
]1 ]1

where, in polar coordinates,

The proof of this proposition uses standard techniques

and may be obtained, for example, from §23 of Siegel and

*Moser [1]. We give a straightforward and completely elemen-

tary proof in Section 6A. As indicated above, we think of

as an approximate canonical form for

special features of

<I> .
]1

Note two

i) The new r depends only on the old r, not on ¢.

ii) The new ¢ is obtained from the old ¢ by an

r-dependent rotation. We now add a final assumption:

f
l

(0) > O. (6.2)

This assumption implies that for small positive ]1,

N<I>
]1

has an invariant circle of radius rO' where r
O

is ob-

tained by solving

2
Le., r

O
]1

f
l

(]1) •

*The canonical form is important in celestial mechaniOs for
proving the existence and stability of closed orbits near a
given one; i.e. for finding fixed points or invariant circles
for the pqincare map. In the Hamiltonian case this map is
symplectic (see Abraham-Marsden [1]) so Birkhoff's theorem
applies, as are the results of Kolmogorov, Arnold and Moser
if it is a "twist mapping".
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We shall verify shortly that this circle is attracting

for N~~. Since ~~ differs only a little from N~~, it is

not surprising that ~~ has a nearby invariant circle.

The Main Result

(6.2) Theorem. (Ruelle-Takens, Sacker, Naimark). As-

*sume (6.1) and (6.2) . Then for all sufficiently small positive

~, ~~ has an attracting invariant circle.

Before giving the proof, let us look at what happens if

(6.2) is replaced by the assumption f l (0) < O. Then, for a

small positive ~, N~~ has no invariant sets except {O} and
2
~. For ~ < 0, N~ does have an invariant circle, but it

~

is repelling rather than attracting. By applying the result
-1of Ruelle and Takens to ~ , we prove that, in this case,
~

~ has a nearby invariant circle. Thus, we again find the
~

usual situation that supercritical branches are stable and

subcritical branches unstable. If

~~: (y,¢) ->- ((l-2~)y - ~(3y2+y3) + ~20(1),

f 3 (~) 2 2
¢ + e(~) + ~~ (l+y) + ~ 0(1)).

1 ~

Finally, we scale y again by putting

y IiJz;

then

*
It would be interesting to explicitly compute fl(O) in terms

of ~~ directly as we did in §4 for the bifurcat~on to invar­
iant circles. However the labor involved in the earlier calcu­
lations, and the promise of a harder, if not impossible compu­
tation has left the present authors sufficiently exhausted to
leave this one to the ambitious reader. The calculation of
fl(O) in terms of ~~ rather than Xu is not so hard and has
been done by Wan [preprint] and Iooss [6].
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we rewrite this last formula as

211

3/2 3/2
(z,<j» ->- «l-2]1)z +]1 H]1 (z,<j», <j> + 8

1
(]1) +]1 K]1 (z,<j»).

The functions H]1(Z,<j», K]1 (z,<j» are smooth in z, <j>,]1 on

-1 < z < 1, o < <j> < 27f,

for some sufficiently small ]10; the region -1 < z < 1,

o < <j> < 27f corresponds to an annulus of width O(]1) about

the invariant circle for N~]1 (which has radius 0(]1). We

are going to produce an invariant circle inside this annulus.

The qualitative behavior of ~]1 is now easy to read

off: ~]1 can be written as

plus a small perturbation. The approximate ~ is simply a

rotation in the <j> direction and a contraction in the z

dire~tion. Note, however, that the strength of the contrac-

tion goes to zero with ]1. If this were not the case, we

could simply invoke known results about the persistence of

attracting invariant circles under small perturbations. As it

is, we need to make a slightly more detailed argument, exploit­

ing the fact that the size of the perturbation goes to zero

faster than the strength of the contraction.

We are going to look for an invariant manifold of the

form
{z u(<j»},
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where

i)

ii)

iii)

stant 1

u(¢) is periodic in ¢ with period 2n

lu(¢) I ~ 1 for all ¢

u(¢) is Lipschitz continuous with Lipschitz con-

The space of all functions u satisfying i), ii) and iii)

will be denoted by U.

We shall give a proof based on the contraction mapping

principle. In outline, the argument goes as follows: We

start with a manifold

M = {z u (¢) },

with u E U, and consider the new manifold <jl M obtained by
lJ

acting on M with <jl . We show that, for lJ sufficiently
lJ

small, <jllJM again has the form {z = {i(¢)} for some ~ E U.

Thus, we construct a non-linear mapping ff of U into it-

self by

ffu u.

We then prove, again for small positive lJ, that ff is a

contraction on U (with respect to the supremum norm) and

hence as a unique fixed point u* •. The manifold {z u'" (¢)}

is the desired invariant circle. As a by-product of the

proof of contractivity, we prove this manifold is attracting

in the following sense: Pick a starting point (z,¢) with

Izl ~ 1, and let denote n
<jllJ (z, ¢) • Then

lim z - u*(¢ ) = O.
n+ co n n

It is not hard to see that the domain of attraction is much
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larger than the annulus Izl ~ 1. In particular, it contains

everything inside the annulus except the fixed point at the

center, but we shall not pursue this point.

To carry out the argument outlined above, we must first

construct the non-linear mapping ~ To find

should proceed as follows:

9u(¢), we

A) Show that there is a unique ¢ such that the ¢-

component of <I> (u(¢),¢)
lJ

is ¢, i.e., such that

3/2 - - *
¢ - ¢ + 61 (lJ) + lJ KlJ(U(¢),¢) (21f).

and

B) Put 9u(¢) equal to the z-component of

(6.3)

~u(¢) (1-2lJ)u(¢) + lJ3/2H (u(¢) ,¢).
lJ

(6.4)

In the estimates we are going to make, it will be convenient

to introduce

A = sup {I H I V IK I
O<¢<2rr lJ lJ

-1- -
-l<z<l

so defined, A depends on lJ but remains bounded as lJ + O.

We now prove that (6.3) has a unique solution. To do

this, it is convenient to denote the right-hand side of (6.3)

temporarily by x(¢):

3/2
x(¢) = ¢ + 6

1
(lJ) + lJ KlJ (u(¢) ,¢).

We want to show that, as ¢ runs from 0 to 21f, x(¢) runs

*i.e., ¢ differs from ¢ + 61 (lJ) + lJ3/2KlJ(U(¢),¢) by an

integral mUltiple of 21f.
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exactly once over an interval of length 2TI. From the period­

icityof u(¢), K~(Z,~) in ~, it follows that

x(2TI) = x(O) + 2TI.

We therefore only have to show that x is strictly increas-

-ing. Let ~l < ~2' Then

Now

IK~(U(~),;P)-K~(~l)'~l)1 < A[lu(~2)-u(~1)1 + I~ 2-~111

~ 2AI~-~11 = 2A(¢2-~1)'

(The second inequality follows from the Lipschitz continuity

of u.) Thus

1 - 2A~3/2 > 0, (6.5)

x is strictly increasing and (6.3) has a unique solution. We
-thus get ~ as a function of ~, and it follows from our

above estimates that ~ is Lipschitz continuous:

(6.6)

The definition (6.4) of ~ therefore makes sense, and

we next have to check that~ E U. Condition i), corresponds

to 6.7 is immediate. For (ii), note that

< 1 - 2~ + ~3/2 •
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Thus, I~u(~) I < 1 for all ~ provided

(6.7)

Finally,

IffL1(~1)-YU(~2)! < (1-211) !u(¢1)-u(¢2)!

+ 11
3

/
2
;1d!U(¢1)-u(¢2)! + !¢1-~21]

~ (1-211 + 211
3

/
2

A) 1~1-¢21

by the Lipschitz continuity of u. Inserting estimate (6.6)

for 1¢1-¢2 1 , we get

so ~u is Lipschitz continuous with Lipschitz constant 1

provided

(l-211+211 3/ 2A) (1_211 3/ 2A)-1 < 1. (6.8)

Evidently (6.8) holds for all sufficiently small positive 11,

so (iii) holds.

The next step is to prove that ~ is a contraction.

- -
Thus, let u l ,u2 E U, choose ~, and let ~l' ~2 denote the

solutions of

3/2 --
~l + 61 (11) + 11 K11(ul(~l)'~l)

- 3/2 --
~2 + 61 (11) + 11 K11 (u2 (~2) '~2)'

respectively. SUbtracting these equations, transposing, and

taking absolute values yields
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- - 3/2 - - --
1¢1-¢2 1 2..]1 /K]1 (Ul (¢l) '¢l) - K]1!U 2 (¢2) '¢2) 1

3/2 - - -
2.]1 A[lul (¢1)-U 2 (¢2) 1 + 1¢1-~2I).

Now

(6.9)

IU1(~1)-U2(~2)1 < IU1(~1)-U2(~1)1 + !U2(~1)-U2(¢2)1

< I lu
l

- U
2 1 I + 1~1-~21.

Inserting this inequality into (6.9), collecting all the

terms involving !~l-~ 21 on the left, and dividing yields

Now we use the definition (6.4) of ~u:

1~ul (¢)-ffu2 (¢) I ~ (1-2]1) IU l (~1)-U2 (¢2) 1

3/2 - - --
+]1 IH]1 (u l (¢l) '¢l) - H]1 (u 2 (¢2) '¢2) I

< (1-2]1)[llul - u
2 " + 1~1-~21]

3/2 - -
+]1 A[llul - u 2 11 + 21¢1-¢2 1 ]

< I lu
l

- u 2
1I{ (1-2]1) (1+]13/2 A(1_2]13/2 A)-1]

+ ]13/2A[1 + 2]13/2 A(1_2]13/2 A)-1]}.

Let a denote the expression in braces. Then

3/2
1 - 2]1 + 0(]1 ),

(6.10)

so we can make a < 1 by making ]1 small enough. If this

is done, we have

(6.11)

i.e., ~ is a contraction on U and hence has a unique fixed
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point u*.
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To prove that the invariant manifold {z = u*(~)} is

attracting, we pick a point (z,~) in the annulus Izi < 1,

(by (6.7)), so (zl'~l) is again in the annulus. Now let

~l denote the solution of

The definition of ~l' on the other hand, needs

Subtracting these equations and then estimating and re-arrang-

ing as in the proof of (6.8), we get

- 3/2 3/2-1
I~l-~I~)l A (l-2)l A) Iz-u*(~)I·

Now subtract the equations

- 3/2 --
u*(~l) = YU*(~l) = (1-2)l)u*(~1) +)l H)l (u*(~l) '~l)

3/2
(1-2)l)z +)l H)l(Z,~)

and again imitate the proof that Y is a contraction to get

with the same a as in (6.11). By induction,

n
Iz -~*(~ ) I .::. a Iz-u(~) I .... 0 as n"" "'.

n n

In our proof, we used only the continuity of H)l' K)l
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and their first derivatives, and we obtained a Lipschitz con-

tinuous u*. Closer examination of the argument shows that

we needed only Lipschitz continuity of H~, K~. If we have

more differentiability of H~, K~, we would expect to obtain

more differentiability for u*. This is indeed the case.

Specifically, let Uk denote the set of periodic functions

k
u(~) of class C satisfying

i) lu(j)(~)1 ,::,1, j = O,l, ... ,k; all ~.

ii) lu(k) (~) I is Lipschitz continuous with Lipschitz

constant one.

f h " . kth ..I H~, K~ ave Llpschltz contlnuous derlvatlves, a

straightforward generalization of the estimates we have given

shows that for ~ sufficiently small, ~ maps Uk into it­

self. It may be shown that Uk is complete in the supremum

norm (as in the proof of the center manifold theorem) , so the

fixed point of ~ must be in Uk' i.e. , u* has Lipschitz

continuous kth d' . If we make the weaker assumptionerlvatlve.

that H~, H~ have continuous k
th

derivatives, slightly more

complicated arguments show that u* also has a continuous

k
th

derivative; we proceed with the proof by showing that the

set of u's, whose k th derivatives have an appropriately

chosen modulus of continuity, is mapped into itself by ~.
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SECTION 6A

THE CANONICAL FORM

219

We shall give here, following Lanford [1], an elemen-

tary and straightforward derivation of the canonical form for

the mapping ~~: ~2 + ffi2. Recall that we have already ar­

ranged things so that

(lW)
(

COS 8(~)

sin 8(~)

-sin

cos

8 (~») (x) +
8(~) Y

We want to organize the second, third, and fourth degree terms

by making further coordinate changes. It will be convenient

to identify R
2

with the complex plane by writing

z x + iy.

Then

(1 )
i8 (~)

+~ e .

From now on we shall leave ~ out of our notation as much as

possible.

The higher-order terms in the Taylor series for ~ may
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be written as polynomials in z and z, i.e.,

<Ii ( z ) Az + A
2

(z) + A
3

(z) + ••• ,

where, for example,

2 2 . 2 .\' J- -J
L a.z z.

j=O J

Let us begin in a pedestrian way with A2 • We choose

a new coordinate z' = z + y(z) , where Y is homogeneous of

degree 2, i. e., has the same form as A2 • We can invert the

relation between z and z' as

z z' - y(z') + higher order terms.

Since for the moment we are only concerned with terms of

degree 2 or lower, we calculate module terms of degree 3

and higher and replace equality signs by congruance signs (=).

Thus we have

z-z'-y(z') (I-y) (z') •

In terms of the new coordinate we have

<Ii' (Zl ) - ( I+y) <Ii ( z ' - y (z ' ) )

- (I+y) [Az 1 Ay (z') + A
2

(z 1 -y (z' ) ) ]

- (I+y) [/..2' Ay (z') + A2 (z' )]

- AZ ' Ay (z') + A2 (Z') + y(AZ'-AY(ZI)+A
2

(Z'))

- AZ' + A
2

(ZI) + Y (AZ') Ay (z' ).

Now

y(z' )

y(Az') - AY(Z')

On the other hand,

2 2 I 12 - ,2 _2y (A -A)Z' + y (A -A)Z'Z'+y (A -A)Z'
2 1 O·
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A
2

(Z')
2 ,2

+ a
2
z'zr + 2-=02

a
2

z
1

aOz ,

so, if we put

2 2 2
-a2 -al

-a
O

Y2
A2-A

, Y
l /AI

2
-A

, YO X-2-A
,

we get
3

<1>' (z') AZ' + o( Iz' I ).

221

We must, of course, make sure that the denominators in

our expressions for the do not vanish. Since

there is no problem for ~ 1 0, but we want our ~-dependent

coordinate change to be well-behaved as ~ + O. This will be

the case provided

2i8 (0) oJ. i8 (0)ere ,

i. e., provided

1 F i8 (0)
e e- 2i8 (0) F i8 (0)

e

3i8(0)
e 1 1.

Thus, if these conditions hold, we can make a smooth ~-depen-

dent coordinate change, bringing A
2

to zero. We assume that

we have made this change and drop the primes:

<I>(z) Az + A
3

(Z) + ••.

(A3 is not the original A
3

) and see what we can do about Ar
This time, we take a new coordinate z' = z + Y(z), Y

homogeneous of degree 3, and we calculate modulo terms of

degree 4 and higher. Just as before, we have

<1>' (z') _ (I + y)<I>(z' - y(z'»

= Az' + A
3

(z ') + Y (A z ') - Ay (z' ) •

Again, we write out
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Y (z')

Y (\z') - AY (z ' )

3 2_ _ 2 - 2
Y a' + Y2 z z' + Ylzz' + YOz'

3

Y
3

(A 3-A)Z,3 + Y
2

(IA/--l)AZ,2Z '

+ Y
l

(IAI 2X-A)Z'z,2 + Y
O

(X3-A)Z,3

A
3

(z') =
3 3

a z'
3

3 2_
+ a z' z'

2

By an appropriate choice of Y
3

' Y
l

' YO' we can cancel the

333
a

3
, a

l
, a

O
terms provided

2i8 (0)
e f 1,

4i8 (0)
e f 1.

The term presents a new problem. For V f 0, we can, of

course, cancel it by putting

Y =
3

This expression, however, diverges as ~ + 0, independent of

the value of 8(0). For this reason, we shall not try to ad-

just this term and simply put Y
3

= O. Then, in the new co­

ordinates (dropping the primes)

<I>(Z)

We next set out to cancel the 4th degree terms by a co-

ordinate change z' = Z + y(z), Y homogeneous of degree 4.

A straightforward calculation of a by now familiar sort shows

that such a coordinate change does not affect the terms of

degree < 3 and that all the terms of degree 4 can be can-

celled provided

Si8 (0)
e t- 1.

Thus we get



Thus

THE HOPP BIFURCATION AND ITS APPLICATIONS 223

3 2 3
'fez) = (;\ + a21z1 )z + o(lzl ).

This is still not quite the desired form. To complete the

argument, we write

3/ 1 2 ie(]1) f l (]1) 2 2
;\ + a 2 z = (l+11)e [1 - --Iz/ + if3 (]1) Izi ]

1+]1

(where f l ,f3 are real)

2 i[e(]1)+f3 (]1)lz/
2

] 4
(l+]1-f

l
(]1)/zl )e + O(lzl ).

ire (]1)+f (]1) Iz1
2

] 5
<li(z) = (l+]1-f

l
(]1)/z/2)e 3 z + O(lzl );

when we translate back into polar coordinates, we get exactly

the desired canonical form.
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SECTION 7

BIFURCATIONS WITH SYMMETRY

by

Steve Schecter

In this section we investigate what happens in the bi­

furcation theorems if a symmetry group is present. This is

a non-generic condition, so special situations and degeneracies

are encountered. (See Exercises 1.16 and 4.3).

At the end of the section we shall briefly discuss how

the ideas presented here apply to Couette flow (we thank

D. Ruelle for a communication on this subject).

Parts 0-4 of this section are based on Ruelle [3]. A

related reference is Kopell-Howard [3]. See also Sattinger [6].

In the first parts of the section we confine ourselves

to diffeomorphisms. There are entirely analogous results for

vector fields.

O. Introduction.

Let E be a real Banach space with C~ norm, ~ > 3.
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(This means that the map x \+ Ilxll is cQ. on E - {O}.) Let

G be a Lie group and AG a (smooth) representation of G

as a group of linear isometries of E. We denote the elements

of A
G

phisms

by A , where g E G. We wish to consider diffeomor­
g

f: E + E that commute with AG, i.e., that satisfy

0, then

f 0 A = A 0 f for all g E G.
g g

If we know f(x) and f commutes with A
G

, then fey)

is determined for all y in the orbit of x under the action

of A
G

• For example, if E = R2 with the Euclidean norm and

AG is the group of all rotations of the plane (a representa­

tion of G = SO(2», then if f commutes with A
G

it follows

that f takes circles to circles.

Notice:

(0.1) If f and hare diffeomorphisms of E that

commute with ~G then for all a,b E R, af + bh also com­

mutes with AG.

(0.2) If f commutes with AG and f(O)

Df (0) commutes with A .
G

(0.3) If ¢ : E + R satisfies ¢A (x) = ¢(x) and allg
g E G, for all x E E, and f commutes with AG, then ¢f

commutes with AG.

Because E has a cQ. norm, we can construct
Q.

C bump

functions ¢: E + ~ satisfying ¢ = 1 on a neighborhood of

0, ¢ = 0 outside a larger neighborhood of 0, and ¢ is con-

stant on each sphere centered at O. These ¢ satisfy the

conditions of (0.3) . Given a cJI, diffeomorphism f: E + E

and a linear isomorphism A: E + E that commutes with A
G

and is sufficiently close to Df(O), these bump functions
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together with properties (0.1) - (0.3) allow us to perturb f

to a new diffeomorphism h Ct-close to f such that h com-

mutes with A
G

and Dh(O) A.

Given 1 < k < t, let jl denote the space of level-

preserving maps

(a) Each

(b) f is

f: E x (-1,1) + E x (-1,1) satisfying:

f is a Ct diffeomorphism of E.
lJ
c k in the second variable, lJ.

(c) flJ(O) = 0 for all lJ.

(d) flJ commutes with AG for all lJ.

(e) DfO(O) has a finite number of isolated eigen­

values on Iz/ = 1, each of finite multiplicity. (Since these

eigenvalues are isolated, the rest of the spectrum is bounded

away from Iz/ = 1.)

We wish to study how the qualitative picture of flJ

near the origin changes as lJ passes 0, for generic f E ~.

In fact, we will study an open dense subset of

*fined in Section 2.

Y, to be ·de-

1. Reduction to Finite Dimensions.

Let EO be the finite dimensional subspace of E cor­

responding to the eigenvalues of DfO(O) on Iz/ = 1.

* 5l is given the appropriate Whitney topology. A basic open
set B (f, <1» containing f E ~ is given by specifying a

for all

strictly positive cO function <1>: E x (-1,1) + R

ting B(fi<l» = {h E ~I! /h(x,lJ)-f(x,lJ) II < <I> (x,lJ)

II a a J. II(x,lJ); . h(x,lJ) - ---. f(x,lJ) < <!J(x,lJ) for all
axJ. axJ.

i
and 1 < i < t; and /I~ h(x,lJ)

ajJ J.
all (x,lJ) and 1 < i < k}.

and set-

(x, lJ)

for
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for all g E G.(7.1) Proposition. (1)

can be given a

A EO = EO
q

Hilbert space structure so that

remains a group of isometries.

Proof. (1) Let C be a simple closed curve in ~

such that C = C (where C denotes the complex conjugate of

C), Spec Df 0 (0) n C = fJ and

Spec Df 0 (0) n {z: Iz I l} .

of E, let P = ~ J (zI -
1T1. C

Spec DfO(O) n Int C =

In E ~ ~, the complexification

DfO(O) ® I)-ldz. P commutes with

AG ® I because it is the limit of operators that do. By the

Real Spectral Splitting Theorem, P is the complexification

so 1m Q is invariant under A
G

.
o

But 1m Q = E .

of a real operator Q: E -7 E. Clearly Q commutes with A ,
G

(2) Let r be the closure of A~, a compact group.

The desired inner product on EO is (x,y) = J dy< x,yy>,
r

where dy is Haar measure on rand < , > is any inner

product on EO. []

(7.1) Theorem. f E ~ has a ck local center mani­

fold V near (0,0) E E x (-1,1). tangent to EO x (-1,1),

satisfying:

(1) (V)l V n (E x {)l}» is cR- and A ­
G

invariant.

(2) There is a level-preserving chart ¢: V -7 EO x

(-1,1) satisfying ¢A = A ¢ for all g E G.
g g

All the local recurrence of f)l near ° takes place in V)l.

Proof. (1) The point here is that the construction of

a center manifold in the center manifold theorem can be done

in a AG-invariant manner. In order that V be AG-invariant,
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it suffices that the first "trial center manifold" used in its

construction be AG-invariant. (Consult Section 2 and the

center manifold theorem for flows.) Take the first trial

center manifold to be the subspace of E corresponding to

Spec DfO(O) n {z: Izl > I}, which is AG-invariant by the ar-

gument of Proposition 1 (1) •

(2) <P = (QIEO) x I, where Q is as defined in the

proof of Proposition 7.1 (1) • 0

2. Generic Behavior.

From now on, because of Theorem 7.1, we will think of

as acting on a neighborhood of (0,0) in °E x (-1,1),

is now a group of isometries of the Hilbert space

U x J, and we will let A
II

stand for Df
ll

(0) EO.

We will now exhibit a tractable generic subset of ~

The characteristic polynomial of A
O

is a product of

factors of the form (x-I), (x+l), and (x
2

_2 Re AX + AA),

with IAI = 1. Let A be a complex eigenvalue of A (a

if X = ±l) and let F be the null

k
Re AA

O
+ AXI) , where k is the exponent

+ AX) in the characteristic polynomial of(x2 - 2 Re AX

similar argument applies
2

space of (A
O

- 2

of

A
O

• Then F is AG-invariant because it is the null space

of an operator that commutes with A
G

, and F~ is AG­

invariant because F is and the A preserve the inner pro-
q

duct.

Let B: EO + EO be orthogonal projection onto F~.

Then AO + EAOB commutes with A
G

and leaves F and F~

invariant. A
O

+ EAOBIF

and, for all E f 0, A
O

has only the eigenvalues A

+ EAOBIF~ has no eigenvalues

and

on

X·,
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Iz I l- Using (0.1) and (0.3) it is now easy to perturb

flu x J so that the new D(fIU xJ)O(O) = A
O

+ e:A B has only
0 0

the one pair of eigenvalues A, A on Iz I 1. Since E

has a AG-invariant complement in E (E EO @ ker Q', it is

easy to extend this perturbation of flu x J to a perturba-

tion of f such that the new DfO(O) has only the eigenvalues

A and ~ on Izi = 1, each with finite multiplicity. This
o

perturbation reduces the dimension of E. If it is not the

case that now Spec A~ consists of exactly one pair of com­

plex eigenvalues A~, A~ for each ~ near 0, then we may

make another perturbation to further reduce the dimension of
o

E Thus we see that by arbitrarily small perturbations of

f we can eventually ensure that Spec ~ consists of either

one real eigenvalue A~

plex eigenvalues A~, A~

dence on ~.

for all small ~, or one pair of com­
k-l

for all small ~, with C depen-

consists of one real eigenvalue forCase 1. Spec

all small ~, with Write AO = S + T, S symmetric,

T antisyrnmetric. Using the fact that the

of Hilbert space, one checks that Sand T

AG• We choose an orthonormal basis for EO

A are isometries
g

.commute with

with respect to

which S is diagonal; then with respect to that basis,

T ..
~J

Lemma 1- If T f 0, then for arbitrarily small e: > 0,

Spec (AO+e:T) has more than one point.

Proof. Suppose Spec (AO+e:T) consists of exactly one

point for all small e: > O. Then for all small e: > 0,
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det(ZI-(AO+ET» = (z-A(E»n (2.1)

where and
o

n = dim E . By considering

the coefficient of n-lz on each side of (2.1) (the diagonal

entries of ET are 0:) one sees that Tr AO = nA(E). But

which is not a constant function

oO.

the coefficient
2L (T .. +ET. ,) ,

i<j lJ lJ

ButE > o.

L S .. S .. +
i<j 11 JJ

Tr A
O

= nA(O). Therefore A(E) = (0) for all small E > O.

This implies that det(zI-(AO+ET» is constant for small

n-2of z in this polynomial is

of E unless T

Since T commutes with A
G

, if T f 0 Proposition 2

allows us to make small perturbations h of flu x J for

which Spec DhO(O) contains more than one point. This allows

us to make another perturbation further reducing the dimen-

sion of
o

E • Therefore for some perturbation of f we must

have T = O. In this situation A
O

= ±I. In fact, for some

perturbation of f we must have A = A I]1 ]1 for all small

]1, A]1E lR, AO = ±l.

Furthermore, for some such perturbation of f Ao
, G is

"irreducible of real type," i.e., the only elements of Hom EO

that commute with A
O

are the multiples of I. To see this,
G

suppose RE Hom EO, R commutes with AG and R f AI. Then
0'

AO + ER commutes with A
G

for all E and is not a multiple

°of I. Hence one can construct a perturbation h of

flu x J such that DhO(O) = AD + ER and then another per-

t b t ' d' dl"m EO.ur a lon re uClng

Therefore for some arbitrarily small perturbAtion of

f we have
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(1) AO is irreducible of real type and
G

(2) A A I for all small j.l, with 1. 0 ±l.j.l j.l

But the set fE g satisfying (1) and (2) is open. Therefore

(1 ) and (2) hold generically.

Case 2. Spec A consists of one pair of complexj.l

eigenvalues for all small j.l. For each j.l we have the

following commutative diagram:

EO i ° 'IT
E o C u

""'
F

..",. j.l

Aj.l t IA"
o I

t"
0 IIFj.l

'ITj.li EOE 3< o C .,. F j.l

Here F is the null space of [(A @ I) - A I]n/2 inj.l j.l j.l

EO ~ C, a complex subspace of complex dimension ~, i(x)

x ~ 1, and 'ITj.l is orthogonal projection. The inner product

on EO induces a complex inner product on EO ~ C with

respect to which AO ~ I is a group of unitary operators.
G

F is invariant under AO ~ I because A ~ I commutes withj.l G j.l

AO
® I. ~ ~ I) Fj.l is conjugate to Aj.l and commutes with

G

AO
el IIFj.l" We now work with the ~ el I/Fj.l in analogy to

G

Case 1.

We see that generically

(1) AO
~ IIFj.l is irreducible and

G

(2) Aj.l A I for all small j.l, where I denotes thej.l

identity operator in F cn/ 2
and A is complex withj.l j.l

11. 0 1 = l. In other words, generically EO may be regarded

as a complex inner product space and AO as an irreducible
G
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group of unitary operators on EO, while A~

small ~,with A~ complex and IAol = 1.

A~I for all

3. Results in the Case OfO(O) has One Pair of Complex

Eigenvalues on Izi = 1.

Ruelle's main result, which we state without proof, is

Theorem 7.2 below, which helps one find invariant manifolds in

Case 2 of Section 2. We now think of flu x J as defined on

a neighborhood of (0,0) in F x J, where F is a finite-

dimensional complex inner product space and J is an inter-

val in R containing o.

(7.2) Lemma. Suppose flu x J is C9, for fixed ~ ,
k

9"C in 11, 1 < k < k > 3. Suppose also that OfO(O) = A I
~

with IAOI 1 but A3
I- 1 and A4

I- 1 (a generic assurnp-0 0

By a level-preserving change of coordinates that istion).

k-3
~ in

00

and C for fixed ~ and commutes with 1\.0 we
G'

can put f in the form

where P
Il

is a homogeneous polynomial of degree 2 in z

1Q~ (z) I .::.

c ( • ) is inde-

Z, and Q~ is 0(lzI 3 ). In fact,

and IOQ (z) I < c(lzl) Izl
2

where
11 -

~ and lim c(u) = o.
u.... O

If z E 0::
2

, z = (zl ,z2)' each zi E 0::, then a "homogen-

pendent of

3
c (I z I) Iz I

eous polynomial of degree 2 in z and 1 in z" on

is one of the form

P (z)
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By way of motivation one might note that for such p(z) and

for A E ~ with IAI 1, one has P(AZ) AP (z).

(7.2) Theorem.

family of C!/, diffeomorphisms, 1 2. !/, < 00, depending on a real

parameter ~ varying in an interval about o. Suppose

~~(Z) = A~Z + P~(z) + Q~ (z), where ~ ~ A~ is a continuous

complex function; P~ is a homogeneous polynomial of degree

invariantS

is also invari-

2
and 1DQ~ (z) I 2. c ( I z / ) I z I where c ( . )

and lim c(u) = o. We also assume
u-+O

for ~ > O. Suppose the vector field

Z with coefficients continuous inand 1 in

c(lzl)/z/3

Zin

IQ~ (z) I 2.

2

is independent of

IA I = 1 and IA I > 1o ~
-1

z ~ z + AO PO(z) leaves the compact manifold

and is normally hyperbolic*to it. Suppose S

ant under the transformations Z 1+
ia (all real a) . Thenze

for small ~ > 0 there exist maps e~ E C!/,(S,<en ) and mani-

folds S~ C <en such that

(1) e is a diffeomorphism of S onto S~.~

(2) S is invariant under cI>~ and cI>~ is normally
~

hyperbolic to S .
~

(3) S -+ 0 as ~ -+ O.
~

(4) If A is a group of unitary transformations of

<en such that cI>~ commutes with A for all ~ and AS = S,

*Normally hyperbolic is defined as follows. Let S be a dif-
ferentiable submanifold of a normed vector space E invariant
under a diffeomorphism f: E -+ E. Let B -+ S be a subbundle
of TE/S that is invariant under Df. Define P(DfIB) =

lim sup sup 1 /Dfn(x) jBI Il/n. f is said to be normally hyper­
n-+OO xES



234 THE HOPF BIFURCATION AND ITS APPLICATIONS

]1 +~]1 is continuous from R to

then In fact, each 8
]1 commutes with A.

k
C , k < ~,

then ]1 + 8]1 is continuous from {]1: ° < ]1 < ]10} to

Ck(S,Cn ).

Theorem 7.2 gives information on invariant manifolds for

]1 > O. If we assume IA]11 < 1 for ]1 < 0, then we can ob­

tain similar information for ]1 < ° by applying Theorem 2 to

~-l. It is easy to check that
-]1

A- 3 X--Ip (z ) + Q' (z).
-]1 -]1 -]1 -]1

Therefore one should look for invariant manifolds of the vec-

tor field

4. Examples.

l. Let A
O

be the full orthogonal group of EO Rn
G

and let A 1 be the only eigenvalue of Df O(0) on
0

Iz I = l. Let h = flv, V the center manifold for f of Prop-

osition 7.l. According to Theorem 7.1 we may think of h as

defined on a neighborhood of (0,0) in R
n x R, where:

(1) Each h commutes with AO.
]1 G

(2) h]1 (0) = 0 for all ]1.

(3) Dh]1 (0) = A]1I, A
O = 1, A]1E R for all ]1.

bolic to S if there is a splitting of TEls, TEls

TS ~ N_, such that P(DfIN_) < min{l,p(DfITS)} and

P(Df-IIN+) < min{l,p(Df-IITS)}. This means that iteration Df
contracts every vector of N_ more than Df contracts any
vector of TS, and under iteration Df expands every vector
of N+ more than it expands any vector of TS.
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~-l
C

contains all the reflections, it is easy to seeBecause A
O
G

that h~(x) is a multiple of x. Also, h~ takes spheres

about ° to spheres about 0. Therefore h~(x) = A~X +

p (Ixl)x, where for each ~, u ~ p (u) is a real-valued
~ ~

function of u with P (0) = 0.
~

Write
2

p~ ( Ix I) = a~ Ix I +

o(lxI
2
). The non-wandering set of h~ near ° consists of

exactly those spheres that are taken into themselves; each

such sphere consists entirely of fixed points. If f is at

least c3
in ~ and a

O
< ° (i.e., (0,0) is a vague at­

tractor), we can apply exactly the analysis of to see that

for small ~ > ° there is a one-parameter family of such

spheres, one for each small ~ > 0, with the spheres converg-

ing to ° as ~ + 0.

*2. We think of 0(2) as generated hy the complex

are in the situation of Case 2, Section 2, with

numbers a with lal = I and a reflection r.

the irreducible representation of 0(2) on

Suppose we
2

F = a:: and

a:: 2 given by

We think of fjV as acting on a neighborhood of (0,0) in

a:: 2 x R and denote this map by h. According to Lemma 7.2,

after a change of coordinates we have a new map h' with

where P~(z) is homogeneous of degree 2 in z and I in

*David Fried explained this example to us. It is a reworking
of Section 4.9 of Ruelle's paper.
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o
is easy to see that each P (z) is A -invariant.

]1 G

be a A~-invariant homogeneous polynomial of degree

and 1 in z. Write P(z) = (P
l

(z),P
2
(z», where

]1 > 1, and

IAol = 1, and

for

]1.

< 1

uniformly in

for> 1

is

z

p(Z)

in

z, and Q (z)
]1

we assume IA]11

'I 1.

2

Let

2_
+ Bz

l
z

2
z

l

2_ 2_
+ Ez l z 2z2

2_
P

l
(z) Az lZl + CZ

2
z

l
+ Dz

l
z

2
+ Fz

2
z

2

and
2_ 2 2 2-

P
2

(z) = Qzlzl + Rz
l

z 2z l + sZ2zl + Tz
l

z 2 + uz
l

z 2z 2 + VZ 2Z2 ·

Since

lal =

-1 -1
p(azl,a z2) = (aPl(z),a P (z» for all a

2
1, we see that B = C = 0 = F = Q = S = T = U

with

o.

Since P(z2,zl) = (P 2 (z),Pl (z», it follows that A

E = R. Thus

v and

One more calculation shows we can write P(z) in the form

2 2 2 2
P(z) = a(lzll +l z

2 1 ) (zl,z2) + b(lzll -l z
2 1 ) (zl,-z2);

a,b E <1:.

Therefore

According to Theorem 2 we should now study the differ-

ential equation

dz -1 2 2
dt = z ± AO {aO(lzll +l z

2 1 )(zl,z2)

2 2
+ bo(lzll -lz 2 ' ) (zl,-z2)}.

(4.1)

We will look for invariant manifolds S of this differential
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equation which are also invariant under the action of

for all

and

is a

and

and the maps

g E G

Suppose further1) •

o
q(A z)

g

lal =with

lal = 1. Now suppose

invariant under A
O

G

for all

and

(Le., q(z) =

Z 1+ az,

zpolynomial in

under the maps

z ..... az, 1a 1 = 1

q(z) = q(az)

that S is exactly the union of the orbits of (any) one of

its points under the actions of Ag and the group of maps
d

z ~ az, lal = 1. Then it follows that dt q(z) = 0 for

z E S. With this motivation, we will search for the manifolds

S by studying these polynomials q(z).
-1 2

For lal = 1, q(zl,z2) = q(az
1 ,a z2) = q(a zl,z2)·

Hence for fixed z2' q(zl,z2) depends only on Izll2. Simi­

larly, for fixed zl' q(zl,z2) depends only on Iz212. Since

q(zl,z2) q(z2,zl)' q is symmetric in zl and z2. Now let
2 2

s(zl,z2) I z1 1 + I z 2 1 and let d(zl,z2) = 21z1z21. Then

sand d 2 are a basis over ~ for the polynomials in which·

we are interested.

-1
Let a = Re A

o
a

O
and let 6

1 2 ~2 1 1 1 2
z,z E,,- with z = (zl,z2)' z

i 12 12 12
Zj E <c. Let [z,z] = zl z1 + z2z2.

-1
= Re A

O
boo Let

2 2
(zl,z2)' where the

Then s(z) = [z,z] and

ds d~ dz -z]at [z, dt] + [dt'

+ [z

+ bo(lzlI2_lz212) (zl,-z2)}]

-1 2 2
± AO {a

O
(l z1 1 +l z

2 1 ) (zl,z2)

+ b 0 ( Iz1 1
2
-I z 212) (z l' - z 2) } , z]

2 2 2
2s ± (2 a s + 26 (s -d )).
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Also, since

lates that
d
dt d 2(d ±

4Iz1/2Iz2/2 = 4z1z1 z 2z2 , one calcu­

sd). Therefore:

1 ds 2 2 2
2 dt = s ± (as + S(S -d »

(4.2)

1 d
"2 dt d d ± asd.

We make the generic assumption that a, S, and a + S are all

nonzero. Recalling that d and s are non-negative func-

tions, we see that we have found three possibilities for in-

variant manifolds:

(1) d 0'0 s 0

-1
(2) d 0, s = :;:(a+S)

(3) d - -1
s = + a

Now we have the following commutative diagram

(C2
Flow of (4.1)

«::2-=--

("d)I
Flow of (4.2)

I(',d)

1R 2 .... R2

Because the vector field (4.2) is Lipschitz, its zeros repre-

sent fixed points of its flow. Hence their inverse images in

~2 are invariant under the flow of (4.1). Therefore we have

found the following invariant manifolds of (4.1):

(1) sell {o}

(2) S(2) {z E «::2: d = 0, s = :; (a+S) -I}

= {z
2 = 0, I z 2 1

2 :;'(a+S)-l} uE C :zl
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{Z 2 2 - -1
E «; z2 = 0, Izli + (a+l3) }

two circles or 50.
S (3) 2 - l} {z:

2 2
(3) {z E iC : s = d + a Izll I z 2 1

- 1 } torus 50.+ 2a = or

The vector field (4.1) is normally hyperbolic to each

of these manifolds:

(1) The derivative of (4.1) at 0 is I.

(2) The derivative of (4.2) on s(2), with respect to

the variables s, d is (-2 0)
o 213/a+13'

(3) The derivative of ( . ) on

d
(

-2 (a+213/a)
the variable s, is

-2

with respect to

, which has eigen-

values -2 and

In this case one can see that the vector field (4.1)

contain no other compact invariant manifolds by examining the

flow of (4.2) in the sd-plane. Because of the definition of

s and d, one needs only consider the region 0 < d < s.

Now for definiteness suppose f]1 : E ...- E and Spec Df]1 (0)

is contained in Iz 1 < 1 except for the eigenvalues A 1..]1"]1,

Assume 11..]11 < 1 for ]1 < 0 and 11..]11 > 1 for ]1 > O. Also

suppose a < 0 and a + 13 < 0 (a "weak attractor" condition) .

Then for each ]1 > 0 we have the following invariant mani-

folds:

Sill {a}, non-attracting for ]1 > o.
]1

S(2) two circles, invariant under f and the con­
]1

nected component of the identity in

flections. They are attracting if

o
A

G
, interchanged by re-

S < 0, non-attracting if
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S > O.

SJ3), a torus, attracting if S > 0, non-attracting if

S < O. S(3) can be analyzed further. The subspace IT
roII ~

{(zl,z2) E ~2: z2 = az l } is pointwise fixed by A~ 0 AO E A~
-1(this is the operator zl ~ az 2 , z2 ~ a zl)' Since the map

ell of Theorem 7.2 commutes with A0 we have that e (S (3) (JG' II

ITa) C ITa' Since h = flv also commutes with A~, it follows

that h(S~3) (J ITa) = s~3) (J ITa' Thus s~3) is a disjoint

union of circles of the form s(3) (J IT , each invariant under
II ao

h, interchanged by the elements of A.
G

It seems that in this example "two Hopf bifurcations

take place at once," resulting in invariant sets, for each

II > 0, of the form (point U circle) x (point U circle).

5. Flow Between Two Cylinders. Let us recall the set-up for

Couette flow: Suppose we have a viscous incompressible fluid

between two concentric cylinders. Let Rl be the radius of

the inner cylinder and R
2

the radius of the outer cylinder.

Suppose we forcibly rotate the two cylinders. Let nl be the

angular velocity of the inner cylinder and n 2 the angular

velocity of the outer cylinder. Assume n l > 0 and n > 0
2

(i. e., we rotate both cylinders counterclockwise). .For small

values of nl and n 2 one observes a steady horizontal

laminar flow, called Couette flow. In fact, for arbitrary

nl , n 2 Couette flow is an explicit solution of the Navier

Stokes equations, which, in cylindrical coordinates (r,¢,z),

is given as follows: (see §l)

2 2 2 2
n2R2-nlRl (n l -n2 )Rl R2 1

v e R2_R2 r +
R2_R2 r

2 1 2 1
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To get this solution one must ignore special phenomena that

occur at the ends of the cylinders. We will do this by identi-

fying the ends of the cylinders, so that the space A in

which our fluid sits is an annulus crossed with the circle.

be the of
r

fieldsLet E space C vector y on A

satisfying div Y = 0 and yl dA = 0, with the cr topology.

We will think of rl
l

as small fixed and rI
2

as varying:

will be our bifurcation parameter ~. For each ~ let z~

be the corresponding Couette vector field on A. Then for

each ~ the vector fields Y on A satisfying

div Y = 0

Y does not slip at dA

form a sp.ace E which we may think of as Z + E. We will
~ ~

identify each E~ with E in the obvious way. We will think

of the Navier-Stokes equations as defining, for each ~ , a

vector field X~ on E. We make the false assumption that

the vector field X: E x m ~ E given by X(Y,~) = X~(Y) sat­

*isfies the conditions of Ruelle's paper. Note that the point

(O,~) of E x m corresponds to the Couette vector field z~.

Because Couette flow is a steady solution of the Navier-Stokes

equations, we have X~ (0) = 0 for all ~.

Let G = 80(2) x 0(2), the rotations of the annulus

crossed with the full orthogonal group of the circle. This is

the natural symmetry group of the situation. Notice that the

Couette vector fields z~ are G-invariant. For each gE G

*To make this really work, one can use the methods of sections
8,9.
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-1
define Ag : E .... E by (AgY) (x) = DgY (g x), where x E A.

Because each g is an isometry of A and Dkg nkg- l = °
for k > 1, one can check that each A is a linear isometryg

of E. Thus AG = {A . g E G} is a group of linear isometriesg.

of E. The physical symmetries of the situation imply that

X]/g A X for all g E G.g ]1

~le assume that for small ]1 , ° is an attracting fixed

(Actually this can be proved; cf. Serrin [1,2)point for X.
]1

and Sections 2A and 9.) This is consistent with the experi-

mental observation that Couette flow is stable for small rl
l

,

rl 2 • Assume that at the first bifurcation point ]10 > ° only

a finite number of eigenvalues of OX (0) reach the imagin-
]10

ary axis, each of finite multiplicity. Then generically the

stable manifold of the bifurcation

gent at (0,]10) to EO x R, where

on which A
G

acts irreducibly.

veE x R must be tan­

EO is a subspace of E

Let us assume:

(1) EO - 2= R

(2) If g E SO (2) x 1, then A fixes EO pointwise.g

(3) If gEl x 0(2) , then A acts on EO exactlyg

like the corresponding element of the full orthogonal group

of 1R
2

•

Thus is essentially the full orthogonal group of the

plane. (0,]10) is a "vague attractor" for X]1 , then ac­

°cording to Section 4, Example 1 (modified for vector fields),

for each small ]1 >]10 we expect the following invariant sets

near the origin of E x {]1} (See Figure 7.1):



THE HOPF BIFURCATION AND ITS APPLICATIONS 243

(1) The origin, a zero of X].l , non-attracting.

(2) A circle S].l of zeroes of X].l in V].l" Each S].l

is invariant under /\'G' S].l .... 0 as ].l .... 0, and each S as a
].l

set is attracting in E x {].l}.

,u-oxis

I

;I

I ,u=O

Figure 7.1

Then

Suppose Y1 'Y
2

E S].l

Y
1

(x) = DgY
2

(g-lx ).

and Y
1

= /\'gY2 , gEl x 0(2).

This means that Y
1

and Y2 differ

only by a vertical rotation and/or flip of A. Also, since

o
/\.SO(2) x 1 is the identity on E , we see that each YE S].l

is fixed by the elements of /\.SO(2) x l' i.e., each Y E S].l

exhibits horizontal rotational symmetry.

This description of the S].l is consistent with the

experimentally observed phenomenon of Taylor cells. When ].l

reaches some critical value one commonly observes that Couette

flow breaks up into cells within which the fluid moves radi-

cally from inner cylinder to outer cylinder and back while it
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continues its circular motion about the vertical axis (see

Figure 7. 2) •

Figure 7.2

Taylor cells are a stable solution of the Navier-Stokes equa-

tions with horizontal rotational symmetry. Since any Taylor

cell picture is no more likely to occur than its vertical

translation by any distance (assuming the ends of the cylinder

identified), we see why a whole circle of fixed points, inter-

changed by

increases,

A blossoms out from Couette flow. AsI x 0 (2) ,

S recedes from (O,~) in our model; this cor­
~

~

responds to the Taylor cells becoming "stronger," i.e.,

stronger radial movement. Note that for ~ > ~O Couette flow

is still a zero of X~' but an unstable one.

(The above does not account for the fact that a Taylor

cell vector field is invariant under a finite number of verti-

cal translations, or, in our model, under a nontrivial sub-

group of Al SO(2)' To get this result one should assume
x

that for gEl x 0(2) , A acts on EO - lR2 as follows:
g

View 0(2) as generated by numbers e, 0 < e < 271, where e

represents rotation through e degrees, and'by a flip r.
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We then represent 1 x 0(2) in 0(2), the isometries of ~2,

by the homomorphism (1,6) ~ n6, (l,r) ~ r. Because this

representation is onto, we get the Sj.l as above. Now, how-

is invariant under

variance under the new would be preserved in the follow-

ever, each Yj.l E Sj.l

H = SO(2) x {O 27T, n

ing. )

47T
n , ... ,

AO
G

2 (n-l)7T }.
n

AH, where

This additional in-

We now study the second bifurcation of Xj.l' The situa­

tion is complicated by the circumstance that for j.l > j.l0 the

zeroes of X in which we are interested occur in one-dimen­j.l

sional sets. In what follows we assume we have made a change

of coordinates so that

Assuming

Let Yj.l E Sj.l' For small j.l > j.l0' DXj.l(Yj.l) has an

eigenvalue 0 of multiplicity 1 and the rest of its spec­

trum lies in Re z < O. Notice that.if Y~ E Sj.l also, then

Y~ = AgYj.l for some gEl x 0(2), so X(Y~) = XAg(Yj.l)

AgX(Y
lI
). Therefore DX(Y')·A = A 'DX(Y ), so DX(Y') and

~ j.l g g j.l j.l

DX(Yj.l) are conjugate. Hence Spec DX(Yj.l) = Spec DX(Y~).

Al x 0(2) acts on EO like the full ortho-

gonal group of the plane, Yj.l is fixed by just two elements

AO
(l,r)

Since EO

of Al x 0(2)' namely A(l,l) and A(l,r)' where

just the flip about the line determined by Yj.l'

is

fixes Yj.l

A • DX (Y }
g j.l

is pointwise fixed by A
SO(2)

is ASO (2)x{1,r}'

for all g E SO(2)

x l' the subgroup of

Therefore DX(Y ).Aj.l g

x {l,rL

Suppose for j.l0 < j.l < j.ll and YES , Spec DX (Y )j.l j.l j.l j.l

is contained in Re z < 0 except for one eigenvalue 0 of

multiplicity 1. Suppose also that for Yj.l E Sj.l ,
1 1
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Spec DX~ (y~ ) n Re z = 0 consists of a finite number of iso­
1 1

lated eigenvalues (including 0), each of finite multiplicity.

and let r now denote the unique element ofFix y~ E S~
1 1

0(2) such that

center manifold

is fixed by ~SO(l)x{l,r}.

Y , tangent to Ty S~

~l ~l 1

X has a

Ell El
Ell ~-axis,

where is a finite-dimensional space and is

invariant under ~SO(2)x{1,d· Since W contains all the

local recurrence of X near y~ , W contains all the points
1

of U~S~ in a neighborhood of y~ •
1

Let II: E x IR ->- E be projection onto the first factor.

Then for each ~ near ~l there is a unique y~ E S~ such

that IIY / II Y II = IIY
lI

/ II Y II. Take this now as the de-
~ ~ "'1 ~l

finition of Y~. Then the subgroup of ~G that fixes Y~

is exactly ~SO(2)x{1,r}.

As in Section 1 we may identify a neighborhood of Y~
1

in W with a neighborhood U of (Y ,0,0) in Ty S Ell
~l

~l
~l

E
l

Ell ~-axis and xlv with a vector field on U, still called

X, in such a way that:

corresponds to (y ,O,~).

~l

acts as a group of Hilbert iso-

y
~

~
SO(2)x{1,d

1
T y S~ Ell E •

~l 1

(1)

(2)

metries of

(3) X on U commutes with

cular, DX
lI

(y ,O,~) commutes with
... ~l

~SO(2)x{l,r}·

~SO(2)x{1,d·

In parti-

Generically we have one of two situations:

(1) Spec DX~ (y~ ,O,~) consists of the eigenvalue 0
1
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with eigenspace

with

and a single real eigenvalue A
)1

(2) Spec DX)1 (Y)1 ,0,)1) consists of the eigenvalue 0
1

with eigenspace Ty S and a single pair of complex conju-
)1 )11

gate eigenvalues A)1~ X; with Re A)1 = O.

has

plane.

near

2
E

)11
Assume

plane.

2
E)1

1
parallel to

)1

is invariant under

Then for each

of T U such that
(Y)1 ,0,)1)

1 2
invariant and DX(Y ,0,)1) IE

)11 )1
2If we now regard E as a sub­
)1

Ell )1-axis, then

acts on~SO(2) x 1

~
(l,r)

Let us assume (2) holds.

there is a unique subspace E
2
)1

DX(Y)1 ,0,)1) leaves
1

only the eigenvalues

1
Ell E

and

set of T S
Y)1 )11

1

the action of ~SO(2)x{1,r} because DX(Y)1 ,0,)1) is.
1

Generically ~SO(2)x{1,r} acts irreducibly on
2 2 1 _ _/ 2 _ . 2

Assume E - R , so E = R"" and each E = R.
)11 )1

~SO(2)x{1,r} acts on E~l like the rotations of the

In other words, we assume ~ fixes E
2

pointwise
(l,r) )11

E2 like the rotations of the
)11
pointwise, it follows thatSince fixes E2

)11
is invariant under X)1' Because E

2
is almost

1 )1

and is ~SO(2)X{1,r}-invariant,we can conclude that
, 2 2

is in fact parallel to E)1l' hence E)1 is X)1-invariant.

Because of the last paragraph we see that we should

consider the bifurcation of a vector field X' defined on

x {)1 } ) • We have that X' commutes with the rotations of
)1

- If and Spec OX I (0,)1) = {A,X"} where Re A < 0 for
)1

)11' Re A = 0 for )1 = )11' and we assume F.e A > 0 for

2E)1 x )1-axis, where
1

E2
)11

E2
)11

)1 <

X')1 XIE~ (here we identify E
2

with)1
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]J > ]J 1 • If we assume (O,]Jl) is a vague attractor for X' ,
]Jl

we get a "Hopf bifurcation with symmetry" : the closed orbits

of X' that appear for ]J > ]Jl are geometric circles (they]J

are invariant under rotations) and the motion on these circles

is with constant velocity.

has bifur-Globally, the circle of fixed points S
]Jl

cated into an attracting torus T]J' for ]J > ]Jl' where T]J

is composed of closed orbits: one bifurcating off each fixed

point of S The closed orbits are invariant under
]Jl

ASO (2)x{1,r} and are interchanged by the elements of AlxO (2)'

This bifurcation corresponds to the following experimental

observation: As ]J increases, Taylor cells commonly become

"doubly periodic," i. e., a horizontal wave pattern is intro-

duced, and this wave pattern rotates horizontally with con-

stant velocity (see Figure 7.3).

Figure 7.3

This argument does not account for the horizontal

periodicity commonly observed in the wave pattern. This

*A similar invariant set occurs for flow behind a cyclinder.
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periodicity can be explained by assuming the representation of
2 _ 2

SO(2) x 1 in 0(2), the isometry group of E = R , is of
Vl

the form {8,l) ~ n8. A more serious problem is that our

argument predicts that a vertical flip symmetry should still

be present after the second bifurcation-- the elements of TV

are invariant under ~(l,r). This symmetry is not observed

experimentally. The whole situation deserves further study.

The methods discussed here seem very fruitful towards this

end.
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SECTION 8

BIFURCATION THEOREMS FOR PARTIAL DIFFERENTIAL EQUATIONS

As we have seen in earlier sections, there are two

methods generally available for proving bifurcation theorems.

The first is the original method of Hopf, and the second is

using invariant manifold techniques to reduce one to the fin­

ite (often two) dimensional case.

For partial differential equations, such as the Navier­

Stokes equations (see Section 1) the theorems as formulated by

Hopf (see Section 5) or by Ruelle-Takens (see Sections 3,4)

do not apply as stated. The difficulty is precisely that the

vector fields generating the flows are usually not smooth

functions on any reasonable Banach space.

For partial differential equations, Hopf's method can

be pushed through, provided the equations ~e of a certain

"parabolic"type. This was done by Judovich [11], Iooss [3],

Joseph and Sattinger [1] and others. In particular, the

methods do apply to the Navier-Stokes equations. The result
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is that if the spectral conditions of Hopf's theorem are ful­

filled, then indeed a periodic solution will develop, and

moreover, the stability analysis given earlier, applies. The

crucial hypothesis needed in this method is analyticity of

the solution in t.

Here we wish to outline a different method for obtain-

ing results of this type. In fact, the earlier sections were

written in such a way as to make this method fairly clear:

instead of utilizing smoothness of the generating vector

field, or t-analyticity of the solution, we make use of

smoothness of the flow F~. This seems to have technical

advantages when one considers the next bifurcation to invari-

ant tori; analyticity in t is not enough to deal with the

Poincare map of a periodic solution (see Section 2B).

It is useful to note that there are general results

applicable to concrete evolutionary partial differential equa­

tions which enable the determination of the smoothness of their

flows on convenient Banach spaces. These results are found

in Dorroh-Marsden [1]. We have reproduced some of the rele­

vant parts of this work along with useful background material

in Section 8A for the reader's convenience.

We shall begin by formulating the results in a general

manner and then in Section 9 we will describe how this pro­

cedure can be effected for the Navier-Stokes equations. In

the course of doing this we shall establish basic existence,

uniqueness and smoothness results for the Navier-Stokes equa­

tions by using the method of Kato-Fujita [1] and results of

Dorroh-Marsden [1] (§8A).

It should be noted that bifurcation problems for partial
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differential equations other than the Navier-Stokes equations

are fairly common. For instance in chemical reactions (see

Kopell-Howard [1,2,5]) and in population dynamics (see Sec-

tion 10). Problems in other subjects are probably of a simi-

lar type, such as in electric circuit theory and elastodynamics

(see Stern [1], Ziegler [1] and Knops and Wilkes [1]). It

seems likely that the real power of bifurcation theorems

and periodic solutions is only beginning to be realized in

applications.

The General Set-Up and Assumptions.

We shall be considering a system of evolution equations

of the general form

dx/dt = X~(x), x~o) given,

where X
~

able function space E, a Banach space, and depends on a para-

meter ~. For example, X may be the Navier-Stokes operator
~

and ~ the Reynolds number (see Section 1). This system is

assumed to define unique local solutions x(t) and thereby a

semiflow Ft which maps x(O) to x(t), for ~ fixed,

t > O.

The key thing we need to know about the flow F
t

of
00

our system is that, for each fixed t,~, F
t

is a C map-

ping on the Banach space E (F
t

is only locally defined in

general). We note (see Section 8A at the end of this section)

the properties that one usually has for Ft and which we

shall assume are valid:
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(a) F
t

is defined on an open subset of

253

(b) Ft +s = F
t

0 Fs (where defined );

(c) Ft(X) is separately (hence jointly [§8A]) con­

tinuous in t, x E R+ x E.

We shall make two standing assumptions on the flow.

~he first of these is

(8.1) Smoothness Assumption. Assume that for each

fixed t, F
t

is a COO map of (an open set in) E to E .

This is what we mean by a smooth semigroup. Of course

we cannot have smoothness in t since, in general, the gen-

oferator X
11

smooth map of

F
t

will only be densely defined and is not a

E to E. However, as explained in Section 8A

it is not unreasonable to expect smoothness in 11, t if

t > O. (This is the nonlinear analogue of "analytic semi-

groups" and holds for "parabolic type" equations). We shall

need this below.

In Section 9 we shall outline how one can check this

assumption for the Navier-Stokes equations by using general

criteria applicable to a wide variety of systems. (For sys-

terns such as nonlinear wave equations, this is well known

through the work of Segal [1] and others.)

The second condition is

(8.2) Continuation Assumption. Let Ft(X), for fixed

x lie in a bounded set in E for all t for which Ft(X)
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is defined. Then Ft(X) is defined for all t > O.

This merely states that our existence theorem for F
t

is strong enough to guarantee that the only wayan orbit can

fail to be defined is if it tends to infinity in a finite

time. This assumption is valid for most situations and in

particular for the Navier-Stokes equations.

Suppose we have a fixed point of Ft , which we may as-

sume to be 0 E E; i.e. , F
t

(0) = 0 for all t > O. Letting

OFt denote the Frechet derivative of Ft
for fixed t,

Gt = DFt(O) is clearly a linear semigroup on E. Its gen-

erator, which is formally DX(O), is therefore a densely de­
~

fined closed linear operator which represents the linearized

*equations. Our hypotheses below will be concerned with the

spectrum of the linear semigroup G
t

, which, under suitable

conditions (Hille-Phillips [1]) is the exponential of the

spectrum of DX(O). (Compare Section 2A).

The third assumption is:

(8.3) Hypotheses on the Spectrum. Assume we have a

family Fll
t of smooth nonlinear semigroups defined for II in

an interval about 0 E R. Suppose F~(X) is jointly smooth

in t,x,ll, for t > O. Assume:

(a) o is a fixed point for Fll .
t'

(b) for II < 0, the spectrum of is contained in

vative extends to a bounded operator on
Marsden [1].

*Even if a semigroup is not smooth,
earize the equations and the flow.

the Euler equations is from

it may make sense to lin­
For example the flow of

HS to Hs - l , but the deri­

s-l
H ; cf. Dorroh-
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[1 {z E C: 1z I < U, where G)1 = D F)1 (x) I ;
t x t x=o

(c) for )1 = 0 (resp. )1 > 0) the spectrum of G)1 at
1

the origin has two isolated simple eigenvalues Ie ()1) and

Xl'iJT with I Ie ()1) j = 1 (resp. I Ie ()1) I > 1) and the rest of

the spectrum is in D and remains bounded away from the unit

circle.

(d) (d/dt) jle()1) 11)1=0 > 0 (the eigenvalues move

steadily across the unit circle).

Under these conditions, bifurcation to periodic orbits

takes place. For their stability we make:

(8.4) Stability Assumption. The condition V" '(0) < 0

holds, where V" I (0) is calculated according to the proced­

ures of Section 4 (see Section 4A).

This calculation may be done directly on the vector

field X, since the computations are finite dimensional; un-

boundedness of the generator X causes no problems.

Bifurcation to Periodic Orbits.

Let us recap the result:

(8.5) Theorem. Under the above hypotheses, there is

a fixed neighborhood U of 0 in E and an s > 0 such

that F~(X) is defined for all t > 0 for )1 E [-s,s] and

x E V. There is a one-parameter family of closed orbits for

F)1 for )l > 0, one for each )1 > 0 varying continuously with
t

)1. They are locally attracting and hence stable. Solutions

near them are defined for all t > O. There is a neighbor­

hood U of the origin such that any closed orbit in U is
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one of the above orbits.

Note especially that near the periodic orbit, solutions

are defined for all t > O. This is an important criterion

for global existence of solutions (see also Sattinger [1,2]).

Of course one can consider generalizations: .for in-

stance, when the system depends on many parameters with multi-

pIe eigenvalues crossing or to a system with symmetry as was

previously described. Also, the bifurcation of periodic or-

bits to invariant tori can be proved in the same way.

Proof of Theorem (Outline). From our work in Section 2 we

know that the center manifold theorem applies to flows. Thus,

for the smooth flow Ft(X'~) = (F~(X),~) we can deduce

the existence of a locally invariant center manifold C; a

three-manifold tangent to the ~ axis and the two eigendirec­

tions of G~(O). (The invariant manifold is attracting and

contains all the local recurrence, but F
t

still is only a

local flow on this center).

Now there is a remarkable property of smooth semiflows

(going back to Bochner-Montgomery [1]; cf. Chernoff-Marsden

[2]) which is proved in Section SA: this is that the semi­

flow F
t

is generated by a COO vector field on the finite

dimensional manifold C; i.e., the original X restricts to a
00

C vector field (defined at all points) on C.

This trick then immediately reduces us to the Hopf

theorem in two dimensions and th~ proof can then be referred

back to Section 3. []
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Bifurcation to Invariant Tori.
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This can be carried out exactly as in Section 6. How­

ever, as explained in Section 2B, we need to know that F~(X)

is smooth in t,~,x for t > O. Then the Poincare map for

the closed orbit will be well defined and smooth and after

we reduce to finite dimensions via the center manifold theorem

as in Section 6, it will be a diffeomorphism by the corollary

on p. 265. Therefore we can indeed use exactly the same bi-

furcation theorems as in Section 6 for bifurcation to tori.

To check the hypothesis of smoothness, one uses results of

Section SA and Section 9.



258 THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 8A

NOTES ON NONLINEAR SEMI GROUPS

In this section we shall assemble some tools which are

useful in the proofs of bifurcation theorems. We begin with

some general properties of flows and semiflows (= nonlinear

groups and nonlinear semigroups) following Chernoff-Marsden

[1,2]. These include various important continuity and smooth­

ness properties. Next, we give a basic criterion for when a

semiflow consists of smooth mappings following Dorroh-Marsden

(1).

Flows and Semiflows.

(8A.l) Definitions. Let D be a set. A flow on D

is a collection of maps Ft:D ->- D defined for all t E R

such that:

1) FO Identity

and

2) Ft +s Ft 0 F for all t,s E R.s
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Note that for fixed t, Ft is one to one and onto, since
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F_t 0 F
t

= Id, and i. e. ,

for all xED.

A semiflow on D is a collection of maps F
t

: D + D

defined for t > 0, also satisfying 1) and 2) for t,s > O.

Warning: a semiflow need not consist of bijections.

(8A.2) Definition. Let N be a topological space

and DC N. A local flow on D is a map F: q)CIR l< D + D,

where q) is open in the N topology induced on IR x D, such

that for all xE D, (O,X) E q) and if !?) = {x E DI (t, x) E q)}
t

so we can define Ft : q) + D, then F
t

satisfies (1) and (2)t
where defined. The flmv is maximal if (t,x) E q),

(s,Ft(X»E q)='!> (s+t,x) E q). Similarly one defines a local

semiflow and a maximal semiflow.

Now let N be a Banach manifold. A vector field

with domain D is a map X: D + T(N) such that x(x) E Tx(N)

(TxN is the tangent space to N at

xED C N.) An integral curve for X is a curve c:

(a,b) C IR + D such that c is differentiable as a map from
,.

(a,b) to Nand c' (t) = X(c(t». A flow (resp. semiflow,

local flow) for X is a flow (resp. semiflow, local flow) on

D such that for all xED, the map t ~ Ft(x) is an integral

curve of X.

If Ft is a flow on N such that F: R x N + N via

(t,x) 1+ Ft(x) is a cO map, we say F is a cO flow on N.

If Ft is a flow for X and Ft extends to a con-

tinuous map Ft : N + N and the extension is a cO flow on

M, then Ft is a cO flow for X.

If Ft is a cO flmv on N and for all t fixed
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Ft : N ->- N is of class Ck (resp. Tk ), then Ft
is a flow

of class Ck • (resp. Tk ) Here Ft : N ->- N is Tk means

that the jth tangent map TjF : T1 (N) ->- T
j

(N) exists and is
t

continuous for j < k; F : N ->- N is Ck means that in each- t
chart, the map x ->- djF j < k is continuous in the norm

x

topology. (djF is the .th total derivative of F at x.x J

It is a j-multilinear map on the model space for N.) The

T
k

case differs from the ck case in that norm continuity

is replaced by strong continuity.

Warning. A ck flow is not assumed to be ck in the t­

variable, only in the x-variable. A flow will be ck
in

the t-variable only if it is generated by a smooth everywhere

defined vector field; see however the Bochner-Montgomery

theorem stated below.

Separate and Joint Continuity.

(8A. 3) Theorem. (Chernoff-Marsden [2]). Let N be

a Banach manifold. Let F
t

be a flow (or local flow) on N,

and let F be separately continuous in x and t (i.e.,

t ~ Ft(X) is continuous for fixed x and x ~ Ft(X) is con-

tinuous for fixed

jointly continuous.

t), then F
t

is

For the proof, we shall use the following.

(8A. 4) Lemma. (Bourbaki [1] Chapter 9, page 18;

Choquet, [1] Vol. 1, page 127). Let E be a Baire space.

Let F, G be metric spaces. Let ¢: E x F ->- G be separa-

tely continuous, then for all f E F, there is a dense set
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Sf ~ E whose complement is first category such that if

e E Sf' then ¢ is continuous at (e,f).
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Proof of the Theorem (8A. 3). Since this is a local

theorem, we may work in a chart. Therefore, we may assume

that N is a Banach space and Ft is a local flow on N.

We let E = JR, F = G = N. Let xE U C N, t E (-E, E). There

is a pense set of t x E (-E,E) such that F is continuous at

(tx'x) • Since the domain of definition of F is assumed open

in IR x N we can choose t close to t so that the variousx

compositions are defined. Let t -> t and xn
-> x, andn

write F
t

(x ) = Ft - t
0 Ft +t -t (xn )· Since t + t n - t-> t

n n x xx x n

and F is continuous at -> Ft (x).
x

Since for fixed t, x ~ Ft(x) is continuous, we have that

Ft (x ) = Ft - t (Yn) -> Ft _t (F t (x» = Ft(X). []
n n x x x

(8A.5) Remarks.

1) Let G be a topological group which is also a

Baire space. Let ~: G x N -> N be a separately continuous

group action of G on a metric space N, then the above ar-

gument also shows that ~ is jointly continuous.

2) Suppose that DeN is dense and that Ft is a

flow on D which extends hy continuity to a flow on M

such that t ~ Ft(X) is continuous for each xED. Then

the same is true for each x E N and the extended flow is

CO. Indeed, let xn -> x, where x
n

E D and x E N. Then

for fixed t, Ft(Xn ) -> Ft(X), so that t ~ Ft(X) is the

pointwise limit of continuous functions. Therefore, for each

x E N, there is a second category set Sx C R such that if
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t E Sx' then t ~ Ft(X) is continuous. The argument used in

the proof of Theorem 8A.3 shows that Sx = ~ for all x E N.

3) Many of these results can be generalized to the

case in which N is not locally metrizable; e.g. a manifold

modelled on a topological vector space (e.g,: a manifold

modelled on a Banach space with the weak topology; - a "weak

manifold"). c.f. Ball [1].

4) The same argument also works for semiflows, at

least for t > O. If N is locally compact, joint continuity

is also true at t = 0 (Dorroh [1], but one can give a more

direct argument). In general, however, joint continuity may

fail at t = 0 so it has to be postulated.

Using these methods we can obtain an interesting re-

suIt on the t-continuity of the derivatives of a differenti-

able flow.

Let

Let

and

N.

j < k,

on

t E IR

be a Banach manifold.N

for semiflows.)

Let

is jointly continuous in

t > 0

Theorem.

(Only

flow (or local flow, or semiflow)

be of class Tk for k > 1. Then for each

(8A.6)

be a cO

Ft

Tjpt: Tj (N)

x E T
j

(N).

Proof. By induction and Theorem 8A.3 we are reduced

immediately to the case k = 1. We may also assume that we

are working in a chart. Therefore, TFt(X,V)

DxFt(X)'V). By assumption, this is continuous in the space

variable x, so we need to show it is continuous in t. But

clearly DxFt(X)'V = lim n(F (x + ~) - F (x». Thus
n+oo tnt

t ~ DxFt(X)'V is the pointwise limit of continuous functions

so has a dense set of points of t-continuity. The rest of
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the proof is as in Remark 2 of (8A.S). []

The Generalized Bochner-Montgomery Theorem.

For simplicity we will give the next result for the
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case of flat manifolds. But it holds for general manifolds

M, as one sees by working in local charts.

(8A.7) Theorem. (Chernoff-Marsden). Let Ft be a

jointly continuous flow on a Banach space IE. Suppose that,

for each t, Ft is a C
k

mapping, k > 1- Assume also that,

for each x E IE, IIDFt(X)-III -+ 0 as t -+ 0, where " . II
is the operator norm. Then Ft(X) is jointly of class ck

in t and x. Moreover the generator X of the flow is

an everywhere-defined vector field of class
k-l

C on IE.

Proof. Under the stated hypotheses, we can show that

DFt(X) is jointly continuous as a mapping from R x IE into

S((IE, IE), the latter being all bounded linear maps of IE to

IE equipped with the norm topology. In fact, if we write

¢(t,x) for DFt(X). The chain rule implies the relation

¢(s+t,x) = ¢(s,Ft(x»·¢(t,x). (8A.I)

We have separate continuity of ¢ by assumption, and then

we can apply Baire's argument as in Theorem (8A.3), together

with the identity (8A.I) to deduce joint continuity.

Now let ¢(t) be a COO function on R with compact

support. Define J¢: IE -+ E by

(8A.2)

By joint continuity, we can differentiate under the integral
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sign in (8A.2), thus obtaining

DJ~(X) = foo ~(t)DFt(x)dt.
_00

(8A.3)

Now if ~ approximates the a-function then I IDJ~(X)-II I is

small; in particular DJ~(X) is invertible. By the inverse

function theorem it follows that J~ is a local ck diffeo­

morphism.

Moreover,

COO~(sjFS+t(X)dS

J:oo~(S-t)Fs(X)dS.

The latter is differentiable ID t and x. Since J~ is a

local Ck diffeomorphism, Ftx is jointly ck for t near

O. But then the flow identity shows that ~he same is true

for all t. 0

(8A. 8 ) Remarks.

1) The above result is a non-linear generalization of

the fact well known in linear theory that a norm-continuous

linear semigroup has a bounded generator (and hence is de-

fined for all t E R, not merely t > 0).

Furthermore, the same argument as above applies to

semiflows and to local flows. This has the amusing conse­

quence that a semiflow which is Ck and the derivative is

norm continuous in t at t = 0 has integral curves which

are locally uniformly extendable backwards in time (since the

k-l
generator is C ). This is most significant when combined

with the next remark.
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2) If E is finite dimensional, the norm convergence

of DFt(X) to I follows automatically from the smoothness

hypothesis. Indeed, Theorem (8A.6) implies that DFt(X) 7 I

in the strong operator topology, i.e., DFt(X)V 7 v for each

v; but for a finite-dimensional space this is the same as

norm convergence.

Accordingly if M is a finite-dimensional manifold, a

flow on M which is jointly continuous and ck in the space

variable is jointly ck • The latter is a classical result of

Montgomery. There is a generalization, due to Bochner and

Montgomery [1] for actions of finite dimensional Lie groups.

This generalization can also be obtained by the methods used

to prove Theorem (8A.7) (cf. Chernoff-Marsden [2]).

Let us summarize a consequence of remarks (8A.8) that

is useful.

(8A.9) Corollary. Let F
t

be a local Ck semiflow

on a Banach manifold N. Suppose that F
t

leaves invariant

a finite dimensional submanifold MeN. Then on M, F
t

is

locally reversible, is jointly Ck in t and x and is

k-l
generated by a C vector field on M.

Another fact worth pointing out is a result of Dorroh

[1]. Namely, under the conditions of Theorem (8A.7), Ft is

actually locally conjugate to a flow with a Ck generator

(rather than Ck- l ).
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Lipschitz Flows.

(8A.IO) Definitions. Let F
t

be a flow (or a semi­

flow) on a metric space M, e.g. a Banach manifold. We say

that Ft is Lipschitz provided that for each t there is a

constant Mt such that

The least such constant is called the Lipschitz norm, I IFtl ILip '

We say that F
t

is locally Lipschi~z provided that,

for every X
o

E M and to E R, there is a neighborhood %'

of and a number E: > 0, such that

for all x,y E %' and t E [to-E: , to+E:] . If %' can be taken

to be any bounded set, we say that the flow Ft is semi-

Lipschitz. (This term was introduced by Segal. ) Note that

I
C flows are locally Lipschitz.

Let F
t

be a continuous Lipschitz flow, and let

Mt = I IFtl ILi . Then (just as in the linear case) we have an
p

estimate of the form

M < Me(3l t l
t -

(8A.4)

where M, (3 are constants. Indeed, note that Mt is sub­

multiplicative: Ms +t ~ Ms'Mt ; this is an immediate consequence

of the flow identity. Moreover, we know

sup d(F x,Fty)/d(x,y).
xfy t

is lower semicontinuous, being the supremum of aThus M
t

family of continuous functions. In particular, M
t

is meas-
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urable. But then an argument of Hille-Phillips [1, Thm.

7.6.5] shows that (8A.4) holds for some constants M, B.

267

Uniqueness of Integral Curves.

It is a familiar fact that integral curves of Lipschitz

vector fields are uniquely determined by their initial values,

but that there are continuous vector fields for which this is

*not the case. On the other hand, it is known that integral

curves for generators of linear semigroups are unique. The

following result shows that such uniqueness is a consequence

of the local Lipschitz nature of the flow (cf. van Kampen's

Theorem; Hartman [1, p. 35]).

(8A.ll) Theorem. Let X be a vector field on the

Banach manifold M, with domain D. Assume that X has a

locally Lipschitz flow Ft. More precisely, assume that:

(a) F
t

is a group of bijections on D, and, for each

xED, t ~ FtX is differentiable in M, with

(b) For each Xo E M and to E IR there is a neigh-

borhood

charts,

of in M and an s > 0, such that in local

*The famous example is X(x) = x 2/ 3 on the line. In a Frechet
space E, a continuous linear vector field S: X 7 X may have
infinitely many integral curves with given initial data; viz.
S(xO,xl ' ••• ) = (xl ,x2 ' .•. ) on E the space of real sequences

under pointwise convergence, or may have no integral curves
with given initial data; viz. S(f) = df/dx on E = COO func­
tions on [0,1] which vanish to all orders at 0 and 1.
The result (8A.ll) is generalized significantly in Dorroh­
Marsden [1].
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for x,y E ~ , and t E [to-£' t
o
+£]. Here the constant C

is supposed to be independent of x, y and t. (In other

words, the local Lipschitz constant is supposed to be locally

bounded in t. This is the case for a globally Lipschitz

flow, for example.)

Conclusion: if crt) is a curve in D such that

c' (t) = X(c (t) ), then c (t) = Ft (c (0) ) .

Proof. We can work in a local chart (see (8A.13», so

we assume M ~, a Banach space. Given to' let Xo = c(to).

Then choose £ > 0 and a neighborhood ~ of X
o

as in

hypothesis (b)i in addition, £ should be small enough so that

c(t)E~ if It-tol.:. £.

Define h(t) = Ft _tc(t). Then, for t near to' and
o

T small,

Ilh(tH) - h(t) II 11 Ft _t_TC(t+T) - Ft _tc(t) I I
o 0

11 Ft _t_TC(t+T) - Ft _t_TFTC(t) I I
o 0

.:.cllc(t+T) - FTC(t)ll.

Moreover, ~ [C(t+T) - FTc(t)] = ~ [c(t+T) - c(t)] +

~ [e(t) - FTc(t)] + X(c(t» - X(c(t» = 0 as T + O. Thus

h is differentiable, and hI (t) = O. It follows that h(t)

is constant, whence c(t) = F
t

_
t

c(tO)
o

From this the relation c(t) = FtC(O)

for t near to.

follows easily. []

(8A.12) Corollary. The conclusion of Theorem (8A.ll)

applies to Cl flows Ft.



so that I IDFt (x) I I :5.. C if xE%' and

value theorem then shows that 11Ft (x)

if x,yE%' and It-tol < E. 0
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Proof. We shall verify condition (b) of the hypothesis.

In a local chart, our results (see (8A.6» on joint continuity

show that DFt(X)·y is continuous jointly in t, x, and y.

Hence, by the Banach-Steinhaus Theorem, for a given Xo and

to there is a convex neighborhood ~ of Xo and an E > 0

It-tol :5.. E. The mean

- Ft (y) II :5.. C II x-y II

The above results generalize classical theorems of

Kneser and Van Kampen. They easily generalize to semi-flows.

Note. An explicit example of a continuous vector

field with a jointly continuous flow Ft for which the con­

clusion of Theorem (8A.ll) fails is the following well known

example. On R let X be defined by

Define ¢(y) = ly13/2 sgn y. Then ¢ is differentiable, with

¢' (y) = t lyll/2. It is easy to check that Ft(X) =

¢(t+¢-l(x» is a flow for X. In particular Ft(O) It1
3

/
2

sgn t. But c(t) = 0 is another integral curve with

c(O) = O. See Hartman [1) for more examples.

(8A.13) Remarks.

1) In case one wishes to work globally on M and not

in charts, one should use the proper sort of metric as follows:

Definition. Let N be a Banach manifold modelled on

a Banach space E. Let d be a metric on N. We say d

is compatible with the structure of N, if d gives the
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topology of N and if given any X o E N, there is, about x o'
a chart (%', cjJ) and constants a(x

O
) , S (x

O
) such that for

all x,YE~, d(x,y) < all cjJ (x) - cjJ (y) II < Sd(x,y) .-

2) This method is not the one usually employed to

prove uniqueness of integral curves, for example, in
n

IR..

One usually assumes that the vector field is locally Lipschitz

and then uses integration to prove this result. Let us re-

call how this goes. Let X be a locally Lipschitz vector

field on R
n (or any Banach space). Let d(t) and c(t)

be two integral curves of
t

Id(t)-c(t) I If X(d(s)) -
o

X such that d(O) = c(O). Then
t

X(c(s))dsl .:. K f Id(s)-c(s) Ids.
o

For purposes of partial dif-

Gronwall's inequality) that if
Kt

Ka(s)ds, then a(t) ~ a(O)e

One then uses the fact (called
t

a is such that a(t) ~ f
o

Therefore, we have d(t) = c(t).

ferential equations, however, it is important to have the re-

suIt as stated in (8A.II) because one is often able to find

Lipschitz bounds for the constructed flows, but rarely on the

given generator.

3) Another method sometimes used to prove uniqueness

of integral curves for a vector field X with domain DeN

is called the energy method. Suppose there is a smooth func­

tion H: D x D + R+ such that H(x,y) = r if and only if

x = y and such that for any two integral curves c and d

for X, dH(C(~~,d(t)) .:. K(t,d(O),c(O))H(c(t),d(t)) where K

is locally bounded in t. Then as in Remark 2 we can con-

clude that X has unique integral curves. This method is

directly applicable to classical solutions of the Euler and

Navier-Stokes equation, ~or example.
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Measurable flows.

271

Under rather general conditions, continuity of a flow

in the time variable can be deduced from measurability. For

example, we have the following result. See also Ball [2].

is Borel

(8A.14) Theorem. Let M be a separable metric space.

Let Ft be a flow (or local semiflow) of continuous maps on

M. Assume that, for each x E M, the map t ~ Ft(x)

measurable; that is, the inverse image of any open set is a

Borel subset of R. Then Ft is jointly continuous (respec­

tively, jointly continuous fOr t > 0).

Proof. Because M is separable, the Borel function

is continuous when restricted to the complement of

some first-category set C C R (cf. Bourbaki [1].) Given

to and a sequence t n + to' note that U [C-(to-tn )] = D
n=l

is of the first category, hence there exists an s E R with

s ~ D; that is, t
n

- to + s ~ C for all n. Accordingly,

+ Fs(X) when

to deduce that

n + Now apply the continuous

is separately continuous, and the conclu-

sion follows from Theorem 1. []

Theorems of this sort are well known for linear semi-

groups (see Yosida [1] for instance).

Some Results on Time Dependent Linear Evolution Equations.

In order to study smoothness criteria we shall need to

make use of some results about linear evolution equations.

These results are taken from Kato [1,4,5]. We begin by de-
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fining an evolution system.

Dorroh-Marsden [1].)

(This exposition is adapted from

(8A.15) Definition. Let X be a Banach space and

T > O. A subset {U(t,s) 0 < s < t < T} of B(X) = B(X,X)

(bounded operators on X) is called an evolution system in X if

i) U(t,t) = I for 0 < t < T, and

ii) U(t,s)U(s,r) = U(t,r) for 0 < r < s < t < T.

An evolution system {U(t,x) 10 ~ s < t < T} in X is said

to be strongly continuous if for each f E X, the function

U(·,·)f maps [O,T) x [O,T) continuously into X. The

X-infinitesimal generator of {U(t,s)} is the collection

{A(s) 10 < s < T} of operators in X defined by

A(s)f = lim ~-l[U(s+~,s)f-f]
~!O

with D(A(s)) consisting of all f for which this limit

exists, where the limit is taken in X.

(8A.16) Remarks. a) If {U(t,s)} is a strongly con-

tinuous evolution system in X, then it follows from the uni­

form boundedness principle that I IU(t,s) I Ix,x is bounded

for sand t in closed and bounded intervals.

b) Let {U(t,s) 10 < s < t < T} be a strongly continu-

ous evolution system in X with X-infinitesimal generator

{A(s) 10 < s < T}, and let 0 < a < T. Then {A(s+a) 10 ~ s <

T - a} is the X-infinitesimal generator of the strongly

continuous evolution system {U(t+a, s+a) 10 ~ s ~ t < T - a}.

(8A.17) proposition. Let {U(t,s) 10 < s < t < T} be

a-strongly continuous evolution system in X with X-infinite-



THE HOPF BIFURCATION AND ITS APPLICATIONS 273

simal generator {A(s) 10 2 s < T}. If f E D(A(s» for all

o < s < T, and A(·)f maps [O,T) continuously into X,

then

(8/8s) [U(t,s)f]

for 0 ~ s ~ t < T, t > o.

-U(t,s)A(s)f (8A.5)

Proof. If 0 ~ s < t < T, then

U(t,s+£)f - U(t,s)f

and therefore,

U(t,s+£) [f-U(s+£,s)f],

(8+/8s)U(t,s)f = -U(t,s)A(s)f.

Thus for each t E (O,T) ,the function U(t,·)f has a con­

tinuous right derivative on [O,t). Thus the function

U(t,.)f is continuously differentiable on [O,t) (see

Yosida [1], p. 239), and (8A.5) holds for 0 < s < t < T.

Since the derivative of U(t,·)f has a limit from the left

at t, it follows that

(8- /8s) [U (t, s) f] -v (t,s)A(s) f

for 0 < s = t < T. But, because of the domain of V(t,·)f,

this is what (8A.5) means when s = t. D

(8A.18) Corollary. Let {vet,s) 10 < s < t < T} be a

strongly continuous evolution system in X with X-infinitesi­

mal generator {A(s) 10 < s < T}. Let f(s) E D(A(s» for

o < s < T, suppose f is continuously differentiable from

[O,T) into X, and that A(·)f(·) maps [O,T) continuously

into X. Then
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(a/as) [U(t,s)f(s)]

for 0 < s < t < T, t > O.

U(t,s)f' (s) - U(t,s)A(s)f (s)

Proof. This follows from the Proposition, the strong

continuity of {U(t,s)}, and the local boundedness of

IIU(t,s) Ilx,x' 0

We call (SA.5) the backward differential equation. In

order that the forward differential equation

(a/at) [U(t,s)f] = A(t)U(t,s)f (SA.6)

hold, it is necessary that U(t,s)f E D(A(t», and this is a

more restrictive condition which may not be satisfied when

the hypothesis of the above Proposition is satisfied.

Now suppose Y is another Banach space with Y densely

and continuously embedded in x.

(SA.19) Definition. An evolution system {U(t,s)}

in X is said to be Y-regular if each transformation U(t,s)

maps Y continuously into Y, and {U(t,s)} is strongly con­

tinuous in Y; i.e., if {U(t,s)} is a strongly continuous

evolution system in Y as well as in x.

Kato in [4] and [5] gives a variety of conditions on

families {A(s)} of operators in X which are sufficient

for these families to be the X-infinitesimal generators of

strongly continuous evolution systems in x. Some of these

conditions are also sufficient for the evolution systam to

be Y-regular and for the forward differential equation to

hold. He also gives several convergence theorems for evolu-
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tion systems and upper bounds for the operator norms in terms

of certain parameters of the infinitesimal generator.

Since these results bear directly on our results later,

jMe quickly summarize the fundamental points here for reference.

Kato's papers should be consulted for details and related

remarks.

(8A.20) Definitions. Let A E G(X), the set of semi-

group generators in X. Y is said to be admissible with

respect to A, or simply A-admissible, if {etA} leaves Y

invariant and forms a semigroup of class Co in Y.

A subset G(X) is said to be stable if there are con-

stants M and S (called constants of stability) such that

k
I I IT

j=l

-1 k
(AI-A.) II < M(A-S)-

J

for A > Sand Al, ... ,Ak elements of the suhset.

(8A.21) Theorem. (Existence Theorem). Let T > 0,

let A(t) E G(X) for 0 < t < T, and assume that

i) {A(t) 10 < t < T} is stable, say with constant

M, S;

ii) Y is A(t)-admissible for each t, and if A*(t)E

G(Y) is the part of A(t) within Y, then {A*(t)} is

stable, say with constants M*,S*; and

iii) Y C D(A(t» for each t, and A-(·) is continuous

from [O,T) into B(Y,X), where A-(t) is the restriction

of A(t) to Y, (called the part of A(t) within Y to x).

Then there is a unique strongly continuous evolution
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system {U(t,s)} in X with X-infinitesimal generator ex­

tending {A-(T)}; i.e., with infinitesimal generator {B(t)}

such that B(t) ~ A-(t) for each t. Furthermore,

, [U(t,s)' 'x,x
S(t-s)

<~ for o < s < t < T.

(BA.22) Remarks. a) If A(t) are independent of t,

the stability condition for A is the condition for the

Hille-Yosida theorem (Yosida [1]).

b) Actually in Theorem (BA.21) Kato shows that the

X-infinitesimal generator is precisely {A(t)}.

We can add on any bounded operator to a family {A(t)}

of generators and still get generators:

(BA.23) Remark. Let {A(t) 10 2 t < T} satisfy the

hypothesis of Theorem (BA.21), let B(t) E B(X,X) for

o ~ t < T, and let B(·)f map [O,T) continuously into X

for each f E X. Then there is a unique strongly continuous

evolution system in X with X-infinitesimal generator ex-

tending {A(t) + B(t)}.

In examples, it may be difficult to verify the stabil-

ity condition (i). To this end we have a useful criterion

given in the following proposition. First some notation:

Let G(X,M,S) denote the generators A on X with con­

stants M,S: I I (A_A)-kl I 2 M/(A_S)k, A > S (corresponding

to the semigroup condition I IFtl' 2 Me
St

). In particular,

if M = 1 we have the generator of a quasi-contractive semi­

group, the condition being I I (A_A)-l, 12 1/(A-S), A > S; or

on the flow I IFtl I 2 eSt. Examples of this type of semigroup
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are common.

(8A.24) Remark. (Trotter, Feller) For a given semi-

group F
t

with generator A E G(X,M,S) the space X can

be renormed so that I IFtl I < est Indeed the new norm is

Illxlll = suplle-StF
t

(x) II.
t>O

One should note however that it is not always possible

to renorm X so that two semigroups simultaneously become

quasi-contractive.

(8A.25) Theorem. For each t, let J I I It be a new

norm on X equivalent to the original one and vary smoothly

in t; i.e.,: satisfying

Ilxll t clt-sl
< e , x E X, 0 < s, t < T.

IIxll s -

For each t, let A(t) be the generator of a quasi-contrac-

tive, semigroup with constant S in the norm II' II t' Then

{A(t)} is stable 1"ith
2cT

0 t withon X r,l = e < < T,-
respect to any of the norms I J lit'

The proof is actually a simple verification; see Kato

[3, prop. 3. 4) •

There is another useful criterion for the hypotheses

of (8A.2l) to hold as follows:

(8A.26) Theorem. Let i) and iii) of (8A.2l) hold

and replace ii) by

ii") There is a family {Sit)} of isomorphisms of

Y onto X such that
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S(t)A(t)S(t)-l = A(t) + B(t),

B(t) E B(X) where B: [O,T) + B(X) is strongly continuous.

Assume S: [O,T) + B(Y,X) is strongly Cl .

Then the conclusions of (SA.21) hold «ii") ;> (ii»

and moreover, the forward differential equation holds, and

the evolution system is Y-regular.

Two important approximation theorems follow (see Kato

[5]) •

(SA.27) Theorem. Let {A (t)} satisfy the hypothe­
n

ses of (SA.21), n = 0,1,2, ... where there are uniform sta-

bility constants in i) and ii). Assume

IIA-O(t)-A-(tlll +0 as n+ oo
n Y,X

uniformly in t. Then Un(t,s) + UO(t,s) strongly in B(X),

uniformlv in t,s E [O,T), and Ilun (t,s) - Uo (t,s) Ily,x + 0

as n + 00

(SA.28) Theorem. Let {A (t)} satisfy the hypothe­
n

ses of (SA.26), n = 0,1,2, ..• where the primitive constants

M,S, Ilsllooy,x' 11~-llloo,y,X,IIBlloo,x,x' Ilslloo,y,X can be

chosen independent of n. Assume I IAO(t) - A (t) I I + 0
n y,X

as n + 00 uniformly in t, as in (SA. 26) , and in addition

that Bn(t) + BO(t) in B(X) , Sn(t) + SO(t) in B(Y ,X),

S (t) + SO(t) in B(Y,X) uniformly in t. Then,n

strongly in B(Y) uniformly in t,s E [O,T).
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A Criterion for Smoothness

279

We now give a result which tells us when a semiflow

consists of smooth mappings. The result is powerful when

used in conjunction with the above linear results. The pres-

ent theorem is due to Dorroh-Marsden [11. to which we refer

for additional results. Before proceeding, the reader should

attempt Exercise 2.9 to get a feel for the situation.

We use the following notation. X and Yare Banach

spaces with Y densely and continuously embedded in X.

Dey is open and F
t

is a continuous local semiflow on D.

We let G: D + X be such that F
t

is a semiflow for G.

For p,q E D, and the line segment {p+r (q-p) 10 ::. r < l} C D

set
1

Z(q,p) = J DG(p+r(q-p))dr
o

the averaged derivative of G along the segment.

Assumptions. a) G: D + X is Cl .

b) for fixed fED and g E D sufficiently

close to f, there is a strongly continuous evolution system

{ug(t,s) 10 ::. s < t < T} in X whose X-infinitesimal gen­g

erator is an extension of {Z(Fsg, Fsf): ° < s

Tg denotes a time of existence for Fsg and

c) I Iug (t, s ) - u
f

(t, s) I IY,X + 0

(see (8A. 27)).

< T} (hereg

F sf).

as Ilg-flly+O

(8A.29) Theorem. Under these assumptions a), b), c),

Ft : Y + X is Frechet differentiable at

f
U (t,O).

f with DF (f)
t

(8A.30) Remarks. The proof also shows that if
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"Ug(t,O) I 'X,X is uniformly bounded, as g varies Ft will

be X + X Lipschitz for g near enough to f in Y.

2. A translation argument shows
f

DF (F (f» = U (t,s).
t-s s

f
converges strongly in Y to U (t,s)

Further Assumptions.

d) Ug(t,s) is Y-regular

and replace c) by

c)' Ug('t,s)

as g converges to f along straight line intervals (see

Theorem (8A.28».

(8A.3l) Theorem. Under a), b), c)', d), Ft : Y + Y

is Gateaux differentiable at f and

f
DFt(f) = U (t,O).

(8A.32) Remarks. 1. The proof also shows that if

I lug(t,O) I Iy,y is locally bounded, then F
t

: Y + Y is loc­

ally Lipschitz.

2. If (8A.26) is used, we see that, in fact, DFt(f)

is locally bounded in B(Y,Y) for fEY. We can iterate

the use of (8A.3l) to get that Ft is twice Gateaux differ­

entiable, etc. This will imply that F
t

is in fact Coo.

(Gateaux differentiability and norm continuity of the deriva­

tive implies cl
from f(x) - f(y) = Jl Df(x+t(x-y» (X-y)dti

°
also Gateau differentiability with locally bounded derivatives

implies Lipschitz continuity).

3. The derivative DFt(f) in (8A.29) extends to a

bounded operator X + X.

Proof of (8A.29). Let ° < T' < T •
f

For Ilg-f Il y
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sufficiently small, we define w on [O,T'] by w(s)

F g - F f. Differentiating, and using Z(q,p) (q-p) =s s

G(q) - G(p), we have

w' (s)

for 0 < s < T'. If 0 < s < t ~ T', then by the Corollary

on p. 273.

(8/8s)ug (t,s)w(s) 0,

so that

for 0 < t < T'. Thus we have the estimates

and

I/Ft g - Ftfll < Ilug(t,O)11 Jlg-fll x ' O.
X - x,X

Proof of (8A.31). As in the proof of (8A.29), we have

so that

and

I/Ft g - F fll y < Ilug(t,O) II Ilg-fll y 't - y,y

This establishes the claims about Lipschitz continuity. If

we let g = f + Ah, then we get

from which the differentiability claim follows directly. []
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Using these arguments, one can also establish Y dif-

ferentiability of in t and differentiability in an ex-

ternal parameter. We consider two such results from Dorroh-

Marsden [1].

(8A.33) Corollary. Under the hypothesis of (8A.29)
f

or (8A.31) suppose that the evolution system {U (t,s)} with

X-infinitesimal generator {DG(F )} satisfies f C YU (t,s)X
s

for 0 < s < t < Tf · Then for fE D, G(F f) E Y for
t

0 < t < Tf · If uf (. ,0) g is Y-continuous on (O,Tf ) for

each g E X, then F(.)f is continuouslv Y-differentiable on

(O,T
f

) •

Proof. Under these hypotheses one can establish a

chain rUle, so that by differentiating Ft+sf = Ft(Fs(f))

s at s = 0, we get

in

DFt(f)'G(f)

Uf (t, 0) • G (f) E Y

which proves the first part. The second part follows be-

cause

(
(

s

fU (T,O)·G(f)dT. o
The condition that Ftf be Y-differentiable for

t > 0 is a nonlinear analogue of what one has for linear

analytic semigroups (see Yosida [1]).

For the dependence on a parameter, we assume G(f,z),

zF
t

depend on a parameter z EVe Z where V is open in a
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Banach space. Assume at the outset that F~(f) is con-
z

tinuous in all variables, and for each z, Ft is as above.

To determine differentiability of FZ(f) in (z ,f)
t

we can use a simple suspension trick. Namely, consider the

semiflow Ht on D x V defined by

The generator is K: D x V + X x Z,

K(f,z) = (G(f,z),O).

If (8A.29) or (8A.30) applies to Ht then we can con-

*clude differentiability of in (f ,z) •

One of the key ingredients in (8A.29) is hypotheses

concerning the linearized equations. Here

DK (f , z) (g, w) = (D1G (f , z) • g + D2G (f , z ) •w , 0 )

so we would be required to solve, according to (8A.29) or

(8A.31), the system

dw = 0
dt

i.e. w constant

dg (t)
dt

(similarly for systems involving the averaged generators Z).

This is a linear system in g with an inhomogeneous term
z

D2G(Ft (f),z)·w. The solution can be written down in terms of

the evolution system for via Duhamel's formula

in the usual way. For systems of this type there are theorems

*A more direct analysis, obtaining refined results, is
given by Dorroh-Marsden [11.
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available to guarantee that we have an evolution system and

to study its properties. Note, for example, Theorem 7.2 of

Kato [4]. In this way, one can check the hypotheses of

(8A.29) or (8A.31) for

differentiability of

We would conclude, respectively,

from D x V to X x V and

(under the stronger conditions of (8A.31», from D x V to

y x V.

(For holomorphic semigroups, smooth dependence on a

parameter can be analyzed directly, as in Kato [3], p. 487).

(8A.34) Remark and Application. In Aronson-Thames

[1] the following system is studied:

2 2 R+uxx - q u = ut ' v - q v = v t in (0,1) xxx

ux(l,t) V
x

(O,t)
= ° }ux(O,t) -pq(f 0 v) (O,t), t > °

vx(l,t) pq{l- (fou) (l,t)}

Here p and q are positive parameters and f(u) =

2 2
u /(l+u). This system is related to enzyme diffusion in

biological systems. They show that the eigenvalue conditions

'of the Hopf theorem are met. In Dorroh-Marsden [1] it is

shown, using methods described above, that the semiflow of

this system is smooth. It follows at once that the Hopf

theorem is valid and hence proves the existence of stable

periodic solutions for this system for supercritical values

of the parameters.

These equations are usually called the Glass-Kauffman

equations; cf. Glass-Kauffman [1]. Recent work of the dis-

crete analogue has also been done by Hsu.
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SECTION 9

BIFURCATIONS IN FLUID DYNAMICS AND

THE PROBLEM OF TURBULENCE

285

This section shows how the results of Sections 8 and

8A can be used to establish the bifurcation theorem for the

Navier-Stokes equations. Alternatively, although conceptually

harder (in our opinion) methods are described in Sections 9A,

9B and Sattinger [5] and Joseph and Sattinger [1].

The new proof of the bifurcation theorems using the

center manifold theory as given in Section 8 allow one to de­

duce the resul~s very simply for the Navier-Stokes equations

with a minimum of technical difficulties. This includes all

types of bifurcations, including the bifurcation to invariant

tori as in Section 6 or directly as in Jost and Zehnder [1].

All we need to do is verify that the semiflow of the Navier­

Stokes equations is smooth (in the sense of Section 8A) i the

rest is then automatic since the center manifold theorem im­

mediately reduces us to the finite dimensional case (see
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Section 8 for details). We note that already in Ruelle-

Takens [1] there is a simple proof of the now classical re-

sults of Velte [1] on stationary bifurcations in the flow

between rotating cylinders from Couette flow to Taylor cells.

The first part of this section therefore is devoted to

proving that the semiflow of the Navier-Stokes equations is

smooth. We use the technique of Dorroh-Marsden [1] (see Sec-

tion 8A) to do this.

This guarantees then, that the same results as given

in the finite dimensional case in earlier sections, including

the stability calculations hold without change.

The second part of the section briefly describes the

Ruelle-Takens picture of turbulence. This picture is still

conjectural, but seems to be gaining increased acceptance as

time goes on, at least for describing certain types of tur-

bulence. The relationship with the global regularity (or

"all time") problem in fluid mechanics is briefly discussed.

Statement of the Smoothness Theorem.

Before writing down the smoothness theorem, let us re-

call the equations we are dealing with. For homogeneous in-

compressible viscous fluids, the classical Navier-Stokes equa-

tions are, as in Section 1,

3vat + (v·V)v - v~v = -grad p + bt , b
t

external force

(NS) 1diV v

v = 0

= 0

on 3M (or prescribed on M, possibly depending
on a parameter ~)

Here M is a compact Riemannian manifold with smooth boundary
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3M, usually an open set in R3 .
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The Euler equations are obtained by supposing v 0

and changing the boundary condition to vi 13M:

I3v + (v.\i)v -grad p + b t3t

(E)

1
div v 0

vii 3M

The pressure p(t,x) is to be determined from the in-

compressibility condition in these equations.

The Euler equations are a singular limit of the Navier-

Stokes equations. Taking the limit v + 0 is very subtle and

is the subject of much recent work. The sudden disappearance

of the highest order term and the associated sudden change in

boundary conditions is the source of the difficulties and is

the reason why boundary layer theory and turbulence theory

are so difficult. This point will be remarked on later.

Note that Euler equations are reversible in the sense

that if we can solve them for all sets of initial data and

for t ~ 0, then we can also solve them for t < O. This is

hecause if

t < o.

is a solution, then so is w
t -v_ t '

For s > 0 an integer and I < P < 00, let wS'P de-

note the Sobolev space of functions (or vector functions) on

M ~.,hose derivatives up to order s are in

of describing Ws,p is to complete the COO

the norm

II f II s,p L IIDafll L
O.::.a.::.s p

Lp ; another way

functions f in



288 THE HOPF BIFURCATION AND ITS APPLICATIONS

where Daf is the a th total derivative of f. Details on

Sobolev spaces can be found in Friedman [1].

We point out that in the non-compact case one must deal

seriously with the asymptotic conditions and many of the re­

sults we discuss are not known in that case (see Cantor [1],

and McCracken [2] however).

The following result is a special case of a general

result proved in Morrey [1]. For a direct proof in this case,

see Bourguignon and Brezis [1].

(9.1) Lemma. Hodge Decomposition): Let M be as

above. Let X be a ws,p vector field on M, s > 0, p > 1.

Then X has a unique decomposition as follows:

X = Y + grad p

where div Y = 0 and yl laM. It is also true that Y E ws,p

and p E ws+l,p.

div X

Let wS'P = {vector fields X on Mix E wS,P,

o and xl laM}. By the Hodge theorem, there is a map

(E)

P: ws,p + Ws,p via X ~ Y. The problem of solving the Euler

equations now becomes that of finding v t E ws+l,p such that

dVt
dt + P«vt·V)vt ) = 0

s > ~ the p_roduct of two ws,p
p'(plus initial data).

functions is Ws,p so

If

(v·V)v is in ws,p if v E ws+l,p.

This kind of equation is thus an evolution equation on wS'P

as in Section 8A.

Let
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ws,p {vector fields v on Mlv is of class

° ~ls,P , div v = ° and v = ° on 3M}.

If s = ° this actually makes. sense and the space is

written J (see Ladyzhenskaya [1]).
p

The Navier-Stokes equations can be written: find

(NS)

such that

dV
t - vP~v + P(vt·V)vt = °

dt t

again an evolution equation in W~'p. In the terminology of

Section 8A, the Banach space X here is wO,p

°y = W2 ,p. The bifurcation parameter is often

°Reynolds number.

J p and

11 = l/v, the

The case p ~ 2 is quite difficult and won't be dealt

with here, although it is very important. If p = 2 one

generally writes

-s 2
llil ' , etc.

(9.2) Theorem. The Navier-Stokes equations in dimen­

sion 2 or 3 define a smooth local semiflow on H~ C HO = J.

This semiflow satisfies conditions 8.1, 8.2, and the

smoothness in 8.3 of Section 8, so the Hopf theorems apply.

(The rest of the hypotheses in 8.3 and 8.4 depend on the

particular problem at hand and must be verified by calcula-

tion. )

In other words, the technical difficulties related to

the fact that we have partial rather than ordinary differen-

tial equations are automatically taken care of.

(9.3) Remarks. 1. If the boundaries are moving and
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speed is part of the bifurcation parameter ~, the same re­

sult holds by a similar proof. This occurs in, for instance

the Taylor problem.

2. The above theorem is implicit in the works of many

authors. For example, D. Henry has informed us that he has

obtained it in the context of Kato-Fujita. It has been

proved by many authors in dimension 2 (e.g. Prodi). The

first explicit demonstration we have seen is that of Iooss

[3,5] •

3. For the case p I 2 see McCracken [2].

4. This smoothness for the Navier-Stokes semiflow is

probably false for the Euler equations on HS (see Kato [6],

Ebin-Marsden [1]). Thus it depends crucially on the dissi­

pative term. However, miraculously, the flow of the Euler

equations is smooth if one uses Lagrangian coordinates (Ebin­

Marsden [1]).

We could use Lagrangian coordinates to prove our re­

sults for the Navier-Stokes equations as well, but it is

simpler to use the present method.

Before proving smoothness we need a local existence

theorem. Since this is readily available in the literature

(Ladyzhenskaya [1]), we shall just sketch the method from a

different point of view. (Cf. Soboleoskii [1].)

Local Existence Theory.

The basic method one can use derives from the use of

integral equations as in the Picard method for ordinary dif­

ferential equations. For partial differential equations this

has been exploited by Segal [1], Kato-Jujita [1], Iooss [3,6],
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Sattinger [2], etc. (See Carroll [1] for general background.)

The following result is a formulation of Weissler [11.

(See Section 9A for a discussion of Iooss' setup.)

First some notation: EO' El , E2 will be three Banach

spaces with norms I I· I 10' 1/· I 11' I I· I 12 , with E2 C El CEO'

with the inclusions dense and continuous. (Some of the

spaces may be equal.) Let etA be a cO linear semigroup

on EO which restricts to a contraction semigroup on E: 2 ·

Assume, for t > 0, tA El
->- E

2
is a bounded lineare : map

and let its norm be denoted II (t). Our first assumption is:

AI) For T > 0 assume J
T

ll(T)dT
o

< co

For the Navier-Stokes equations, A

choose either

vPL'l, and we can

(See Yosida [1].)

(i) HI -2
EO = J

2
, lEI = and IE H

O2
or (E) EO = lEI = li- l / 2 = completion of J with the

-1/4 -1 (-vPL'l) 1/2.norm 11(-vpL'l) uil L , E2 = H = domain of
2

The case (ii) is that of Kato-Fujita [1].

The fact that AI) holds is due to the fact that

is a negative self adjoint operator on J with domain

(Ladyzhenska~a [1]); generates an analytic semigroup, so the

e tA -2 /norm of from H
O

to J 2 is ~ C t.

However we have the Sobolev inequality {derived most easily

from the general Sobolev-Nirenberg-Gagliardo inequality from

Nirenberg [1]:

where
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1
P

i + a(l _ ~) + (l-a) 1
n r n q'

(if m - j - n is an integer > 1, a = 1 is not allowed)},
r

that

so we can choose ~(t) < C/It, so Al) holds. Similarly

in case (ii) one finds ~(t) = C/t3/ 4 (Kato-Fujita [1]).

As for the nonlinear terms, assume

A2) J
t

: E2 + El is a semi-Lipschitz map (i.e.,

Lipschitz on bounded sets), locally uniformly in t with

J t (¢) continuous in (t,¢). We can suppose Jt(O) = 0 for

simplici ty.

Consider the "formal" differential equation

~ = A¢ + J (¢)
dt t

in integral equation form (see e.g., Segal [1])

(9.1)

(9.2)

where t > to.

difficulties. )

(Adding an inhomogeneous term causes no real

(9.4) Theorem. Under assumptions Al) and A2), the

equation (9.2) defines a unique local semiflow (i.e., evolu­

tion system) ~ E2 (in the sense of Section 8A) with

W(t,tO): E2 + E2 locally uniformly Lipschitz, varying con­

tinuously in t.

Proof. The proof proceeds by the usual contraction
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mapping argument as for ordinary differential equations (see

Lang [1]) : Pick o < a < a, let Ka (t) be the Lipschitz
0

constant of J t from 1E 2 to lEI on B the a ball abouta

and pick T such that

r- t a
O( 0 !l (T)dT) ( sup K (T» < 1 - - (9.3)

0 TE[tO,T] a a

withto[O,T]

and let M be the complete metric space

sup j1<I>(t)-'JI(t)j1
2tE[tO,T]

Define 5': M ->- M by

Now choose ¢ EB

cO
a O

of maps <I> of

and metric

d(¢,'JI)

(t-tO)A
5'<1> (t) = e ¢

From the definitions and

J
t (t-T)A

+ e JT(¢(T»dT
to

(9.3) we have two key estimates:

first

rt
o

!l(t-T)K (T)·adT
a

= a

(9.4 )

(remember JT(O) = 0 here), which shows ~ maps M to M

and, in the same way

.a
d(~¢, 5''JI) 2 (1 - ~)d(¢,'JI)

a
(9.5 )

which shows ~ is a contraction.

The result now follows easily. []

(9.5) Exercises. 1. Show that W(t,tO) has E2

Lipschitz constant given by a/aO. Verify that W(t,s)W(s,tO)

W(t,t
O
)·
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2. If ¢t is a maximal solution of (9.2) on [O,T)

T < 00, show lim sup I I¢ / /2 = 00; i.e., verify the continua­
t .... T t

tion assumption B.2.

3. Use the Sobolev inequalities to verify that

P«u·V)u) satisfies the hypotheses in case (i)

above. For case (ii), see Kato-Fujita [1].

Next we want to see that we actually have a solution

of the differential equation. Make

A3) Assume that the domain of A as an operator in

(9.6) Theorem. If AI), A2) and A3) hold, then any

solution of (9.2) solves (9.1) as an evolution system in lEo

with domain D = 1E
2

; (in the terminology of Section BA,

W(t,tO) is the (time dependent) local flow of the operator

X(¢) = A(¢) + J t (¢), mapping E2 to lEO). Solutions of

(9.2) in E 2 are unique.

Proof. Let ¢ E E2 and ¢(t) = W(t,t
O

)¢ E 1E
2

be

the solution of (9.2), so taking to = a for simplicity,

It is easy to verify that

~{¢(t+h)-¢(t)} = ~{ehA¢(t)_¢(t)} - Jt(¢(t»

t+h
+! I {e(t+h-T)AJ (¢(T»-Jt(¢(t»}dT

h t T

writing

(9.6 )
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e(t+h-T)AJT(¢(T» - Jt(¢(t»

e(t+h-T)A[JT(¢(T»-Jt(¢(t»] + et+h-TJt(¢(t»-Jt~(t»

one sees that the last term of (9.6) ~ a as h ~ a in 12:
1

and hence in ~o. The first term of (9.6) tend to

A(¢(t» - Jt(¢(t» in ~O as h ~ a since ¢(t) E ~2' the

domain of A. []

Thus we can conclude that the Navier-Stokes equations

define a local semiflow on

tends to a local semiflow on

and that this semi flow ex-

(via the integral equation).

Smoothness.

(9.7) Theorem. Let Al), A2) and A3) hold and assume

A4)
00

J t : ~2 ~ ~l is C with derivatives depending

continuously on t.

Then the semiflow defined by equations (9.1) on ~2

is a COO semiflow on E ; i.e., each W(t,t
O

)
2 --

00

is C with

derivatives varying continuously in t in the strong topology

(see Section 8).

Proof. We verify the hypotheses of (8A.31). Here we

take X = EO and Y = E
2

, with D = Y. Certainly a) holds

by hypothesis. Since Z(¢1'¢2) is the same type of operator

as considered above, 9.4 shows b) holds. c ' ) holds by the

E
2

Lipschitzness of W(t,tO) proven in (9.4) and d) is

clear.

Hence W(t,tO): E2 ~ ~2 is Gateaux differentiable.
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The procedure can be iterated. The same argument ap-

plies to the semiflow

on iE
2

-+ iE 2 .

Hence W is cl (see (8A.32», and by induction is

COO. D

In the context of equation (9.1) the full power of the

machinery in Section 8A; in particular the delicate results

on time dependent evolution equations are not needed. One can

in fact directly prove (9.7) by the same method as (8A.3l).

However it seems desirable to derive these types of results

from a unified point of view.

(9.8) Problem. Assume, in addition that

AS) A generates an analytic semigroup.

Show that for t > a and ¢ EEl' ¢(t) lies in the domain

of every power of A and that ¢(t) is a COO function of

t for t > O. (Hint. Use (8A.33». Also establish smooth-

ness in v if A is replaced by vA (see remarks follow-

ing (8A. 33) ) •

A more careful analysis actually shows that W(t,tO)

are COO maps on HI in the context of the Navier-Stokes

equation (i.e., without assuming A3». See Weissler [1].

Thus all the requisite smoothness is established for

the Navier-Stokes equations, so the proof of (9.2) and hence

the bifurcation theorems for those equations is established.
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The Problem of Turbulence.
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We have already seen how bifurcations can lead from

stable fixed points to stable periodic orbits and then to

stable 2-tori. Similarly we can go on to higher dimensional

tori. Ruelle and Takens [1] have argued that in this or

other situations, complicated ("strange") attractors can be

expected and that this lies at the roots of the explanation

of turbulence.

The particular case where tori of increasing dimen~

sion form, the model is a technical improvement over the idea

of E. Hopf [4] wherein turbulence results from a l6ss of

stability through successive branching. It seems however

that strange attractors may form in other cases too, such as

in the Lorenz equations (see Section 4B) [Strictly speaking,

it has only a "strange" invariant set]. This is perfectly

consistent with the general Ruelle-Takens picture, as are

the closely related "snap through" ideas of Joseph and

Sattinger [1].

In the branching process, stable solutions become un­

stable, as the Reynolds number is increased. Hence turbu­

lence is supposed ~o be a necessary consequence of the equa­

tions and in fact of the "generic case" and just represents a

complicated solution. For example in Couette flow as one in­

creases the angular velocity ~l of the inner cylinder one

finds a shift from laminar flow to Taylor cells or related

patterns at some bifurcation value of ~l. Eventually turbu­

lence sets in. In this scheme, as has been realized for a

long time, one first looks for a stability theorem and for

when stability fails (Hopf [2], Chandresekar [1], Lin [1] etc.).
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For example, if one stayed closed enough to laminar flow, one

would expect the flow to remain approximately laminar. Serrin

[2] has a theorem of this sort which we present as an illus-

tration:

(9.9) Stability Theorem. Let D C R3 be a bounded

domain and suppose the flow is prescribed on ClD (this

corresponds to having a moving boundary, as in Couette flow).

v
Let V = maxI Iv (x) I I, d = diameter of D and v equal the

xED t
t>O

viscosity. Then if the Reynolds number R = (Vd/v) ~ 5.71,

is universally L2

Stokes equations.

stable among solutions of the Navier-

Universally L2 stable means that if is any

other solution to the equations and with the same boundary

conditions, then the L
2

norm (or energy) of v~ - v~ goes

to zero as t + O.

The proof is really very simple and we recommend read-

ing Serrin [1,2] for the argument. In fact one has local

stability in stronger topologies using Theorem 1.4 of Section

2A and the ideas of Section 8.

Chandresekar [1], Serrin [2], and Velte [3] have analy-

zed criteria of this sort in some detail for Couette flow.

As a special case, we recover something that we ex-

then vV + 0 as t + 00

t

is universally stable.

pect. Namely if on ClM is any solution for v + 0

in L
2

norm, since the zero solution

A traditional definition (as in Hopf [2], Landau-
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Lifschitz [1]) says that turbulence develops when the vector

field

where

can be described as vt(wl' ••. ,wn )

is a quasi-periodic function, i.e., f

f(twl,···,twn )

is periodic

in each coordinate, but the periods are not rationally related.

For example, if the orbits of the v t on the tori given by

the Hopf theorem can be described by spirals with irrationally

related angles, then v t would such a flow.

Considering the above example a bit further, it should

be clear there are many orbits that the v
t

could follow

which are qualitatively like the quasi-periodic ones hut

which fail themselves to be quasi-periodic. In fact a small

neighborhood of a quasi-periodic function may fail to contain

many other such functions. One might desire the functions

describing turbulence to contain mos.t functions and not only

a sparse subset. More precisely, say a subset U of a top­

ological s~ace S is generic if it is a Baire set (i.e., the

countable intersection of open dense subsets). It seems

reasonable to expect that the functions describing turbulence

should be generic, since turbulence is a common phenomena. and

the equations of flow are never exact. Thus we would want a

theory of turbulence that would not be destroyed by adding on

small perturbations to the equations of motion.

The above sort of reasoning lead Ruelle-Takens [1] to

point out that since quasi-periodic functions are not generic,

it is unlikely they "really" describe turbulence. In its

place, they propose the use of "strange attractors." These

exhibit much of the qualitative behavior one would expect from

"turbulent" solutions to the Navier-Stokes equations and they

are stable under perturbations of the equations; i.e., are
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"structurally stable".

For an example of a strange attractor, see Smale [1].

Usually strange attractors look like Cantor sets x mani-

folds, at least locally.

Ruelle-Takens [1] have shown that if we define a

strange attractor A to be an attractor which is neither a

closed orbit or a point, and disregarding non-generic pos-

sibilities such as a figure 8 then there are strange attrac­

tors on T4 in the sense that a whole open neighborhood of

vector fields has a strange attractor as well.

If the attracting set of the flow, in the space of

vector fields which is generated by Navier-Stokes equations

is strange, then a solution attracted to this set will clearly

behave in a complicated, turhulent manner. While the whole

set is stable, individual points in it are not. Thus (see

Figure 9.1) an attracted orbit is constantly near unstable

(nearly periodic) solutions and gets shifted about the at-

tractor in an aimless manner. Thus we have the following

reasonable definition of turbulence as proposed by Ruelle-

Takens:

nonstationary
solution of the

Navier- Stokes
equations

Zstrange attractor

in the space of all
velocity fields

Figure 9.1
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" •.• the motion of a fluid system is turbulent when

this motion is described by an integral curve of a vector

field x~ which tends to a set A, and A is neither empty

nor a fixed point nor a closed orbit."

One way that turbulent motion can occur on one of the

tori Tk that occurs in the Hopf bifurcation. This takes

place after a finite number of successive bifurcations have

occurred. However as S. Smale and C. Simon pointed out to

us, there may be an infinite number of other qualitative

changes which occur during this onset of turbulence (such as

stable and unstable manifolds intersecting in various ways

etc.). However, it seems that turbulence can occur in other

ways too. For example, in Example 4B.9 (the Lorenz equa­

tions), the Hopf bifurcation is subcritical and the strange

attractor may suddenly appear as ~ crosses the critical

value without an oscillation developing first. See Section 12

for a description of the attractor which appears. See also

McLaughlin and Martin [1,2], Guckenheimer and Yorke [1] and

Lanford [2].

In summary then, this view of turbulence may be

phrased as follows. Our solutions for small ~ (= Reynolds

number in many fluid problems) are stahle and as ~ increa­

ses, these solutions become unstable at certain critical

values of ~ and the solution falls to a more complicated

stable solution; eventually, after a certain (finite) number

of such bifurcations, the solution falls to a strange attrac­

tor (in the space of all time dependent solutions to the prob­

lem). Such a solution, which is wandering close to a strange

attractor, is called turbulent.
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The fall to a strange attractor may occur after a Hopf

bifurcation to an oscillatory solution and then to invariant

tori, or may appear by some other mechanism, such as in the

Lorenz equations as explained above ("snap through turbulence").

Leray [3] has argued that the Navier-Stokes equations

might break down and the solutions fail to be smooth when

turbulence ensues. This idea was amplified when Hopf [3]

in 1950 proved global existence (in time) of weak solutions

to the equations, but not uniqueness. It was speculated that

turbulence occurs when strong changes to weak and uniqueness

is lost. However it is still unknown whether or not this

really can happen (cf. Ladyzhenskaya [1,2].)

The Ruelle-Takens and Leray pictures are in conflict.

Indeed, if strange attractors are the explanation, their at­

tractiveness implies that solutions r~main smooth for all t.

Indeed, we know from our work on the Hopf bifucation that

near the stable closed orbit solutions are defined and re­

main smooth and unique for all t > 0 (see Section 8 and

also Sattinger [2]). This is already in the range of inter­

esting Reynolds numbers where global smoothness isnot implied

by the classical estimates.

It is known that in two dimensions the solutions of

the Euler and Navier-Stokes equations are global in t and

remain smooth. In three dimensions it is unknown and is

called the "global regularity" or "all time" problem.

Recent numberical evidence (see ~am et. al. [1])

suggests that the answer is negative for the Euler equations.

Theoretical investigations, including analysis of the
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spectra have been inconclusive for the Navier-Stokes equa­

tions (see Marsden-Ebin-Fischer [1] and articles by Frisch

and others in Temam et.al. [1]).

We wish to make two points in the way of conjectures:

1. In the Ruelle-Takens picture, global regularity

for all initial data is not an a priori necessity; the basins

of the attractors will determine which solutions are regular

and will guarantee regularity for turbulent solutions (which

is what most people now believe is the case).

2. Global regularity, if true in general, will pro­

bably never be proved by making estimates on the equations.

One needs to examine in much more depth the attracting sets­

in the infinite dimensional dynamical system of tpe Navier­

Stokes equations and to obtain the a priori estimates this

way.

Two Major Open Problems:

(i) identify a ptrange attractor in a specific flow

of the Navier-Stokes equation (e.g, pipe flow, flow behind a

cylinder, etc.).

(ii) link up the ergodic theory on the strange at­

tractor, (Bowen-Ruelle [1]) with the statistical theory of

turbulence (the usual reference is Batchellor [1]; however,

the theory is far from understood; some of Hopf's ideas [5]

have been recently developed in work of Chorin, Foias and

others) .



304 THE HOPF BIFURCATION AND ITS APPLICATIONS

SECTION 9A

ON A PAPER OF G. IOOSS

BY G. CHILDS

This paper [3) proves the existence of the Hopf bi-

furcation to a periodic solution from a stationary solution

in certain problems of fluid dynamics. The results are simi­

lar to those already described. For instance, in the sub­

critical case, the periodic solution is shown to be unstable

in the sense of Lyapunov when the real bifurcation parameter

(Reynold's number) is less than the critical value where the

bifurcation takes place; it is shown to be (exponentially)

stable if this value is greater than the critical value in

the supercritical case.

Iooss, in contrast to the main body of these notes,

makes use of a linear space approach for almost all of what

he does. Specifically, his periodic solution is a continuous

function to elements of a Sobolev space on a fundamental do­

main ~ in ~3. However, the implicit function theorem is

extensively used. The three main theorems of the paper will
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be stated and the proofs will be briefly outlined to illus-

trate this method.

First, we formulate a statement of the problem. Let

I be a closed interval of the real line. Let V(I) be a

neighborhood in iC of this interval. For each A E V (I) ,

LA is a closed, linear operator on a Hilbert space H. The

Also, each LA is m-sectorial with vertex-y A.

family {LA}

[3), p. 375).

is holomorphic of type (A) in V(I) (see Kato

Finally, LA has a compact resolvent in H. Let ~ be the

common domain of the LA. Assume K is a Hilbert space such

that ~ eKe H with continuous inj ections and such that
y t

VU E K, II I (t)ull~ .::. ke A (l+t-
a

) IlulIK, 0 .2 a < 1 where

is the holomorphic semi-group generated by -LA. Let

M be a continuous bilinear form: ~ x 9 ->- K. Now we can

state the problem:

auat + LAU - M(U,U) 0

U E CO(O,OO;~) n Cl(O,OO;H) (9A.l)

U(O) = Uo E ~, U(O) = U(T) = U(2T) = ••• for some T > 0

IOOS5 shows that the equation of perturbation (from a sta­

tionary solution) for some Navier-Stokes configurations is of

the above form (see also Iooss [5 ) for more details). In

order to find a solution of (9A.l), it is necessary to make some

additional hypotheses. Let sO(A) = sup {Re ~}. Then:
sEer (-LA)

(H.l) 3 A neighborhood - (A ) andE R, a left hand V
c c

a right hand neighborhood v+ (I.e) such that s (A ) = 0,o c

A E V- (A ) {A }~ s (A) < 0, A E: v+ (A ) {A }=$- s (A) > O.- -
c c 0 c c 0
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(H.2) The operator LA admits as proper values pure
c

imaginary numbers ~O = in O and f o' Also, these proper

values are simple. For A E V(A) there exist two analytic
c

functions sl and f l E cr(-LA)

spectrum cr(LA) separates into

such that sl (A
C

) = sO' The

{-sl} U {-fl } U cr(LA). This

separation gives a decomposition of H into invariant sub-

spaces:

'v'UEH, U=X+Y, X=EAU, Y=PAU;

EA = E(-s ) + E(-fl ), (LA+sl)Ul (A) = 0, (L~+fl)Wl (A) = 0,
1

(Ul(A),Wl (A»H = 1, (U l (A),W(O»H = 1. The eigenvectors

Ul(A), UlTAf are a basis for EAH. For A E V(A
C
)' LAU

~ ('_' )nL(n)u,. U (') (0) (1)LA U + L A A 1 A U + (A-A)U + •.• ;
c n=l c c

WI (A) = W(O) + (A-Ac)w(l) + •.. ; sl (A) So + (A-A
C

) S (1) +••••

In particular, we have sell = _(L(l)u(O) ,W(O»H' LA +
c

sOU ( 0 ) = 0, L~ + f W(0) = 0, (U ( 0 ) W(0) ) = 1. Now, we can
cO' H

make the hypothesis:

(H.3) Re(L(l)u(O) ,W(O»H"I- o. By (H.l) this implies

Re sell > O. These hypotheses are just the standard Ones for

the existence of the Hopf bifurcation.

the theorem we also need to know that

For the statement of

Y = YO + iyO.o r 1.

_ (M(O) [U (0) ,L~lM (0) (U (0) ,U (0»] +
c

M(O) [U(O) ,(LA +2in
o
l)-lM(U(0) ,u(O»], W(O»H where

c

M(O) (U,V) = M(U,V) + M(V,U).

We now state Iooss'

Theorem 2. If the hypotheses (H.l), (H.2), (H.3), and
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are satisfied, there is a bifurcation to a non-

aArg

The solutionA E V-(A ).
c

is unique with the exception of

Y < 0, it takes place for
Or

%' E c O(_00 ,00; 8!)

Yo '!- °
r

trivial T-periodic solution of (9A.I) starting from Ac ' If

YO > 0, the bifurcation takes place for A E V+(A c )' whereas
r

if

corresponding to a translation in t. Finally, %'(t) is an­

alytic with respect to £'= /i~, the period analytic withc

respect to A - AC and one can write %'(t,£) = £ ~(l) (t) +

£2 %,(2) (t) + ••• where %,(i) (t) is T-periodic. Here

Arg a is the phase of the X(t) oscillations.

An outline of the proof will be given. Denote

i;(A) + inCA)

iE(-~I) - iE(-~I)'

Then the equations for the X and Y parts of %' coming

from (9A.I) are

i
(~t) = Bt(X+Y.xX+Y;A),

dt - nN
A

X = i;X + EAM(X+Y,X+Y) = F(X,Y,;A),

X(O) = X(T), and

(9A.2)

where Bt(U,V;A) = ft I
A

(t-T)PAM[U(T) ,V(T)]dT. By substitut-
_00

ing X(t) = A(t)UI (A) + A(t)UI (A) in the right hand side of

the equation for Y we obtain a right hand side which is

analytic with respect to (A,X,Y) in a neighborhood of

(AC'O,O) in ~ x {cO(_00,+00;8!)}2. And the derivative with

respect to Y is zero at (Ac'O,O). Then, denoting X(O) (t)
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A(t)U(O) + A(t)U(O), and using the implicit function theorem,

one has yet) = nt(X;A) l: (A-A lin (i,j) (X(O) , .•• ,xeD»~
i,j':'2 c t

where
(i, j )

n
t

(. , ... ,. ) is a continuous functional, homogene-

ous of degree j. We must now solve

with x(O) = X(T), X E CO(_oo,oo;~). The following form is

assumed for X:

( 2 1T t NA -

lx, X(t) e T X + X(t) - X(t) + X(t)

!( - .2.:II!NT A
e X(t)dt = aU

l
(A) +aU

l
(X) (9A.3)

l T 0

Decomposing the equation for X(t) according to (9A.3), one

can solve for X(t) using the implicit function theorem

X(t) q (X,A,T)
t

t E [O,T],

where q(i,j,k) (X;t) is homogeneous of degree k with res-

pect to X. X(t) is now replaced with qt(X,A,T) in the

other equation (the one for X). Splitting the result into

real and imaginary parts one obtains

21T 2
n = T + g (I a I ,A ,T) = 0

with f(O,A,T) = g(O,A,T) = O. The development in Taylor

series about the point has first term

It is in this way that a non-zero value of allows a

solution for and T

Yo
r

by the implicit function theorem.

This completes the determination of X(t), yet) and there­

fore %'(t,E).
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Now that we have the periodic solution it is desired to

exhibit its stability properties. We consider a nearby solu­

tion U(t) and set U(t) = %'(t+o , E) + u ' (t). Then U' (t)

satisfies
(lU'
at AE(t+o)U' + M(U' ,U')

U' (0)

where

U0 = %'( 0, E) E E!

ou' E C (0,00; E!) n c' (O,oo;H)

A (t+o)
E

(0)
-LA + M [%'(t+O,E),·], A

Therefore, in order to study stability one examines the pro-

perties of the solution of the linearized equation:

v(O) < 00

The solution of this equation is:

t
vet) = I (t)Vo + f IA(t-T)M(O)[%'(t+O,E),V(T)]dT.

A 0

We denote this solution as

The stability properties will come from the properties of the

spectrum of GE(T,o), which plays the role of the poincare map.

We can now state Iooss'

Theorem 3. The hypotheses of Theorem 2 being satis-

fied and the operator

above, the spectrum of

being defined by the equation

is independent of 0 E ~.

It is constituted on the one hand, by two real simple proper
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values in a neighborhood of 1, which are 1 and

1 - 8~~(1) (A-A
C

) + O(A-A
C
)' On the other hand, the remainder

of the spectrum is formed from a denumerable infinity of

proper values of finite mUltiplicities, the only point of ac-

cumulation being 0, there remaining in the interior of a disk

of radius S < 1 independent of E E ~(O) .

The following is then a direct result of Lemma 5 of

Judovich [10].

Corollary. The hypotheses of Theorem 2 being satis-

fied, if further YO < 0, the bifurcation takes place for
r

A E 0/- (A) and the secondary solution is unstable in thec

sense of Lyapunov.

Now the proof of Theorem 3 is outlined. The operator

GE (T, <5) is compact in~. Hence, its spectrum is discrete.

I,et 0 E spectrum of GE (T, <5). Then there exists V "I- 0 such

that oV G
E

(T,8)V. Then, if ~\T = G
E

(nT-<5 ,<5)V with n E N

such that <5 2 nT, OW = GE(T,O)W. Hence, spectrum (G E (T,<5)) C

spectrum (GE(T,O)). Similarly, the reverse containment holds.

To establish 1 E spectrum of

a%' a%'GE(T,O) ~(O,E) = ~(O,E).

G (T,<5), it suffices to show
E

Note that I A (TO) = lim GE(T,O).
c E+O

It can be shown that 1 is a semi-simple (multiplicity 2)

proper value of I A (TO). with all proper values sn
c

correspond a finite number of proper values of

If one removes

of

from the spectrum of LA , the proper values si are remain-
c

ing such that Re si > ~ > 0 => Log Isnl < -~TO < O. Thus,

the remainder of the spectrum of I A (TO) other than 1 is
c
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contained in a disk of radius strictly less than 1. Because

of the continuity of the discrete spectrum the same is true

of GE(T,O) for E E~(O). The other proper value of

GE(T,O) or GE(T,o) is found by studying the degenerate

operator

-1 -1
E (0" )0" ->-The bijection

- (1)
G

where E(E) is 2;if
r

[~l-GE]-ld~ with r being a circle

of sufficiently small radius about 1 and GE = GE(T(E) ,0).

One uses the expansion GE = I A (TO) + EG(l) + EG(E) where
c

and methods of the theory of perturbations toG(E) = 0(1)

obtain G(El

(in the basis

makes a correspondence between the proper values of G(E)

-(1)and G(E). The proper values of G are 0 and

-4T
O

Y
O

!a(l) /2 -8 rr s(1)sgn yO. This gives us 1 and
r r

1 - 8rrs(1) (A-A
C

) + O(E 2) as proper values of GE(T,o).

We now state

Theorem 4. If the hypotheses of Theorem 2 are satis­

fied and YO> 0, the bifurcation takes place for
r

A E ~+(AC) • There exist j1 > 0 and a right hand neighbor-

hood ~+(A ) such that if A E ~+ (A ), and if one can findc c
a E [O,T] such that the initial condition Uo satisfies

0

(E = IA-A ),
c
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then there exists 0t E [O,T] such that

IIU(t)- ~(t+Ot,E) /1
9

.... ° exponentially when t .... 00, U(t)

being the solution of (9A.l) satisfying U(O) = 00'

This case is not so simple since there is the proper

value, 1. The theorem results from the following lemma:

tion,

Lemma 9. Given V
o

E V(o), that is to say, satisfying

2
/ IPovol /9 ':::']J 1 E , then the equa-

3V = A (t+o)V + M(V V)3t E ' , V(O) = Va'

admits a unique solution in CO(O,OO; 9) n Cl(O,oo;H) such

that IIV(t) 11
9

.:. ]J2E2e-cr/2 t, V t > O.

We must identify some of the terminology. First, Eo

3-~is the projection onto a vector collinear to 3~(O,E), and

"Po = 1 - Eo' We have ~(PoVO'E'O) == Eo ~O{nT[WO(PoVO'E'O)'E'O],

nt[···];E,O}. The notation on the right hand side is associa­

ted with the following problem:

A v
vet) = GE(t,o)Wo + 9

t
(V,V;E,O) + 9 t (V,V;E,O)

with

A

9
t

(u,V; E,O) It G (t-T,T+O)P", M[U(c),V(T)]dT,° E u+T

~t(U,V;E,O) = _I
oo

G (t-T,T+O)Eo M[U(T),V(T)]dT,
t E +T

where W
o

is such that EoWO
= 0, and where one searches for

in the Banach space 9
S

= {V:
St E CO(0,00;9)},V t .... e Vet)

provided with the norm Ivl S = sup IleStv(t) 1/
9

, with
tE(O,oo)

S = cr/2.

These estimates can be shown:
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/Gs(t,o)Wol s .::. MIIIWollg'

~ 1
l~t(U,V;S,O) 113 ~ M

2
ya- lulSlvl s '

v -1
l~t(U,V;s,o) 113 ~ M2ya luiS/viS

where Y is a bound for the bilinear form M. It results

that there exists a llO independent of such that for

/Iwo II ~ llos2, there exists a unique V in ~ satisfying

the above problem. The solution is denoted V(t) = n (WO,S,O).
v t

Now, V(O) nO(WO's,o) = Wo + ~O[nT(WO's,o), nT(WO's,o);s,o]

which gives after decomposition:

v

E0~a [ nT (W o ' s , 0) , nT (Wa's' 0) ; s ,0] ,

v

PoVo = Wo + PO~O[nT(WO,s,o),nT(WO's,o);s,o].

aAfter having remarked that aw
O

[nT(WO's,o)] W
o

= a Gs(t,o),

it is easy to find III independent of s such that if

/ IPovOI I ~ llls2, then the second of the above equations is

solvable with respect to W
o

by the implicit function theorem,

2
and Wo = WO(PoVO's,o) satisfies IIWOllg ~ llOS. The nota-

tion is completely explained. The proof from here on is not

too difficult. The uniqueness comes from the uniqueness of

the solutions to (9A.l) on a bounded interval for s suffici-

ently small. The lemma will be demonstrated as soon as it is

shown that the solution of our above problem is the same as

the solution of the equation in the lemma. But this follows

immediately utilizing %t GS(t-T,T+O) = As(T+O)Gs(t-T,T+O)

a ~

in evaluating at ~t(V,V;s,o)

is seen that the manifold V(o)

v
and ~t ~t(V,V;s,o). (It

is nothing more than the set
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of Va such that W
a

can be found with

satisfying the equations for P8Va and

and

The techniques of Iooss are very similar to those of

Judovich [1-12] (see also Bruslinskaya [2,3]). These methods

are somewhat different from those of Hopf which were gener­

alized to the context of nonlinear partial differential equa­

tions by Joseph and Sattinger [1].

Either of these methods is, nevertheless, basically

functional-analytic in spirit. The approach used in these

notes attempts to be more geometrical; each step is guided

by some geometrical intuition such as invariant manifolds,

Poincare maps etc. The approach of Iooss, on the other hand,

has the advantage of presenting results in more "concrete"

form, as, for example, %'(t,E) in a Taylor series in E.

This is also true of Hopf's method. However, stability cal­

culations (see Sections 4A, SA) are no easier using this

method.

Finally, it should be remarked that Iooss [6] presents

analogous results to this paper for the case of the invariant

torus (see Section 6).
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SECTION 9B

ON A PAPER OF KIRCHGASSNER AND KIELH6FFER

BY O. RUIZ

The purpose of this section. is to present the general

idea that Kirchgassner and Kielhoffer [1] follow in resolv-

ing some problems of stability and bifurcation.

The Taylor Model.

This model consists of two coaxial cylinders of in-

finite length with radii r'
1

and r'
2 rotating with

the gap between the
riwI(r;-ri)

v
cylinders. If A is the Reynolds number

constant angular velocities wl and W2 • Due to the vis­

cosity an incompressible fluid rotates in

(v the viscosity), we have for small values of A a solu-

tion independent of A, called the Couette flow. As A in-

creases, several types of fluid motions are observed, the

simplest of which is independent of ¢ and periodic in z,

when we consider cylindrical coordinates. If we restrict our

considerations to these kinds of flows and require that the
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solution v be invariant under the groups of translations

Tl generated by z + z + 2n/0 and ¢ + ¢ + 2n, 0 > ° and

(Vr,V¢,Vz)'P in cylindri­

cal coordinates, (we assume V,P are given) we may write the

N-S equation in the form

(a) DtU - 6u + AL(V)u + A6q = -AN(u),

(b) V'u °, ul r=r l ,r2
0, u(Tx,t) = u(x,t),

(9B.l)

where

v V + u, P = P + q,

d d(ar' 0, 32")' (gradient)

L(V)u

N(U)

LO(V)U + (V·V)u + (u·V)V,

(u·V)u + Q(u).

The Benard model consists of a viscous fluid in the

strip between 2 horizontal planes which moves under the in-

fluence of viscosity and the buoyance force, where the latter

is caused by heating the lower plane. If the temperature of

the upper plane is Tl , and the temperature of the lower plane

is TO (TO> Tl ), the gravity force generates a pressure dis-

tribution which for small values of T - T
1 ° is balanced by
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the viscous stress resulting in a linear temperature distri-

bution. If however is above a critical point of

value, a convection motion is observed. Let a, h, g, v, P,

k denote the coefficient of volume expansion, the thickness

of the layer, the gravity, the kinematic viscosity, the den-

sity and the coefficient of thermodynamic conductivity res­

pectively. We use Cartesian coordinates where the x 3-axis

points opposite to the force of gravity, 8 denotes the tem-

perature and p the pressure. By the N-S equations we have

the following initial-value problem for an arbitrary reference

flow V, T, P. If W = (u,8), v = V + u, P = P + q, 8 = T + 8,

we have

-
(a) DtW - ~w + AL(V)w + Vq = -N(W),

(b) V'w 0, wl x =0,1
3

0, (9B.2)

(c) wi = wO
t=O

where A = ag(To-Tl)h3/v2 (Reynolds numJ::er or Grashoff num­

ber)

v (a/axl , a/ax
2

, a/ax
3

, 0) ,

a
2 ?

a
2

+,L
~ik

L °i4) , Pr k/v(-2 +
ax 2

+ -2) (oik PraXl 2 aX
3

0 -0 ° _,L °i40k3'L
ik i3 k4 Pr

L(V)w
0

(V·V)w+ (u' V)V,L W +

N(w) (u· V)w.

Since experimental evidence shows that the convection
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takes place in a regular pattern of closed cells having the

form of rolls, we are going to consider the class of solutions

such that

w(Tx,t) w(x,t) , q{Tx,t) = q{x,t)

where T E T
l

, and Tl

is the group generated by the translations

x ....
1

u{Tx,t)

q(Tx,t)

Tu{x,t)

q (x,t)

e(Tx,t) e (x,t)

where T
2

is the group of rotations generated by

(c?s " -sin a 0Ta S1.n a cos a
0 0

Note. It is possible to show that all differential

operators in the differential equation preserve invariance

under Tl and T
2

• An interesting fact is that a necessary

condition for the existence of nontrivial solutions is

a = 21f/n, n E {1,2,3,4,6}, and that there are only 7 pos-

sible combinations of n,a,S, which give different cell pat-

terns (no cell structure, rolls, rec~angles, hexagons, squares,

triangles) •

Functional-Analytic Approach.

The analogy between (9B.l) and (9B.2) in the Taylor's and
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Benard's models suggests to the authors an abstract formula-

tion of the bifurcation and stability problem. In this part

I am going to sketch the idea that the authors follow to con­

vert the differential equations (9B.l) and (9B.2) in a suitable

evolution equation in some Hilbert space.

We may consider D an open subset of R3 with bound­

ary dD which is supposed to be a two dimensional C
2
-mani-

fold. T
l

denotes a group of translations and ~ its funda­

mental region of periodicity which we may suppose is bounded.

Assume
D U T~.

'lET1

Now we consider the following sets (ct closure)

{wlw: ct(D) + Rn , infinitely often differentiable

in ct(D), w(Tx) = w(x), T E T
l

},

{wlw E CT,oo(D), supp weD},

Defining

0, w

f (DYv(x)·DYW(x))dx
w

where

(v,w)
'm

L (DYv,DYW),
IY I:.m

Ivlm

and Y is a multiindex of length 3; one obtains the follow-

ing Hilbert spaces

aT
H
l,a

For the Taylor problem we have
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n 3, D

and for the Benard problem

n = 4, D = R2
x (0,1), R the real numbers

n [0,21T/a) x [0,21T/13) x (0,1)

We may consider that the differential equations of the
T

form (9B.l) or (9B.2) are written with operators in L2 .

From H. Weyl's lemma it is possible to consider L~
aT

G
T,

T
J E& where G contains the set of V such thatq

T
LT

->-
aT

q E Hl . We may use the orthogonal projection P:
2

J

for removing the differential equation D w - ~w + AL(V)w +
t

AVq = -AN(w) with the additional conditions of boundary and

and since we look for solutions on

Pu = u, and we may write the new equation in
aT
J

If we con-periodicity, to a differential equation in

T
q E H

l
, pVq == 0sider

aT
J , we have

as

dw + P~u + APL(V)
at -APN(w) (9B.3)

owith initial condition wt=O = w .

The authors write (9B.3) in the form

dw + A(A)w + h(A)R(w)
dt

0,
o

w ,

-where A(A) = P~ + APL(V), R(W) = PN(w) and where heAl A

for Taylor's model and heAl 1 for Benard's model.

Also l they show using a result of Kato-Fujita, that it
-

is possible to define fractional powers of A(A) by
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- -S 1 foo - S-l
A(A) = f(Ff oexP(-A(A)t)t dt,

and that this operator is invertible.

13 > 0,

The ahove fact is useful in resolving some bifurcation

problems in the stationary case. If A = P~, M(V) = PL(V)

the stationary equation form (9B.3) is

(Sp) Aw + AM(V)w + h(A)R(w) °
where V is any known stationary solution with V E Domain

of A.

If we consider the substitution = v

K(V)
-1/4 3/4

A M(V)A-

we may write (Sp) in the form

v + AK(V) + h(A)T(v) = 0.

If one uses a theorem of Krasnoselskii, it is possible to

show the following theorem.

Theorem 4.1. Let be A. E R, A. f ° and
J J

an eigenvalue of K of odd multiplicity, then

(-A. )-1 be
J

i) in every neighborhood of

there exists (A,W), ° f W E D(A)

stationary equation (SP).

(A. ,0)
J

such that

in

W solves the

ii) if (_A.)-l is a simple eigenvalue, then there
J

exists a unique curve (A(a),w(a» such that weal f ° for

a f ° which solves (SP), moreover (A(O),W(O» = (A.,O).
J

Now if we assume that V E C(IT)
00

and dD is a C

manifold which is satisfied for the Taylor and B~nard Problem,
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and we consider solutions of (Sp) on the space Hm+2 n Hl,a'

m > 3/2, we may write the (SP) equation in the form

(SP) , Amw + \Mw + h(\)R(w) = °
where is an operator whose domain is D(Am) = H

m+2
n

HI, a C PRm, Am (w) = AW, wED (A) • If besides we consider

that in R(w) = PN(w), N(w) is an arbitrary polynomial opera-

tor including differentiation operators up to the order 2,

and Km MA~l we may obtain the following theorem.

Theorem 4.2. Let V E C(D), dD be a Coo-manifold;

and fulfill the boundary

plicity, (\ . ,0) is a
J

tions w are in cO)")

condition wlaD = 0.

let M such that there exists constants C
l

and C2 such

that IMWlm+l ~ cllwlm+2 and /MA:lwl m+l ~ c2lwlm. Then

for every eigenvalue (_\.)-1 of K, \. f 0, of odd multi-
J m J

bifurcation point of (SP) '. The solu-

We may note that this theorem shows that we may obtain

a strong regularity for the branching solutions. Besides,

we note that in theorems 4.1 and 4.2 the existence of non-

trivial solutions of (SP) is reduced to the investigation

of the spectrum of K or Km•

Now, we are going to apply these theorems to the

Taylor's and Benard models.

Taylor Model. For this model we take K = A:l/4M(vO)A-3/4

the solution is given by

where o
v is the Couette flow. In cylindrical

° °v (O,v~,O) where

coordinates

°v~ = ar + b/r
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a b

When a ~ 0, v~ > 0, Synge shows that the Couette flow is

locally stable.

For a < 0, v~(r) > 0, Velte and Judovich proved the

following theorem for the K operator.

Theorem 4.3. Let be °a < 0, v~(r) > ° for r E

(r
l
,r2 ), T

l
the group of translations generated by z + z +

2TI/a; ~ + ~ + 2TI, a > 0. Then for all a > 0, except at

most a countable number of positive numbers, there exists

a countably many sets of real simple eigenvalues (-A.) -1 of
1.

K. Every point (Ai,O) E R x D(A) is a bifurcation point of

the stationary problem where exactly one nontrivial solution

branch (A(~),w(~» emanates. These solutions are Taylor

vortices.

Strong experimental evidence suggest that all solu-

tions branching off (Ai,O) where Ai f Al are unstable;

however, no proof is known.

Benard model. In this model if

a = (~2+S2)1/2, ~,. S like on page3l8, it is known that for

some Al (a), A E [O,A l ], w = ° is the only solution of the

stationary problem.

For this model the bifurcation picture is determined

by the spectrum of K = A-l/4M(VO)A-3/4, where v O is given

in Cartesian coordinates by
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In order to obtain simple eigenvalues, Judovich introduces

even solutions u(-x) = (-u
l

(x) ,-u
2

(x) ,u3 (x», 8(-x) = 8(x),

g(-x) = -q(x), and he shows in his articles, On the origin of

convection (Judovich [6]) and Free convection and bifurcation

(1967) the following theorem.

Theorem 4.6. i) The Benard problem possesses for ap-

prximately all a and B countably many simple positive

characteristic values A.• Furthermore (A. ,0) E R x D(A) is
1 . 1

a bifurcation point.

ii) If n, a, B are chosen according to the note on

pg. 318, the branches emanating from (Ai,O) are doubly

periodic, rolls, hexagons, rectangles, and triangles.

iii) If Al denotes the smallest characteristic value,

then the nontrivial solution branches to the right of A~

and permits the parametrization W(A) = ±(A-Al)1/2F (A) where

F: R + D(A) is holomorphic in (A-A
l

)1/2.

It is interesting to observe that since the character-

istic values are determined only by 0, we may consider dif-

ferentials a, B with the same value of 0, and to note that

we have solutions of every possible cell structure emanating

from each bifurcation point.

Stability.

About this topic I am going to give a short descrip-

tion of the principal results.

It is known that the basic solution loses stability

as in the past section. Under

the assumption that Ac simple, the nontrivial
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solution branch emanating from (AI,O) gains stability for

A > Al and is unstable for A < AI' This result can be de­

rived using Leray-Schauder degree or by analytic perturba­

tion methods.

Precisely if we take +V = Vo + w where is a

stationary solution of (SP) V is called stable if for

A(A) = A + AM(V), W = 0 is stable in sense with respect to

strict solutions in D(AS), 3/4 < S < 1. (Strict solution in

the sense of Kato-Fujita of the article), and V is called

unstable if it is not stable in ST. If we consider that

the nontrivial solution branch (A(a),V(a» in R x

lal < I (A(O),V(O» = (AlvO) can be written in the form

a(A)
r E N

where F: R +D(A) is analytic in (A-AI)I/r and F(A
I

) f 0

(valid conditions for Benard's and Taylor's models (Theorem

4.6 and Corollary 4.4), we have the following Theorem or

Lemma 5.6.

Lemma 5.6. Assume A
C

= Al and Re ~ > a > 0 for all

nonvanishing ~ in the spectrum of G(A(AI,VO»' Let Al

be a simple characteristic value of K(V O)' 0 a simple eigen­

value of A(AI,vO)'

Then, if A is restricted to a suitable neighborhood

of Al

i) Vo is stable for A < Al and unstable for

A > A
I

ii) veAl is stable for A > Al and unstable for



326 THE HOPF BIFURCATION AND ITS APPLICATIONS

For the B~nard's model, the assumptions of Lemma 5.6

are satisfied for fixed n, a, S; A1 is a simple character­

istic value of K(V O) by Theorem 4.6 and A
C

= A1 follows

from Lemma 4.50f the article.

For the Taylor's model only the simplicity of A1 as

a characteristic value of K(VO) is known. The simplicity

of ~ = 0 in 0(AA 1 ,V
O

) is an open problem.

However, we may give the following theorem.

Theorem 5.7. i) For the Benard's problem, every solu­

tion with a given cell pattern (fixed n, a, S) exists in

some right neighborhood of A1 and is asymptotically stable

in D(AS), S E (3/4,1). The basic solution Vo is asymptoti­

cally stable for A < A
1

and unstable for A > A
1

•

ii) For the Taylor's problem, let the assumptions of

Lemma 5.6 on the spectrum of A(A;VO) be valid. Then for

every period (0 fixed) V(A) is asymptotically stable if it

exists for A > A
1

, and is unstable if it exists for A < A
1

•

Finally, we remark that these results can also be ob-

tained using the invariant manifold approach. (See, for

example, Exercise 4.3). That this is possible was noted a1-

ready by Rue11e-Takens [1] in their elegant and simple

proof of Velte's theorem. We also note that Prodi's basic

results relating the spectral and stability properties of the

Navier-Stokes equations are contained in the smoothness pro-

perties of the flow from Section 9 and the results of Sec-

tion 2A.
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SECTION 10

BIFURCATION PHENOMENA IN POPULATION MODELS

BY

G. OSTER AND J. GUCKENHEIMER
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1. Introduction: The Role of Bifurcations in Population

Models.

Biological systems tend to be considerably more com­

plex than those studied in physics or chemistry. In analyz­

ing models, one is frequently presented with two alternatives:

either resorting to brute force computer simulation or to

reducing the model further via such drastic approximations as

to render it biologically uninteresting. Neither alternative

is attractive. Indeed, the former alternative is hardly

viable for most situations in ecology since sufficient data

is rarely available to quantitatively validate a model. This

contrasts starkly with the physical sciences where small dif­

ferences can often discriminate between competing theories.

The situation is such that many ecologists seriously question
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whether mathematics can play any useful role in biology.

Some claim that there has not yet been a single fundamental

*advance in biology attributable to mathematical theory.

Where complex systems are concerned, they assert that the ap-

propriate language is English, not mathematical. A typical

attitude among biologists is that models are useful only inso-

far as they explain the unknown or suggest new experiments.

Such models are hard to come by.

In the face of such cynicism, perhaps mathematicians

who would dabble in biology should set themselves more modest

goals. Rather than presenting the biological community with

an exhaustive analysis of an interesting model, it might be

better to produce a "softer" analysis of a meaningful model.

From this viewpoint, the role of mathematics is not to gen-

erate proofs, but to act as a guide to one's intuition in per-

ceiving what nature is up to. This is no excuse for avoiding

hard analysis where it can be done, but as models mimic nature

more closely it becomes harder to prove theorems.

In this spirit, we shall discuss several instances

where some concepts of bifurcation theory have proved useful

in ecological modelling. We shall discuss (briefly) bifur-

cation phenomena in three kinds of population models: (i) dis-

crete generation populations modelled by difference equations,

(ii) continuously breeding populations modelled by ordinary

differential equations, and (iii) populations with age struc-

ture which require partial or functional differential equations.

*Perhaps excluding the Hardy-Weinberg law--which is trivial
mathematically.
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These represent three successive stages of increasing biolog­

ical realism as well as mathematical intractibility. Thus

we shall proceed from less realistic models based upon solid

mathematical foundations to more realistic models based upon

mathematical intuition. In all cases, however, the useful­

ness of bifurcation theory transcends our ability to cite

theorems. By furnishing a qualitative modelling mechanism,

it provides a conceptual framework within which we can view

a number of important ecological processes.

2. Populations with Discrete Generations.

(2.1) Consider an insect population which breeds

once a year. A plot of the total number of individuals as a

function of time might look like Figure lO.la:

--L
'--"'-'-.L......L_-..:..~!.....L.L.L:lo...----,,__----L .J- ---4._ t

Figure lO.la

If we are only interested in either the mean, total or aver­

age number each year, we might consider an approximate dif­

ference equation model as shown in Figure lQ.ln:
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N N orNtot' ov max

o
o

2 3 4
t

Figure 10.lb

i.e., an equation of the form:

(2.1)

Models of this kind are commonly employed in entomology

(Hassell & May, [1]; Varley, Gradwell & Hassell, [1]). In

general, F(·) will have the shape shown in Figure 10.2:

Figure 10.2

N

The reason for this is that as the population density in-

creases crowding effects, such as competition for food, tend

to increase deathrates and decrease birthrates.
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Typical functional forms that have been employed in

modelling insect populations are:

r(l-Nt/K)
Nt +l Nte

Nt +l Nt
A

(l+Nt)b

Nt +l
Nt
a <I-N/K)

l+e

= { ANt'
N < 1

Nt +l
t

AN1- b
Nt > 1

t '

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Each of these models has the origin as a fixed point and have

the "l-hump" characteristic of Figure 10.2, Le., single

critical point less than the positive fixed point. Beyond

this, however, they are largely empirical, generated ad hoc

*by regression of one generation on the next. By and large,

however, such simple-minded models have been surprisingly

effective in reproducing the generation-to-generation varia-

tions in population levels. (Auslander, Oster, Huffaker,

[ 1] 1 Varley, et. al., op. cit.)

*Note that, for r« 1, equation (2.2a) is

(2.2a*)

which is just the forward difference equation corresponding

to the familiar logistic equation for population growth:

~~ = rN(l - ~). Thus, r in (2.2) can be interpreted as the

net generation-to-generation reproductive rate. Although
Equation (2.2a) can exhibit bifurcations, (2.2a*) cannot.
(i.e., for large r, (2.2a) has a critical point, so it can­
not be a finite version of (2.2a*».
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(2.2) Whether or not the population, as modelled by

any of equations (2.2), settles down to a steady generation-

to-generation level depends on the stability of the fixed

point, F(N) = N, N > 0, and perhaps the initial condition.

This, in turn, depends on the particular parameter values,

such as r in (2.2a). Let us consider (2.2a) as the proto-

type for our discussion. The eigenvalue of F(·) at the

fixed point N = K is A(r) = F ' (N) = l-r. As the reproduc-

tion rate increases past 2, A(r) moves across the unit

circle and N ceases to be an attractor. However, if F i

has a critical point--as we have supposed in the models (2.2)

--then the composition of F with itself will have at least

3 critical points and we can look at the period-2 fixed

points:

(2.3)

and the eigenvalues of F2 at these points:

(2.4)

The stability of the pair of period-2 points, which have

split off from the original fixed point as r crosses 2, is

determined by the eigenvalues, A
2

(r). Initially stable,

these period-2 points bifurcate when jA
2

(r) I ~ 1. In this

case, the nature of the bifurcation depends on whether it oc-

curs at +1 or -1. At A < -1 each period 2 point bifur-

cates into a pair of stable points with period 4. This pro-

cess continues as r increases: bifurcations from Ak(r) = -1

giving rise to pairs of attracting points of period 2k while

bifurcations from Ak(r) = +1 either create or 'destroy
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periodic points. (c.f., Figure 10.3.)

bifurcation from
A Ir)=+1 ./

k )f \
\
\

bifurcation from

\ ,Jj Alr)=-I
\';/ r k E

(

I-- ~- r

Figure 10.3

The orbit generated by F(·) becomes successively more com-

plicated with each bifurcation--the initially stable fixed

point splitting to orbits of successively higher periods.

This can continue indefinitely, with bifurcation points oc-

curing closer and closer together. As r is increased past

2, exciting successively stable higher periodic orbits, there

can occur a limit point, re' beyond which completely aperiodic

points appear. That is, orbits are genetated -which do not

tend asymptotically to a periodic orbit. Sufficient condi-

tions for such aperiodic orbits to exist has been given by

Li and Yorke [1]. If F(') folds some interval onto it-

self as shown in Figure 10.4a, then there exist aperiodic

points (i.e., initial conditions which do not lie in the do-

main of attraction of any stable fixed point).
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c

d<a

d a1--:1_-_-_-_------~---............)

Figure lO.4a

Alternatively, if the population exhibits a "3-point cycle"

wherein the population rises 2 years in succession and then

crashes past the original level, then non-periodic motion

will ensue, (c.f. Figure lO.4b):

a b c d

Figure lO.4b

The consequences of this phenomenon for ecological modelling

are profound. We can have confidence in a model only if it

is subject to experimental validation. If a series of yearly

censes are collected of some population, and they appear
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chaotic, exhibiting no perceivable regularities, then we can

conclude one of three things: (a) the system is truly sto-

11

0
11

chastic--dominated by random influences; (b) experimental

error is of such magnitude that all regularities are ob-

scured; (c) a very simple deterministic mechanism is operat-

ing, but is obscured by the phenomenon described above. As

an extreme case, the orbit generated by the simple map shown

in Figure 10.5 is indistinguishable from a sequence of

Bernoulli trials!

o 1/2
'---v---J---'-_T---J

It(

Figure 10.5

For systems of 2 interacting populations (e.g., predator-

prey, parasite-host, etc.) the situation is even more deli-

cate and little is known about the transition to aperiodic

motion. However, May [2] has simulated some 2-population

difference equation models. He found that the population

trajectories exhibited chaotic behavior for quite reasonable

parameter ranges.

3. Populations with Overlapping Generations.

(3.1) If a population breeds continuously, so that the
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generations overlap, then the appropriate model is an ordin-

ary differential equation of the form

dN
dt

Nf(N) N[ (per caPita)

birth rate (
per caPita) J
death rate

(3.1)

The number of such models in the literature is legion, and

we shall comment only briefly on certain aspects pertaining

to their bifurcation behavior.

(3.2) A recurrent theme in ecology is the phenomenon

of population oscillations. The earliest prototype was the

predator-prey equations of Volterra and Lotka (see, for

example, May, [1]):

(3.2)

The solutions to (3.2) are indeed periodic (Hirsch and Smale,

[1]), but are neutrally stable, the amplitude of the oscilla-

tions depending on the initial conditions.

Recently, May [1,2] has shown that virtually all of

the models for predator-prey systems possess either a stable

equilibrium or a stable limit cycle (in the first quadrant).

H~s demonstration hinges on showing that most models fall

within the purview of a theorem by Kolmogorov [1], which is

essentially an application of the Poincare-Bendixson Theorem

to systems of the form (1). [Essentially, any population

model such that 1) there is a single unstable singularity in

the first quadrant and 2) the axes are invariant (e.g.,
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N = ~!(~)) will have a limit cycle since large radius orbits

must be directed inward due to the finite population limita-

tion that must be imposed on any realistic model.]

A typical predator-prey system which exhibits limit

cycle behavior is: (Rosenzweig, [1]; May, [1]):

-cN
l- kN

2
(1-e )

-fNl
S(l-e )]

(3.3)

The interpretation is that the prey, Nl , in the absence of

the predator, grows logistically and the predator, in the ab-

sence of prey, dies out exponentially. The second term in

the first equation models a predator population whose capa-

city to capture prey gradually satiates.

The equilibrium point of equation (3.3) can be com-

puted explicitly:

N In(l
b -l/f

+ S)1
N b clf

N2
= rN

l
(1 - -l)/k[l (1+ !) ] .

K

Then, computing the Jacobian at the equilibrium it is easy

to check that the signs of the determinant and trace depend

on the magnitude of the parameters {r,K,k,c,b,S,f} = n.

Thus, there exists a family of curves, parametrized by some

combination of members of ~, carrying the eigenvalues into

the RHP (c.f. Figure 10.6). Since large radius orbits move

inward, the limit cycles are indeed generated by the Hopf

mechanism. We also note that, since the eigenvalue trajec-

tories are controlled by more than one parameter, the limit
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cycle can appear at finite, rather than zero amplitude.

Tr

sta ble

Figure 10.6

(3.3) Predator-prey type equations have been used by

Bell [1] to model "populations" of antibody and antigen in

the immune response. Using Friedrichs' [1] version of the

bifurcation theorem, Pimbly [1] demonstrated that Bell's

equations exhibit periodic behavior which can be interpreted

biologically in terms of the mechanism controlling infection.

(3.4) For systems of 3 or more species the possibil­

ityof higher order bifurcations raises the same operational

problems as we encountered for difference equation models.

Successive bifurcations beyond the first occur when the

eigenvalues of the Poincare map passes outside the unit cir­

cle (Hirsch and Smale, [1]), thus higher periods, (and

aperiodic behavior) of this difference equation will produce

quite chaotic-looking population records. This phenomenon

is quite well known in Hamiltonian systems (Arnold and Avez,

[1]). Since it is generally much more difficult to obtain a

reliable experimental record for population systems, the
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existence of such "strange attractors" would imply that the

model may well not be experimentally verifiable.

Thus we find that bifurcation in model equations are

a mixed blessing, explaining some phenomena and obscuring

others.

4. Age-Structured Populations.

(4.1) By using ordinary differential and difference

equation models we have taken a naive view of population

dynamics by assuming that the state of the population is

specified by total population number alone. A moments reflec-

tion shows that, in order to predict the growth of a popula-

tion, account must be taken of internal variables such as age

and size distributions. Clearly a thousand individuals past

breeding age, or all of one sex do not constitute a viable

population. In this section we shall illustrate some of the

consequences of including the population age structure as a

state variable.

(4.2) The equation of motion for an age-structured

population is easy to write down. Let rt(a,t) = population

age density function, i.e., N(t) = foon(a,t)da = total popula­
a

tion. Then a conservation equation can be written for n:

Cln + div Jat n
loss by deaths. (4.1)

Since the flux

vn, where v =

of

da
dt

individuals, I
n

, through age-time

1, we can write

is just

Cln Cln
Clt + Cla

(4.2)
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where ~(a,t,') is the age-specific deathrate. The special

feature of the equation is the boundary condition giving the

birthrate,

n(O,t) = foo b(a,t,')n(a,t)da
o

(4.3)

where b(a,t,·) is the age-specific birthrate. As we have

indicated, the birth and death rates are functions of other

variables as well. For example, population density frequently

affects mortality and fecundity, so that

where

b

N

~(a,t,N)

b(a,t,N)

fOOo n(a,t,N)da.

(4.4a)

(4.4b)

(4.5)

is the total population. With appropriate smoothness and

boundedness assumptions, Gurtin and MacCamy [1] proved exist-

ence and uniqueness for the system (4.2) - (4.5). We note

that in engineering terms the age equations constitute a

"distributed parameter positive feedback system." This

easily implies that, as birthrates increase and/or deathrates

decrease, the'system will pass from a stable to an unstable

regime. In the next subsection we examine the bifurcation

behavior of a single population feeding off a single re-

source. Then we model a host-parasite system by coupling

two age systems together. In both cases the existence of

bifurcations must be inferred from qualitative and numerical

arguments, since direct verification is unavailable. Never-

theless, we shall gain significant insights into some inter-

esting ecological phenomena via our models.
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(4.3) In one of the best known experiments in eco-

logy, the Australian entomologist A. J. Nicholson maintained

a population of sheep blowflies on a diet of chopped liver

and sugar for several years. In Figure 10.7 we have repro-

duced a portion of his data. The biological explanation for

the violent oscillations is straightforward: Nicholson de-

liberately kept the food supply to the adult flies below the

level required to sustain a population the size of one of the

peaks. At moderate population levels competition prevents

any individual from obtaining enough protein. Protein starva-

tion, in turn, reduces the fecundity of each adult fly so

that the next generation is much smaller. For this smaller

generation the food supply is adequate and the fecundity re-

bounds to its maximum level.

A model for this situation must include some account-

ing for the nutritional state of the adult flies since this

governs the rate of egg laying. Accordingly, we shall define

a variable, ~, which measures the nutritional state (e.g.,

mass, "health") (Oster and Auslander, [1]). A conservation

equation in (t,a,~) coordinates takes the form

dn dn d )at + aa + ~(gn = -1Jn

where

g (t,a,Cf)

(4.5)

(4.6)

is the growthrate of ~, which depends on the food supply,

f(t). The birthrate is then

n(O,t,~) = ff da d~' nb(t,a,C,S).

The equation for the food abundance is

(4.7)
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~~ = u(t) - C(t,a,n)

343

(4.8)

where u(t) is the rate food is supplied to the population

and C(·) is the consumption rate by the adult flies. Rea-

sonable empirical forms for the functions b(·), ~(.), Care

shown in Figure 10.8. A careful numerical simulation of this

(a) fecundity

:--------- a

(b) mortality

C(f)

f (food available)

(c) consumption

Figure 10.8. Constitutive Relations

model shows reasonable agreement with experiment, Figure 10.9

(Oster and Auslander, [1]). However, we would like to see

how the model generates these oscillations; naturally, the

mechanism of bifurcations suggests itself. In order to exa-

mine this mechanism let us consider the simpler population-

resource system
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-- simulation
-- --- Nicholson data
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Figure 10.9

Comparison of simulated results with experimental data.

an an = -"nar+aa: ... (4.9a)

n(O,t) J b(a,R)n da (4.9b)

dR
crt F(R,n) • (4.9c)

Regardless of the form of the functions the equations, lin-

earized about an equilibrium state, will take the form (Oster

and Takahashi, [1])

ax + ax
'dE" aa

J
(X+Y

x(O,t) = gR(t) + b x(t,a)da
a

(4.10a)

(4.10b)

dR
dt

-AR(t) - By(t) + Cu(t) (4.10c)
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where g,

J""
yet) =

o

A, B, C, ~ and D are linearization constants and

x da. One way to obtain the response of system

(4.10) to various food supply schedules, u(t), is to compute

the "transfer function" (Takahashi, Rabins,

That is, equation (4.l0a) can be written as

Auslander, [1]).

axdt = Lx where

L is a linear operator. Note that the initial conditions

for the linearized system are zero, thus taking the Laplace

Transform with respect to time is equivalent to the eigen-

value equation Lx(a,s) = sx(a,s), where sEC. Therefore,

we can compute the spectrum of the system (4.10) as follows.

Taking the Laplace Transform of system (4.10) we obtain

X(a,s)

R(s)

e-(s+i:i")aG(S)R(S)

__--:C=- U(s)

S+A+ ~(s)
s+~

(4.11)

(4.12)

where X(a,s), R(s) and U(s) are the transformed variables

and

G(s) gil _ ~{e-(s+i:i")a _ e-(s+~) (a+y )}

s+i1
(4.13)

Thus, the response, or "output", X(s,a) can be expressed in

terms of the input, U(s), as

X(a,s) g(s)U(s) (4.14)

where g(s) e-(s+iJ)aG(s) is the "transfer function". The

response of the total population to food supply can be

written

yes) 1

s+i1
G(s)R(s) (4.15)
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where Y(s) = fooX(a,S)da. The characteristic equation for
a

the system is given by the denominator of equation (4.1):

1 +
Bg

-(s+~)a -(s+V)y
(s+A) {s+il - be (l-e }

o. (4.16)

The roots of (4.16) yield the system eigenvalues, as can be

verified directly by substitution into (4.10). The product

Bg can be interpreted as measuring (effect of population

on food level) x (effect of food level on birthrate). Thus,

by varying the "gain", Bg, each of the infinite number of

eigenvalues traces out a path on the complex plane. Clearly

the system is asymptotically stable for u(t) 0, for the

population will eventually starve. For u(t) > 0, the dyna-

mics are controlled by, the parameter (Bg). We can get

some idea of the effect of varying (Bg) on the system eigen­

values by examining the special case of b(a) = b*O(a-a),

i. e., all births occur at age a. The characteristic equa­

tion then becomes:

1 +
Bg

(s+A) (s+'il) (l-b*e- (s+V) a)

O. (4.17)

At Bg = 0, (4.17) has roots as s = -A, s = -~, and those

satisfying

(s+i1") a
e b*. (4.18)

Setting s = a+ iw, the roots of (4.18) are seen to be at

a = p, w 2nTI
, n = 1,2, ••• , where s = p is the real root

a
of (4.18). In Figure 10.10 we sketch the "root locus"

(Takahashi, Rabins and Auslander, [1]) for equation (4.17)

as (Bg) is varied from a to 00 (Oster and Takahashi, [1]).
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-A

Figure 10.10

The branches start at Bg = 0 (denoted by xi and, as

Bg + 00, approach the asymptotes w = ± 2~n, n = 0,1, ...

What is apparent from Figure 10.9 is that there is some range

of parameter values for which the linearized model passes

from stability to instability. That is, as the interaction

parameter (Bg) is varied in the appropriate range the lead-

ing pair of eigenvalues cross the imaginary axis. At this

point the linearized system begins to exhibit small ampli-

tude oscillations, which grow as the parameter is further

increased. (Of course, sooner or later other root pairs

cross to the RHP; these are associated with secondary fre­

quencies, and will not concern us here.)

Simulation studies of the model system (4.5 - 4.8)

indicate that the oscillations do not grow from zero ampli-

tude, but bifurcate to finite amplitude oscillations. This

suggests that the bifurcation is controlled by 2 parameters

rather than 1. (c.f. Takens [1]) as shown in Figure 10.11.
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circular
affractor

point
attractor
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circular
source

Figure 10.11

- -

(4.4) We can use the age model to answer a puzzling

question in the ecological literature. Over a period of

several years Professor C. B. Huffaker maintained an experi-

mental ecosystem containing a parasitic wasp which lays its

eggs in the larvae of a certain moth. He noticed that, very

quickly after initiation, the populations settled into stable

oscillations. These oscillations were characterized by age

structures which were practically discrete generations. Con-

ventional predator-prey models do not suffice to explain

these oscillations since phase plane trajectories cross--the

explanation lies in the age structure dynamics. We can couple

two conservation equations like (4.2) by an age specific

interaction that models the searching behavior of the para-

site. The resulting model looks like:

ap .£.E.
at + aa (4.19)
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p (0 ,t) (4.20)

(4.21)

f
ah+Y

h(O,t) = h bh(t,a',Hl(t-T»h(a',t)da'
a

hwhere

f
6+0

HO(t) 6 h(a' ,t)da' = no. host larvae

f
a +y

Hl(t) = h h h(a' ,t)da' = no. host adults
ah

(4.22)

(4.23 )

(4.24)

H(t) rhea' ,t)da'
o

total no. hosts (4.25)

fa p
+

Yp pta' ,t)da' = no. parasite adults.
a p

(4.26)

The form of the interaction between the populations can be de-

rived by assuming a random search by each parasite for host

larvae and employing a mean "area of discovery," A, for each.

If the hosts are distributed randomly (Poisson) in a plane,

the inter-arrival times are distributed exponentially. Thus

the interaction takes the form: (Auslander, Oster, Huffaker,

op. cit.)

-A(S)Pl
[no. hosts parasitized] (a) = bh (a) (l-e ) (4.27)

This is added to the natural mortality (assumed constant) to

obtain the total host mortality. As indicated in equation

(4.22) the host birthrate includes a delayed effect that de-

pends on the nutritional history of the host. This is be-

cause fecundity is a function of adult size, which depends
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on the available food.

The above model was simulated numerically using

Huffaker's data (Auslander, Oster and Huffaker, op. cit.),

and some of the results are shown in Figure 10.12. First of

all, as the strength of the interaction is increased (e.g. by

increasing the area of discovery, A) the system undergoes a

transition from a state wherein all age classes are repre­

sented in both populations to one wherein only a few age

class~s are represented. That is, the age profiles of both

species condense into "travelling waves," which propagate

through the age structure in such a fashion that in a

"stroboscopic photograph," the generations appear virtually

discrete. The phase relationship of the population waves in

each population determine the extent to which the populations

can coexist. If the parameters are adjusted so that all age

classes are represented, then the populations do not coexist:

the parasite eliminates the host and then dies out itself.

Following the same procedure outlined for the single

population model, we can linearize equations (4.19) - (4.26),

Laplace transform and examine the roots of the characteristic

equation as the coupling parameter is increased. Clearly,

at zero coupling the parasite system is stable about the zero

solution while the host population approaches a stable age

distribution. Simulation indicates that a stationary age

profile also exists with all age classes represented in both

populations (continuous generations). Furthermore, at suf­

ficiently high coupling strength the system is stable at zero.

Thus, a root locus study, which reveals a leading root pair

crossing the imaginary axis as the coupling is increased,
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Evolution of the host population toward a stable age dis­
tribution in the absence of the parasite. The initial waves
were induced by the periodic addition of adult females.
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o
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o
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Stroboscopic shot at one generation-time intervals (-51
days) of a "pulse" of hosts which evolves to a stable periodic
solution.

Figure 10.12. Simulation of Host-Parasite System
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leads us to conclude that an intuitive explanation for the

population waves is a bifurcation phenomenon. Moreover, it is

this mechanism which gives us a satisfying explanation for how

the two populations are able to coexist in a homogeneous en­

vironment--the bifurcation phenomenon creates a "phase niche"

within which the host can escape total annihilation by the

parasite.

(4.5) Two other phenomena involving the age structure

deserve comment. First, an examination of Figure lO.7b shows

that if a periodic signal (in this case a periodic food sup­

ply) is applied to the population system, the forcing fre­

quency interacts with the natural resonant frequency to pro­

duce a "beat" frequency with a wavelength longer than either

component (Oster and Auslander, [1]). This suggests a pos­

sible explanation for certain population periodicities ob­

served in nature which do not appear to track any apparent en­

vironmental cycle. Secondly, there appear to be component

frequencies higher than that of the major resonance. This

suggests that secondary bifurcations from the basic cycle may

playa role in the dynamics. If the age system is discretized

along the characteristics, the resulting set of difference

equations corresponds to the Leslie model well known to demo­

graphers. Beddington and Free [1] simulated such a discrete

age class model and found that, as certain parameters are

varied, transitions to chaotic behavior occurred reminiscent

of the aperiodic orbits discussed in Section 2 for single dif­

ference equations. Thus it appears that the bifurcation

phenomenon can supply a satisfying mathematical mechanism for
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explaining not only cyclic regularities in population dy­

namics, but perhaps some of the irregularities as well.

353
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SECTION 11

A MATHEMATICAL MODEL OF TWO CELLS

VIA TURING'S EQUATION

BY

S. SMALE

(11.1) Here we describe a mathematical model in the

field of cellular biology. It is a model for two similar

cells which interact via diffusion past a membrane. Each

cell by itself is inert or dead in the sense that the concen-

trations of its enzymes achieve a constant equilibrium. In

interaction however, the cellular system pulses (or expressed

perhaps over dramatically, becomes alive:) in the sense that

the concentrations of the enzymes in each cell will oscil-

late indefinitely. Of course we are using an extremely sim-

plified picture of actual cells.

The model is an example of Turing's equations of cellu-

lar biology [1] which are described in the next section. I

would like to thank H. Hartman for bringing to my attention

Reprinted with permission of the publisher, American Mathematical Society,
from Lectures in Applied Mathematics. Copyright © 1974, Volume 6, pp. 15-26.
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the importance of these equations and for showing me Turing's

paper.

The general idea of our model is to first give ab­

stractly an example of a dynamical system for the chemical

kinetics of four chemicals (or enzymes). This dynamics repre­

sents the reaction of these chemicals with each other and has

the property that every solution tends to one unique station­

ary point or equilibrium in the space of concentrations as

time goes to This is the sense in which the cell is dead,

where the cell consists of these four chemicals. After a

period of transition, the chemical system stays at equilib­

rium. We emphasize that our reaction process is an abstract

mathematical one and that we have not tried to find four

chemicals with this kind of chemical kinetics.

The next step is to give four positive diffusion con­

stants for the membrane which could describe the diffusion of

the four chemicals past the membrane. The cellular system

consisting of the two cells separated by the membrane will be

described by differential equations according to Turing.

With our choice of the chemical kinetics and diffusion con­

stants this new dynamical system will have a nontrivial per­

iodic solution and essentially every solution will tend to

this periodic solution. Thus no matter what the initial con­

ditions, the interacting system will tend toward an oscilla­

tion (with fixed period). After an interval of transition,

it will oscillate.

Both the equilibrium of the isolated cell and the os­

cillating solution of the interacting system described above

are stable (or are attractors) and even stable in a global
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way. But more than this, the equations themselves are stable

so that any equations near ours have the same properties. Our

dynamical systems are "structurally stable." This gives them

at least a physical possibility of occurring.

In Turing's original paper some examples of Turing's

equations are given with oscillation. However, these are

linear and it is impossible to have an oscillation in any

structurally stable linear dynamical system. Linear analysis

can be used primarily to understand the neighborhood of an

equilibrium solution. Development of linear Turing theory has

been carried very far in the very pretty paper of Othmer

and Scriven [1].

Our example has reasonable boundary conditions, as one

or more of the concentrations goes to 0 or to 00. Also, a

complete phase portrait of the differential equation in eight

dimensions for the cellular system is obtained.

This example and Turing's equations as well go beyond

biology. The model here shows how the linear coupling of two

different kinds of processes, each process in itself sta­

tionary, can produce an oscillation. This is the coupling of

transport processes (in this case diffusion across a membrane)

and transformation processes (in this case chemical reac­

tions). In ecology, Turing's equations have another inter­

pretation; see, e.g., Levin [1]. Also S. Boorman's Harvard

Thesis has a related interpretation and analysis.

We finally remark that our results could equally well

be interpreted as putting a single cell into an environment

which could start it pulsating.
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(11.2) We give a brief description of Turing's equa­

tions [1]. These are sometimes called Rashevsky-Turing equa-

tions because of earlier work of Rashevsky on this subject.

One starts from a cell-complex, in either the biologi-

calor mathematical sense of the word, e.g., as given in

Figure 11. 1.

Figure 11.1

From the mathematical point of view this system is a

cell-complex structure on a two- or three-dimensional mani-

fold (e.g., an open set of or Suppose there are

N cells and they are numbered 1, ... ,N.

It is supposed that the cells contain enzymes (or

chemicals, or "morphogens" in the terminology of Turing)

which react witp each other. Suppose there are m of these

chemicals. Then the state space for each cell is the space

1 m i
(x , •.• , x ), x > 0, each i},

where ix denotes the concentration of the i th chemical.

The state space for the system under discussion is the

state for this cellular system is a point, x

Cartesian product P x x P (N times) or
N

(p) • Thus a

E (p)N,
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x = (xl' ••• ,xn ) with each xi E P giving all the concentra­

tions for the i th cell, i = 1, ••• ,N. The dynamics for the

typical cell by itself is given by an ordinary differential

equation on P; this can be described by a map R: P + Rm

and dx/dt = R(x). This R describes how the chemicals react

with each other in that cell; the subject of chemical kinetics

deals with the nature of R. Most typically, the dynamics

of dx/dt = R(x) on P is described by the existence of a

single equilibrium x E P such that every solution tends to

x; at least this will be the case if conservation laws have

been taken into account one way or another (as in the situa-

tion in Turing [lJ or Othmer and Scriven [lJ).

A natural boundary condition on this equation is that

if x E P, x = (xl, .•• ,xm), with x k = 0, then the k th com-

ponent
k

R (x) of R(x) is positive.

So far we have discussed each cell in some kind of

hypothetical isolation. The cells are separated from each

other by a membrane which allows for diffusion from one cell

to adjoining cells. In the simplest case of diffusion, if a

certain chemical has a bigger concentration in the r th cell

than an adjoining well, then the concentration of that chemi­

cal decreases in the r th cell, at a rate proportional to the

difference. This gives some motivation to Turing's equations

which add this diffusion term to give an interaction between

the cells.

(T) L
i E set of cells

adjoining kth cell

k 1, .•• ,N.

Let us explain (T) in detail. The first term above,
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R(Xk ) gives the chemical kinetics in the kth cell. The

2nd term above describes the diffusion processes between

359

cells. Thus mxi - xk E R represents the difference of the

concentrations of all the chemicals between the i th and

k th cells. Here ~ik is a linear transformation from Rm

to Rm or an m x m matrix. In the most natural simple

case, and the case we develop here, ~ik is a positive dia­

gonal matrix. Also the chemical kinetics for each cell is

considered the same. (T) is a 1st order system of ordinary

differential equations on the state space (p)N 9f the bio-

logical system, and will tell how a state moves in time.

We specialize to a case of 2 cells adjoined along a

membrane which is the example pursued in the rest of the paper.

I st cell 2nd cell

Figure 11.2

R(Zl) + ~(z2-z1)'

R(z2) + ~ (zl-z2)·

This is an equation on P x P with (zl,z2) E P x P.

Here ~ will be of the form
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with each ~i > O. This is the most simple case. We may

also write (T2 ) as given by a vector field X on P x P

where

(11.3) Here we state our results.

zi > a}. There exists a smooth

Main Theorem. Let 4P={zER,z
00

(C)~

1 2 3 4(z ,z ,z ,z ),

R: P ->- R4
, and

~l' ... '~4 > 0 with the following properties (1), (2), (3)

below:

(1) The differential equation dz/dt = R(z) on P

is globallv asymptotically stable and is structurally stable.

In other words there is a unique equilibrium z E P

-of the differential equation and every solution tends to z

as t ->- 00. That R is structurally stable means that the

has the same structural propertiesequation dz/dt = RO(Z)

as dz/dt = R(z) if R
O

is a cl perturbation of R. (See

[1] for details on these kinds of stability and background on

ordering differential equations.)

(2) On P x P with z = (zl,z2) E P x P the diff-

erential system,

(T)
R(zl) + ~ (z2- zl)'

R(z2) + ~(zl-z2)J

~

is a "global oscillator" and is structurally stable.

More precisely, a global oscillator on P x P is a

dynamical system which has a nontrivial attracting periodic

solution y and except for a closed set L of measvre 0,
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everv solution tends to y, as t + In fact, here I is

a six-dimensional smoothly imbedded cell and on I every

solution tends to the unique equilibrium (z,z) of (T).

(3) The boundary conditions are reasonable in the

following way. Let satisfy kz o

for some k between one and four. Then the kth component

Rk(ZO) of R(ZO) is positive.

The above theorem gives mathematical precision to the

statements made in Section 1 via the interpretation of (T)

as in Section 2.

The example is related to the phenomena of Hopf bifur-

cation; see Section 3. Our analysis is more global however,

and VIe have a complete description of the phase portrait.

(11.4) In this section we show how to construct the

differential equations of the previous section.

Towards obtaining the vector field Q: P of the
00

main theorem of Section 3 we will find a C vector field

on and

with these properties:

(1) Q has the origin, 0, as a global attractor for

the equation dz/dt = Q(x) on

(2) There is a K > 0 such that if z E R
4

,

II z II ~ K, then Q (z) = -z.

(3) On R
4

x R4 the vector field
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is a global oscillator.

Once such a Q has been found we finish as follows:

Choose some z E P so that z-z E P for all z with

I Izi I ~ K. Let R(z) = 2Q(z-z). Then R will have the pro-

perties of Section 3.

This changes the question from P to where 'ole

can use the linear structure systematically (even though our

equations are not linear).

To find a Q as needed above we first ignore property

(2), or behaviour of Q at and concentrate on (1) and

(3). In fact we shall find S: R4
+ R

4
satisfying (1) and

(3) with S replacing Q and after that S is modified to

satisfy (2).

Tmolard constructing this S, observe that the set

11 = {(zl,z2) E R4 x R4 I zl =z2} has the property that

the vector field

(*)

is tangent to 11. That is, 11 is invariant under the flow

and on 11 the flow is contracting to the origin.

Now suppose S satisfies S(-z) = -S(z) or that S

is odd. Then on

the vector field (*) is invariant and has the form

z + S(z) - )l(z)
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(up to a factor of 2). From these considerations we are

motivated to seek an odd map 5: R4
+ R

4
which satisfies

the following:

(51) 5 has 0 has a global attractor and 5 - ~

is a global oscillator on R4 .

(52) ~~ is an attractor for (*) on R
4

x R4 .

(53) Boundary conditions can be made good.

363

The heart of the matter lies in (1); we consider that

next. First consider the matrix

a 0 Ya 0

0 a 0 ya
iT

-ya 0 -2a 0

0 -ya 0 -2a

where a < -1 and ~ < y < 3/2, in linear coordinates

1 4 4
y=(y, •.• ,y) on R.

Note that ~ has real positive eigenvalues say ~l'

~2'~3'~4' This can be checked easily since iT resembles a

2 x 2 matrix. Also there is a linear change of coordinates

which changes the matrix

~ into ~.

The coordinates of chemical concentrations are those in which

~ has the diagonal form. Thus the do not represent con-

centrations. However the y coordinates are much easier to

work with.

We give now 5 as the sum of a linear map 51: R
4

+ R4

and a cubic map 53 in terms of the y-coordinates.
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Thus let S = Sl + S3 with

l+a 1 ya 0

1-1 a 0 ya
Sl

0 2a 0

J

-ya

0 -ya 0 2a

S3 (y) = (_ (yl)3 ,0,0,0).

One notes now that S is odd and since the inner pro-

duct <Sy,y> < ° if y f 0 (an easy check) it follows that
4

the origin of R is a global attractor for S.

The next step is to check that S - ~ takes the form

Thus the

o

1 2(y ,y )

o

(
4a 0)
o 4a

2-dimensional sUbspace is a con-

tracting invariant subspace in R
4

for S - ~, since a < 0;

on this subspace, the equations for S - ~ take the form

2 3 1 2 1
dy'/dt=y -((y') -y), dy/dt -yo

This is Van der Pol's equation (see Hirsch-Smale [1]), which

we know is a global oscillator.

Thus S - ~ is a global oscillator on
4

R.

The next step is to show that (S2) is true. This can

be proved along the following lines.

The vector field X on R
4

x R4 given by
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can be written in the form Yl (z) + Y2 (z) where Yl(z) E 6,

Y
2

(z) E ~~. Then

That X points toward ~~ follows from the lemma.

Proof of Lemma. Write We already know

But

and that is < 0 since, for any real numbers a and b,

(a3+b 3 ) (a+b) > O.

Finally one "straightens out" the flow 'of S outside

some large ball. One uses a smooth function ¢: R+ + R+,

o ~ ¢ ~ 1, ¢ ~ 0 in a neighborhood of 0, and ¢(r) ~ 1 for

large enough r; then

Q(z) ~ (l-¢(I/lzll))s(z) - ¢(llz) I)z.

It can be shown that Q satisfies (1), (2), (3) with

suitable constants in the definition of ¢.

(11.5) We end this note with some discussion of our

results.

Various forms of Turing's equations, or reaction-
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diffusion equations have appeared in one form or another in

many works and fields. However, any sort of systematic under­

standing or analysis seems far away. Before one can expect

any general understanding, many examples will have to be

thought through, both on the mathematical side and on the

experimental side. This is one reason why I have worked out

this model.

Moreover, the work here poses a sharp problem, namely

to "axiomatize" the properties necessary to bring about oscilla­

tion via diffusion. In the 2-cell case, just what proper-

ties does the pair (R,~) need to possess (where R is

"dead") to make the Turing interacting system oscillate? In

the many-cell case, how does the topology contribute?

We have not hesitated to make simplifying assumptions

here, because we were not making an analysis, but producing

an example. Because of the structural stability properties

of this example, one can use it to obtain more complicated

examples, e.g., with as many cells (more than one) as one

wants, as many chemicals (more than three) as one wants and

complicated diffusion matrices. But it is more difficult to

reduce the number of chemicals to two or even three. Also

it is a problem to construct a model with three cells and

two or three chemicals.

There is a paradoxical aspect to the example. One has

two dead (mathematically dead) cells interacting by a diffu­

sion process which has a tendency in itself to equalize the

concentrations. Yet in interaction, a state continues to

pulse indefinitely.
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Several chemists have pointed out to me that inter­

preting the reaction R to be an "open system" makes the

model more acceptable.

There is quite a history of numerical work on related

systems which I will not try to cover here.

Finally, there is a partial differential equation ana­

logue to the version of Turing's equations studied here.

This can be found in Turing's paper [1]. In this P.D.E. con­

text the recent work of L. Howard and N. Kopell on the

Zhabotinsky oscillation bears strong analogies to the present

work.
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SECTION 12

A STRANGE, STRANGE ATTRACTOR

BY

JOHN GUCKENHEIMER

Examples have been given by Abraham-Smale [1], Shub

[1], and Newhouse [2] of diffeomorphisms on a compact mani~

fold which are not in the closure of diffeomorphisms satis-

fying Smale's Axiom A or in the closure of the set of Q-

stable diffeomorphisms (Smale [1]). The suspension construc-

tion (Smale [1]) allows one to give analogous examples for

vector fields on compact manifolds.

This note gives another example of a vector field on

a compact manifold which does not lie in the closure of

Q-stable or Axiom A vector fields. The interest of this

example is that the violation of Axiom A' occurs differently

than in the examples previously given. This example has ad-

ditional instability properties not verified for the previous

Research partially supported by the National Science Founda­
tion.
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examples. A vector field X is said to be topologically Q

stable if nearby vector fields (in the cl
topology on the

space of vector fields) have nonwandering sets homeomorphic

to the nonwandering set of X. Our example is not topologi-

cally Q stable. Moreover, it provides another negative ans-

wer to the following question about dynamical systems: is it

generically true that the singularities of a vector field are

isolated in its nonwandering set? Previous examples of

Newhouse have nonisolated singularities in non-attractive

parts of the nonwandering set.

The example is based upon numerical studies of a sys-

tern of differential equations introduced by Lorenz [IJ. The

system studied by Lorenz seems to have the dynamical behavior

of our example, but we do not attempt to make the estimates

necessary to prove this statement. I would like to acknow-

ledge the assistance of Alan Perelson in doing the numerical

work which underlies this note and conversations with R.

Bowen, C. Pugh, S. Smale, and J. Yorke. Finally, we mention

the explicit equations of Lorenz which display such marvelous

dynamics (see Example 4B.8, p. 141):

-lOx + lOy, Y -xz + 28x - y, z xy - 8/3 z.

We define a COO vector field X in a bounded region

Inside the region there will be a compact invariant

set A which is an attractor in the sense that A has a

fundamental system of neighborhoods, each of which is for-

ward invariant under the flow of X. The set A is two di-

mensional. To describe the construction of X, we use co-

ordinates (x,y,z)
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7he vector field X is to have three singular points.

The first, p = (0,0,0), is a saddle with a two dimensional

stable manifold Ws (p). The rectangle {(x,y,z) Ix = 0,

l} is contained in
s

-1 '::y < 1, ° < z < to be W (p). The- -
stable eigenvectors of X at

()
with an eigenvaluep are 8Y

of large absolute value and () with an eigenvalue of smallaz
absolute value. The unstable manifold WU(p) contains the

segment from (~l,O,O) to (1,0,0) and has an eigenvalue

of intermediate absolute value. Other conditions on WU(p)

are imposed below.

The other two singular points of X are q± = (±l,

±1/2, 1). These are saddle points with one dimensional stable

manifolds The segments from (±l, -1, 1) to

(±l, 1, 1) are contained in The negative eigen-

values of X at q± have large absolute values. The remain­

ing eigenvalues of q± are complex with eigenspaces spanned

by

small.

and ()
~.

The real parts of these eigenvalues are

Consider the square R = {(x,y,z) I -1 ~ x ~ 1,

-1 ~ Y ~ 1, z = l} and its Poincare return map 8. The map

8 is not defined when X is ±l or ° since these points

lie in the stable manifold of one of the singular points. The

orbits in R for X = ±l never leave R while those for

x = ° never return. At all other points of R,G is de-

fined. Let R+ be the set R n {(x,y,z) ° < x < l} and

R be the set R n { (x,y ,z) -1 < x < oL Define 8± to

be 8 restricted to R±. ~le assume that there are functions

f±, g± and a number CJ, > 1 with the properties that
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The numbers lim f± (x), denoted P± ' are assumed to have the
x...0

properties P+ < 0, p > 0, 8- (P+) < 0, and 8+(p_ ) > o. The

first intersections of WU(p) with R occur at the points

with x = P±. Finally, it is assumed that the images of g±

are contained in the intervals [±1/4, ±3/4]. Figure 12.1

illustrates these essential features of the flow X.

Figure 12.1

We remark that the conditions imposed on the eigen-

andop imply that lim dg±(X,y)/ay
x...0

The reason for this behavior is given by

atxvalues of

lim df±/dx = 00

x ...0
solving a linear system of differential equations near a

saddle point. The return maps 8± acquire singularities

like a power of x because the trajectories of R± come

arbitrarily close to p.

In the theorems which we now state, we assume that the
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vector field X is extended to a vector field on a compact

three manifold M. We continue to denote the extended vector

field X. Note that the only properties used in defining X

which do not remain after perturbation are the existence of

the functions f± and g±. These functions are introduced

to simplify the discussion and are not essential properties

of X.

(12.1) Theorem. There is a neighborhood %' of X

in the space of C
r

vector fields on M (r ~ 1) and a set·~

of second category in %' such that if y E ~, then Y has

a singular point which is not isolated in its nonwandering

set.

(12.2) Theorem. The vector field X has a neighbor­

hood ~ in the space of Cr vector fields on M (r > 1)

with the property that if ·~C %' is an open set in the space

of C
r

vector fields, then there are vector fields in ~

whose nonwandering sets are not homeomorphic to each other.

Theorem (12.2) states that X is not in the closure

of the set of topologically ~-stable vector fields.

We attack the proofs of both of these theorems by giv­

ing a description of the nonwandering set of X. This des­

cription is given largely in terms of "symbolic dynamics"

(Smale [4]).

Consider the return map e of R. We pick out four

subsets of e(R) which will be used in analyzing the sym­

bolic dynamics of the nonwandering set of X. Denote
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R
l

8 (R+) n {p < x < O}
+

R
2 8 (R+) n {O < x < f (p ) }

+ -

R
3

8 (R_) n {f- (p+) < x < O}

R = 8 (R_) n {O < x < p-} •4

373

Figure 12.2 shows these sets. The image of

extends horizontally across R
3

and R
4

•

horizontally across R
l

• Similarly, 8(R
3

}

R
l

under 8

8(R) extends
2

extends across

extends across and

q

Figure 12.2

Now consider sequences {a
k

}'" of the integers 1, 2,
k=O

3, and 4 such that, for each k, (a
k

, a k+l ) is one of the

pairs (3,1) , (4,1) , (1,2) , (4,3) , (1,4) , or (2,4) . The set

of such sequences forms the underlying space L of a "sub­

shift of finite type" with transitio"n matrix
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(
0 1 0 1

\
0 0 0 1

)1 0 0 0

1 0 1 0

Corresponding to each finite sequence

contains a component which extends horizontally
ke (R )

ak

from "admissible" pairs
n
n

k=O

{a
O
'·· .,an }· constructed

listed above, the intersection

extends

in-

a
2

= 4, e(R
4

)

Rl . As n

Hence

a
O

1, then the images of R
2

If a l = 2, then only the image

For example, ifRa O
extend across

need extend across

across

2
across R , and e (R4 ) extends acrossa 2
creases, the vertical height of these strips decreases expo-

We want to investigate whether

an uncountable number of arcs

contains an arc

R .•
~

is contained in theS

n
k=O

There are an uncountable num­
4

S = n ek ( U R.) contains
k=O i=l ~

extending across each

Ifnentially.

crossing R horizontally.
a O

ber of sequences in L, hence

nonwandering set of e. If each arc contained in S has an

image under some iterate of e which extends across each

Ri , then S will be contained in the nonwandering set of e.

In these circumstances, we prove that 0 is not isolated in

the nonwandering set of X. Whether or not every arc in S

has an image extending across the set Ri depends only on the

functions f± acting on the intervals (P+'O) and (O,p_).

Denote by f the discontinuous map f: (p+,p_) + (p+,p_)

determined by f± (with, say, f(O) 0.) Consider a sub-

interval y c (P+'p_). Since df±/dx> a > 1, the sum of the
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lengths of the components of is at least
k

ca There-

fore, some image of y has more than one component. The

only point of discontinuity for f is x = O. so there is

a k > 0 and an x E y with fk (x) = o.

The map 8 has a periodic point of period 2 in R
l

because 8
2

(R
l

) crosses R
l

horizontally. Therefore, f

has a point r of period 2. Any neighborhood of r has

an image which eventually covers (P+'P_). Now assume that

there is an open set U C (P+,P_), none of whose images cover

(p+,p_). Then no image of U contains p. It follows that

if and are two open sets, none of whose images

cover (p+,p_), then U
l

lJ U
2

also has this property (be­

cause r is in none of its images.) Thus there is a largest

with the property that none of itsopen set U C (p+,p_)

images cover (p+,p_). It follows that
-1

f (U) = u f (U).

We observed above that any interval contains a point

which is eventually mapped to 0 by the iterates of f.

Thus U contains a neighborhood of 0 and, hence, neighbor-

hoods of P± • This implies that U contains a neighborhood

of each point which eventually maps to o. Since these points

are dense, U is a dense subset of (p+,p_). Notice that the

property f-l(U) C U implies that the components of U must

map onto the components of U. Let (~_,~+) be the component

of U containing o. Some image of (~_,O) contains 0,

(Since f_(O) = P_, the images of 0

are endpoints of components of U.) The first time an image

of (~+,a) contains 0, that power of f is continuous on

(~_,O). Since f is orientation preserving, it follows that
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is mapped by this power of f to S. Therefore s
a periodic point of f. We conclude that p± have images

for some power of f which are periodic points of f.

For the return map 8 of R, this implies that the

is

images of the vertical lines x = p± each remain within a

finite set of vertical lines. Because 8 contracts in the

vertical direction, the intersections of R with WU(p) have

8-trajectories which tend asymptotically to periodic orbits of

of 8. These periodic 8 trajectories lie on periodic orbits

Y
l

, Y
2

for the flow X. Because 8 is uniformly hyperbolic

(apart from its discontinuity), these periodic orbits are

hyperbolic with two dimensional stable and unstable manifolds.

Applying the Kupka-Smale Theorem (Smale [1]), we note that it

is a generic property of vector fields that the stable mani-

fold of a hyperbolic periodic trajectory intersect the un-

stable manifold of a singular point transversally. This is

not the case here. Thus we conclude that in the open set of

vector fields which we have described, those vector fields for

which an" arc of S eventually extends across each R.
1.

form

a set of second category. I do not know whether there is an

open set of vector fields with this property.

Proof of Theorem (12.1): Let us assume now that X

is chosen so that e has the property that some image of

every arc in S eventually extends across each Ri • If

w E Sand U is a rectangular neighborhood of w in R,

then 8k (U) extends across each Ri for k sUfficiently

large. Also 8-k (U) extends vertically across R for k

sufficiently large because 8 contracts the vertical direc-
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tion. It follows that e-k(u) n ek(u) f ~ for k very

large. Thus e
2k

(U) n u f ~ and w is nonwandering. We

conclude that S is contained in the nonwandering set of e.

Since S intersects WS(p), p is in the nonwandering set of

x. This proves Theorem (12.1). []

The nonwandering sets of the vector fields satisfying

Theorem (12.1) have a two dimensional attractor A which con-

tains the origin. The intersection of A with R contains

S. We want to go further in describing the structure of A.

~his can be done most completely when p is a homoclinic

point with WU(p) C WS(p). This happens when there are powers

of f which map p+ and p_ to O.

For purposes of definiteness, we shall describe A in
2

the case that f (p±) = O. Afterwards we indicate the mod-

ifications which are necessary when higher powers of fmap

p+ and p to O. Now RnA = s. If f2 (p±) = 0, then

e (Rl ) C n U R
4

, e (R
2

) C R
l

, e (R
3

) C R and e(R4 ) C Rll) R2 ·"3 ,
4

Consequently, if {ak}oo is a sequence with a. E {1,"2,3,4},
k=O J.

then n ek(R ) f ~ if and only if {a
k

} E L.
k=O a k

{ak } E L, then there is a segment extending across

lies in S and hence in A.

If

R whicha O
This presents the following

picture for A. There is a Cantor set of arcs, corresponding

to points of L, each of which extends across some of the R

Ri's. These are joined at their ends by WU(p). See Figure

12.3. Note that points of A_Wu(p) have neighborhoods

which are homeomorphic to a 2-disk x Cantor set.
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R

Figure 12.3

R

If higher powers of f map p+ and p to 0, then

we construct another subshift of finite type as follows. Cut

the image of 8(R) along vertical lines passing through each

point in the orbit. 8(p+) and 8(p_). This will divide

8(R) into a number of components, say Rl, ... ,Rn • Define

the n x n matrix T by

{ 1
if 8 (R.) II R. i- ~

T J 1.

ij 0 if 8 (Rj ) n R. = 1'.
1.

Let ~ be the (one-sided) subshift of finite type with tran-

sition matrix T. Corresponding to each sequence in ~,

there will be exactly one arc crossing Ri which lies in the

attractor A. The closure of these segments will be A n R

as before, because n 8k(~ ) = l' if {ak } E~. Finally,
k=O k

we remark that if 8 does not preserve vertical segments in

R, then R is to be cut along components of WS(p) n R which

also contain points of WU(p).



THE HOPF BIFURCATION AND ITS APPLICATIONS 379

Proof of Theorem (12.2): We prove Theorem (12.2) in

two steps. In the first step, we consider two flows, X and

X, of the general sort considered in this paper such that,

for the flow X, WU(p) C WS(p), and for the flow X, WU(p) n

WS(p) = {p}. We prove that X and X have nonwandering

sets which are not homeomorphic. The second step demonstrates

that vector fields of each of these two classes are dense in

some open set in the space of Cr vector fields.

We have described above the attractor A(X) of a

vector field X for which WU(p) C WS(p). In this case, A

is path connected and A_Wu(p) is locally homeomorphic to

the product of a 2-disk and a Cantor set. Furthermore, WU(p)

is homeomorphic to the wedge product of two circles, a "figure

eight."

Now consider the attractor A(X) of a vector field X

for which WU(p) n WS(p) = {p} and A is a two dimensional

set containing p. If A(X) is to be homeomorphic to A{X),

then A(X) must be path connected. Consider the set C of

points w E A(X) such that no neighborhood of w is homeo-

morphic to a 2-disk x Cantor set. It is easily seen that

WU(p) C C since there are no points of A n R to the left

of the line P = x or to the right of the line P+ = x.

If A(X) is homeomorphic to A(X), then C is homeomorphic

to the wedge product of two spheres. Since WU(p) ~ WS(p)

for X and WU(p) C C, there must be two points of C-{p}

which are the w-limit sets of the two trajectories in

WU(p) - {p}. A single point which is the w-limit set of a

traje?tory must be a singular point. There are no singular

points of X in A(X) other than p, so we conclude that C
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is not homeomorphic to the wedge product of two spheres.

Hence A(X) and A(X) are not homeomorphic. This concludes

the first step of the proof.

We now prove that the sets of vector fields X, X of

the sort considered above are each dense in some open set.

The Kupka-Smale Theorem implies that vector fields like X

in that WS(p) n WU(p) = {p} form a set of second category.

Since the set of vector fields with PEA and A two

dimensional is a second category subset of an open set, there

is a dense set of vector fields of the form of X in some

open set of vector fields.

The only thing remaining to prove is that there is a

dense subset of an open set of vector fields for which

Wu(p) C WS(p). Consider the effect on WU(p) of a perturba-

tion Y of X parallel to the x-axis which has the effect

of decreasing p and increasing p+. See Figure 12.4.

Support of / 71
y-x --l ~ C)

.r------7l//~7
/

Figure 12.4
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We examine successive intersections of WU(p) with R

for the vector fields Y and X. The functions f+ and f

are orientation preserving. Consequently, as long as the

corresponding, successive intersections for the two vector

fields lie on the same side of the line x = 0 in R, the

effect of the perturbation is push the intersections follow-

ing P along WU(p) to the left and to push the intersec-

tions following P+ to the right. Furthermore, since the

map e expands in the x direction, the distance between

the corresponding, successive points of intersection grows

exponentially. The distance cannot grow indefinitely, so

after sometime, the corresponding points of intersection lie­

on opposite sides of the line x = O. Thus, for some pertur­

bation intermediate between Y and X, there are points of

intersection of WU(p) with R which lie on the line x = 0

(in both directions along WU(p).) This means that WU(p) C

WS(p) for the intermediate perturbation. We conclude that

there is a dense set of vector fields in some open set of the

space of vector fields for which WU(p) C WS(p) to finish

the proof of Theorem (12.2).

As is traditional in dynamical systems, we end with a

question. The vector fields described here are very pathologi­

cal from the point of view of topological dynamics. Yet they

seem to preserve as much hyperbolicity as they possibly could

without satisfying Axiom A. There is now a well developed

"statistical mechanics" for attractors satisfying Axiom A

(Bowen-Ruelle [1]). How much of this statistical theory can

be extended to apply to the vector fields described here?
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