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PREFACE

The goal of these notes is to give a reasonahly com­

plete, although not exhaustive, discussion of what is commonly

referred to as the Hopf bifurcation with applications to spe­

cific problems, including stability calculations. Historical­

ly, the subject had its origins in the works of Poincare [1]

around 1892 and was extensively discussed by Andronov and Witt

[1] and their co-workers starting around 1930. Hopf's basic

paper [1] appeared in 1942. Although the term "Poincare­

Andronov-Hopf bifurcation" is more accurate (sometimes

Friedrichs is also included), the name "Hopf Bifurcation" seems

more common, so we have used it. Hopf's crucial contribution

was the extension from two dimensions to higher dimensions.

The principal technique employed in the body of the

text is that of invariant manifolds. The method of Ruelle­

Takens [1] is followed, with details, examples and proofs added.

Several parts of the exposition in the main text corne from

papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler

to whom we are grateful.

The general method of invariant manifolds is common in

dynamical systems and in ordinary differential equations; see

for example, Hale [1,2] and Hartman [1]. Of course, other

methods are also available. In an attempt to keep the picture

balanced, we have included samples of alternative approaches.

Specifically, we have included a translation (by L. Howard and

N. Kope11) of Hopf's original (and generally unavailable) paper.

These original methods, using power series and scaling are used

in fluid mechanics by, amongst many others, Joseph and Sattinger

[1]; two sections on these ideas from papers of Iooss [1-6] and
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Kirchgassner and Kielhoffer [1] (contributed by G. Childs and

o. Ruiz) are given.

The contributions of S. Smale, J. Guckenheimer and G.

Oster indicate applications to the biological sciences and

that of D. Schmidt to Hamiltonian systems. For other applica­

tions and related topics, we refer to the monographs of

Andronov and Chaiken [1], Minorsky [1] and Thom [1].

The Hopf bifurcation refers to the development of

periodic orbits ("self-oscillations") from a stable fixed

point, as a parameter crosses a critical value. In Hopf's

original approach, the determination of the stability of the

resulting periodic orbits is, in concrete problems, an un­

pleasant calculation. We have given explicit algorithms for

this calculation which are easy to apply in examples. (See

Section 4, and Section SA for comparison with Hopf's formulae).

The method of averaging, exposed here by S. Chow and J. Mallet­

Paret in Section 4C gives another method of determining this

stability, and seems to be especially useful for the next bi­

furcation to invariant tori where the only recourse may be to

numerical methods, since the periodic orbit is not normally

known explicitly.

In applications to partial differential equations, the

key assumption is that the semi-flow defined by the equations

be smooth in all variables for t > O. This enables the in­

variant manifold machinery, and hence the bifurcation theorems

to go through (Marsden [2]). To aid in determining smoothness

in examples we have presented parts of the results of Dorroh­

Marsden. [1]. Similar ideas for utilizing smoothness have been

introduced independently by other authors, such as D. Henry

[1].
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Some further directions of research and generalization

are given in papers of Jost and Zehnder [1], Takens [1, 2],

Crandall-Rabinowitz [1, 2], Arnold [2], and Kopell-Howard [1-6]

to mention just a few that are noted but are not discussed in

any detail here. We have selected results of Chafee [1] and

Ruelle [3] (the latter is exposed here by S. Schecter) to

indicate some generalizations that are possible.

The subject is by no means closed. Applications to

instabilities in biology (see, e.g. Zeeman [2], Gurel [1-12]

and Section 10, 11); engineering (for example, spontaneous

"flutter" or oscillations in structural, electrical, nuclear

or other engineering systems; cf. Aronson [1], Ziegler [1]

and Knops and Wilkes [1]), and oscillations in the atmosphere

and the earth's magnetic field (cf. Durand [1]) a~e appearing

at a rapid rate. Also, the qualitative theory proposed by

Ruelle-Takens [1] to describe turbulence is not yet well under­

stood (see Section 9). In this direction, the papers of

Newhouse and Peixoto [1] and Alexander and Yorke [1] seem to

be important. Stable oscillations in nonlinear waves may be

another fruitful area for application; cf.Whitham [1]. We hope

these notes provide some guidance to the field and will be

useful to those who wish to study or apply these fascinating

methods.

After we completed our stability calculations we were

happy to learn that others had found similar difficultv in

applying Hopf's result as it had existed in the literature to

concrete examples in dimension ~ 3. They have developed similar

formulae to deal with the problem; cf. Hsu and Kazarinoff [1, 2]

and Poore [1].
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The other main new result here is our proof of the

validity of the Hopf bifurcation theory for nonlinear partial

differential equations of parabolic type. The new proof,

relying on invariant manifold theory, is considerably simpler

than existing proofs and should be useful in a variety of

situations involving bifurcation theory for evolution equations.

These notes originated in a seminar given at Berkeley

in 1973-4. We wish to thank those who contributed to this

volume and wish to apologize in advance for the many important

contributions to the field which are not discussed here; those

we are aware of are listed in the bibliography which is, ad­

mittedly, not exhaustive. Many other references are contained

in the lengthy bibliography in Cesari [1]. We also thank those

who have taken an interest in the notes and have contributed

valuable comments. These include R. Abraham, D. Aronson,

A. Chorin, M. Crandall., R. Cushman, C. Desoer, A. Fischer,

L. Glass, J. M. Greenberg, O. Gurel, J. Hale, B. Hassard,

S. Hastings, M. Hirsch, E. Hopf, N~ D. Kazarinoff, J. P. LaSalle,

A. Mees, C. Pugh, D. Ruelle, F. Takens, Y. Wan and A. Weinstein.

Special thanks go to J. A. Yorke for informing us of the

material in Section 3C and to both he and D. Ruelle for pointing

out the example of the Lorentz equations (See Example 4B.8).

Finally, we thank Barbara Komatsu and Jody Anderson for the

beautiful job they did in typing the manuscript.

Jerrold Marsden

Marjorie McCracken
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