SECTION 12
A STRANGE, STRANGE ATTRACTOR
BY
JOHN GUCKENHEIMER

Examples have been given by Abraham-Smale [1], Shub [1], and Newhouse [2] of diffeomorphisms on a compact manifold which are not in the closure of diffeomorphisms satisfying Smale's Axiom A or in the closure of the set of \(\Omega \)-stable diffeomorphisms (Smale [1]). The suspension construction (Smale [1]) allows one to give analogous examples for vector fields on compact manifolds.

This note gives another example of a vector field on a compact manifold which does not lie in the closure of \(\Omega \)-stable or Axiom A vector fields. The interest of this example is that the violation of Axiom A' occurs differently than in the examples previously given. This example has additional instability properties not verified for the previous

Research partially supported by the National Science Foundation.
examples. A vector field X is said to be topologically $Ω$ stable if nearby vector fields (in the C^1 topology on the space of vector fields) have nonwandering sets homeomorphic to the nonwandering set of X. Our example is not topologically $Ω$ stable. Moreover, it provides another negative answer to the following question about dynamical systems: is it generically true that the singularities of a vector field are isolated in its nonwandering set? Previous examples of Newhouse have nonisolated singularities in non-attractive parts of the nonwandering set.

The example is based upon numerical studies of a system of differential equations introduced by Lorenz [1]. The system studied by Lorenz seems to have the dynamical behavior of our example, but we do not attempt to make the estimates necessary to prove this statement. I would like to acknowledge the assistance of Alan Perelson in doing the numerical work which underlies this note and conversations with R. Bowen, C. Pugh, S. Smale, and J. Yorke. Finally, we mention the explicit equations of Lorenz which display such marvelous dynamics (see Example 4B.8, p. 141):

$$\dot{x} = -10x + 10y, \quad \dot{y} = -xz + 28x - y, \quad \dot{z} = xy - 8/3 z.$$

We define a $C^∞$ vector field X in a bounded region of \mathbb{R}^3. Inside the region there will be a compact invariant set A which is an attractor in the sense that A has a fundamental system of neighborhoods, each of which is forward invariant under the flow of X. The set A is two dimensional. To describe the construction of X, we use coordinates (x,y,z) in \mathbb{R}^3.

The vector field X is to have three singular points. The first, $p = (0,0,0)$, is a saddle with a two dimensional stable manifold $W^S(p)$. The rectangle $\{(x,y,z)| x = 0, -1 \leq y \leq 1, 0 \leq z \leq 1\}$ is to be contained in $W^S(p)$. The stable eigenvectors of X at p are $\frac{\partial}{\partial y}$ with an eigenvalue of large absolute value and $\frac{\partial}{\partial z}$ with an eigenvalue of small absolute value. The unstable manifold $W^U(p)$ contains the segment from $(-1,0,0)$ to $(1,0,0)$ and has an eigenvalue of intermediate absolute value. Other conditions on $W^U(p)$ are imposed below.

The other two singular points of X are $q_\pm = (\pm 1, \pm 1/2, 1)$. These are saddle points with one dimensional stable manifolds $W^S(q_\pm)$. The segments from $(\pm 1, -1, 1)$ to $(\pm 1, 1, 1)$ are contained in $W^S(q_\pm)$. The negative eigenvalues of X at q_\pm have large absolute values. The remaining eigenvalues of q_\pm are complex with eigenspaces spanned by $\frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$. The real parts of these eigenvalues are small.

Consider the square $R = \{(x,y,z)| -1 \leq x \leq 1, -1 \leq y \leq 1, z = 1\}$ and its Poincaré return map θ. The map θ is not defined when X is ± 1 or 0 since these points lie in the stable manifold of one of the singular points. The orbits in R for $X = \pm 1$ never leave R while those for $X = 0$ never return. At all other points of R, θ is defined. Let R_+ be the set $R \cap \{(x,y,z)| 0 < x < 1\}$ and R_- be the set $R \cap \{(x,y,z)| -1 < x < 0\}$. Define θ_\pm to be θ restricted to R_\pm. We assume that there are functions f_\pm, g_\pm and a number $\alpha > 1$ with the properties that
$\theta_\pm(x,y) = (f_\pm(x), g_\pm(x,y))$, $0 < \partial g_\pm / \partial y < 1/2$, and $df_\pm / dx > \alpha$.

The numbers $\lim_{x \to 0} f_\pm(x)$, denoted ρ_\pm, are assumed to have the properties $\rho_+ < 0$, $\rho_- > 0$, $\theta_-(\rho_+) < 0$, and $\theta_+(\rho_-) > 0$. The first intersections of $W^s(p)$ with R occur at the points with $x = \rho_\pm$. Finally, it is assumed that the images of g_\pm are contained in the intervals $[\pm 1/4, \pm 3/4]$. Figure 12.1 illustrates these essential features of the flow X.

![Diagram of the Hopf bifurcation](image)

Figure 12.1

We remark that the conditions imposed on the eigenvalues of X at p imply that $\lim_{x \to 0} \partial g_\pm(x,y) / \partial y = 0$ and $\lim_{x \to 0} df_\pm / dx = \infty$. The reason for this behavior is given by solving a linear system of differential equations near a saddle point. The return maps θ_\pm acquire singularities like a power of x because the trajectories of R_\pm come arbitrarily close to p.

In the theorems which we now state, we assume that the
vector field X is extended to a vector field on a compact three manifold M. We continue to denote the extended vector field X. Note that the only properties used in defining X which do not remain after perturbation are the existence of the functions f_\pm and g_\pm. These functions are introduced to simplify the discussion and are not essential properties of X.

\begin{equation}
\text{(12.1) Theorem. There is a neighborhood } \mathcal{U} \text{ of } X \text{ in the space of } C^r \text{ vector fields on } M \text{ (} r \geq 1 \text{) and a set } \mathcal{V} \text{ of second category in } \mathcal{U} \text{ such that if } Y \in \mathcal{V}, \text{ then } Y \text{ has a singular point which is not isolated in its nonwandering set.}
\end{equation}

\begin{equation}
\text{(12.2) Theorem. The vector field } X \text{ has a neighborhood } \mathcal{U} \text{ in the space of } C^r \text{ vector fields on } M \text{ (} r \geq 1 \text{) with the property that if } \mathcal{V} \subset \mathcal{U} \text{ is an open set in the space of } C^r \text{ vector fields, then there are vector fields in } \mathcal{V} \text{ whose nonwandering sets are not homeomorphic to each other.}
\end{equation}

Theorem (12.2) states that X is not in the closure of the set of topologically \mathcal{U}-stable vector fields.

We attack the proofs of both of these theorems by giving a description of the nonwandering set of X. This description is given largely in terms of "symbolic dynamics" (Smale [4]).

Consider the return map θ of \mathbb{R}. We pick out four subsets of $\theta(\mathbb{R})$ which will be used in analyzing the symbolic dynamics of the nonwandering set of X. Denote
Figure 12.2 shows these sets. The image of R_1 under θ extends horizontally across R_3 and R_4. $\theta(R_2)$ extends horizontally across R_1. Similarly, $\theta(R_3)$ extends across R_4, and $\theta(R_4)$ extends across R_1 and R_2.

Now consider sequences $\{a_k\}_{k=0}^\infty$ of the integers 1, 2, 3, and 4 such that, for each k, (a_k, a_{k+1}) is one of the pairs $(3,1)$, $(4,1)$, $(1,2)$, $(4,3)$, $(1,4)$, or $(2,4)$. The set of such sequences forms the underlying space Σ of a "subshift of finite type" with transition matrix.
Corresponding to each finite sequence \(\{a_0, \ldots, a_n\} \) constructed from "admissible" pairs listed above, the intersection
\[
\bigcap_{k=0}^{n} \theta^k(R_{a_k})
\]
contains a component which extends horizontally across \(R_{a_0} \). For example, if \(a_0 = 1 \), then the images of \(R_2 \) and \(R_4 \) extend across \(R_1 \). If \(a_1 = 2 \), then only the image of \(R_4 \) need extend across \(R_2 \). Hence \(a_2 = 4 \), \(\theta(R_4) \) extends across \(R_{a_2} \), and \(\theta^2(R_4) \) extends across \(R_1 \). As \(n \) increases, the vertical height of these strips decreases exponentially. If \(\{a_k\} \in \Lambda \), then
\[
\bigcap_{k=0}^{\infty} \theta^k(R_{a_k})
\]
contains an arc crossing \(R_{a_0} \) horizontally. There are an uncountable number of sequences in \(\Lambda \), hence \(S = \bigcap_{k=0}^{\infty} \theta^k(\cup_{i=1}^{4} R_i) \) contains an uncountable number of arcs extending across each \(R_1 \).

We want to investigate whether \(S \) is contained in the nonwandering set of \(\theta \). If each arc contained in \(S \) has an image under some iterate of \(\theta \) which extends across each \(R_1 \), then \(S \) will be contained in the nonwandering set of \(\theta \). In these circumstances, we prove that \(0 \) is not isolated in the nonwandering set of \(X \). Whether or not every arc in \(S \) has an image extending across the set \(R_1 \) depends only on the functions \(f_\pm \) acting on the intervals \((\rho_+, 0)\) and \((0, \rho_-)\). Denote by \(f \) the discontinuous map \(f: (\rho_+, \rho_-) \rightarrow (\rho_+, \rho_-) \) determined by \(f_\pm \) (with, say, \(f(0) = 0 \)). Consider a sub-interval \(\gamma \subset (\rho_+, \rho_-) \). Since \(df_\pm/dx > a > 1 \), the sum of the
lengths of the components of $f^k(\gamma)$ is at least cu^k. Therefore, some image of \(\gamma \) has more than one component. The only point of discontinuity for \(f \) is \(x = 0 \), so there is a \(k > 0 \) and an \(x \in \gamma \) with \(f^k(x) = 0 \).

The map \(\theta \) has a periodic point of period 2 in \(R_1 \) because \(\theta^2(R_1) \) crosses \(R_1 \) horizontally. Therefore, \(f \) has a point \(r \) of period 2. Any neighborhood of \(r \) has an image which eventually covers \((\rho_+,\rho_-)\). Now assume that there is an open set \(U \subset (\rho_+,\rho_-) \), none of whose images cover \((\rho_+,\rho_-)\). Then no image of \(U \) contains \(p \). It follows that if \(U_1 \) and \(U_2 \) are two open sets, none of whose images cover \((\rho_+,\rho_-)\), then \(U_1 \cup U_2 \) also has this property (because \(r \) is in none of its images.) Thus there is a largest open set \(U \subset (\rho_+,\rho_-) \) with the property that none of its images cover \((\rho_+,\rho_-)\). It follows that \(f^{-1}(U) = U = f(U) \).

We observed above that any interval contains a point which is eventually mapped to 0 by the iterates of \(f \). Thus \(U \) contains a neighborhood of 0 and, hence, neighborhoods of \(\rho_\pm \). This implies that \(U \) contains a neighborhood of each point which eventually maps to 0. Since these points are dense, \(U \) is a dense subset of \((\rho_+,\rho_-)\). Notice that the property \(f^{-1}(U) \subset U \) implies that the components of \(U \) must map onto the components of \(U \). Let \((\xi_-,\xi_+)\) be the component of \(U \) containing 0. Some image of \((\xi_-,0)\) contains 0, and hence \((\xi_-,\xi_+)\). (Since \(f_-(0) = \rho_- \), the images of 0 are endpoints of components of \(U \).) The first time an image of \((\xi_+,0)\) contains 0, that power of \(f \) is continuous on \((\xi_-,0)\). Since \(f \) is orientation preserving, it follows that
\(\xi_- \) is mapped by this power of \(f \) to \(\xi_- \). Therefore \(\xi_- \) is a periodic point of \(f \). We conclude that \(\rho_\pm \) have images for some power of \(f \) which are periodic points of \(f \).

For the return map \(\theta \) of \(R \), this implies that the images of the vertical lines \(x = \rho_\pm \) each remain within a finite set of vertical lines. Because \(\theta \) contracts in the vertical direction, the intersections of \(R \) with \(W^u(p) \) have \(\theta \)-trajectories which tend asymptotically to periodic orbits of \(\theta \). These periodic \(\theta \) trajectories lie on periodic orbits \(\gamma_1, \gamma_2 \) for the flow \(X \). Because \(\theta \) is uniformly hyperbolic (apart from its discontinuity), these periodic orbits are hyperbolic with two dimensional stable and unstable manifolds. Applying the Kupka-Smale Theorem (Smale [1]), we note that it is a generic property of vector fields that the stable manifold of a hyperbolic periodic trajectory intersect the unstable manifold of a singular point transversally. This is not the case here. Thus we conclude that in the open set of vector fields which we have described, those vector fields for which any arc of \(S \) eventually extends across each \(R_i \) form a set of second category. I do not know whether there is an open set of vector fields with this property.

Proof of Theorem (12.1): Let us assume now that \(X \) is chosen so that \(\theta \) has the property that some image of every arc in \(S \) eventually extends across each \(R_i \). If \(w \in S \) and \(U \) is a rectangular neighborhood of \(w \) in \(R \), then \(\theta^k(U) \) extends across each \(R_i \) for \(k \) sufficiently large. Also \(\theta^{-k}(U) \) extends vertically across \(R \) for \(k \) sufficiently large because \(\theta \) contracts the vertical direc-
tion. It follows that $\emptyset -^k(U) \cap \emptyset^k(U) \neq \emptyset$ for k very large. Thus $\emptyset^{2k}(U) \cap U \neq \emptyset$ and w is nonwandering. We conclude that S is contained in the nonwandering set of \emptyset. Since S intersects $W^s(p)$, p is in the nonwandering set of X. This proves Theorem (12.1).

The nonwandering sets of the vector fields satisfying Theorem (12.1) have a two dimensional attractor A which contains the origin. The intersection of A with R contains S. We want to go further in describing the structure of A.

This can be done most completely when p is a homoclinic point with $W^u(p) \subset W^s(p)$. This happens when there are powers of f which map p_+ and p_- to 0.

For purposes of definiteness, we shall describe A in the case that $f^2(p_+) = 0$. Afterwards we indicate the modifications which are necessary when higher powers of f map p_+ and p_- to 0. Now $R \cap A = \emptyset$. If $f^2(p_+) = 0$, then $\emptyset(R_1) \subset R_3 \cup R_4$, $\emptyset(R_2) \subset R_1$, $\emptyset(R_3) \subset R_4$, and $\emptyset(R_4) \subset R_1 \cup R_2$. Consequently, if $\{a_k\}_{k=0}^\infty$ is a sequence with $a_i \in \{1,2,3,4\}$, then $\bigcap_{k=0}^\infty \emptyset^k(R_{a_k}) \neq \emptyset$ if and only if $\{a_k\} \in \Sigma$. If $\{a_k\} \in \Sigma$, then there is a segment extending across R_{a_0} which lies in S and hence in A. This presents the following picture for A. There is a Cantor set of arcs, corresponding to points of Σ, each of which extends across some of the R_i's. These are joined at their ends by $W^u(p)$. See Figure 12.3. Note that points of $A-W^u(p)$ have neighborhoods which are homeomorphic to a 2-disk x Cantor set.
If higher powers of φ map ρ_+ and ρ_- to 0, then we construct another subshift of finite type as follows. Cut the image of $\theta(R)$ along vertical lines passing through each point in the orbit. $\theta(\rho_+)$ and $\theta(\rho_-)$. This will divide $\theta(R)$ into a number of components, say R_1, \ldots, R_n. Define the $n \times n$ matrix T by

$$
T_{ij} = \begin{cases}
1 & \text{if } \theta(R_j) \cap R_i \neq \emptyset \\
0 & \text{if } \theta(R_j) \cap R_i = \emptyset.
\end{cases}
$$

Let Σ be the (one-sided) subshift of finite type with transition matrix T. Corresponding to each sequence in Σ, there will be exactly one arc crossing R_i which lies in the attractor Λ. The closure of these segments will be $\Lambda \cap R$ as before, because $\bigcap_{k=0}^{\infty} \theta^k(R_{a_k}) = \emptyset$ if $\{a_k\} \notin \Sigma$. Finally, we remark that if φ does not preserve vertical segments in R, then R is to be cut along components of $W^s(p) \cap R$ which also contain points of $W^u(p)$.
Proof of Theorem (12.2): We prove Theorem (12.2) in two steps. In the first step, we consider two flows, X and \tilde{X}, of the general sort considered in this paper such that, for the flow X, $W^u(p) \subseteq W^s(p)$, and for the flow \tilde{X}, $W^u(p) \cap W^s(p) = \{p\}$. We prove that X and \tilde{X} have nonwandering sets which are not homeomorphic. The second step demonstrates that vector fields of each of these two classes are dense in some open set in the space of C^r vector fields.

We have described above the attractor $\Lambda(X)$ of a vector field X for which $W^u(p) \subseteq W^s(p)$. In this case, Λ is path connected and $\Lambda - W^u(p)$ is locally homeomorphic to the product of a 2-disk and a Cantor set. Furthermore, $W^u(p)$ is homeomorphic to the wedge product of two circles, a "figure eight."

Now consider the attractor $\Lambda(\tilde{X})$ of a vector field \tilde{X} for which $W^u(p) \cap W^s(p) = \{p\}$ and Λ is a two dimensional set containing p. If $\Lambda(\tilde{X})$ is to be homeomorphic to $\Lambda(X)$, then $\Lambda(\tilde{X})$ must be path connected. Consider the set C of points $w \in \Lambda(\tilde{X})$ such that no neighborhood of w is homeomorphic to a 2-disk x Cantor set. It is easily seen that $W^u(p) \subseteq C$ since there are no points of $\Lambda \cap R$ to the left of the line $\rho_+ = x$ or to the right of the line $\rho_- = x$.

If $\Lambda(X)$ is homeomorphic to $\Lambda(\tilde{X})$, then C is homeomorphic to the wedge product of two spheres. Since $W^u(p) \subseteq W^s(p)$ for \tilde{X} and $W^u(p) \subseteq C$, there must be two points of $C - \{p\}$ which are the ω-limit sets of the two trajectories in $W^u(p) - \{p\}$. A single point which is the ω-limit set of a trajectory must be a singular point. There are no singular points of \tilde{X} in $\Lambda(\tilde{X})$ other than p, so we conclude that C
is not homeomorphic to the wedge product of two spheres. Hence \(\Lambda(X) \) and \(\Lambda(\tilde{X}) \) are not homeomorphic. This concludes the first step of the proof.

We now prove that the sets of vector fields \(X, \tilde{X} \) of the sort considered above are each dense in some open set. The Kupka-Smale Theorem implies that vector fields like \(\tilde{X} \) in that \(W^S(p) \cap W^U(p) = \{p\} \) form a set of second category. Since the set of vector fields with \(p \in \Lambda \) and \(\Lambda \) two dimensional is a second category subset of an open set, there is a dense set of vector fields of the form of \(\tilde{X} \) in some open set of vector fields.

The only thing remaining to prove is that there is a dense subset of an open set of vector fields for which \(W^U(p) \subset W^S(p) \). Consider the effect on \(W^U(p) \) of a perturbation \(Y \) of \(\tilde{X} \) parallel to the x-axis which has the effect of decreasing \(\rho_- \) and increasing \(\rho_+ \). See Figure 12.4.

![Figure 12.4](image-url)
We examine successive intersections of \(W^u(p) \) with \(R \) for the vector fields \(Y \) and \(\bar{X} \). The functions \(f_+ \) and \(f_- \) are orientation preserving. Consequently, as long as the corresponding, successive intersections for the two vector fields lie on the same side of the line \(x = 0 \) in \(R \), the effect of the perturbation is push the intersections following \(\rho_- \) along \(W^u(p) \) to the left and to push the intersections following \(\rho_+ \) to the right. Furthermore, since the map \(\theta \) expands in the \(x \) direction, the distance between the corresponding, successive points of intersection grows exponentially. The distance cannot grow indefinitely, so after sometime, the corresponding points of intersection lie on opposite sides of the line \(x = 0 \). Thus, for some perturbation intermediate between \(Y \) and \(\bar{X} \), there are points of intersection of \(W^u(p) \) with \(R \) which lie on the line \(x = 0 \) (in both directions along \(W^u(p) \)). This means that \(W^u(p) \subseteq W^s(p) \) for the intermediate perturbation. We conclude that there is a dense set of vector fields in some open set of the space of vector fields for which \(W^u(p) \subseteq W^s(p) \) to finish the proof of Theorem (12.2).

As is traditional in dynamical systems, we end with a question. The vector fields described here are very pathological from the point of view of topological dynamics. Yet they seem to preserve as much hyperbolicity as they possibly could without satisfying Axiom A. There is now a well developed "statistical mechanics" for attractors satisfying Axiom A (Bowen-Ruelle [1]). How much of this statistical theory can be extended to apply to the vector fields described here?
REFERENCES

Bautin, N. N. [1] On the number of limit cycles which appear with the variation of coefficients from an equilibrium of focus or center type, Transl. A.M.S. (1954), #100.

THE HOPF BIFURCATION AND ITS APPLICATIONS 385

Chafee, N. [1] The bifurcation of one or more closed orbit from an equilibrium point of an autonomous differential system, J. Diff. Eq. 4 (1968), 661-679.

(see also Bull. Am. Math. Soc. 75 (1969), 962-967.)

and bifurcation at a double eigenvalue, J. Funct. An.
14 (1973), 62-84.

Minorsky, N. [1] "Nonlinear Oscillations", Van Nostrand,
Princeton (1962), (Reprinted, R. E. Krieger,
Huntington, New York (1974).)

Mitropolsky, Y. A. and Likova, O. B. [1] "Lectures on the
Method of Integral Manifolds", Institute of Mathem­
atics of the Ukrainian Academy of Sciences, Kiev
(1968).

Morrey, C. B., Jr. [1] "Multiple Integrals in the Calculus

on Parameters, Dokl. Akad. Nauk SSR 129 (1959), 736­
739.

[2] Motions closed to doubly asymptotic motions,

Newhouse, S. E. [1] On Simple Arcs between Structurally
Stable Flows, Proc. Liverpool Symposium on Dynamical

[2] Nondensity of Axiom A(a) on S^2, Proceedings of
202.

Newhouse, S. E. and Palis, S. [1] Cycles and Bifurcation
Theory (preprint).

Newhouse, S. E. and Peixoto, M. M. [1] There is a Simple
Arc Joining any Two Morse-Smale Flows (preprint).
(See also Peixoto [1], p. 303).

[2] The self adjustment of populations to change, in
"Cold Spring Harbor Symposia on Quantitative Biology",
22 (1957), 153-173.

Nirenberg, L. [1] "Topics in Nonlinear Analysis", Courant

in chemical systems, J. Am. Chem. Soc. 94 (1972),

Rayleigh, Lord [1] On convective currents in a horizontal layer of fluid when the higher temperature is on the under side, Phil. Mag. 32 (1916), 529-546.

Stakgold, I. [1] Branching of solutions of nonlinear equa-

Stoker, J. J. [1] "Nonlinear Vibrations", Interscience,

Takens, F. [1] Unfolding of certain singularities of vector
[2] Singularities of vector fields, I.H.E.S. Publica-

Temam, R. [1] On the Euler Equations of Incompressible Per-

Temam, R. et. al. [1] Proceedings of the Conference on
Theoretical and Numerical Methods in Turbulence Theory

Turing, A. M. [1] The chemical basis of morphogenesis,
Phil. Trans. Roy. Soc. (B) (1925), 37-72.

Vainberg, M. M. and Trenogin, V. A. [1] "Theory of branch-
ing of solutions of non-linear equations", Noordhoff,
Leyden (1974).
of Nonlinear Equations and their Further Development,

Varley, G., Gr'adwell, G. and Hassell, M. [1] "Insect Popula-
tion Ecology", Univ. of California Press, Berkeley
(1973).

Velte, W. [1] Uber ein Stabilitatskriterium der Hydrodynamik,
[2] Stabilitats verhalten und Verzweigung stationaret
Losungen der Navier Stokesschen Gleichungen, Arch.
[3] Stabilitat und verzweigung stationaret Losungen
der Navier-Stokesschen Gleichungen beim Taylorproblem,

INDEX

A-admissible, 275

Almost Periodic Equations, 161-162

Aperiodic Motion, 333-335, 351

Attractor, 4-6
 Lyapunov, 4, 91, 93
 strange, 24, 297, 336-339
 vague, 66-67, 78-79, 205

Averaging, 155-159
 for almost periodic equations, 161-162
 and bifurcation to a torus, 161-162
 in diffusion equations, 160-161
 in Wright's equation, 159-160

Bénard Problem, 314, 316-317
 bifurcation in, 323-324
 stability in, 324-326

Bifurcation, 7-11
 in almost periodic equations, 161-162
 to aperiodic motion, 333-335
 and averaging, 155-159
 in the Bénard problem, 323-324
 in biological and chemical systems, 11, 160-161, 327-329
 in the Couette flow, 322
 Hopf, 8-11, 20-21, 23

 in the Navier-Stokes equation, 14-15

 in semigroups, 255-257
 stationary, 169
 and symmetry, 225
 to a torus, 9
 in Wright's equation, 159-160

Biological Systems, 11
 age structured, 339-340
 and bifurcation, 160-161, 327-329
 with discrete generations, 329-335

 and travelling waves, 349-350

 Center Manifold Theorem, 19-20, 28, 30-43
 counterexample to analyticity, 44-46
 for diffeomorphisms, 207-208
 for flows, 46-48
 nonuniqueness of, 44-46
 for semigroups, 256
 with symmetry, 227

 Center Theorem of Lyapunov, 98-99

Chemical Systems, 11, 160-161
 Zhabotinskii reaction, 149-150

Couette Flow, 16-17, 315
 bifurcation in, 322
 stability of, 324-326
 and symmetry, 240-249

Diffeomorphisms
 center manifold theorem for, 207-208
and Hopf bifurcation, 207-210

Energy Method, 270

Euler's Equations, 13, 287

Evolution System, 272-278
 infinitesimal generator of, 272
 and stability, 275
 Y-regular, 274

Flow, 258-260
 continuity and smoothness of, 260-267, 271, 278-284
 and energy method, 270
 time dependent, 271-276
 uniqueness of integral curves of, 267-269

Generator, Infinitesimal
 A-admissible, 275
 for evolution systems, 272
 and stability, 275-278

Generic, 299

Hodge Decomposition, 288

Hopf Bifurcation, 8-11, 165
 almost periodic, 161-162
 and averaging, 155-159
 in biological systems, 361, 160-161
 in chemical reactions, 149-150, 160-161
 for delay equations, 88
 for diffeomorphisms, 23, 207-210
 generalized, 85-90
 global, 90

in Liénard's equation, 141-148
in the Lorenz equations, 141-148
multiparameter, 90
in the Navier-Stokes equations, 306-312
and Poincaré map, 66-67
and van der Pol's equation, 139
in \mathbb{R}^2, 65-81
in \mathbb{R}^n, 81-82, 166-167, 201-204
for semigroups, 255
stability formula for, 126, 130, 132-135
stability of, 77-80, 91-94
uniqueness of, 80-81
for vector fields, 20-21
in Wright's equation, 159

Instability, 2, 5-6

Karmen Vortex Sheet, 15

Liénard's Equations, 136-137

Lorenz Equations, 141-148, 369
and turbulence, 148

Lyapunov, 6, 66, 91, 93
 center theorem, 94-95

Lyapunov-Schmidt, 26

Navier-Stokes Equations, 12-18, 286
 and Benard problem, 316-317
 and Couette flow, 16-17, 316
 global regularity of, 302-303
Hopf bifurcation in, 306-312
and Karmen vortex sheet, 15
local existence for, 290-295
and Poiseuille flow, 18
semiflow of, 289, 295-296
stability of, 298
and Taylor cells, 17
turbulence in, 15, 24

Poincaré Map, 21, 56-60
and Hopf bifurcation, 66-67
and stability, 61

Poiseuille Flow, 18

van der Pol's Equation, 139

Prandtl Number, 142

Rayleigh Number, 142

Reynold's Number, 12

Semiflow, 259
of Navier-Stokes Equations, 289, 295-296
and smoothness, 279-284

Semigroups
center manifold theorem for, 256
generator of, 274
and Hopf bifurcation, 255

invariant torus, 256-257
quasi contractive, 277
smooth, 253
and stability, 276-278

Spectral Radius, 50

Spectrum
and stability, 52-55

Stability, 3-6
asymptotic, 4
and averaging, 155-159
in the Bénard problem, 324-326
for evolution systems, 275-278
formula for Hopf bifurcation, 126, 127, 132-135
for Hopf bifurcation, 77-80, 91-94, 166-167, 201-204
of invariant torus, 210
and linear equations, 6-7
in the Navier-Stokes equations, 298
omega (Ω), 369-372
and the Poincaré map, 61
for semigroups, 275-278
shift of, 9
and spectrum, 52-55

Strange Attractor, 24, 297, 338-339

Symmetry, 225
and center manifold, 227
and Couette flow, 240-249
and Taylor cells, 243-249
Taylor Cells, 17, 314, 315
 bifurcation to, 322
 stability of, 324-326
 and symmetry, 243-249

Torus, Invariant, 206-207
 and averaging, 162
 in semigroups, 256-257
 and turbulence, 297, 299

Turbulence, 15, 24
 and Couette flow, 297
 and invariant tori, 297, 299
 in Lorenz equations, 148
 and Navier-Stokes equations, 297, 299-303

Turing's Equations, 354-361

Vague Attractor, 65-66, 81-82, 205

Wright's Equations, 159-160

Y-regular, 274

Zhabotinskii Reaction, 149-150, 367
Applied Mathematical Sciences

EDITORS
Fritz John
Joseph P. LaSalle
Lawrence Sirovich
Gerald B. Whitham

Vol. 1 F. John
Partial Differential Equations
Second edition
ISBN 0-387-90111-6

Vol. 2 L. Sirovich
Techniques of Asymptotic Analysis

Vol. 3 J. Hale
Functional Differential Equations

Vol. 4 J. K. Percus
Combinational Methods
ISBN 0-387-90027-6

Vol. 5 R. von Mises and K. O. Friedrichs
Fluid Dynamics
ISBN 0-387-90028-4

Vol. 6 W. Freiberger and U. Grenander
A Short Course in Computational
Probability and Statistics

Vol. 7 A. C. Pipkin
Lectures on Viscoelasticity Theory
ISBN 0-387-90030-6

Vol. 8 G. E. O. Giacaglia
Perturbation Methods in
Non-Linear Systems
ISBN 0-387-90054-3

Vol. 9 K. O. Friedrichs
Spectral Theory of Operators in
Hilbert Space
ISBN 0-387-90076-4

Vol. 10 A. H. Stroud
Numerical Quadrature and Solution of
Ordinary Differential Equations
ISBN 0-387-90100-0

Vol. 11 W. A. Wolovich
Linear Multivariable Systems

Vol. 12 L. D. Berkovitz
Optimal Control Theory

Vol. 13 G. W. Bluman and J. D. Cole
Similarity Methods for Differential
Equations
ISBN 0-387-90107-8

Vol. 14 T. Yoshizawa
Stability Theory and the Existence
of Periodic Solutions and Almost
Periodic Solutions
ISBN 0-387-90112-4

Vol. 15 M. Braun
Differential Equations and
Their Applications
ISBN 0-387-90114-0

Vol. 16 S. Lefschetz
Applications of Algebraic Topology

Vol. 17 L. Collatz and W. Wetterling
Optimization Problems
ISBN 0-387-90143-4

Vol. 18 U. Grenander
Pattern Synthesis
Lectures in Pattern Theory Vol. 1
ISBN 0-387-90174-4