Numerical Methods & Modeling for Chemical Engineers

Mark E. Davis
May 14, 2001

California Institute of Technology
Mark E. Davis
Chemical Engineering 210-41
Pasadena California 91125

Re: Numerical Methods and Modeling for Chemical Engineers (the "Work")
0471887617

Dear Davis:

This is to confirm that all rights in the copyright in the above-referenced work granted by you to Wiley hereby revert to you, subject to any outstanding options, licenses or contracts previously granted, and also subject to Wiley’s right to continue to sell any existing inventory. If you would like to purchase these copies, please contact the Editor, at (212) 850-6000 for further information.

The copyright in the work, which was originally registered in the name of John Wiley & Sons, Inc., has been assigned to you. The assignment document has been sent to the U.S. Copyright Office for recordation. When the assignment is returned to us (it takes approximately 7 months), we will forward it to you.

Please note that recordation of the assignment is merely a formality for the public record. The assignment becomes effective on the date its execution.

Regards,

Leah Durner
Contracts Manager

cc: Wayne Anderson
Permissions Department
Numerical Methods and Modeling for Chemical Engineers

Mark E. Davis
Virginia Polytechnic Institute and State University

John Wiley & Sons
New York Chichester Brisbane Toronto Singapore
Copyright © 1984, by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

Reproduction or translation of any part of this work beyond that permitted by Sections 107 and 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful. Requests for permission or further information should be addressed to the Permissions Department, John Wiley & Sons.

Library of Congress Cataloging in Publication Data:
Davis, Mark E.
Numerical methods and modeling for chemical engineers.

Bibliography: p.
Includes index.

TP155.D33 1984 660.2'8'0724 83-21590
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
To Mary Margaret
This book is an introduction to the quantitative treatment of differential equations that arise from modeling physical phenomena in the area of chemical engineering. It evolved from a set of notes developed for courses taught at Virginia Polytechnic Institute and State University.

An engineer working on a mathematical project is typically not interested in sophisticated theoretical treatments, but rather in the solution of a model and the physical insight that the solution can give. A recent and important tool in regard to this objective is mathematical software—preprogrammed, reliable computer subroutines for solving mathematical problems. Since numerical methods are not infallible, a “black-box” approach of using these subroutines can be dangerous. To utilize software effectively, one must be aware of its capabilities and especially its limitations. This implies that the user must have at least an intuitive understanding of how the software is designed and implemented. Thus, although the subjects covered in this book are the same as in other texts, the treatment is different in that it emphasizes the methods implemented in commercial software. The aim is to provide an understanding of how the subroutines work in order to help the engineer gain maximum benefit from them.

This book outlines numerical techniques for differential equations that either illustrate a computational property of interest or are the underlying methods of a computer software package. The intent is to provide the reader with sufficient background to effectively utilize mathematical software. The reader is assumed to have a basic knowledge of mathematics, and results that require extensive mathematical literacy are stated with proper references. Those who desire to
Preface

delve deeper into a particular subject can then follow the leads given in the references and bibliographies.

Each chapter is provided with examples that further elaborate on the text. Problems at the end of each chapter are aimed at mimicking industrial mathematics projects and, when possible, are extensions of the examples in the text. These problems have been grouped into two classes:

Class 1: Problems that illustrate direct numerical application of the formulas in the text.

Class 2: Problems that should be solved with software of the type described in the text (designated by an asterisk after the problem number).

The level of this book is introductory, although the latest techniques are presented. The book can serve as a text for a senior or first-year graduate level course. At Virginia Polytechnic Institute and State University I have successfully used this material for a two-quarter sequence of first-year graduate courses. In the first quarter ordinary differential equations, Chapter 1 to 3, are covered. The second quarter examines partial differential equations using Chapters 4 and 5.

I gratefully acknowledge the following individuals who have either directly or indirectly contributed to this book: Kenneth Denison, Julio Diaz, Peter Mercure, Kathleen Richter, Peter Rony, Layne Watson, and John Yamanis. I am especially indebted to Graeme Fairweather who read the manuscript and provided many helpful suggestions for its improvement. I also thank the Department of Chemical Engineering at Virginia Polytechnic Institute and State University for its support, and I apologize to the many graduate students who suffered through the early drafts as course texts. Last, and most of all, my sincerest thanks go to Jan Chance for typing the manuscript in her usual flawless form.

I dedicate this book to my wife, who uncomplainingly gave up a portion of her life for its completion.

Mark E. Davis
Chapter 1

Initial-Value Problems for Ordinary Differential Equations

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Background</td>
<td>1</td>
</tr>
<tr>
<td>Explicit Methods</td>
<td>3</td>
</tr>
<tr>
<td>Stability</td>
<td>8</td>
</tr>
<tr>
<td>Runge-Kutta Methods</td>
<td>11</td>
</tr>
<tr>
<td>Implicit Methods</td>
<td>19</td>
</tr>
<tr>
<td>Extrapolation</td>
<td>21</td>
</tr>
<tr>
<td>Multistep Methods</td>
<td>24</td>
</tr>
<tr>
<td>High-Order Methods Based on Knowledge of $\frac{df}{dy}$</td>
<td>28</td>
</tr>
<tr>
<td>Stiffness</td>
<td>29</td>
</tr>
<tr>
<td>Systems of Differential Equations</td>
<td>32</td>
</tr>
<tr>
<td>Step-Size Strategies</td>
<td>36</td>
</tr>
<tr>
<td>Mathematical Software</td>
<td>37</td>
</tr>
<tr>
<td>Problems</td>
<td>44</td>
</tr>
<tr>
<td>References</td>
<td>49</td>
</tr>
<tr>
<td>Bibliography</td>
<td>52</td>
</tr>
</tbody>
</table>
Chapter 2 Boundary-Value Problems for Ordinary Differential Equations: Discrete Variable Methods

Introduction
Background
Initial-Value Methods
 Shooting Methods
 Multiple Shooting
 Superposition
Finite Difference Methods
 Linear Second-Order Equations
 Flux Boundary Conditions
 Integration Method
 Nonlinear Second-Order Equations
 First-Order Systems
 Higher-Order Methods
Mathematical Software
Problems
References
Bibliography

Chapter 3 Boundary-Value Problems for Ordinary Differential Equations: Finite Element Methods

Introduction
Background
Piecewise Polynomial Functions
The Galerkin Method
 Nonlinear Equations
 Inhomogeneous Dirichlet and Flux Boundary Conditions
 Mathematical Software
Collocation
 Mathematical Software
Problems
References
Bibliography
Chapter 4 Parabolic Partial Differential Equations in One Space Variable

Introduction 127
Classification of Partial Differential Equations 127
Method of Lines 128
Finite Differences 130
 Low-Order Time Approximations 130
 The Theta Method 133
 Boundary and Initial Conditions 135
 Nonlinear Equations 140
 Inhomogeneous Media 142
 High-Order Time Approximations 147
Finite Elements 154
 Galerkin 154
 Collocation 158
Mathematical Software 162
Problems 167
References 172
Bibliography 174

Chapter 5 Partial Differential Equations in Two Space Variables

Introduction 177
Elliptic PDEs—Finite Differences 177
 Background 177
 Laplace's Equation in a Square 178
 Dirichlet Problem 178
 Neumann Problem 179
 Robin Problem 180
 Variable Coefficients and Nonlinear Problems 184
 Nonuniform Grids 185
 Irregular Boundaries 190
 Dirichlet Condition 190
 Normal Derivative Conditions 191
Elliptic PDEs—Finite Elements 192
 Background 192
 Collocation 194
 Galerkin 200
Numerical Methods and Modeling for Chemical Engineers